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Abstract 

 

Integration of photonic chips with millimeter-scale atomic, micromechanical, chemical and biological 

systems can advance science and enable new miniaturized hybrid devices and technology. Optical 

interaction via small evanescent volumes restricts performance in applications such as gas spectroscopy, 

and a general ability to photonically access optical fields in large free-space volumes is desired. However, 

conventional inverse tapers and grating couplers do not directly scale to create wide, high-quality 

collimated beams for low-loss diffraction-free propagation over many millimeters in free space, 

necessitating additional bulky collimating optics and expensive alignment. Here, we develop an extreme 

mode converter, which is a compact planar photonic structure that efficiently couples a 300 nm × 250 nm 

silicon nitride high-index single-mode waveguide to a well-collimated near surface-normal Gaussian beam 

with an ≈ 160 µm waist, which corresponds to an increase in the modal area by a factor of > 105. The beam 

quality is thoroughly characterized, and propagation over 4 mm in free space and coupling back into a 

single-mode photonic waveguide with low loss via a separate identical mode converter is demonstrated. To 

achieve low phase error over a beam area that is > 100× larger than that of a typical grating coupler, our 

approach separates the two-dimensional mode expansion into two sequential separately optimized stages, 

which create a fully expanded and well-collimated Gaussian slab mode before out-coupling it into free 

space. Developed at 780 nm for integration with chip-scale atomic vapor cell cavities, our design can be 

adapted for visible, telecommunication, or other wavelengths. The technique can be expanded to more 

arbitrary phase and intensity control of both large-diameter, free-space optical beams and wide photonic 

slab modes. 
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INTRODUCTION 

Chip-scale photonic devices have advanced fundamental research in atomic physics [1–4], 

time/frequency metrology [5–8], and biology [9–13], as well as in industrial applications such as 

telecommunications [14–16] and light detection and ranging (LIDAR) [17–19]. In many such 

applications, efficient coupling of nanophotonic circuits with engineered, application-specific 

free-space optical fields in millimeter-scale volumes has opened up a broad range of possibilities 

for chip-scale, highly integrated sensors and systems. For example, the National Institute of 

Standards and Technology (NIST) is currently implementing chip-scale photonic systems with 

integrated atomic vapor cavities [1, 2]. Realizing the full potential of such systems requires 

advances in the development of compact, accurate, and efficient optical coupling between sub-

micrometer-wide photonic waveguide modes and at least 100 µm wide free-space modes, such as 

multiple overlapping plane waves and Gaussian and Bessel beams. The main challenge is to 

decrease the circuit footprint and increase the accuracy of the intensity, phase, and polarization 

control that are achieved in this extreme mode conversion, which spans multiple orders of 

magnitude in mode size. 

Grating couplers are the most widely known approach to interfacing a photonic mode and a 

radiation mode [20–39]; the spatial phase modulation of periodic gratings compensates for the 

momentum mismatch between the photonic and radiation modes. Since the early 1970s [22–25], 

several types of grating structure have been investigated, mainly to couple light from a photonic 

chip to an optical fiber. In such cases, a compact and highly efficient coupler is desirable and 

various grating designs have been proposed and demonstrated for various polarizations (TE and/or 

TM) and spectral bands (C- and O-bands). These couplers do not consider the phase and intensity 

profiles of radiation modes in general, but rather are optimized to maximize the power transfer to 

the fiber, which is often approximated as a Gaussian mode. For high coupling efficiency, the 

grating coupler should exhibit high directionality toward the optical fiber, thereby minimizing the 

optical power loss into the substrate. To achieve this, specialized layer structures such as a Bragg 

or metallic mirror substrate [26–28] or silicon-overlay structures [29, 30] have been applied, and 

coupling efficiencies of > 60 % have been obtained. Another important factor in the fiber-to-chip 

grating coupler is the spatial distribution of the radiation mode intensity. A simple uniform-period 

grating coupler with equal slot widths creates an exponentially decaying radiation pattern in the 

plane, as the power in the guided mode decreases exponentially. This results in a mismatch 
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between the radiated field and the fiber mode and limits the coupling efficiency [20, 21]. Grating 

apodization can form Gaussian profiles in the radiation mode and has been used to increase the 

fiber-to-chip coupling efficiency [26, 28, 31–33] and to focus the radiating beam at a specified 

distance [3, 34]. By using the apodized gratings, the back-reflection of the guided mode can also 

be suppressed, and high coupling efficiencies (67 % to 87 %) have been achieved on a common 

silicon-on-insulator (SOI) platform [26, 28, 31–33]. 

Most grating couplers are designed to interface a photonic mode and an optical fiber mode 

whose mode field diameter (MFD) is approximately 5 µm to 10 µm (mode area < 102 µm2) with 

the waist located near the surface (< 5 μm above). Such small grating couplers are less sensitive 

to the spatial phase profile of the radiation mode. However, to realize a >100 µm wide free-space 

beam that can propagate millimeter-scale distances with low diffraction loss, it is essential to 

accurately control both the phase and intensity profiles of the out-coupled beam. To achieve this, 

the grating apodization requires careful optimization since varying the duty cycle will change the 

effective index; the grating pitch should be adjusted accordingly for the beam collimation. In 

addition, typical grating couplers are designed in 2D cross-sections and the varying mode intensity 

and phase in the lateral direction, which is parallel to the grating lines, are not considered. The 

waveguide is simply tapered out so that the waveguide mode expands to the slab mode with a cone 

shape. While producing acceptable losses for fiber coupling, such an approach fails in beam 

collimation in the lateral direction, which is important for coupling into spatially extended modes. 

To shape the radiation beam fully and manipulate the radiation direction in 3D free space, it is 

essential to design a mode expander that can achieve a specified mode profile and a satisfactory 

beam collimation. Accurate engineering of the desired radiation mode intensity and phase across 

the 2D plane is required. 

In this paper, we present an extreme mode converter that can interface with the photonic 

mode in a waveguide (modal area of ≈ 300 nm × 250 nm) and the Gaussian beam in a free space 

(modal area of ≈ 1602 µm2). The mode mismatch between the two modes is approximately 0.34 × 

106 times (in area). The extreme mode converter consists of two stages (as illustrated in Fig. 1(a)): 

a waveguide-to-slab mode expander, followed by an apodized grating. First, a 160 µm wide, 

collimated (one-dimensional) Gaussian slab mode is created. Then, a large apodized grating with 

straight lines is used to couple it to free space. Separating the two stages and producing a 

collimated slab mode with a flat wavefront in the first step effectively makes the second stage 
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apodization problem two-dimensional and, therefore, analytically and numerically tractable. 

Optimizing the spatially varying period and duty cycle of the grating achieves the desired Gaussian 

intensity and flat wavefront in the orthogonal direction at the 2nd stage. Analytical and numerical 

methods are combined for the design and optimization. The chip-to-beam conversion is 

experimentally demonstrated. The mode intensity profile and the wavefront of the generated 

beams are characterized by capturing the real and Fourier images, respectively. The out-coupling 

angles (polar and azimuthal) of the beam are quantified and grating-to-grating coupling is achieved, 

in which the radiating beam is coupled back to the chip by using two extreme mode converters 

and placing a flat mirror a few millimeters above and parallel to the chip. This configuration is 

used to quantify experimentally the mode converter efficiency. 

 

RESULTS  

Modeling: A two-stage extreme mode converter 

The extreme mode converter consists of two stages: stage 1 is an expander that converts the 

photonic waveguide mode into the slab mode and stage 2 is an apodized grating that couples out 

the slab mode into free space. Figure 1(a) provides a not-to-scale schematic diagram and a 

scanning electron microscopy (SEM) image of the chip structure with a color overlay to illustrate 

the mode transformation. To achieve the extreme mode conversion, the expander in stage 1 is 

designed to attain a wide 1D-Gaussian intensity profile with a flat wavefront in the slab. The 

grating in stage 2 is apodized by varying both the grating period and the duty cycle to realize a 

2D-Gaussian beam in free space with a large beam waist (w0 > 100 µm). Specifically, the period 

is varied such that the phase of the out-coupling beam is designed to be flat to achieve a high-

quality beam collimation. Figure 1(b) shows a microscope image for the fabricated converter, 

including specified coordinates and angles. θinc is the incident angle between the slab mode βslab 

and the grating vector 
2π

Λ
 (y-axis). The azimuthal angle 𝜙 is also defined with respect to the grating 

lines (x-axis). Figure 1(c) illustrates an application in which a chip with two extreme mode 

converters is integrated to interrogate a gas-filled cavity in a compact optical system. To 

demonstrate this concept experimentally, we place a mirror above the chip surface at the plane of 

the mode overlap from the two converters to characterize the grating-mirror-grating coupling. The 

devices are designed to operate at the free-space wavelength of λ0 = 780 nm and silicon nitride 

(SiN) is chosen as the photonics guiding material to minimize the losses at this wavelength [1]. 
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Stage 1 (Expander): Waveguide mode to 1D-Gaussian slab mode conversion. Stage 1 is a mode 

expander that converts the photonic waveguide mode to the slab mode with a flat wavefront and 

a 1D-Gaussian lateral power density distribution in the x-direction (the expander part in Fig. 1(a)). 

The basic principle for the mode expander is evanescent coupling. The coupling strength between 

the waveguide and the slab depends on the gap size g between them and the gap profile g(z′) can 

be designed to form a Gaussian intensity distribution in the slab (along the waveguide direction of 

the wave propagation, which is denoted as z′). First, to quantify the coupling strength between the 

waveguide and the slab, a finite element method (FEM) is used to evaluate numerically the 

complex effective refractive index (neff) as a function of g. A commercial FEM solver in the 

frequency domain is used to calculate the waveguide cross-sectional mode profile and its effective 

index. The power from the waveguide couples to the slab and is radiated in-plane, which results 

in an imaginary component of the index, thereby accounting for the mode power decay along the 

expander. To model this within a finite geometrical domain and to avoid the complications of 

using perfectly matched layers (PMLs) within an eigenmode calculation, we choose to introduce 

optical losses into the slab material instead. The 1 µm wide part of the slab that is closest to the 

waveguide is modeled as a perfect (lossless) dielectric and further away from the waveguide the 

slab material optical loss is increased adiabatically (Supplementary Figure S1). This ensures that 

there is no reflection of the slab mode back toward the waveguide from either within the slab or 

the domain boundary (Figures 2(a) inset, Supplementary Figure S1, and Supplementary movie 1). 

The numerical results are independent of the choice of the loss profile if the loss is introduced at 

least 1 µm away from the gap and increased from 0 gradually over a distance of several 

micrometers. 

Figures 2(a) and 2(b) show the real and imaginary parts, respectively, of the simulated neff. The 

insets in Figure 2(a) show a schematic diagram of the simulation domain and the mode profile of 

the fundamental transverse-electric (TE0) mode. All the devices in this paper are designed based 

on the TE0 mode. The thickness of the SiN layer (waveguide and slab), which is denoted as h0, is 

set to 250 nm and the waveguide width, which is denoted as wwg, is set to 300 nm. All elements 

are made of SiN and clad with SiO2 (upper: > 1 µm, lower: ≈ 2.9 µm). The refractive indices of 

SiN and SiO2 are 2.01 and 1.45, respectively, at λ0 = 780 nm. 
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Re(neff) corresponds to the propagation constant β = Re(neff)β0 of the waveguide mode (β0 = 

2π/λ0 is the free-space wavevector) and determines the tilt-angle θtilt of the slab-mode direction of 

propagation relative to the waveguide. For the chosen value of h0, the effective index of the 1D 

TE slab mode is calculated to be 1.79 and the tilt angle between the waveguide and slab modes 

can be estimated by θtilt = cos−1(Re(neff)/1.79). In Fig. 2(a), Re(neff) approaches 1.578 for g > 500 

nm. This indicates that the evanescent-coupled slab mode would have the same tilt angle, namely, 

θtilt = cos−1(1.578/1.79) = 28.18, for gap sizes that exceed 500 nm. In other words, the evanescent-

coupled waves in the slab will be collimated if g(𝑧′) > 500 nm. In Fig. 2(b), Im(neff) corresponds 

to the power loss of the evanescent coupling and decreases approximately exponentially as the gap 

size increases. Using this data and assuming adiabatic variation of the gap profile, g(z′) can be 

designed for the desired power distribution along z′. The phase at the slab boundary is the same as 

the phase in the waveguide and increases linearly along z′ for a constant value of Re(neff). For g(z′) 

> 500 nm, the variation in gap size does not shift θtilt and only affects the power distribution. 

Smaller gaps can be employed; however, variation in Re(neff) may need to be compensated. The 

slab boundary and the waveguide can be appropriately curved to achieve the desired wavefront 

for the slab mode. In our design, the slab edge is straight, thereby creating a flat wavefront for the 

collimated slab mode. 

The following procedures are used to design g(z′) and achieve the correct Gaussian intensity 

profile of the slab mode. The optical power in the waveguide, which is denoted as P(z′), can be 

expressed as 

 
𝑑𝑃(𝑧′)

𝑑𝑧′ = −𝑃(𝑧′)𝛼(𝑧′), (1) 

where α(z′) is the loss coefficient, which can be expressed as 𝛼(𝑧′) =
4𝜋

𝜆0
Im(𝑛eff). The initial 

power in the waveguide is P(−∞) = 1. The power density in the slab 
𝑑𝑃(𝑧′)

𝑑𝑧′  forms a Gaussian mode 

with a beam waist of w and can be represented as: 

 
𝑑𝑃𝑠(𝑧′)

𝑑𝑧′ = 𝐶exp (−
2𝑧′2

𝑤2 ). (2) 

The coefficient, which is expressed as 𝐶 =
1

𝑤
√

2

𝜋
, is obtained by setting the total power to 1 and 

integrating: ∫
𝑑𝑃𝑠(𝑧′)

𝑑𝑧′ 𝑑𝑧′ = 1.
∞

−∞
 Per energy conservation, the total power in the waveguide and 

the slab should be equal to 1, i.e., P(z′)+Ps(z′) = 1, and the loss in the waveguide should be equal 
to the coupling power of the slab at that segment, i.e., dPs(z′) = −dP(z′). Rewriting these two 
conditions, the following equations are obtained: 



8 

  (3) 

 . (4) 

Solving these two equations and using the relation Im(𝑛eff) = 𝑎exp(−𝑏𝑔(𝑧′)), where a and b are 

the fitting coefficients from Fig. 2(b), the gap profile g(z′) is: 

 . (5) 

The beam waist w is of the Gaussian distribution along the waveguide direction. The actual beam 

waist w0 of the resulting 1D-Gaussian slab mode, which is normal to its direction of propagation 

in the slab, is obtained as w0 = w sin(θtilt). In our design, the beam waist is set to w0 = 100√2 µm. 

Stage 2: 1D Gaussian slab mode to 2D Gaussian beam conversion. Stage 2 is an optimized 

apodized grating with a spatially varying duty cycle and period that outcouples the 1D Gaussian 

slab mode into the 2D free-space Gaussian. The grating lines are straight and parallel. The slab 

mode is collimated so that the phase is invariant along the grating lines, while the intensity is 

varied only gradually. Therefore, to create the Stage 2 out-coupler, it is sufficient to solve a 2D 

problem with translational invariance along the grating lines to create a collimated Gaussian 

profile in the plane that is normal to the grating lines (in the y-direction). 

For a collimated Gaussian output, further simplifications could have been applied by leveraging 

the slow variation of the intensity and phase across the grating. However, the 2D TE scattering 

problem from the slab mode into the free space can be quickly and accurately solved for the ≈ 300 

µm grating using a commercial finite element frequency domain solver. This makes it possible to 

apply a more general numerical optimization technique to solve the inverse problem of finding a 

grating design that optimizes the coupling between the input slab mode and any arbitrary 

prescribed free-space mode (i.e., the “inverse design”). By adding a geometric deformation field 

into the finite element problem setup, we could employ an efficient gradient-based optimization 

technique to optimize the values of the 14 scalar parameters that define the device geometry and 

the Gaussian beam, including the spatially varying period and duty cycle, as described in the 

Materials and Methods section. 

Figure 3(a) shows a schematic diagram of the resulting apodized grating in the yz-plane with 

spatially varying period Λ(y) and grating width wg(y). The duty cycle is defined as 1-wg(y)/Λ(y). 
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The thicknesses of the layers are h0 = 250 nm, hg = 85 nm, hs = 2.9 µm, and hu = 2.8 µm. Figures 

3(b) and 3(c) show the optimization results for the grating period and duty cycle, respectively. The 

insets in each figure show the optimized polynomial coefficients. Figure 3(d) shows the 

numerically simulated out-coupling power flow (blue), its Gaussian fit (black dash-dot line), and 

the wavefront phase error (orange) when the geometric parameters of Figs. 3(b) and 3(c) are used. 

Figure 3(e) is the magnified view of the simulated electric field profile (Ex). The resulting optimal 

out-coupling angle of the Gaussian is 2.2 in free space and the wavefront error is less than 2π/20 

rad over the beam. The power distribution fits well with the Gaussian profile; however, the beam 

full width at half maximum (FWHM) is ≈ 103 µm, which is ≈ 15 % lower than the desired outcome. 

The port width is numerically forced to FWHM = 117 µm by an added term in the cost function 

and a constraint and a small coupling penalty is associated with this width mismatch. We speculate 

that the optimization algorithm is balancing this mismatch loss with additional losses (increased 

wavefront error and loss into the substrate) that are associated with extending the Gaussian or, 

alternatively, that the parameters of the optimization algorithm are not selected perfectly, thereby 

resulting in a small residual error. The calculated Gaussian port coupling is 68 %; the power that 

is flowing down into the substrate is 26 %; the slab mode reflection and transmission are negligible. 

The remaining power accounts for the mode mismatch with the Gaussian port. 

Due to the constructive/destructive interference with the downward-outcoupled light that is 

back-reflected up from the Si wafer surface, the numerical simulation demonstrates a periodically 

varying upward coupling efficiency from ≈ 67 % for the optimum oxide thickness down to ≈ 35 % 

for ≈ 150 nm thicker or thinner oxide. As the destructive interference decreases the out-coupled 

intensity, the optical power in the slab mode propagates further along the grating in the y-direction, 

thereby resulting in significant widening of the out-coupled Gaussian beam. Experimentally, it is 

likely that some oxide thickness variation existed between runs, which contributed to the observed 

Gaussian beam width variation in the y-direction. 

 

Experiment 1: Gaussian beam characterization 

To demonstrate the extreme mode converter that was designed in Section 2, we have fabricated 

and tested the devices, as described in the Materials and Methods section. 
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Free-space mode intensity profile. To characterize the mode profiles of the converted Gaussian 

beam, microscope images of the beam on the grating were captured. Figure 4(a) shows a 

microscope image of the converted Gaussian beam. The inset shows the direction of the gratings: 

the grating lines are parallel to the x-axis and perpendicular to the y-axis. The slab mode is incident 

from the top of the image. Figures 4(b) and 4(c) show the normalized powers of the beam that are 

integrated along the y- and x-directions and projected to the x- and y-axes, respectively. The dashed 

blue lines are the data and the red lines are the reference Gaussian curves. The FWHM and the 

beam waist, namely, w0, of each projection are also shown in each figure. The power distributions 

of the beam fit well with the Gaussian curves within the grating area and the beam waist on both 

the x- and y-axes is w0 ≈ 160 µm, which is reasonably close to the design target value (w0 = 100√2 

= 141.4 µm). The fabrication imperfections and the index differences between the model and the 

real materials may have caused these errors. In Fig. 4(c), the Gaussian shape is cut at the beginning 

part of the gratings; this is due to the minimum feature size limit of the grating (20 nm) in the 

fabrication, which is similar to the FEM result in Fig. 3(b). 

Uniformly increasing or decreasing g(𝑧′) shifts the center position of the slab mode and 

the Gaussian mode in the grating (along the x-axis). It also affects w0 and the FWHM in the x-

direction. Figures 4(d) and 4(e) show the measured and numerically calculated intensity mode 

profiles that are projected to the x-axis. For the numerical calculation, Eq. 1 is solved via the 

ordinary differential equation (ODE) solver with the gap profile g(𝑧′) of Eq. 5. The orange line is 

the original design with the g(𝑧′) and the blue and yellow lines are cases in which the gap is 

uniformly decreased or increased, respectively, by 40 nm , i.e., g(𝑧′)−40 nm and g(𝑧′) + 40 nm. 

In both the experimental and numerical cases, the narrower gap size shifts the center position to 

the left (closer to the beginning of the evanescent coupler). A narrower gap increases the coupling, 

thereby increasing the slab mode intensity at the beginning of the coupler; hence, less light remains 

in the waveguide to couple out toward the end, thereby decreasing the slab mode intensity there. 

The opposite is observed for a wider gap. Furthermore, the smaller gap size yields a narrower w0; 

again, opposite is observed for the larger gap size. In the numerical results, g(𝑧′)+40 nm yields w0 

= 164.0 µm, which is similar to the beam waist from the experiment (w0 ≈ 168 µm ± 1 µm); this 

gap variation is a possible reason for the ≈ 15 % width difference between the designed w0 = 141.4 

µm and the experiments. 
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Wavefront. To check the beam collimation of the converted Gaussian mode, its far-field intensity 

is measured as a function of the angle (Fourier space) by capturing the back focal-plane (BFP) 

images (Figure 5(a); Materials and Methods). A movable variable-diameter circular aperture was 

placed in the image plane of the microscope, before the beam splitter, thereby enabling full or 

spatially selective evaluation of the far-field light, i.e., of light that is coming from the whole 

grating or any part of the grating that is selected by the aperture. Figure 5(b) shows a real image 

at the grating and the blue line indicates the outline of the aperture with a diameter of ≈ 250 µm. 

Figure 5(c) shows the angular (Fourier) space images at the BFP; the colored lines represent the 

grid (one degree/line) of the polar angle θ. The gray spots are the actual beam images from each 

device. All spots are of small size and near diffraction-limited; otherwise, the spots would spread 

broadly over wider angles. The white dot serves as a guide for the eye, with a diameter that 

corresponds to the ideal diffraction-limited beam’s FWHM. For each device set, we have two 

identical mode converters with opposite orientations (mode converter 1 is rotated 180° relative to 

mode converter 2); thus, in Fig. 5(c), the upper four gratings are in opposite orientations relative 

to the lower four gratings. Device rot0 is a device whose grating lines are nominally orthogonal 

to the incident slab mode, which is designed to have a tilt angle of θtilt = 28.18∘ relative to the 

waveguide. Devices rot2, rot3, and rot4 are devices with additional rotations of 2∘ , 3∘ , and 

4∘, respectively, of the grating relative to the incident slab mode. We have rotated the gratings to 

engineer the Gaussian beam polar angle and direction. One aim is to maximize the modal overlap 

between the two beams at a certain height such that a flat mirror can be used to couple a beam 

from one device into the other, as illustrated in Fig. 1(c). A detailed analysis follows in Section 4. 

Figure 6(a) shows a magnified view of the beam spots (rot0) from top to bottom with image-

plane aperture diameters of d ≈ 50 µm to 250 µm (left: grating 1, right: grating 2). As the aperture 

size increases in real space, the spot size in the Fourier domain decreases accordingly. Figures 

6(b)-6(e) show cross-sections of the normalized powers through the center of the spots (blue dots: 

data, red lines: fitting curves). Figures 6(b) and 6(c) show the cross-sections along θx for d ≈ 50 

µm and d ≈ 250 µm, respectively, and Figs. 6(d) and 6(e) show the cross-sections along θy for d ≈ 

50 µm and d ≈ 250 µm, respectively. The Gaussian distribution in the x-direction (or θx) relates to 

the mode expansion from the waveguide to a slab mode (stage 1), while the Gaussian distribution 

in the y direction (or θy) is formed by the apodized grating during stage 2; they are formed by the 

two independent stages. More importantly, for a large aperture of d ≈ 250 µm, as in Figs 6(c) and 
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6(e), the measured angular FWHMs are close to the expected FWHM of a diffraction-limited beam, 

namely, FWHM=
2√2ln2𝜆0

𝑤0𝜋
= 0.2094∘  for w0 = 160 𝜇𝑚 , and demonstrate a good beam 

collimation.  

 

Experiment 2: Out-coupling angles, mode converter efficiency, and grating-to-grating 

coupling 

To integrate and optically couple the photonic chips with other systems in free space, the extreme 

mode converter can be used as a building block for establishing optical coupling between the 

systems. To explore such an engineering opportunity, we have placed two couplers with opposite 

orientations on the same photonic chip and arranged their locations and outcoupling angles (polar 

and azimuthal) to create a large beam overlap several millimeters above the chip. Finally, a flat 

mirror is introduced at that location and grating-to-grating coupling experiments are conducted to 

quantify the coupling of the generated beam back to the photonic system. Using this setup, we can 

also evaluate experimentally the overall mode converter efficiency and account for the mode 

mismatch loss between identical mode converters. 

Figure 7(a) shows a microscope image of the two extreme mode converters facing in opposite 

directions with a center-to-center separation distance of approximately 475 µm. In Fig. 1(b), the 

incident angle θinc is defined for the angle between the slab mode βslab and the grating vector Λ (y-

axis). For devices rot0, rot2, rot3, and rot4, the designed 𝜃inc = 0∘, 2∘, 3∘, and 4∘, respectively. 

The tilt angle θtilt is fixed at the nominal value of 28.18∘ and the gratings are rotated to adjust θinc. 

In addition, the x- and y-axes are referenced to the grating, not a global frame. The azimuthal angle 

φ and the polar angle θ are defined with respect to the grating lines (x-axis) and the surface normal 

(z-axis), respectively (inset of Figure 7(a)). To verify the propagation direction of the slab mode 

(θtilt) after stage 1 (expander), in a separate experiment, a nominally identical device was co-

fabricated, in which a series of holes in front of the grating were deliberately introduced to serve 

as scatterers for the slab mode. Figure 7(b) shows a microscope image of such a device (rot0) with 

TE0 input. The scatterers form shadows in the slab mode along its propagation direction, which 

are made visible by the grating. As expected, the angles of the shadows are close to θinc ≈ 0◦ and 

the long, uniform-contrast shadows qualitatively demonstrate satisfactory collimation of the slab 

mode. This further validates the performance of the mode expander. 
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      The polar θ and azimuthal φ angles of the out-coupling beam can be engineered by varying 

the incident angle θinc via grating rotation. Due to the momentum conservation in the grating plane, 

the out-coupling beam angles should follow 

 𝑘 sin 𝜃 sin 𝜙 = 𝛽𝑦 −
2𝜋𝑚

Λ
 (𝑚: 𝑖𝑛𝑡𝑒𝑔𝑒𝑟), (6a) 

     𝑘 sin 𝜃 cos 𝜙 = 𝛽𝑦, (6b) 

where k = 2π/λ, βy = βslab cos(θinc), βx = βslab sin(θinc), Λ is the effective grating period, and the 

propagation constant of the slab mode can be represented as 𝛽slab =
2π

𝜆0
𝑛eff. Rewriting Eqs. 6 for 

θ and φ,  

 , (7) 

 tan 𝜙 =
cos 𝜃inc−

𝑚𝜆0
𝑛eff𝛬

sin 𝜃inc
. (8) 

 

To avoid losing light into multiple diffraction orders and to create a near-vertical Gaussian 

beam for θinc = 0, m = 1 is chosen and 1 ≫ 𝑛eff (
𝜆0

𝛬𝑛eff
− 1) > 0. The blue and orange lines in Fig. 

7(c) show the polar (θ) and azimuthal (φ) angles as functions of θinc, which follow Eq. 7 and Eq. 

8, respectively. For the parameters, neff = 1.79 and Λ = 425 nm are assumed. The points represent 

the experimentally measured angles for 𝜃inc = 0∘, 2∘, 4∘, and 6∘ and match the analytical estimates. 

Figure 7(d) shows the captured images of the rot2 (left) and rot4 (right) devices from this set at 

various z-positions. For each device, the z-positions of the maximum modal overlap are marked 

with red circles (approximately 4 mm for rot2 and 2 mm for rot6). Figure 7(e) shows the 3D stack 

images of Fig. 7(d), the azimuthal angles and the mode overlap positions. 

We have also experimentally estimated the overlap percentage of the two beams from each 

converter. Each of the beam images was captured at various heights and the following equation 

was used to extract the modal overlap: 

Overlap(𝑧) =
∫ √𝐼1(𝑧)𝐼2(𝑧)𝑑𝐴

√∫ 𝐼1(𝑧)𝑑𝐴 ∫ 𝐼2(𝑧)𝑑𝐴
× 100 %     (9) 

where I1(z) and I2(z) are the beam intensity images from each device, captured separately. The 

intensity measurement is not phase sensitive and this equation provides an upper bound on the 

expected mode coupling loss by assuming perfect phase matching between the two beams, such 

as perfect collimation with beam waists at the mirror location. The blue line in Fig. 7(f) represents 
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the measured overlap percentage of rot2 and the orange line in Fig. 7(f) represents that of rot4. As 

expected from Fig. 7(f), the z-positions of the maximum overlap for rot2 and rot4 are ≈ 4.5 mm 

and ≈ 2 mm, respectively. The maximum overlap percentage for rot4 exceeds 90 %, thereby 

fulfilling a necessary condition for low-loss grating-to-grating coupling, in which the radiating 

beam that is produced by one mode converter is reflected back to the chip (and a second converter) 

by a mirror that is placed at this position. 

Figure 8(a) shows the experimental setup for the grating-to-grating coupling that is used to 

characterize the single-mode coupling efficiency of the mode converter in a realistic application 

scenario. The photonic chip is glued to a fiber array for input/output coupling and a mirror is 

placed ≈ 2 mm above the chip, thereby resulting in maximum overlap for this rot4 device. The 

inset image shows the top view of the chip with the glued fiber array. Figure 8(b) shows a 

schematic diagram of the entire device structure with key loss parameters: PF: the fiber-to-chip 

edge-coupling loss; PC: the connecting waveguide and extreme mode converter loss; and PM: the 

mode-mismatch loss between the two beams. The typical loss for the edge-coupling is PF = −3 dB 

± 0.5 dB, which was determined via multiple measurements using short waveguide loop-back 

structures that were connected to the inverse-tapered couplers. Here and below, the uncertainties 

are measured and the statistical uncertainties are propagated one standard deviation. Measuring 

the outgoing Gaussian beam power and assuming the abovementioned value for the edge-coupling, 

the loss for the extreme mode converter, including the SiN waveguide, stage 1 mode expander and 

stage 2 grating coupler, is PC = −4.5 dB±0.5 dB, which corresponds to an overall experimental 

fiber to Gaussian beam loss of approximately PF+PC = −7.5 dB±0.5 dB for each device. Using the 

setup in Fig. 8(a), the light is successfully coupled back to the chip. By subtracting the 

independently measured fiber-to-Gaussian-beam losses for each of the two mode converters from 

the total fiber-to-fiber loss, the excess loss due to the mode-mismatch between the two beams is 

experimentally determined to be PM = −2.5 dB±1.0 dB, which results from a combination of lateral 

and angular beam misalignments and wavefront errors. 

 

DISCUSSION 

An extreme mode converter that can efficiently couple a few-hundred-nanometer-wide photonic 

waveguide mode to a hundred-micrometer-wide free-space Gaussian beam has been designed, 
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numerically optimized, and experimentally demonstrated. This expansion corresponds to an 

increase in the mode area by a factor of 0.34 × 106. General guidelines for designing such a mode 

converter are presented and this approach can be applied to other types of mode conversions as 

well. Specifically, the evanescent expander offers a novel, optically broadband approach for 

coupling single-mode waveguides to wide slab modes with arbitrary profiles. We have 

successfully demonstrated the mode conversion experimentally and generated a Gaussian beam 

with a beam waist of w0 ≈ 160 µm. The converted Gaussian beam is well-collimated and 

approaches the diffraction limit, as confirmed by the BFP measurements. Furthermore, the ability 

to engineer the out-coupling beam direction is presented and used to demonstrate a low-loss 

grating-to-grating coupling between two converters on the same chip, with ≈ 4 mm free-space 

propagation distance. This extreme mode converter can be used as a building block for the 

interaction of the photonic chip with other systems, thereby enabling novel applications in atomic 

physics, biological and/or chemical sensing, LIDAR, and biomedical health-care systems, among 

others. 

 

MATERIALS AND METHODS 

Stage 2: Large apodized grating design via gradient-based numerical optimization. We apply 

a general numerical optimization technique to solve the inverse problem of finding a grating design 

that optimizes the coupling between the input slab mode and any arbitrary prescribed free-space 

mode (i.e., “inverse design”). Optimization of smaller plasmonic and protonic grating couplers 

has been achieved [40–42] via gradient-based optimization methods [43]. Although the cost 

function gradients are calculated efficiently, the previous work is limited to either discrete changes 

in the design geometry or requires the finite element model to be remeshed. Here, a common 

commercial frequency-domain finite element solver package is used. Following [44], in addition 

to the electromagnetic (EM) fields, the spatially dependent deformation vector field (u,v), which 

is discretized on the same mesh, is introduced. This field encodes a continuous shift for each mesh 

node [45] and enables continuous and smooth model deformation, together with the mesh, thereby 

avoiding the digital noise and calculation overhead that are associated with discrete rebuilding and 

remeshing of the grating model. This is the key to efficient numerical optimization because not 

only can the EM fields be numerically computed for a particular deformation, but also the 

gradients of any EM-dependent cost function with respect to all geometrical parameters can be 
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computed cost-effectively [43]. This enables the application of efficient gradient-based nonlinear 

optimization methods, such as sparse nonlinear optimizer (SNOPT) [46], which are already 

implemented in the optimization add-on to the same commercial package [44, 47]. 

The grating geometry is defined using 11 scalar variable parameters. Two parameters define 

the grating etch depth and the thickness of the SiO2 layer that separates the SiN grating from the 

Si wafer. The spatially dependent grating duty cycle is described by a 4th-order polynomial 

function of the location y (Fig. 3(c)), while the grating period is specified by a 3rd-order polynomial 

of y (Fig. 3(b)). Polynomial coefficients represent the other 9 variables that define the geometry. 

The duty cycle is additionally constrained from decreasing below 0.05 (≈ 20 nm) to account for 

the nanofabrication limits on producing extremely narrow grating lines. Qualitatively, the spatially 

varying duty cycle, together with the grating depth, controls the strength of the local optical 

coupling between the slab mode and free space. The spatially varying period ensures that the 

Gaussian wavefront is planar by compensating for the duty-cycle-dependent effective index of the 

slab mode. The varying oxide depth ensures that the reflection from the Si wafer constructively 

interferes, thereby maximizing the optical power in the upward direction. 

While it is possible to apply the prescribed deformations only to the model geometric 

boundaries and obtain a smooth mesh deformation by solving for the “numerically induced” 

deformation at the internal mesh points [44, 45], we have further reduced the computational 

complexity by explicitly defining all deformations everywhere in the model as linear interpolations 

between the prescribed vertical and horizontal displacements of the grating boundaries. In other 

words, the deformation fields everywhere are explicit functions of the location within the model 

and the 11 deformation variables, thereby creating the desired model deformations that are 

described by the two polynomials and two thickness parameters. 

The algorithm maximizes the squared modulus of the S-parameter (scattering matrix element), 

which describes the optical coupling between the slab mode input port and a Gaussian mode output 

port that is defined on the stationary horizontal domain boundary in free space above the grating 

(backed up by a perfectly matched layer to eliminate reflection). The vertical domain size is chosen 

to be large enough for the evanescent fields from the grating to decay before reaching the boundary. 

The 2D (cylindrical) Gaussian mode waist center was constrained to the grating surface, but 

allowed to shift in the y-direction along the grating. The Gaussian waist center location, the width 

and the angle are used as 3 additional variable optimization parameters. Allowing the Gaussian 
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waist width to vary prevents the optimization algorithm from becoming stuck in the local optima 

that arise when the angularly narrow, spatially wide Gaussian port matches a sharp side-lobe of 

the extended grating out-coupling pattern. In contrast with gradient-free methods, within the 

gradient-based optimization using the deformed geometry, adding extra variables does not 

drastically increase the computation time. The Gaussian width was forced to w0 = 100 µm by 

adding a term to the optimization cost function that maximizes the waist, while the waist was 

constrained from above by 100 µm. [w0 = 100 µm is the prescribed field waist and 𝐸 ∼

exp (−𝑥2/w0
2); the corresponding FWHM is 𝑤0√2ln2 = 117 µm]. 

Device microfabrication. The fabrication starts with a 100 mm diameter silicon wafer on which 

thermal oxide is grown. The design target thickness is 2.9 µm; however, experimentally, this may 

have varied by 100 nm or more between fabrication runs, which contributes to run-to-run 

variability in device performance. In the following step, an approximately 250 nm thick nominally 

stoichiometric silicon nitride (SiN) layer is deposited via low-pressure chemical vapor deposition 

(LPCVD) and patterned twice. First, electron beam lithography is used to define ≈ 300 nm wide 

waveguides, inverse-tapers for coupling to the optical fiber and the Stage 1 expander, which is 

comprised of a variable gap between the waveguide and a slab. The nitride is patterned by a 

reactive ion etch all the way through the layer. In the second electron beam patterning step, the 

apodized gratings of Stage 2 are defined and the grating groves are etched nominally 85 nm deep 

into the nitride layer. A 2.8 µm thick layer of silicon dioxide is deposited via plasma-enhanced 

chemical vapor deposition (PECVD), after which the wafers are diced and the edges of the chips 

are polished to expose the ends of the inverse-tapered waveguide fiber couplers. Device layouts 

were created with the NIST Nanolithography Toolbox [48]. 

Device characterization. For the device characterization, monochromatic laser light (λ0 ≈ 780 nm) 

is coupled from an optical fiber to the waveguide mode (TE0) through a tapered fiber-to-chip edge 

coupler. The input fiber arrays could be permanently attached to the mode converter chip using 

ultraviolet light curable epoxy. The extreme mode converter transforms the TE0 mode to the free-

space Gaussian beam and the mode intensity profile and the wavefront of the out-coupled Gaussian 

beam were characterized by measuring the microscope images in the real and Fourier spaces, 

respectively. Figure 5(a) shows the measurement setup for simultaneous Fourier- and real-space 

imaging. Two charge-coupled device (CCD) cameras were placed at the real and BFP image 

planes to capture the real- and Fourier-space images, respectively. 
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FIGURES 

 

FIG. 1. Extreme mode converter. (a) A schematic diagram of the extreme mode converter and an SEM 

image of the SiN structure without the top SiO2 cladding. The red-color overlays illustrate the two-step 

conversion (stage 1: photonic waveguide mode to 1D-Gaussian slab mode and stage 2: 1D-Gaussian slab 

mode to 2D-Gaussian beam in free space). The diagram is not to scale. (b) A microscope image of the 

fabricated extreme mode converter with a coordinate system (x- and y-axes, incident angle θinc, and 

azimuthal angle φ). The propagation direction of the waveguide mode is defined as 𝑧′. (c) A concept figure 

of a photonic chip with two extreme mode converters coupling light in and out for optical interrogation 

(red) of a gas-filled cavity volume (green). A mirror that is placed on top of the gas-filled cavity is used to 

reflect the beam that is radiated from one grating into the other grating. 
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FIG. 2. Stage 1: Photonic waveguide mode to 1D-Gaussian slab mode conversion via evanescent coupling. 

The numerically calculated effective refractive index (neff) of the photonic waveguide mode as a function 

of the gap size g between the waveguide and the slab: (a) The real part of neff (the dashed orange line: 

limiting value for g > 500 nm; inset: cross-sections of the schematic diagram and the FEM domain with 

the computed TE mode profile) and (b) the imaginary part of neff (the dashed orange line: fitting curve; text: 

fitting parameters). The height h0 and the width wwg of the waveguide are 250 nm and 300 nm, respectively. 
 

FIG. 3. Stage 2: 1D-Gaussian slab mode to 2D-Gaussian beam conversion. (a) A schematic diagram of the 

apodized grating with the following geometric parameters: h0 = 250 nm, hg = 85 nm, hs = 2.9 µm, and hu = 

2.8 µm. The grating period Λ(y) and grating width wg(y) are apodized. The numerically optimized grating 

(b) period Λ(y) and (c) duty cycle 1-wg(y)/Λ(y) (insets: optimized polynomial coefficients). (d) FEM results 

of the out-coupled beam: power flow (blue), Gaussian fit (black dash-dot line), and wavefront phase error 

(orange). Dashed lines indicate the upper and lower bounds of the phase error, which are within ±2π/40. 

(e) The electric field profile (Ex) within a portion of the FEM simulation domain. 
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FIG. 4. Gaussian mode profile on a grating. (a) A microscope image of a converted Gaussian beam on a 

300 µm x 300 µm grating. The grating lines are parallel to the x-axis (as schematically indicated). The scale 

is calibrated based on the known physical size of the grating. (b) and (c) are the projected images of (a), 

which show the Gaussian mode profiles along the x- and y-axes, respectively (blue dashed lines: data; red 

solid lines: fitting curves). The full width at half maximum (FWHM) and the beam waist w0 are shown in 

each figure. (d) Measured mode profiles (projected on x-axis) for various gap sizes that have constant ±40 

nm variations on the gap profile g(𝑧′) (blue: g - 40 nm, orange: g, and yellow: g + 40 nm). (e) Numerically 

calculated (ODE) mode profiles that are similar to (d). The uncertainties in the characterized beam waist 

are approximately ±1 µm, as determined by the Gaussian fit. 
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FIG. 5. Back focal plane (BFP) measurement. (at) The BFP measurement setup for characterizing the beam 

profile in both angular (Fourier) space and real space. (b) Real-space image of the converted Gaussian 

beam (blue line: image plane aperture with a diameter of 250 µm). (c) A BFP composite image of the 

Gaussian beams for various grating rotational angles relative to the incident slab mode (rot0: 90∘ − θtilt = 

61.82∘ rotation from the expander waveguide, rot2 = rot0 + 2∘,rot3 = rot0+3∘, and rot4 = rot0+4∘). The 

BFP image X (Y)-axes are oriented along (normal to) the grating lines in (b). Two identical devices that 

are rotated 180∘  are measured to establish the origin (surface-normal). The white dashed lines are the 

theoretical out-coupling angles that are obtained via Eq. 7 and Eq. 8. A white dot indicates the ideal 

diffraction-limited beam’s full width at half maximum (FWHM). 

 

FIG. 6. Near-diffraction-limited Gaussian beam. (a) Magnified back-focal-plane (BFP) images from mode 

converters 1 and 2 for various aperture diameters from 50 µm to 250 µm. Clipping the beam by the aperture 

increases diffraction. (b-e) Normalized powers of the BFP images of (a) at the center of each axis: (b, c) 

along θx and (d, e) along θy (blue circles: data; red lines: fitting Gaussian curves). (b) and (d) are cases in 

which the aperture diameter is d ≈ 50 µm, while (c) and (e) are cases in which d ≈ 250 µm. The uncertainty 

in the characterized FWHM is approximately ±0.005∘, as determined by the Gaussian fit. 
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FIG. 7. Out-coupling angles and modal overlap. (a) A microscope image of the two extreme mode 

converters. The inset shows the definitions of the polar (θ) and azimuthal (φ) angles. (b) A magnified 

converter image with scatterers that are embedded into the slab. (c) Polar (θ, blue) and azimuthal (φ, orange) 

angles of the out-coupled beam as functions of incident angle θinc. The solid lines are analytical calculations 

and the points with error bars are the measured angles. The error bars indicate the one-standard-deviation 

uncertainties that are propagated from the beam center estimates in the images. (d) Microscope images of 

the two out-coupling beams at various distances z (left: rot2; right: rot4). The red circles indicate the z-

positions of the maximum overlap. (e) 3D stack images of (d). (f) Measured modal overlap percentages of 

the two out-coupling beams as a function of z (blue: rot2 and orange: rot4). 
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FIG. 8. Grating-to-grating coupling. (a) The measurement setup of the grating-to-grating coupling. The 

inset shows the top view of the chip, which is glued with a fiber array. (b) A schematic diagram of the loss 

components from each section. 

 


