
Improved upper bounds for the expected circuit complexity of
dense systems of linear equations over GF(2)

Andrea Viscontia, Chiara Valentina Schiavoa, René Peraltab

aUniversità degli Studi di Milano, Department of Computer Science, via Comelico 39/41, 20135,
Milano, Italy

bNational Institute of Standards and Technology, 100 Bureau Dr, Gaithersburg, MD, United States

Abstract

Minimizing the Boolean circuit implementation of a given cryptographic function is an
important issue. A number of papers [1], [2], [3], [4] only consider cancellation-free
straight-line programs for producing small circuits over GF(2). Cancellation is allowed
by the Boyar-Peralta (BP) heuristic [5, 6]. This yields a valuable tool for practical
applications such as building fast software and low-power circuits for cryptographic ap-
plications, e.g. AES [5, 7], HMAC-SHA-1 [8], PRESENT [9], GOST [9], and so on.
However, the BP heuristic does not take into account the matrix density. In a dense
linear system the rows can be computed by adding or removing a few elements from a
“common path” that is “close” to almost all rows. The new heuristic described in this
paper will merge the idea of “cancellation” and “common path”. An extensive testing
activity has been performed. Experimental results of the new and the BP heuristic were
compared. They show that the Boyar-Peralta results are not optimal on dense systems.

Keywords: Gate complexity, linear systems, dense matrices, circuit depth, XOR gates

1. Introduction

Circuits are important in many areas of computer science, including computer ar-
chitecture and engineering, cryptography and computer security, and privacy-preserving
multiparty computations. Minimizing the total number of gates in the Boolean circuit
implementation of a given function f can lead to high-speed software as well as low-power
hardware for f . Particularly important are hardware optimizations of cryptographic cir-
cuits. The speed and power consumption are often a limiting constraint in security chips
— e.g., RFID, smart cards, TPMs.
Circuits for linear functions can be represented as linear straight-line programs (SLPs).

These are sequential programs (see [10] and [11], for example) in which the instructions
are of the form Xi = Xj + Xk where

• Xi has not appeared before in the program;

Email addresses: andrea.visconti@unimi.it (Andrea Visconti), chiara.schiavo@gmail.com
(Chiara Valentina Schiavo), rene.peralta@nist.gov (René Peralta)

Preprint submitted to Journal of LATEX Templates April 19, 2018

mailto:rene.peralta@nist.gov
mailto:chiara.schiavo@gmail.com
mailto:andrea.visconti@unimi.it

• Xj and Xk are either inputs or have appeared before in the program;

• “+” denotes Boolean exclusive-or.

The shortest SLP problem is to find the shortest linear program which computes
a set of linear functions over a field. Solving the shortest SLP problem over GF (2)
corresponds to finding a gate-optimal Boolean circuit that computes the linear functions.
This problem is known to be MAX SNP-hard [6]. This means that, unless P=NP, there
is no efficient algorithm that can compute solutions that are arbitrarily close to optimal.
In [5], it is shown that known polynomial-time heuristics do quite poorly on random
n × n systems of equations, and an exponential-time heuristic is described which does
significantly better and is fast enough to be used in many practical situations. The
Boyar-Peralta (BP) heuristic [5] has been successfully applied to a number of circuit
optimization problems of interest to cryptology. These include a compact implementation
of Present S-Box [9], HMAC-SHA-1 optimizations [8], finite-field arithmetic and binary
multiplication [10] and [12].
A random m × n linear system is constructed as follows: given a density 0 < ρ < 1,

construct an m ×n binary matrix by placing a 1 in position i, j of the matrix with proba-
bility ρ. Each row of the resulting matrix is interpreted as the sum of variables (columns)
containing a 1. We will call these rows targets. There are no known tight combinatorial
bounds for the gate complexity of random linear systems. An obvious upper bound is

mnO(mn), the only non-trivial combinatorial upper bound we are aware of is O(). This log m

can be derived from a lemma by Lupanov [13] about matrix decompositions.
A number of papers [1], [2], [3], and [4] only consider cancellation-free straight-line

programs for producing small cryptographic circuits over GF(2). In 2009, Boyar and
Peralta show that these circuits can be improved in a model that is not restricted to
producing cancellation-free circuits [5], [10]1 . However, the BP heuristic does not take
into account that rows of a dense linear system have a long path of elements in common
and, allowing cancellations, these rows can be easily computed by adding or removing
a few elements from a “common path”. In this paper, we present a new heuristic for
constructing circuits that evaluate dense linear systems. In particular, our heuristic has
been developed taking into account the possibility to (a) work in a model that is not
restricted to producing cancellation-free circuits, and (b) add/remove a few elements from
a “common path”. We conducted extensive testing on random systems for evaluating
the performance of our heuristic. Experimental results show that the new heuristic
outperforms (on average) the BP heuristic, when applied to random dense linear systems.

2. The Boyar-Peralta heuristic

The BP heuristic [5] is for optimizing arbitrary circuits. The first step is to minimize
the number of AND gates in the circuit. This typically results in a circuit with large
linear connected components. The second step optimizes the linear components. We
briefly describe their technique for this second step.
Let f(x) = Mx, where x = [x1, . . . , xn] is a vector of input variables and M is an

m × n matrix with coefficients over GF (2). We denote with yi the ith row of the matrix

1See also [14].

2

M . Let S be the set of “known” linear functions. The members of S are called base
elements. S initially contains the variables x1, . . . , xn. Given a linear predicate g, δ(S, g)
is defined as the minimum number of additions of elements from the set S necessary
to compute g. The vector D[i] = δ(S, yi) is called the distance from S to M . At the
beginning of the computation D[i] is one less than the Hamming weight of the ith row
of M . The following loop is performed until D[] = 0:

• create a new base element by adding two base elements in S;

• update S and the vector D[].

The choice of new base element is performed by picking a base which minimizes the sum
of elements of the updated D[] vector. Ties are solved by maximizing the Euclidean
norm of the new distance vector.

3. New heuristic

Let y = f(x) = Mx where M is an m × n matrix with coefficients in GF (2). We
would like to find a small circuit which computes y given an input vector x = [x1, . . . , xn].
We consider the problem space consisting of random matrices in which elements A[i, j]
are Bernoulli trials. We call these matrices dense when prob(A[i, j] = 1) ≥ 0.6.
Given a circuit C, a signal computed by C is either an input to the circuit or the

output of any gate in the circuit.
When M is dense, its Boolean complement M is sparse. The naive approach with a

dense matrix is to compute the complement of the matrix M and then to apply the BP
heuristic. Hence, it is appealing to try the following steps:

(i) use the BP heuristic to find a small circuit that implements Mx; Pn
(ii) use signals computed in (i) to compute a “common path” yy = i=1 xi;

(iii) at a cost of m additional gates, add the signal yy to each of the outputs of the
circuit computed in step (i).

We have experimentally verified that this heuristic, as well as several variations, yield
circuits with more gates than does the BP heuristic. The naive approach fails because
the base elements chosen in (i) do not guarantee the reachability of the “common path”
in few steps. Therefore, the new heuristic first computes the “common path” by picking
the base elements that may not necessarily minimize the sum of elements of the distance
vector. Then, all targets are computed by allowing cancellations from it. Below we
describe the method that did improve over BP .
Let y = {y1, . . . , ym} be the set of rows of M (we call these targets). We will keep

track of two distance vectors D (distance from S to M) and D∗ (distance from S to the
Boolean complement of M). The heuristic is as follows:

1. (Initialization) Set S to the set of variables x1, . . . , xn. For i = 1, . . . ,m, set
D[i] = HammingWeight(yi) − 1.

3

∗ ∗ ∗2. (Create complement instance) Let y = {y1 , . . . , y } be the set of complementm
∗ ∗ targets (i.e. y = yi). Add target ym+1 = [1, . . . , 1] to the set of complement targetsi

∗ ∗ ∗ ∗(note ym+1 encodes the function yy = Σn
i=1xi). Let M∗ = [y1 , . . . , ym, ym+1]

T . Let
D∗ ∗be the distance vector for M∗, initialized to D∗[i] = HammingW eight(yi) − 1
for i = 1, . . . ,m + 1.

∗3. (Compute the common path) Until target ym+1 is found — i.e., until D∗[m+1] = 0
— pick a new base element xi, i = |S| + 1, by adding two existing base elements
such that:

∗(a) xi decreases the distance to ym+1 by one — i.e., to D∗[m + 1] − 1;
(b) xi minimizes the sum of distances D∗ under the restriction (a).
Output the SLP instruction that computes xi. Update distance vectors D and D∗ .
Add xi to S.

4. (Allow cancellations) Apply the BP heuristic to matrix M , but skipping the ini-
tialization steps for S and D.

Note that S and D are well-defined at step 4, as they have been continuously updated
every time an SLP instruction is output. We resolve ties at step 3 by maximizing the
Euclidean norm of the vector D∗ . The “common path” of our heuristic is the target
∗ ym+1 = [1, . . . , 1].

3.1. A toy example

To understand the details of this new heuristic, we present a toy example. Let
y1, . . . , ym (m = 6) be the set of rows of: ⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1 = x1 + x2 + x3

y2 = x2 + x4 + x5

y3 = x1 + x3 + x4 + x5

y4 = x2 + x3 + x4

y5 = x1 + x2 + x4

y6 = x2 + x3 + x4 + x5

Step 1: Initialization.
The initial basis vector is S = {x1, x2, x3, x4, x5}, the target is y = {y1, y2, y3, y4, y5, y6},
the distance vector is D = [2, 2, 3, 2, 2, 3].
Step 2: Create a complement instance.

∗We generate the “common path” yy = x1 + x2 + x3 + x4 + x5, the new target is y =
= [1, 1, 0, 1, 1, 0, 4], and the new ⎤⎡{y1, y2, y3, y4, y5, y6, yy}, the new distance vector is D∗

matrix is

∗ M =

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1

1 0 1 0 0

0 1 0 0 0

1 0 0 0 1

0 0 1 0 1

1 0 0 0 0

1 1 1 1 1

4

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Step 3: Compute the common path.
∗We compute ym+1, also called yy or “common path”.

• x7 = x1 + x3.
D = [1, 2, 2, 2, 2, 3] D∗ = [1, 0, 0, 1, 1, 0, 3]

• x8 = x4 + x5.
D = [1, 1, 1, 2, 2, 2] D∗ = [0, 0, 0, 1, 1, 0, 2]

• x9 = x2 + x7. Found target y1 = x9.
D = [0, 1, 1, 2, 2, 2] D∗ = [0, 0, 0, 1, 1, 0, 1]

• x10 = x8 + x9. Found target yy = x10.
D = [0, 1, 1, 2, 2, 1] D∗ = [0, 0, 0, 1, 1, 0, 0]

Step 4: Allow cancellations.
We apply the BP heuristic to matrix M . The distance vector is D = [0, 1, 1, 2, 2, 1], the
basis vector is S = {x1, . . . , x10} and the new distance vector D∗ is no more updated.

• x11 = x1 + x10. Found target y6 = x11.
D = [0, 1, 1, 1, 2, 0] S = {x1, . . . , x11}

• x12 = x2 + x8. Found target y2 = x12.
D = [0, 0, 1, 1, 2, 0] S = {x1, . . . , x12}

• x13 = x2 + x10. Found target y3 = x13.
D = [0, 0, 0, 1, 2, 0] S = {x1, . . . , x13}

• x14 = x5 + x11. Found target y4 = x14.
D = [0, 0, 0, 0, 1, 0,] S = {x1, . . . , x14}

• x15 = x7 + x14. Found target y5 = x15.
D = [0, 0, 0, 0, 0, 0] S = {x1, . . . , x15}

4. Experimental results

We conducted extensive testing to gauge the performance of our new heuristic, against
that of BP . Experiments were performed on square and non-square matrices (more
details can be found in [15]). Due to space limitations, this paper only discusses our
results on square matrices. The useful conclusions drawn are also valid for rectangular
matrices. Although we are able to solve systems larger than 30 × 30, we limited our
experiments to size 30 due to the exponential time complexity of both heuristics.

4.1. Gate Count

We generated several n × n matrices [16], n = 15, 16, . . . , 30, for biases ρ. For each
size n and each bias ρ, we randomly pick 100 matrices from our benchmark set, hence
we tested 9600 matrices.
Circuits for Mx were constructed for each matrix M using BP and our heuristic. We

identified four matrix size thresholds, one for each of the bias values ρ = 0.6, 0.7, 0.8, 0.9,
beyond which the new heuristic performs on average better than the old one. Our

5

experiments also suggest that there exists a lower bound ρL for the bias beyond which it
is convenient to use the new heuristic on large enough matrices. Of course, at a cost of
roughly doubling the running time, one can run both heuristics and pick the best circuit.

Bias ρ = 0.4 and 0.5. Experimental results show that the average number of XOR
gates computed by the new heuristic is, on average, worse than those computed by the old
one. As expected, the new heuristic does not perform well on sparse matrices. However,
over 3200 matrices handled, the new heuristic gets better results in 577 cases — i.e. 211
when ρ = 0.4 and 366 when ρ = 0.5. This means that, as expected, the BP heuristic
sometimes fails to find the best solution.

Bias ρ = 0.6. When the bias grows, the new heuristic behaves better than the old
one. Experimental results suggest that the difference between the average number of
XOR gates computed by the two heuristics gradually increases with the increasing size
of the matrix. In particular the new heuristic will perform better than BP when applied
to large-enough matrices of density 0.6. The threshold over which the new heuristic
performs as well as or better than BP lies between 20 × 20 and 22 × 22.

Bias ρ = 0.7. The new heuristic performs, on average, better than the old one. For
16 × 16 matrices the new heuristic gets the best, or the same, solution in 73% of cases.
This value grows up to 98% for 30 × 30 matrices.

Bias ρ = 0.8. In this case the new heuristic performs better compared to BP when
ρ = 0.7. In fact, it beats BP on matrices as small as 15 × 15. For 16 × 16 matrices we
get the best, or the same, solution in 84% of cases, while for matrices larger than size
24 × 24, this percentage is greater or equal to 98%.

Bias ρ = 0.9. In this case, the behavior of the new heuristic is similar to that of the
ρ = 0.7 and 0.8 cases. However, the threshold is higher — i.e., around size 20 × 20 —
and the observed probability of the new heuristic beating BP on matrices larger than
size 20 × 20 is between 0.70 and 0.96.

Figure 1: Avg num XORs new heuristic compared to BP : Gate Count – Circuit Depth

Figure 1 visualizes the output data collected, showing the difference between the
average number of XOR gates required by the new heuristic and BP . Negative values
indicate that the new heuristic performs better than BP , while positive values indicate
it performs worse. This data can help us identify when the new heuristic is expected to

6

provide the best results for specific values of ρ and n. Therefore it is possible to identify
a lower bound ρL that indicates a threshold beyond which it is convenient to use the new
heuristic.
When ρ = 0.4 or 0.5, and n ≤ 30, BP will perform on average a bit better than the

new one (see Figure 1). This is no longer true for ρ = 0.6 and n = 20. Therefore, the
lower bound ρL lies between 0.5 and 0.6 as long as n ≤ 30. We have not determined the
density value at which the new heuristic is asymptotically better than BP . It is some
number smaller than 0.6, and we conjecture it is greater than 0.5. It is conceivable that
0.5 + �, for any � > 0, is dense enough for sufficiently large matrices.

4.2. Circuit Depth

The reduction of gate complexity of a circuit is not the only important measure on
combinational logic implementation. The depth of a circuit, — i.e., the length of the
longest path in it — is another one. Indeed, when depth of the combinational logic
increases, an important performance metric worsens: the delay. In general, it is not
difficult decreasing circuit depth at the cost of increasing circuit width, or vice versa. As
shown in Section 4.1, the new heuristic reduces gate count when applied to dense linear
systems. In this section, we experimentally show that new heuristic not only reduces
the gate count but also decreases (on average) the circuit depth. An extensive testing
activity has been conducted to evaluate the depth of the circuits. The set of data used
is the same described in Section 4.1 — i.e., n × n matrices, n = 15, 16, . . . , 30. For
these experiments, we focus on the most interesting (dense) biases ρ = 0.6, . . . , 0.9. We
tested 6400 dense matrices previously generated, 100 matrices from each value of ρ and
n. Experimental results were collected and analyzed.

Bias ρ = 0.6. Experimental results show that BP generates, on average, circuits
with a shorter critical path (for n ≤ 30).

Bias ρ = 0.7, 0.8, 0.9. This is no longer true for ρ ≥ 0.7 and n = 15. In these cases,
the new heuristic provides (on average) circuits with a shorter critical path. Experimental
results show that our heuristic outperforms BP for high density matrices of size bigger
than 15 × 15.

5. Concluding remarks

There are at least two ways to gauge how interesting these results are. This paper
shows that the new heuristic outperforms (on average) BP heuristic, when applied to
random dense linear systems. Experimental results suggest that the solutions provided
usually have a shorter critical path and a reduced number of XOR gates. In [17, 18],
Fuhs et al. were able to prove that, in specific cases, the circuits generated by BP are
optimal. Our work shows that, if we play with dense linear system, better results can be
obtained encouraging circuits to benefit from the cancellation.
At a practical level, we note that linear systems of the sizes considered in this work

show up in practice — e.g. AES [5, 6], HMAC-SHA-1 [8], Present [9], etc. In particular,
the new heuristic has been used in 2013 to show that the bottom linear part of the circuit
presented in [6] was sub-optimal by at least one gate. Then, exploring all ties, Cagdas
Calik pointed out that the BP heuristic yields a better circuit [10].

7

References

[1] C. Paar, Optimized arithmetic for Reed-Solomon encoders, in: Proceedings of 1997 IEEE Interna-
tional Symposium on Information Theory, 1997, p. 250.

[2] A. Satoh, S. Morioka, K. Takano, S. Munetoh, A Compact Rijndael Hardware Architecture with
S-Box Optimization, in: Advances in Cryptology, Vol. 2248 of Lecture Notes in Computer Science,
Springer, 2001, pp. 239–254.

[3] C. Paar, Some remarks on efficient inversion in finite fields, in: Proceedings of 1995 IEEE Interna-
tional Symposium on Information Theory, 1995, p. 58.

[4] D. Canright, A Very Compact S-Box for AES, in: Cryptographic Hardware and Embedded Systems,
Vol. 3659 of Lecture Notes in Computer Science, Springer, 2005, pp. 441–455.

[5] J. Boyar, R. Peralta, A new combinational logic minimization technique with applications to cryp-
tology, in: Experimental Algorithms, Vol. 6049 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2010, pp. 178–189.

[6] J. Boyar, P. Matthews, R. Peralta, Logic minimization techniques with applications to cryptology,
Journal of Cryptology 26 (2013) 280–312.

[7] J. Boyar, M. G. Find, R. Peralta, Low-depth, low-size circuits for cryptographic applications, Cryp-
tography and CommunicationsIn press.

[8] A. Visconti, F. Gorla, Exploiting an HMAC-SHA-1 optimization to speed up PBKDF2, Cryptology
ePrint Archive, Report 2018/097 (2018).
URL https://eprint.iacr.org/2018/097.pdf

[9] N. Courtois, D. Hulme, T. Mourouzis, Solving circuit optimisation problems in cryptography and
cryptanalysis, Cryptology ePrint Archive, Report 2011/475 (2011).
URL http://eprint.iacr.org/2011/475.pdf

[10] CMT, Circuit Minimization Team.
URL http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html

[11] A. De Piccoli, A. Visconti, O. G. Rizzo, Polynomial multiplication over binary finite fields: new
upper bounds, Cryptology ePrint Archive, Report 2018/091 (2018).
URL https://eprint.iacr.org/2018/091

[12] D. J. Bernstein, High-speed cryptography in characteristic 2 (2009).
URL http://binary.cr.yp.to/index.html

[13] O. Lupanov, On rectifier and switching-and-rectifier schemes, Dokl. Akad. 30 Nauk SSSR 111,
1171-1174.

[14] J. Boyar, M. G. Find, Cancellation-free circuits in unbounded and bounded depth, Theor. Comput.
Sci. 590 (2015) 17–26.

[15] A. Visconti, C. Schiavo, R. Peralta, Improved upper bounds for the expected circuit complexity of
dense systems of linear equations over GF(2), Cryptology ePrint Archive, Report 2017/194 (2017).
URL https://eprint.iacr.org/2017/194.pdf

[16] A. Visconti, A benchmark set.
URL http://homes.di.unimi.it/visconti/RESEARCH/BenchmarkSet.zip

[17] C. Fuhs, P. Schneider-Kamp, Synthesizing Shortest Linear Straight-Line Programs over GF(2)
Using SAT, in: Theory and Applications of Satisfiability Testing SAT 2010, Vol. 6175 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2010, pp. 71–84.

[18] C. Fuhs, P. Schneider-Kamp, Optimizing the AES S-Box using SAT, in: 8th International Workshop
on the Implementation of Logics IWIL 2010, Vol. 2 of EPiC Series in Computing, EasyChair, 2012,
pp. 64–70.

8

https://eprint.iacr.org/2018/097.pdf
https://eprint.iacr.org/2018/097.pdf
http://eprint.iacr.org/2011/475.pdf
http://eprint.iacr.org/2011/475.pdf
http://eprint.iacr.org/2011/475.pdf
http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
https://eprint.iacr.org/2018/091
https://eprint.iacr.org/2018/091
https://eprint.iacr.org/2018/091
http://binary.cr.yp.to/index.html
http://binary.cr.yp.to/index.html
https://eprint.iacr.org/2017/194.pdf
https://eprint.iacr.org/2017/194.pdf
https://eprint.iacr.org/2017/194.pdf
http://homes.di.unimi.it/visconti/RESEARCH/BenchmarkSet.zip
http://homes.di.unimi.it/visconti/RESEARCH/BenchmarkSet.zip

	Introduction
	The Boyar-Peralta heuristic
	New heuristic
	A toy example

	Experimental results
	Gate Count
	Circuit Depth

	Concluding remarks

