
Comprehensive Security Assurance Measures for Virtualized Server
Environments

Ramaswamy Chandramouli (mouli@nist.gov)

National Institute of Standards & Technology, Gaithersburg MD, USA

1. INTRODUCTION

Virtualization is the dominant technology employed in enterprise data centers and those used for offering
cloud computing services. This technology has resulted in what is called a virtualized infrastructure. From
a computing and communication point of view, the two forms of virtualization that have made significant
impacts are Server (or Hardware) virtualization and Operating System (OS) virtualization. Server
virtualization is enabled by software called a Hypervisor —functionally, an operating system kernel with
some additional kernel modules that provides an abstraction of the hardware, enabling multiple
independent computing stacks called virtual machines (VMs), each with its own OS and applications, to
be run on a single physical host. While access to CPU and memory (to ensure process isolation) are
handled directly by the hypervisor (through instruction set (CPU) virtualization and memory
virtualization respectively with or without assistance from hardware), it handles the mediation of access
to devices by calling on software modules running either in the kernel or in dedicated VMs called
Device-driver VMs. This physical host is called a virtualized server or hypervisor host.

Operating system virtualization, on the other hand, is enabled purely by using OS kernel-level features
(e.g., namespaces, Cgroups, etc. in Linux OS distributions) that allow for the definition of encapsulated
entities called containers, each running as an isolated process (i.e., hosting one or more applications) on
the same OS kernel. The creation, configuration, and running of containers is enabled by software called
container runtime, which makes direct Application Programming Interface (API) calls to the OS kernel
for performing these functions. Thus, we see that hypervisor software provides abstraction of the
hardware while container runtime software enables the creation of an artifact (called a container) that
provides abstraction of the OS.

The initial motivation for server virtualization—even before their deployment in data centers used for
cloud services—is better utilization of hardware resources with the added benefit of reduced floor space
and power consumption. After the advent of cloud services, virtualized servers have become the de facto
component of data centers’ infrastructure, especially for those offering Infrastructure as a Service (IaaS).
This is because a VM image, being a complete computing stack with its virtual hardware resource
definitions and OS (called Guest OS) can be offered as a basic computing unit to the cloud service
consumer (CSC) for this type of cloud service.

Out of the two forms of virtualization referred to above (i.e., hardware virtualization and OS
virtualization), the focus of this manuscript is on hardware virtualization and its resulting artifact
virtualized server. The data center ecosystem consists of multiple virtualized servers with its hardware,
the core virtualization software (the hypervisor), and VMs. The ecosystem, together with the network
inside of each virtualized server (called virtual network) and the linking of virtualized servers, constitutes
the virtualized server environment. The goal of this manuscript is to develop security assurance for all

mailto:mouli@nist.gov

components of a virtualized server environment. The approach adopted in this manuscript for realizing
this goal is as follows:

• Study the functions of various components in a virtualized server environment
• Identify threats to the secure execution of those functions
• Develop the security assurance measures to counter those threats

For the hypervisor, which is the core component of the environment, there are multiple commercial
product offerings. Since the objective of this manuscript is to outline product-agnostic security assurance
measures, the approach adopted is to identify a set of baseline or canonical functions of the hypervisor
that will form the basis for threat identification.

The overall organization of this manuscript is as follows. In Section 2, a brief technology overview of
components in a virtualized server environment is provided. The hardware functions in a virtualized
server are briefly described in Section 3. Section 4 identifies and elaborates on the baseline functions of
the hypervisor and the threats to those functions. The threat to the secure execution of VM-resident
programs, such as Guest OS and applications, form the subject matter for Section 5. Section 6 describes
typical virtual network configurations in a virtualized server and the protections required for those
configurations. The security assurance measures for hypervisor, VM, and virtual networks are developed
in Sections 7, 8, and 9, respectively. The security assurance for booting a virtualized server platform is
described in section 10. Section 11 provides the summary and conclusions.

2. VIRTUALIZED SERVER ENVIRONMENT – A TECHNOLOGY OVERVIEW

From the perspective of this manuscript, a virtualized server environment consists of the following
components:
• A physical host, called a virtualized server or hypervisor host, with server virtualization software

(hypervisor and its associated modules), along with multiple computing stacks (i.e., Virtual Machines
or VMs) running on it. The hypervisor host has hardware extensions to assist virtualization.

• A virtual network, or software-defined network, inside the virtualized server, consisting of software-
defined network devices. This network is configured with network segmentation techniques such as
Virtual Local Area Network (VLAN) and overlay-based network (e.g., VXLAN) that span multiple
virtualized servers and enable logical segmentation of the VMs distributed throughout the data center.

A Virtualized server can have two different types of hypervisors: one that can be mounted directly on the
hardware (called bare metal) and the other that requires an OS (called host OS) for its installation. These
two types of hypervisors are also called Type 1 and Type 2 hypervisor, respectively. The VMs, also called
Guests, host and run the application programs with the help of an OS (called the Guest OS). The
virtualized server platforms, consisting of Type 1 and Type 2 hypervisors, are shown in Figure 1.

In addition to classification based on the platform on which it is mounted (bare metal or host OS),
hypervisors can be classified based on the type of virtualization they provide for devices. In one approach,
called Full Virtualization, the hypervisor will expose the interface of a well-known hardware device that
is available in the real world to the VM, and it will completely emulate the behavior of that device.
Emulation allows the programs running in VMs to use the guest OS drivers that were designed to interact
with the emulated device without installing any special driver or tool specified by the hypervisor vendor.
In another approach called para-virtualization, the hypervisor provides an interface of an artificial device

to the guest that has no corresponding hardware device. This artificial device is a software-only device
that presents a lightweight interface designed and optimized to work in virtual environments. However,
the performance improvement made possible with para-virtualization requires that the guest OS and
device drivers be modified to communicate directly with the hypervisor through a special interface called
hypercall interface.

Figure 1: Virtualized Server Platforms with Type 1 and Type 2 Hypervisor

The hardware extensions in a hypervisor host assist virtualization through functions such as instruction
handling and memory management. Hardware features, such as CPU/Instruction Set virtualization and
memory virtualization, respectively, enable these functions and are described in detail in Section 3.

All Physical hosts or servers are connected to the data center network (or become nodes of the data center
network) using a physical device called a Network Interface Card (NIC). An independent computing
stack such as a VM requires a similar connection to the networking infrastructure of the data center. This
is enabled by an artifact called a Virtual NIC (vNIC), which is the software defined analog of the physical
NIC (pNIC). In addition, since there are multiple VMs or containers inside a single physical host, there is
the need to provide interconnection among the multiple VMs within it. This requirement necessitates the
creation of a software-defined network within a physical host (called virtual network) with
switching/bridging functions performed by software-defined entities (called virtual switches/virtual
bridges), which are software analogs of the corresponding physical network devices.

3. VIRTUALIZED SERVER HARDWARE FUNCTIONS

As already stated, the hardware of a virtualized server provides two features to assist the virtualization
function of the hypervisor: Instruction Set Virtualization and Memory Virtualization. These hardware-
based functions provided by chip vendors are mature technologies that have been utilized for more than a
decade and whose known vulnerabilities have already been addressed. Therefore, no threats need to be
considered for these functions.

Instruction Set Virtualization: The processor architecture of the hardware is generally designed to operate
OS instructions at a higher privilege level than the application instructions. However, in a virtualized
server, the guest OS instructions cannot be executed at the highest privilege level (e.g., Ring 0 in x86
architectures) since the hypervisor that mediates the access of various VMs to hardware resources of the
virtualized server must operate at a higher privilege level than any guest OS. To facilitate this, hardware
architectures (e.g., Intel, AMD1) provide two modes of operation (host and guest) for the processor, each
with four hierarchical privilege levels (Ring 0 thru Ring 3). Additionally, among the two modes, the host
or root mode has a higher privilege for executing CPU instructions than the guest or non-root mode, and it
is in the former mode that hypervisor instructions are executed. The guest mode is used for executing
instructions from guest OSs and VM-based applications.

Contribution to Hypervisor Security Assurance Verification: By running the hypervisor in root mode and
guest OSs in non-root mode at privilege or ring level 0, the hypervisor is guaranteed safety from at least
any instruction set-type attacks by any Guest OS. This safety is ensured by allowing the hardware to
trap privileged instructions from a guest OS to run in non-root mode. Additionally, when the hypervisor
does not have to perform additional functions (e.g., translating sensitive instructions using techniques
such as binary translation) for handling the instructions, the code executing with privileges is reduced in
the hypervisor, making the trusted computing base (TCB) smaller and enabling better assurance
verification.

Memory Virtualization: Hardware-assisted memory virtualization is provided using two levels of page
tables (Guest page table and Host page table). The guest page table, maintained by a guest OS,
translates from guest virtual to guest physical addresses, whereas the host page table translates from
guest physical to host physical addresses.

Contribution to Hypervisor Security Assurance Verification: The availability of a hardware-based host
page table eliminates the need for the hypervisor to generate and maintain shadow page tables, providing
the same security advantage (i.e., smaller TCB) as for Instruction Set Virtualization.

4. HYPERVISOR BASELINE FUNCTIONS AND THREATS

The hypervisor is the core component in the virtualized server platform, and its baseline functions are as
follows [1]:
• HY-BF1: VM Process Isolation – The hypervisor, in addition to its software-based tasks,

leverages the hardware extension features in two ways to enforce process isolation. First, it runs
in higher privilege mode (i.e., host mode) and uses the special instruction vmrun to switch the CPU to
lower privilege mode (i.e., guest mode) for VMs to begin execution. Second, before VMs start
running, it creates a data structure called Virtual Machine Control Block (VMCB) for recording the

1 Any mention of commercial products or organizations is for informational purposes only; it is
not intended to imply recommendation or endorsement by the National Institute of Standards and
Technology, nor is it intended to imply that the products identified are necessarily the best
available for the purpose.

execution state of VMs, and it leverages the memory management features (e.g., two layered page
tables) of the hardware to enforce separation of memory address spaces for VMs.

• HY-BF2: Devices Mediation & Access Control – Mediates access to all devices (e.g., Storage,
Network, etc.)

• HY-BF3: Execution of Guest Instructions through Hypercall Interface – This functionality is only
applicable to para-virtualized hypervisors, which handle certain device access instructions from
guests directly through its hypercall interface rather than through the combination of vmexit and host
mode transition events.

• HY-BF4: VM Lifecycle Management – Performs all functions including creation and management of
VM images, control of VM states (Start, Pause, Stop, etc.), VM migration, creation of snapshots, VM
monitoring, and policy enforcement

• HY-BF5: Management of Hypervisor – Setting various configuration parameters, such as CPU and
memory allocation logic, including those for the Virtual Network inside the hypervisor; also includes
tasks such as updates and application of patches to hypervisor modules

To execute the above baseline functions, different software modules are needed, which makes the
hypervisor a non-monolithic software. The software module that carries out each baseline function along
with the location in the overall virtualized server platform architecture where each resides is given in
Table 1 below.

Table 1: Hypervisor Baseline Functions & Deployment Locations
Baseline Function Component

(Software Module)
Location

VM Process Isolation (HY-
BF1)

Hypervisor Kernel Either an OS kernel (along with a kernel module)
itself or a component installed on a full-fledged
OS (Host OS)

Devices Mediation & Access
Control (HY-BF2)

Device emulator or
Device driver

Either in a dedicated VM (called Device-driver
VM) or in the hypervisor kernel itself

Execution of Guest
Instructions through hypercall
interface
(HY-BF3)

Hypervisor Kernel Pertain to only para-virtualized hypervisors and
handled by hypercall interfaces in that type of
hypervisor

VM Lifecycle Management
(HY-BF4)

A management
daemon

Installed on top of the hypervisor kernel but runs
in unprivileged mode

Management of Hypervisor
(HY-BF5)

A set of tools with
CLI (command line
interface) or a GUI

A console or shell running on top of the
hypervisor kernel

The tasks involved in implementing each of the above baseline functions are described in more detail in
the following subsections and accompanied by statements of potential threats to secure execution of these
tasks. However, the virtual network configuration tasks (in HY-BF5), including the set-up for VM
network traffic monitoring (in HY-BF4), are discussed under a separate section (Section 6) due to their
critical roles in the security of the entire virtualized server environment.

4.1 Potential Threats to VM Process Isolation (HY-BF1)

The threats to VM process isolation are the results of two primary causes [1]:

Breach of Process Isolation – VM Escape: Major threats to any hypervisor come from malicious VM-
resident programs. These programs can subvert the isolation function provided by the Virtual Machine
Monitor (VMM)/hypervisor to hardware resources such as memory pages. In other words, these
programs can, under some conditions, access areas of memory belonging to the hypervisor or other VMs
or devices (e.g., memory mapped devices) that they are not authorized to access. Examples of such
attacks include some crafted applications in VM executing arbitrary code on the host OS [2] or VM
programs accessing areas of memory that are not allocated to them, thereby causing corruption or
information leakage [3]. Extreme attack scenarios may include VMs with malicious programs taking
control of the hypervisor to install rootkits or attack other VMs on the same virtualized server. These
threats are mainly due to code flaws in the hypervisor.

Denial-of-Service to some VMs: Hypervisor offerings come with sophisticated CPU and memory
allocation options. Improper use of these configuration options may result in some VMs hogging
resources, resulting in denial-of-service or the inability to meet the critical availability requirement for
some VMs.

4.2 Potential Threats to Devices Mediation (HY-BF2)

The applications executing in VMs need to access devices such as video output, network (for
communication), or block (storage) devices. There are three common approaches to handling devices by
virtualized servers: (a) Passthrough, (b) Emulation, and (c) Para-virtualization [4]. Out of these, the
passthrough approach provides exclusive access to a device for a VM. Since this is not a scalable
approach, it is adopted for VMs running specialized applications. The para-virtualization approach was
generally designed for enhancing performance for accessing devices. In this approach, the hypervisor
provides to the guest an interface of an artificial device that has no corresponding hardware counterpart.
Therefore, it requires that the hypervisor and guest agree on an interface that takes into consideration the
features of the specific hypervisor-guest combination. This naturally means that a generic guest OS
device driver cannot be used, and a specially modified device driver is needed to be run in the guest. Calls
from these special device drivers are directly handled by the hypervisor through its hypercall interface
instead of the usual route of a driver call causing a vmexit. Because of the need to use customized device
drivers for each environment, the difficulty of providing security guarantees to them (e.g., certification),
and the fact that hardware extensions have substantially mitigated performance penalties in full
virtualization, para-virtualization has limited deployments. This leaves the emulation approach to
handling devices using full virtualization as the most commonly deployed technique in many production
environments.

The code for device emulation resides either in the hypervisor kernel or in a dedicated VM. Any I/O call
from a guest VM application is intercepted by the hypervisor kernel and forwarded to this code since guest
VMs cannot typically access the physical devices directly unless they are assigned to it. This code
emulates devices, mediates access to them, and multiplexes the actual devices since each permitted VM
has full access to the underlying physical device.

The main threats with respect to devices mediation are: (a) Unauthorized access to memory regions by
Direct Memory Access (DMA) capable devices due to faulty device driver code, (b) Unauthorized access
to devices by VMs, and (c) denial-of-service due to monopolization of I/O bandwidth.

4.3 Potential Threats to the Execution of Instructions by Hypercall Interface (HY-BF3)

In hypervisors implementing para-virtualization, certain guest instructions (e.g., accessing devices by
accessing memory areas assigned to memory-mapped devices) cause a trap directly into the hypervisor
instead of through channels enabled by vmexit instruction. This mechanism is called a hypercall, and the
portion of the hypervisor dealing with such instructions is called a hypercall interface. Lack of proper
validation of those instructions (e.g., not checking the scope for an instruction that requests a full dump of
a VM’s Virtual Machine Control Block, or not checking input values) would cause the entire
virtualized server to crash. This is a hypervisor design vulnerability that must be addressed through proper
validation and testing of the relevant hypervisor code rather than through any assurance measures in
deployment.

4.4 Potential Threats originating from VM Lifecycle Management (HY-BF4)

In most instances, the lifecycle management operations on VMs are performed using commands
submitted through a GUI or a scripting environment, both of which are supported by a management
daemon at the back-end. This is a standard architectural paradigm for any management software.
Vulnerabilities and potential threats are not virtualized server environment-specific and are therefore
outside of the scope of this manuscript. Instead, the threat analysis in this context is to identify some VM
lifecycle management operations that might be sources of potential threats for other baseline functions.
This analysis reveals the following:

• Retrieving and deploying VM images that do not conform to the enterprise security profile in the
image library, including those with outdated guest OS versions and patches, could result in a potential
breach of process isolation described in Section 4.1. Similar potential threats exist if VMs are
instantiated from snapshots taken at a considerable time in the past.

• Migrating VMs from one virtualized server to another (a process called VM Migration) involves
transferring a running VM’s memory content and processor state. The execution of this operation
without necessary safeguards such as encryption of migration traffic etc., could result in the operation
of a compromised VM in the destination platform, thereby affecting all three aspects of security—
confidentiality, integrity and availability.

4.5 Potential Threats to Hypervisor Host Administration (HY-BF5)

The tasks under this function relate to the overall administration of a hypervisor host and software, and
they are usually performed through user-friendly web interfaces or network-facing virtual consoles.
Threats to the secure execution of these tasks are common in any remote administration and are therefore
not addressed in this manuscript. However, the core requirement in a data center with virtualized servers
is to have a uniform configuration for entire groups of hypervisors based on different criteria (e.g., the
sensitivity of applications, line of business, clients in cloud service environments, etc.). Another
requirement is to provide a safe network path for management traffic (packets containing administrative
commands), considering that a portion of this network is a software-defined virtual network.

5. THREATS TO THE SECURE EXECUTION OF VM-RESIDENT PROGRAMS

The Guest OS and applications are the VM-resident programs that must execute securely in the presence
of a higher privileged hypervisor software executing on the same hardware platform. The hypervisor is
responsible for process isolation between VMs and the safe execution of each individual VM. However, a
malicious or compromised hypervisor can be a source of threat to VMs for several reasons. First, the data
structure that carries the execution state of VMs, called the Virtual Machine Control Block (VMCB), is
created and handled by the hypervisor. Second, the hypervisor controls the nested page tables, which are
really a pair of tables—one mapping from guest virtual addresses to guest physical addresses and the
other mapping from guest physical addresses to host physical addresses. Thus, we see that a hypervisor
can read and write the entire guest memory. By monitoring the execution state of a VM, it can also
subject it to memory replay attacks [4].

The predominant use case for virtualized server platform is in the Infrastructure as a Service (IAAS)
cloud service. In this service, the cloud service provider (CSP) provides the hypervisor while the guest
VMs host and run the cloud service customers’ (CSC) programs. A malicious hypervisor thus has the
potential to affect the integrity and confidentiality of CSC’s resources such as data and applications. Since
a single cloud data center often hosts multiple guest VMs from different CSCs, data belonging to several
VM owners may be breached by a single hypervisor. Therefore, the hypervisor should be treated as
untrusted software, and VMs in a cloud data center need to be protected from the hypervisor.

The threats to the secure functioning of guest OS and VM-resident applications are by and large not
unique to virtualized server platforms except for the fact that the VM executes as a lower privileged
software, and its execution flow is controlled by the higher privileged hypervisor software.

6. PROTECTION FOR VIRTUAL NETWORK CONFIGURATIONS

To link the VMs inside a hypervisor host to each other and to the outside (physical) enterprise network,
the hypervisor can define an entirely software-defined network called a virtual network. The components
of this virtual network are: (a) one or more software-defined network interface cards, called virtual
network interface cards (vNICs), inside each VM and (b) multiple software-defined switches, called
virtual switches, operating inside the kernel of the hypervisor. The virtual switches have multiple ports,
just like physical switches. One set of ports is used for connecting to the vNICs in VMs. The other set of
ports, called uplink ports, are used for connecting the virtual switches to the physical network interface
cards (pNICs) of the hypervisor host. Thus, a communication pathway is established for connecting VMs
resident inside the same hypervisor host as well as to those resident in other hypervisor hosts. This then
enables applications and guest OS instances running inside VMs to interact with computing, network, and
storage elements on the data center’s physical network. The network traffic flowing inside a virtual
network can broadly be classified as [5]

• Management traffic: commands for hypervisor administration and VM lifecycle operations
• Infrastructure traffic: network packets generated during VM migration
• Inter-VM traffic: communication between applications or application tiers running in VMs

Thus, the entire network infrastructure in a virtualized server environment consists of a virtual network
inside each hypervisor host and the physical datacenter network linking the various hosts. The threats to
this network infrastructure are no different than those encountered in environments that consist of only
physical (non-virtualized) hosts. However, defining the virtual network inside each VM entirely by
software requires a different set of configurations (virtualized server-specific) and solutions (virtual
firewalls) for ensuring secure communication.

There are four common virtual network configuration areas that have a bearing on the security of the
network infrastructure in a virtualized server environment [5].

• Network segmentation
• Network path redundancy
• Firewall deployment and configuration
• VM traffic monitoring

A brief overview of the components and techniques involved in the above four configuration areas is
necessary to arrive at security assurances associated with their deployment.

Network segmentation: This is a fundamental network configuration in any medium to large data center
used for supporting enterprise IT resources or used for offering cloud computing services. This is due to
the need for logical separation of applications/VMs with different sensitivity levels or belonging to
different organizational entities (departments) or clients (as in cloud service environments). The two
techniques commonly found in virtualized server environments are Virtual Local Area Network (VLAN)
and Overlay-based virtual networking [5].

VLAN is a network segmentation technique that creates broadcast domains within a large data center
network. In a data center with all physical (non-virtualized) hosts, a VLAN is defined by assigning a
unique ID called a VLAN tag to one or more ports of a physical switch. All hosts connected to those ports
then become members of that VLAN ID, creating a logical grouping of servers (hosts), regardless of their
physical locations, in the large flat network of a data center. The concept of VLANs can be extended and
implemented in a data center with virtualized hosts using virtual switches with ports or port groups that
support VLAN tagging and processing. In other words, VLAN IDs are assigned to ports of a virtual
switch inside a hypervisor kernel, and VMs are assigned to appropriate ports based on their VLAN
membership. These VLAN-capable virtual switches can perform VLAN tagging of all packets going out
of a VM (with the tag depending upon which port it has received the packet from) and can route an
incoming packet with a specific VLAN tag to the appropriate VM by sending it through a port with a
VLAN ID assignment equal to the VLAN tag of the packet and with a matching media access control
(MAC) address. An example of a VLAN configuration inside a virtualized server is shown in Figure 2.

Fig 2. Virtual Local Area Network (VLAN) Configuration in a Virtualized Server

This logical segmentation of traffic inside the virtualized host is then extended to the physical network of
the data center by configuring link aggregation (to carry traffic of multiple VLANs) on links between the
pNICs of these virtualized hosts and the physical switches in the data center and configuring the receiving
ports on the physical switch as trunking ports (capable of receiving and sending traffic belonging to
multiple VLANs). A given VLAN ID can be assigned to ports of virtual switches located in multiple
virtualized hosts. Thus, the combined VLAN configuration, consisting of the configuration inside the
virtualized host (assigning VLAN IDs to ports of virtual switches or vNICs of VMs) and the
configuration outside the virtualized host (link aggregation and port trunking in physical switches),
provides a pathway for VLANs defined in the physical network to be carried into a virtualized host (and
vice versa). This provides the ability to isolate traffic among VMs distributed throughout the data center
using logical segments, and thus a means of providing confidentiality and integrity protection to the
applications running inside those VMs.

In Overlay-based networking, isolation is realized by encapsulating an Ethernet frame received from a
VM by a hypervisor kernel module called the Overlay module. In an example of the encapsulation
scheme (or overlay scheme) called VXLAN, the Ethernet frame received from a VM, which contains the
MAC address of the destination VM, is encapsulated in two stages: first, with the 24-bit VXLAN ID
(virtual Layer 2 (L2) segment) to which the sending/receiving VM belongs, and second, with the source
and destination IP addresses of the VXLAN tunnel endpoints (VTEP), which are kernel modules residing
in the hypervisors of the sending and receiving VMs, respectively. VXLAN encapsulation thus enables
the creation of a virtual Layer 2 segment that can span not only different virtualized hosts but also IP
subnets within the data center. A Schematic diagram of VXLAN components is shown in Figure 3.

Figure 3: Virtual Network Segmentation using Overlays (VXLAN)

A particular tenant can be assigned two or more VXLAN segments (or IDs). VXLAN-based network
segmentation can be configured to provide isolation among resources of multiple tenants of a cloud data
center. The tenant can make use of multiple VXLAN segments by assigning VMs hosting each tier (web,
application, or database) to the same or different VXLAN segments. If VMs belonging to a client are in
different VXLAN segments, selective connectivity can be established among those VXLAN segments
belonging to the same tenant through suitable firewall configurations, while communication between
VXLAN segments belonging to different tenants can be prohibited.

Network path redundancy: Hypervisors offer a configuration feature called network interface card (NIC)
teaming, which allows administrators to combine multiple pNICs into a NIC team for NIC failover
capabilities in a virtualized host. The members of the NIC team are connected to the different uplink ports
of the same virtual switch. Failover capability requires at least two pNICs in the NIC team. One of them
can be configured as “active” and the other as “standby.” If an active pNIC fails or traffic fails to flow
through it, the traffic will start flowing (or be routed) through the standby pNIC, thus maintaining
continuity of network traffic flow from all VMs connected to that virtual switch. This type of
configuration is also called active-passive NIC bonding.

Firewall Deployment and Configuration: Software-defined firewalls, called virtual firewalls, are generally
the ones that are deployed on virtualized server platforms. There are two kinds of virtual firewalls—
subnet-level virtual firewalls and kernel-level virtual firewalls. Subnet-level firewalls run in a dedicated
VM, which is usually configured with multiple vNICs. Sometimes they come packaged as a virtual
security appliance. Each vNIC in a subnet-level firewall is connected to a different subnet or security
zone of the virtual network. Kernel-level firewalls, as the name denotes, are run as loadable (hypervisor)

kernel modules and use the hypervisor’s introspection application programming interface (API) to
intercept every packet coming into and out of an individual VM.

VM Monitoring: Firewalls only ensure that inter-VM traffic conforms to organizational information flow
and security rules. However, to identify any malicious or harmful traffic coming into or flowing out of
VMs and to generate alerts or take preventive action, it is necessary to set up traffic monitoring
capabilities to monitor all incoming/outgoing traffic of a VM. This requires functionality to send copies
of those packets to a network analyzer application. The purpose of a network analyzer application is to
perform security analysis, network diagnostics, and network performance metrics generation. One of the
techniques by which the above referred operation can be implemented is called port mirroring where the
packets (or copies of the packets) flowing into and out of the port of a virtual switch (to which the
monitored VM is connected and is called the source port) is forwarded to another port (called the
destination port) which may be another virtual port or an uplink port. The entity holding the network
analyzer application is connected to the destination port.

7. SECURITY ASSURANCE FOR HYPERVISOR BASELINE FUNCTIONS

7.1 Security Assurance for VM Process Isolation (HY-BF1)
To ensure the isolation of processes running in VMs, the following requirements must be met [1]:

(a) The privileged commands or instructions from a Guest OS to the host processor must be mediated
such that the core function of the VMM/hypervisor as the controller of virtualized resources is
maintained.
(b) The integrity of the memory management function of the hypervisor host must be protected against
attacks such as buffer overflows and illegal code execution, especially in the presence of translation tables
(e.g., host page table) that are needed for managing memory access by multiple VMs.
(c) Memory allocation algorithms must ensure that payloads in all VMs are able to perform their
functions.
(d) CPU/GPU allocation algorithms must ensure that payloads in all VMs are able to perform their
functions.

The requirements (a) and (b) are to be met by the hypervisor code by proper implementation of the data
structures, such as Virtual Machine Control Block (VMCB) and second level page tables, that translate
guest physical address to host physical address. In addition, hardware extension features, such as
Instruction Set Virtualization and Memory Virtualization (described in Section 3), provide isolated
execution environments for guests and hypervisor instructions as well as secure memory management
through hardware page tables and should be leveraged by the hypervisor. The requirements (c) and (d)
are meant to ensure the availability of application services running in VMs. The enablers are some
features in memory allocation and CPU allocation algorithms and the assurance requirements they
should meet are given below:

(1) The hypervisor should have configuration options to specify a guaranteed physical RAM for every VM
that requires it as well as a limit to this value and a priority value for obtaining the required RAM
resource in situations of contention among multiple VMs. Further, the over-commit feature that enables
the total configured memory for all VMs to exceed the host physical RAM should be disabled by default.

(2) The hypervisor should provide features to specify a lower and upper bound for CPU clock cycles
needed for every deployed VM as well as a feature to specify a priority score for each VM to facilitate
scheduling in situations of contention for CPU resources from multiple VMs.

7.2 Security Assurance for Devices Mediation (HY-BF2)

Among all three approaches for handling devices in virtualized servers (Passthrough, Emulation, and
Para-virtualization), emulation presents the greatest advantage in that it enables running VMs using the
drivers that are available for that guest OS, without installing any special driver or tool provided by
the hypervisor vendor. The advantage of using native OS drivers is that their vulnerabilities have been
well-analyzed, published, and remediated.

The first three assurance requirements for secure device access in virtualized servers [1] pertain to
emulation while the last requirement pertains to the passthrough scenario:

(1) All device drivers installed as part of a hypervisor platform should be configured to run as lower-
privileged level process (guest mode) rather than the privilege level of the hypervisor (host mode). If
device drivers are run on the same privilege level as the hypervisor, they should be designed, developed
and tested using formal verification to guarantee that the drivers cannot compromise the security of
hypervisor execution. This recommendation applies to any code running at the same privilege level as the
hypervisor in the kernel (e.g., VMM).

(2) It should be possible to set up an Access Control List (ACL) to restrict the access of each VM process
to only the devices assigned to that VM. To enable this, the hypervisor configuration should support a
feature to tag VMs and/or have a feature to specify a whitelist, or list of allowable devices, for each VM.

(3) It should be possible to set resource limits for network bandwidth and I/O bandwidth (e.g., disk
read/write speeds) for each VM to prevent denial-of-service (DOS) attacks. Additionally, the proper use
of resource limits localizes the impact of a DOS to the VM or the cluster for which the resource limit is
defined.

(4) Passthrough scenarios generally involve DMA capable devices. A DMA capable device is one that has
the capability to read and write directly to and from main memory, allowing the CPU to perform other
tasks in parallel. The security assurance required against unauthorized access from DMA capable
devices, is that they should only be installed on hardware platforms that have the Input-Output Memory
Management Unit (IOMMU) feature that can be configured to confine access by such devices to only the
assigned memory regions.

7.3 Security Assurance for VM Lifecycle Management Functions (HY-BF4)

In Section 4.4, two VM lifecycle management operations were identified as potential sources for threats
to other baseline functions: VM image management and VM migration. In large virtualized
infrastructures, the installed base, consisting of a large number of operational VMs, may span different
jurisdictions (departments, lines of business, or clients in infrastructures used for cloud services). For
performing lifecycle management operations on these VMs, fine-grained administrative permissions are
required to provide security guarantees such as least privilege. The security assurances required for these

operations (VM image management, VM migration, and fine-grained administrative permissions) are
described below.

7.3.1 VM Image Management
Since VM-based software (e.g., Guest OS, Middleware, and Applications) shares physical memory of the
virtualized host with hypervisor software, it is no surprise that a VM is the biggest source of all attacks
directed at the hypervisor. In operational virtualized environments, VMs are rarely created from scratch,
but rather from VM Images. VM Images are templates used for creating running versions of VMs. An
organization may have its own criteria for classifying the different VM Images it uses in its VM Library.
Some commonly used criteria include processor load (VM used for compute-intensive applications);
memory load (VM used for memory-intensive applications such as Database processing); and application
sensitivity (VM running mission-critical applications utilizing mission-critical data). For each VM image
type, the following practices must be followed to provide the necessary security assurance.

(1) Security profiles must be defined for VMs of all types, and VM Images that do not conform to the
profile should not be stored in the VM Image server or library. Images in the VM Image library should be
periodically scanned for outdated guest OS versions and patches, especially in situations where new OS
version releases and/or patches are frequent.

(2) Every VM Image stored in the image library should have a digital signature attached to it as a mark of
 authenticity and integrity, signed using trustworthy, robust cryptographic keys.

(3) Permissions for checking into and checking out images from the VM Image library should be enforced
through a robust access control mechanism and limited to an authorized set of administrators. In the
absence of an access control mechanism, VM image files should be stored in encrypted devices that can
only be opened or closed by a limited set of authorized administrators with passphrases of sufficient
complexity.

(4) Access to the server storing VM images should always be through a secure protocol such as Transport

Layer Security (TLS).

7.3.2 VM Live Migration

Live migration is a functionality present in all hypervisors that enables a VM to be migrated or moved
from one virtualized host to another while the guest OS and applications on it are still running. This
functionality provides key benefits such as fault tolerance, load balancing, host maintenance,
upgrades, and patching. In live migration, the state of the guest OS on the source host must be replicated
on the destination host. This requires migrating memory content, processor state, storage (unless the two
hosts share a common storage), and network state.

The most common memory migration technique adopted in most hypervisors is called pre-copy. In this
approach, in the first phase, memory pages belonging to the VM are transferred to the destination host
while the VM continues to run on the source host [6]. In the second phase, memory pages modified
during migration are sent again to the destination to ensure memory consistency. During the latter phase,
the exact state of all the processor registers currently operating on the VM are also transferred, and the

migrating VM is suspended on the source host. Processor registers at the destination host are modified to
replicate the state at the source host, and the newly migrated VM resumes its operation. Storage migration
is provided by a feature that allows admins to move a VM's file system from one storage location to
another without downtime. This storage migration can take place even in situations where there is no
VM migration. For example, a VM may continue to run on the host server while the files that make up the
VM are moved among storage arrays or Logical Unit Numbers (LUNs).

In the process described above, the memory and processor-state migration functions are inherent aspects
of hypervisor design. The storage migration function is an integral part of storage management and is
applicable to both virtualized and non-virtualized infrastructures. The network state is maintained after a
VM migration because each VM carries its own unique MAC address, and the migration process places
some restrictions on the migration target (e.g., the source and target host should be on the same VLAN).
Hence, from a security protection point of view, the only aspects to consider are proper authentication
and a secure network path for the migration process [1].

During VM live migration, a secure authentication protocol must be employed; the credentials of the
administrator performing the migration are passed only to the destination host; the migration of memory
content and processor state takes place over a secure network connection; and a dedicated virtual
network segment is used in both source and destination hosts for carrying this traffic.

7.3.3 Fine-grained Administrative Privileges for VM Management

The ability to assign fine-grained administrative permissions for the virtualized infrastructure enables the
establishment of different administrative models and associated delegations [1].

The access control solution for VM administration should have a granular capability, both at the
permission assignment level and the object level (i.e., the specification of the target of the permission can
be a single VM or any logical grouping of VMs based on function or location). In addition, the ability to
deny permission to some specific objects within a VM group (e.g., VMs running workloads of a designated
sensitivity level) despite having access permission to the VM group should exist.

7.4 Security Assurance for Hypervisor Administration Functions (HY-BF5)

Secure operation of administrative functions is critical for any server class software, and hypervisor is no
exception to this. The outcome is a secure configuration that can provide the necessary protections against
security violations. In the case of a hypervisor, impact of insecure configuration can be more severe than
in many server software instances since the compromise of a hypervisor can result in the compromise of
many VMs operating on top of it. While the composition of the configuration parameters depends upon
the design features of a hypervisor offering, the latitude in choosing the values for each individual
parameter results in different configuration options. Many configuration options relate functional features
and performance. However, there are some options that have a direct impact on the secure execution of the
hypervisor, and it is those configuration options that are discussed in this manuscript.

The following are some security practices that are generic for any server class software. Although
applicable to the hypervisor, these are not addressed in this manuscript:

(a) Control of administrative accounts on the hypervisor host itself and least privilege assignment
for different administrators

(b) Patch management for hypervisor software and host OS
(c) Communicating with the hypervisor through a secure protocol such as TLS or Secure Shell

(SSH)

7.4.1 Centralized Administration

The administration of a hypervisor and hypervisor host can be performed in two ways:
• Having administrative accounts set up in each hypervisor host
• Centralized administration of all hypervisors and hypervisor hosts through enterprise

virtualization management software (EVMS).

Centralized management of all hypervisor platforms in the enterprise through enterprise virtualization
management software (EVMS) is preferable since security profiles for various hypervisor groups in the
enterprise can be defined and easily enforced through EVMS. For any IT data center to operate
efficiently, it is necessary to implement load balancing and fault tolerance measures, which can be
realized by defining hypervisor clusters. Creation, assignment of application workloads, and management
of clusters can be performed only with a centralized management software, making the deployment and
usage of an enterprise virtualization management a critical necessity. Hence a security assurance
framework for hypervisor administration is as follows:

The administration of all hypervisor installations in the enterprise should be performed centrally using an
EVMS. Enterprise gold-standard hypervisor configurations for different types of workloads and clusters
must be managed and enforced through EVMS. The gold-standard configurations should, at minimum,
cover CPU, Memory, Storage, Network bandwidth, and Host OS hardening, if required.

7.4.2 Securing the Management Network
Management of the hypervisor and its host is performed through administrative commands sent through a
management console or command line interface (CLI). This capability can be provided by a dedicated
management VM or by a hypervisor kernel module. Part of the network communication path that carries
this management traffic is the software-defined virtual network inside the hypervisor host and it is
necessary to ensure that a dedicated path is allocated for this. A commonly adopted approach is to allocate
a dedicated physical network interface card (pNIC) for handling management traffic, and, if that is not
feasible, a virtual network segment (e.g., VLAN) must be assigned exclusively for it.

Protection for hypervisor host and software administration functions should be ensured by allocating a
dedicated physical NIC or, if that is not feasible, placing the management interface of the hypervisor in a
dedicated virtual network segment (e.g., VLAN) and enforcing traffic controls using a firewall (e.g.,
designating the subnets in the enterprise network from which incoming traffic into the management
interface is allowed).

8. SECURITY ASSURANCE FOR EXECUTION OF VM-RESIDENT PROGRAMS

Providing protected execution for the lower-privileged software is an evolving hardware function and
there are not enough threat data available for these functions. However, assurance requirements for this

function can still be identified based on the execution model for VMs and hypervisor instructions in the
virtualized server platform.

There are two processor features available to reduce the impact of a malicious, higher privileged software
such as the hypervisor on the confidentiality and integrity of lower privileged software. They are:
• A secure region of memory called enclave can be created where the resource-owner marked security

sensitive code in VMs can be altered to run. Code running in the enclave cannot be tampered with by
the hypervisor or the host OS (in type 2 hypervisor). This feature is implemented in Intel’s Software
Guard Extension (SGX) [7].

• Encrypt the entire VM’s memory so that the hypervisor cannot inspect its data. This is the approach
adopted in AMD’s Secure Encrypted Virtualization (SEV) [8].

It is not sufficient just to protect a portion or whole of VM’s memory while it is executing. The data
structures that provide the execution state of VM and the general-purpose registers of the host CPU that
contain the values that enable page table walkthroughs to get at the VM’s host memory address must also
be protected. Hence the assurance requirements for secure VM execution can be stated as follows:

(1) There should be hardware features to protect designated memory areas where VM
application code runs. This will protect those applications from malicious or compromised
hypervisors.

(2) The Virtual Machine Control Block (VMCB) that contains data about the execution state of
VMs and the general-purpose registers used by VMs (that contain entry memory addresses)
must also be cryptographically protected to ensure secure VM execution even in the presence
of a malicious or compromised hypervisor.

9. SECURITY ASSURANCE FOR VIRTUAL NETWORK CONFIGURATIONS

9.1 Assurance for Network Segmentation
Both techniques discussed for network segmentation – VLAN and Overlay-based networking can span
multiple IP subnets and hence can be deployed datacenter wide. However, since a VLAN ID is 12 bits
long, the maximum number of segments that can be defined is 4096 (strictly 4094). On the other hand,
VXLAN uses a 24-bit segment ID known as the VXLAN network identifier (VNID), which enables up to
16 million VXLAN segments and hence the security assurance recommendation is stated as follows [5]:

Large data center networks with hundreds of virtualized hosts and thousands of VMs and requiring many
segments should deploy overlay-based virtual networking because of scalability (Large Namespace) and
virtual/physical network independence. However, it is highly advisable that the overall traffic generated
by overlay-based network segmentation (i.e., VXLAN network traffic in our context) is isolated on the
physical network using a technique such as VLAN to maintain segmentation guarantees. In addition,
overlay-based virtual networking deployments should always include either centralized or federated SDN
controllers using standard protocols for configuration of overlay modules in various hypervisor
platforms.

9.2 Assurance for Network Path Redundancy Configuration
The following operational parameters will provide the necessary assurance that the NIC teaming
configuration intended for enhancing the availability of VM-based applications by providing alternate
communication pathways will achieve their intended purpose.

Each pNIC member of a NIC team should be driven by different drivers and placed on a separate PCI bus
(if available). Further, the network path redundancy inside a virtualized host can be extended to the
physical network by connecting each pNIC member of the NIC team to different physical switches.

9.3 Assurance for Firewall Configuration
In the firewall configuration for virtualized servers, the security assurance is dictated by the choice of the
appropriate type of virtual firewall (subnet-level or kernel-based), expressiveness of the firewall rules and
wherever applicable uniformity in rules for similar traffic flows. The following are the security assurance
requirements [5]:

(1) In virtualized environments with VMs running I/O intensive applications, kernel-based virtual
firewalls should be deployed instead of subnet-level virtual firewalls, since kernel-based virtual firewalls
can potentially perform packet processing in the kernel of the hypervisor at native hardware speeds.

(2) For both subnet-level and kernel-based virtual firewalls, it is preferable that the firewall allows for
integration with a virtualization management platform rather than being accessible only through a
standalone console. The former will enable easier provisioning of uniform firewall rules to multiple
firewall instances, thus reducing the chances of configuration errors.

(3) For both subnet-level and kernel-based virtual firewalls, it is preferable that the firewall supports
rules using higher-level components or abstractions (e.g., security group) in addition to the basic 5-tuple
(source/destination IP address, source/destination ports, protocol).

9.4 Assurance for VM Traffic Monitoring
The port mirroring technique involves increase in network traffic in the virtualized network inside the
hypervisor traffic and must be implemented with care. Minimal assurance for implementing this can be
stated as follows:

A port mirroring feature should provide choices in specifying destination ports (either the virtual port or
uplink port) so that it creates the flexibility to locate the network analyzer application in another VM on
the same or different hypervisor or in any non-virtualized server in the data center.

10. SECURITY ASSURANCE FOR BOOTING A VIRTUALIZED SERVER PLATFORM

Configuration changes, module version changes, and patches affect the content of the hypervisor platform
components such as BIOS, hypervisor kernel, and back-end device drivers running in the kernel. To
ensure that each of these components that are part of the hypervisor stack can be trusted, it is necessary
to check their integrity through a hardware-rooted attestation scheme that provides assurance of boot
integrity. Checking integrity is done by cryptographically authenticating the hypervisor components that
are launched. This authentication verifies that only authorized code runs on the system. Specifically, in the
context of the hypervisor, the assurance of integrity protects against tampering and low-level targeted

attacks such as root kits. If the assertion of integrity is deferred to a trusted third party that fulfills the role
of trusted authority, the verification process is known as trusted attestation. Trusted attestation provides
assurance that the code of the hypervisor components has not been tampered with. In this approach, trust
in the hypervisor’s components is established based on trusted hardware. In other words, a chain of trust
from hardware to hypervisor is established with the initial component (i.e., hardware) called the root of
trust. This service can be provided by a hardware/firmware infrastructure of the hypervisor host that
supports boot integrity measurement and the attestation process. Collectively, this is called a measured
launch environment (MLE) in the hypervisor host.

Some hardware platforms provide support for MLE with firmware routines for measuring the identity
(usually the hash of the binary code) of the components in a boot sequence. An example of a hardware-
based cryptographic storage module that implements the measured boot process is the standards-based
Trusted Platform Module (TPM), which has been standardized by the Trusted Computing Group (TCG)
[9]. The three main components of a TPM are: (a) Root of Trust for Measurement (RTM) – makes integrity
measurements (generally a cryptographic hash) and converts them into assertions, (b) Root of Trust for
Integrity (RTI) - provides protected storage, integrity protection, and a protected interface to store and
manage assertions, and (c) Root of Trust for Reporting (RTR) - provides a protected environment and
interface to manage identities and sign assertions. The RTM measures the next piece of code following
the boot sequence. The measurements are stored in special registers called Platform Configuration
Registers (PCRs).

The measured boot process is briefly explained here using TPM as an example. The measured boot
process starts with the execution of a trusted immutable piece of code in the BIOS, which also measures
the next piece of code to be executed. The result of this measurement is extended into the PCR of the
TPM before the control is transferred to the next program in the sequence. Since each component in the
sequence in turn measures the next before handing off control, a chain of trust is established. If the
measurement chain continues through the entire boot sequence, the resultant PCR values reflect the
measurement of all components.

The attestation process starts with the requester invoking, via an agent on the host, the TPM Quote
command. It specifies an Attestation Identity Key (AIK) to perform the digital signature on the contents of
the set of PCRs that contain the measurements of all components in the boot sequence to quote and a
cryptographic nonce to ensure freshness of the digital signature. After receiving the signed quotes, the
requester validates the signature and determines the trust of the launched components by comparing the
measurements in the TPM quote with known good measurements.

The MLE can be incorporated in the hypervisor host as follows:

• The hardware hosting the hypervisor is established as a root-of-trust, and a trust chain is established
from the hardware through the BIOS and to all hypervisor components.

• For the hardware consisting of the processor and chipset to be established as the root-of-trust and to
build a chain of trust, it should have a hardware-based module that supports an MLE. The outcome of
launching a hypervisor in MLE-supporting hardware is a measured launch of the firmware, BIOS, and
either all or a key subset of hypervisor (kernel) modules, thus forming a trusted chain from the
hardware to the hypervisor.

• The hypervisor offering must be able to utilize the MLE feature. In other words, the hypervisor should
be able to invoke the secure launch process, which is usually done by integrating a pre-kernel module
into the hypervisor’s code base since the kernel is the first module installed in a hypervisor boot up.
The purpose of this pre-kernel module is to ensure the selection of the right authenticated module in
the hardware that performs an orderly evaluation or measurement of the launch components of the
hypervisor or any software launched on that hardware. The Tboot is an example of a mechanism that
enables the hypervisor to take advantage of the MLE feature of the hardware.

• All hypervisor components that are intended to be part of the Trusted Computing Base (TCB) must be
included within the scope of the MLE-enabling mechanism so that they are measured as part of their
launch process.

The MLE feature with storage and reporting mechanisms on the hardware of the virtualized host can be
leveraged to provide boot integrity assurance for hypervisor components by measuring the identity of all
entities in the boot sequence, starting with firmware, BIOS, hypervisor and hypervisor modules;
comparing them to “known good values;” and reporting any discrepancies. If the measured boot process is
to be extended to cover VMs and its contents (guest OS and applications), a software-based extension to
the hardware-based MLE implementation within the hypervisor kernel is required. The security assurance
for ensuring a secure boot process for all components of a hypervisor platform can now be stated as
follows [1]:

The hypervisor that is launched should be part of a platform and an overall infrastructure that contains:
(a) hardware that supports an MLE with standards-based cryptographic measurement capabilities and
storage devices and (b) an attestation process with the capability to provide a chain of trust starting from
the hardware to all hypervisor components. Moreover, the measured elements should include, at
minimum, the core kernel, kernel support modules, device drivers, and the hypervisor’s native
management applications for VM Lifecycle Management and Management of Hypervisor. The chain of
trust should provide assurance that all measured components have not been tampered with and that their
versions are correct (i.e., overall boot integrity). If the chain of trust is to be extended to guest VMs, the
hypervisor should provide a virtual interface to the hardware-based MLE.

11. SUMMARY AND CONCLUSIONS

Server or Hardware virtualization is an established technology in data centers used for supporting
enterprise IT resources as well as cloud services. The core entity in this technology is a set of software
modules called the hypervisor. The hypervisor provides abstraction of the hardware resources, such as
CPU, memory, and devices (the first two with some assistance with hardware extensions), and enables the
running of multiple computing stacks called VMs, each with its own OS and applications, to be run on a
single physical host. Such a physical host is called a hypervisor host or virtualized server. The network
linking the multiple VMs within a hypervisor and with VMs located in other hypervisor hosts is a
combination of a software-defined network (called virtual network) and the physical network
infrastructure and constitute the virtualized server environment.

Since hypervisors come in several architectural flavors (Type 1 vs Type 2, Full vs Para-virtualized), this
manuscript identified five baseline functions for the hypervisor. Analyzing these baseline functions,

together with functions of other components of the virtualized server environment (i.e., the hardware, the
VMs, the Virtual Network), enabled identification of threats to these functions as well as threats
originating from these functions. The threats were then used as the basis for developing appropriate
security assurance measures for countering each threat.

12. REFERENCES

[1] Chandramouli R., Security Recommendations for Hypervisor Deployment on Servers, NIST
Special Publication SP 800-125A,
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125A.pdf

[2] Heap-based buffer overflow in the IDE subsystem in QEMU,
https://www.cvedetails.com/cve/CVE-2015-5154, January 2018

[3] Allowing guest OS users to execute arbitrary code on the host OS,
https://www.cvedetails.com/cve/CVE-2015-3214, January 2018

[4] Hetzelt F, Buhren R, Security Analysis of Encrypted Virtual Machines, Proceedings of
the13th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments
(VEE’17), April 2017, Xi’an, China

[5] Chandramouli R., Secure Virtual Network Configuration for Virtual Machine (VM) Protection,
NIST Special Publication SP 800-125B,
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125B.pdf

[6] S.Shirinbab S., l. Lundberg I., and Illie D., Performance Comparison of KVM, VMware and
Xenserver using a Large Telecommunication Application, Proceedings of the Fifth International
Conference on Cloud Computing, GRIDs, and Virtualization (CLOUD COMPUTING), 2014.

[7] Intel Software Guard Extensions (Intel SGX), https://software.intel.com/en-us/sgx, January
2018

[8] Kaplan D, Powell J, and Woller T., White Paper AMD Memory Encryption.
http://amd-dev.wpengine.netdna-
cdn.dom/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf,
January 2018.

[9] Trusted Platform Module (TPM) Main Specification:
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125A.pdf
https://www.cvedetails.com/cve/CVE-2015-5154
https://www.cvedetails.com/cve/CVE-2015-3214
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-125B.pdf
https://software.intel.com/en-us/sgx
http://amd-dev.wpengine.netdna-cdn.dom/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.dom/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

	Structure Bookmarks
	Artifact
	Artifact
	Artifact
	Artifact
	Artifact
	Artifact

