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Abstract 

Minimizing the Boolean circuit implementation of a given cryptographic function is an 
important issue. A number of papers [1], [2], [3], [4] only consider cancellation-free 
straight-line programs for producing small circuits over GF(2). Cancellation is allowed 
by the Boyar-Peralta (BP ) heuristic [5, 6]. This yields a valuable tool for practical 
applications such as building fast software and low-power circuits for cryptographic ap-
plications, e.g. AES [5, 7], HMAC-SHA-1 [8], PRESENT [9], GOST [9], and so on. 
However, the BP heuristic does not take into account the matrix density. In a dense 
linear system the rows can be computed by adding or removing a few elements from a 
“common path” that is “close” to almost all rows. The new heuristic described in this 
paper will merge the idea of “cancellation” and “common path”. An extensive testing 
activity has been performed. Experimental results of the new and the BP heuristic were 
compared. They show that the Boyar-Peralta results are not optimal on dense systems. 
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1. Introduction 

Circuits are important in many areas of computer science, including computer ar-
chitecture and engineering, cryptography and computer security, and privacy-preserving 
multiparty computations. Minimizing the total number of gates in the Boolean circuit 
implementation of a given function f can lead to high-speed software as well as low-power 
hardware for f . Particularly important are hardware optimizations of cryptographic cir-
cuits. The speed and power consumption are often a limiting constraint in security chips 
— e.g., RFID, smart cards, TPMs. 
Circuits for linear functions can be represented as linear straight-line programs (SLPs). 

These are sequential programs (see [10] and [11], for example) in which the instructions 
are of the form Xi = Xj + Xk where 

• Xi has not appeared before in the program; 

Email addresses: andrea.visconti@unimi.it (Andrea Visconti), chiara.schiavo@gmail.com 
(Chiara Valentina Schiavo), rene.peralta@nist.gov (René Peralta) 
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• Xj and Xk are either inputs or have appeared before in the program; 

• “+” denotes Boolean exclusive-or. 

The shortest SLP problem is to find the shortest linear program which computes 
a set of linear functions over a field. Solving the shortest SLP problem over GF (2) 
corresponds to finding a gate-optimal Boolean circuit that computes the linear functions. 
This problem is known to be MAX SNP-hard [6]. This means that, unless P=NP, there 
is no efficient algorithm that can compute solutions that are arbitrarily close to optimal. 
In [5], it is shown that known polynomial-time heuristics do quite poorly on random 
n × n systems of equations, and an exponential-time heuristic is described which does 
significantly better and is fast enough to be used in many practical situations. The 
Boyar-Peralta (BP ) heuristic [5] has been successfully applied to a number of circuit 
optimization problems of interest to cryptology. These include a compact implementation 
of Present S-Box [9], HMAC-SHA-1 optimizations [8], finite-field arithmetic and binary 
multiplication [10] and [12]. 
A random m × n linear system is constructed as follows: given a density 0 < ρ < 1, 

construct an m ×n binary matrix by placing a 1 in position i, j of the matrix with proba-
bility ρ. Each row of the resulting matrix is interpreted as the sum of variables (columns) 
containing a 1. We will call these rows targets. There are no known tight combinatorial 
bounds for the gate complexity of random linear systems. An obvious upper bound is 

mnO(mn), the only non-trivial combinatorial upper bound we are aware of is O( ). This log m 

can be derived from a lemma by Lupanov [13] about matrix decompositions. 
A number of papers [1], [2], [3], and [4] only consider cancellation-free straight-line 

programs for producing small cryptographic circuits over GF(2). In 2009, Boyar and 
Peralta show that these circuits can be improved in a model that is not restricted to 
producing cancellation-free circuits [5], [10]1 . However, the BP heuristic does not take 
into account that rows of a dense linear system have a long path of elements in common 
and, allowing cancellations, these rows can be easily computed by adding or removing 
a few elements from a “common path”. In this paper, we present a new heuristic for 
constructing circuits that evaluate dense linear systems. In particular, our heuristic has 
been developed taking into account the possibility to (a) work in a model that is not 
restricted to producing cancellation-free circuits, and (b) add/remove a few elements from 
a “common path”. We conducted extensive testing on random systems for evaluating 
the performance of our heuristic. Experimental results show that the new heuristic 
outperforms (on average) the BP heuristic, when applied to random dense linear systems. 

2. The Boyar-Peralta heuristic 

The BP heuristic [5] is for optimizing arbitrary circuits. The first step is to minimize 
the number of AND gates in the circuit. This typically results in a circuit with large 
linear connected components. The second step optimizes the linear components. We 
briefly describe their technique for this second step. 
Let f(x) = Mx, where x = [x1, . . . , xn] is a vector of input variables and M is an 

m × n matrix with coefficients over GF (2). We denote with yi the ith row of the matrix 

1See also [14]. 
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M . Let S be the set of “known” linear functions. The members of S are called base 
elements. S initially contains the variables x1, . . . , xn. Given a linear predicate g, δ(S, g) 
is defined as the minimum number of additions of elements from the set S necessary 
to compute g. The vector D[i] = δ(S, yi) is called the distance from S to M . At the 
beginning of the computation D[i] is one less than the Hamming weight of the ith row 
of M . The following loop is performed until D[ ] = 0: 

• create a new base element by adding two base elements in S; 

• update S and the vector D[ ]. 

The choice of new base element is performed by picking a base which minimizes the sum 
of elements of the updated D[ ] vector. Ties are solved by maximizing the Euclidean 
norm of the new distance vector. 

3. New heuristic 

Let y = f(x) = Mx where M is an m × n matrix with coefficients in GF (2). We 
would like to find a small circuit which computes y given an input vector x = [x1, . . . , xn]. 
We consider the problem space consisting of random matrices in which elements A[i, j] 
are Bernoulli trials. We call these matrices dense when prob(A[i, j] = 1) ≥ 0.6. 
Given a circuit C, a signal computed by C is either an input to the circuit or the 

output of any gate in the circuit. 
When M is dense, its Boolean complement M is sparse. The naive approach with a 

dense matrix is to compute the complement of the matrix M and then to apply the BP 
heuristic. Hence, it is appealing to try the following steps: 

(i) use the BP heuristic to find a small circuit that implements Mx; Pn
(ii) use signals computed in (i) to compute a “common path” yy = i=1 xi; 

(iii) at a cost of m additional gates, add the signal yy to each of the outputs of the 
circuit computed in step (i). 

We have experimentally verified that this heuristic, as well as several variations, yield 
circuits with more gates than does the BP heuristic. The naive approach fails because 
the base elements chosen in (i) do not guarantee the reachability of the “common path” 
in few steps. Therefore, the new heuristic first computes the “common path” by picking 
the base elements that may not necessarily minimize the sum of elements of the distance 
vector. Then, all targets are computed by allowing cancellations from it. Below we 
describe the method that did improve over BP . 
Let y = {y1, . . . , ym} be the set of rows of M (we call these targets). We will keep 

track of two distance vectors D (distance from S to M) and D∗ (distance from S to the 
Boolean complement of M). The heuristic is as follows: 

1. (Initialization) Set S to the set of variables x1, . . . , xn. For i = 1, . . . ,m, set 
D[i] = HammingWeight(yi) − 1. 
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∗ ∗ ∗2. (Create complement instance) Let y = {y1 , . . . , y } be the set of complementm
∗ ∗ targets (i.e. y = yi). Add target ym+1 = [1, . . . , 1] to the set of complement targetsi 

∗ ∗ ∗ ∗(note ym+1 encodes the function yy = Σn
i=1xi). Let M∗ = [y1 , . . . , ym, ym+1]

T . Let 
D∗ ∗be the distance vector for M∗, initialized to D∗[i] = HammingW eight(yi ) − 1 
for i = 1, . . . ,m + 1. 

∗3. (Compute the common path) Until target ym+1 is found — i.e., until D∗[m+1] = 0 
— pick a new base element xi, i = |S| + 1, by adding two existing base elements 
such that: 

∗(a) xi decreases the distance to ym+1 by one — i.e., to D∗[m + 1] − 1; 
(b) xi minimizes the sum of distances D∗ under the restriction (a). 
Output the SLP instruction that computes xi. Update distance vectors D and D∗ . 
Add xi to S. 

4. (Allow cancellations) Apply the BP heuristic to matrix M , but skipping the ini-
tialization steps for S and D. 

Note that S and D are well-defined at step 4, as they have been continuously updated 
every time an SLP instruction is output. We resolve ties at step 3 by maximizing the 
Euclidean norm of the vector D∗ . The “common path” of our heuristic is the target 
∗ ym+1 = [1, . . . , 1]. 

3.1. A toy example 

To understand the details of this new heuristic, we present a toy example. Let 
y1, . . . , ym (m = 6) be the set of rows of: ⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

y1 = x1 + x2 + x3 

y2 = x2 + x4 + x5 

y3 = x1 + x3 + x4 + x5 

y4 = x2 + x3 + x4 

y5 = x1 + x2 + x4 

y6 = x2 + x3 + x4 + x5 

Step 1: Initialization. 
The initial basis vector is S = {x1, x2, x3, x4, x5}, the target is y = {y1, y2, y3, y4, y5, y6}, 
the distance vector is D = [2, 2, 3, 2, 2, 3]. 
Step 2: Create a complement instance. 

∗We generate the “common path” yy = x1 + x2 + x3 + x4 + x5, the new target is y = 
= [1, 1, 0, 1, 1, 0, 4], and the new ⎤⎡{y1, y2, y3, y4, y5, y6, yy}, the new distance vector is D∗ 

matrix is 

∗ M = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 0 0 1 1 

1 0 1 0 0 

0 1 0 0 0 

1 0 0 0 1 

0 0 1 0 1 

1 0 0 0 0 

1 1 1 1 1 
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Step 3: Compute the common path. 
∗We compute ym+1, also called yy or “common path”. 

• x7 = x1 + x3. 
D = [1, 2, 2, 2, 2, 3] D∗ = [1, 0, 0, 1, 1, 0, 3] 

• x8 = x4 + x5. 
D = [1, 1, 1, 2, 2, 2] D∗ = [0, 0, 0, 1, 1, 0, 2] 

• x9 = x2 + x7. Found target y1 = x9. 
D = [0, 1, 1, 2, 2, 2] D∗ = [0, 0, 0, 1, 1, 0, 1] 

• x10 = x8 + x9. Found target yy = x10. 
D = [0, 1, 1, 2, 2, 1] D∗ = [0, 0, 0, 1, 1, 0, 0] 

Step 4: Allow cancellations. 
We apply the BP heuristic to matrix M . The distance vector is D = [0, 1, 1, 2, 2, 1], the 
basis vector is S = {x1, . . . , x10} and the new distance vector D∗ is no more updated. 

• x11 = x1 + x10. Found target y6 = x11. 
D = [0, 1, 1, 1, 2, 0] S = {x1, . . . , x11} 

• x12 = x2 + x8. Found target y2 = x12. 
D = [0, 0, 1, 1, 2, 0] S = {x1, . . . , x12} 

• x13 = x2 + x10. Found target y3 = x13. 
D = [0, 0, 0, 1, 2, 0] S = {x1, . . . , x13} 

• x14 = x5 + x11. Found target y4 = x14. 
D = [0, 0, 0, 0, 1, 0, ] S = {x1, . . . , x14} 

• x15 = x7 + x14. Found target y5 = x15. 
D = [0, 0, 0, 0, 0, 0] S = {x1, . . . , x15} 

4. Experimental results 

We conducted extensive testing to gauge the performance of our new heuristic, against 
that of BP . Experiments were performed on square and non-square matrices (more 
details can be found in [15]). Due to space limitations, this paper only discusses our 
results on square matrices. The useful conclusions drawn are also valid for rectangular 
matrices. Although we are able to solve systems larger than 30 × 30, we limited our 
experiments to size 30 due to the exponential time complexity of both heuristics. 

4.1. Gate Count 

We generated several n × n matrices [16], n = 15, 16, . . . , 30, for biases ρ. For each 
size n and each bias ρ, we randomly pick 100 matrices from our benchmark set, hence 
we tested 9600 matrices. 
Circuits for Mx were constructed for each matrix M using BP and our heuristic. We 

identified four matrix size thresholds, one for each of the bias values ρ = 0.6, 0.7, 0.8, 0.9, 
beyond which the new heuristic performs on average better than the old one. Our 
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experiments also suggest that there exists a lower bound ρL for the bias beyond which it 
is convenient to use the new heuristic on large enough matrices. Of course, at a cost of 
roughly doubling the running time, one can run both heuristics and pick the best circuit. 

Bias ρ = 0.4 and 0.5. Experimental results show that the average number of XOR 
gates computed by the new heuristic is, on average, worse than those computed by the old 
one. As expected, the new heuristic does not perform well on sparse matrices. However, 
over 3200 matrices handled, the new heuristic gets better results in 577 cases — i.e. 211 
when ρ = 0.4 and 366 when ρ = 0.5. This means that, as expected, the BP heuristic 
sometimes fails to find the best solution. 

Bias ρ = 0.6. When the bias grows, the new heuristic behaves better than the old 
one. Experimental results suggest that the difference between the average number of 
XOR gates computed by the two heuristics gradually increases with the increasing size 
of the matrix. In particular the new heuristic will perform better than BP when applied 
to large-enough matrices of density 0.6. The threshold over which the new heuristic 
performs as well as or better than BP lies between 20 × 20 and 22 × 22. 

Bias ρ = 0.7. The new heuristic performs, on average, better than the old one. For 
16 × 16 matrices the new heuristic gets the best, or the same, solution in 73% of cases. 
This value grows up to 98% for 30 × 30 matrices. 

Bias ρ = 0.8. In this case the new heuristic performs better compared to BP when 
ρ = 0.7. In fact, it beats BP on matrices as small as 15 × 15. For 16 × 16 matrices we 
get the best, or the same, solution in 84% of cases, while for matrices larger than size 
24 × 24, this percentage is greater or equal to 98%. 

Bias ρ = 0.9. In this case, the behavior of the new heuristic is similar to that of the 
ρ = 0.7 and 0.8 cases. However, the threshold is higher — i.e., around size 20 × 20 — 
and the observed probability of the new heuristic beating BP on matrices larger than 
size 20 × 20 is between 0.70 and 0.96. 

Figure 1: Avg num XORs new heuristic compared to BP : Gate Count – Circuit Depth 

Figure 1 visualizes the output data collected, showing the difference between the 
average number of XOR gates required by the new heuristic and BP . Negative values 
indicate that the new heuristic performs better than BP , while positive values indicate 
it performs worse. This data can help us identify when the new heuristic is expected to 
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provide the best results for specific values of ρ and n. Therefore it is possible to identify 
a lower bound ρL that indicates a threshold beyond which it is convenient to use the new 
heuristic. 
When ρ = 0.4 or 0.5, and n ≤ 30, BP will perform on average a bit better than the 

new one (see Figure 1). This is no longer true for ρ = 0.6 and n = 20. Therefore, the 
lower bound ρL lies between 0.5 and 0.6 as long as n ≤ 30. We have not determined the 
density value at which the new heuristic is asymptotically better than BP . It is some 
number smaller than 0.6, and we conjecture it is greater than 0.5. It is conceivable that 
0.5 + �, for any � > 0, is dense enough for sufficiently large matrices. 

4.2. Circuit Depth 

The reduction of gate complexity of a circuit is not the only important measure on 
combinational logic implementation. The depth of a circuit, — i.e., the length of the 
longest path in it — is another one. Indeed, when depth of the combinational logic 
increases, an important performance metric worsens: the delay. In general, it is not 
difficult decreasing circuit depth at the cost of increasing circuit width, or vice versa. As 
shown in Section 4.1, the new heuristic reduces gate count when applied to dense linear 
systems. In this section, we experimentally show that new heuristic not only reduces 
the gate count but also decreases (on average) the circuit depth. An extensive testing 
activity has been conducted to evaluate the depth of the circuits. The set of data used 
is the same described in Section 4.1 — i.e., n × n matrices, n = 15, 16, . . . , 30. For 
these experiments, we focus on the most interesting (dense) biases ρ = 0.6, . . . , 0.9. We 
tested 6400 dense matrices previously generated, 100 matrices from each value of ρ and 
n. Experimental results were collected and analyzed. 

Bias ρ = 0.6. Experimental results show that BP generates, on average, circuits 
with a shorter critical path (for n ≤ 30). 

Bias ρ = 0.7, 0.8, 0.9. This is no longer true for ρ ≥ 0.7 and n = 15. In these cases, 
the new heuristic provides (on average) circuits with a shorter critical path. Experimental 
results show that our heuristic outperforms BP for high density matrices of size bigger 
than 15 × 15. 

5. Concluding remarks 

There are at least two ways to gauge how interesting these results are. This paper 
shows that the new heuristic outperforms (on average) BP heuristic, when applied to 
random dense linear systems. Experimental results suggest that the solutions provided 
usually have a shorter critical path and a reduced number of XOR gates. In [17, 18], 
Fuhs et al. were able to prove that, in specific cases, the circuits generated by BP are 
optimal. Our work shows that, if we play with dense linear system, better results can be 
obtained encouraging circuits to benefit from the cancellation. 
At a practical level, we note that linear systems of the sizes considered in this work 

show up in practice — e.g. AES [5, 6], HMAC-SHA-1 [8], Present [9], etc. In particular, 
the new heuristic has been used in 2013 to show that the bottom linear part of the circuit 
presented in [6] was sub-optimal by at least one gate. Then, exploring all ties, Cagdas 
Calik pointed out that the BP heuristic yields a better circuit [10]. 
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