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Abstract  
We characterized a 1.8 m3, nearly-spherical, steel shell at pressures up to 7 MPa for use as a gas flow standard. For 
pressure, volume, temperature, and time measurements, the shell’s cavity will collect gas; for blow-down measure-
ments, the shell will be a gas source. We measured the cavity’s microwave resonance frequencies fmicro to determine 
its pressure- and temperature-dependent volume: Vmicro(P, T) = 1.84740 m3× [1 + α(T−295 K) + κP] with a frac-
tional uncertainty of 0.011 % at a 68 % confidence level. The coefficients α and κ were consistent with the dimen-
sions and properties of the steel shell. The microwave-determined volume Vmicro was consistent, within combined 
uncertainties, with Vgas the volume determined by a gas expansion method: Vmicro/Vgas − 1 = (2 ± 14)×10−5. When 
the shell was filled with gas, measurements of its acoustic resonance frequencies facoust and of the pressure quickly 
and accurately determined the mass of the gas in the shell, even when temperature gradients persisted. [K. A. Gillis 
et al. Metrologia, 52, 337 (2015)] After raising the nitrogen pressure in the shell from 0.1 MPa to 7.0 MPa in 45 
minutes, the top of the shell was ≈20 °C warmer than the bottom of the shell. Despite this large thermal gradient, 
the mass Macoust of gas determined from acoustic resonance frequencies settled to within 0.01 % of its final value 
after 5 h. Following a smaller pressure change of 0.3 MPa, the top-to-bottom temperature difference was 1.5 °C and 
Macoust settled to its final value in just 0.5 h. 

 
1. Introduction 
During 2016, the value of natural gas metered in pipelines in 
the United States was approximately $90 billion. To ensure 
equity at each transfer of custody, accurate metering is re-
quired, both in the US and international markets. NIST cali-
brates natural gas flow meters and has an ongoing research 
program to improve the accuracy these calibrations [1]. At 
present, NIST traces the calibration of pipeline-scale natural 
gas flowmeters to NIST’s primary gas flow standard that 
uses the pressure, volume, temperature, and time (PVTt) 
technique [2]. This primary standard relies on a well-charac-
terized, carefully-thermostated [u(T) = 6 mK]1, 0.67 m3 col-
lection vessel that operates at pressures up to 0.15 MPa. The 
primary standard is used to calibrate, one at a time, 21 criti-
cal flow venturis (CFVs), each 5.2 mm in diameter. The 21 
CFVs are used in parallel to calibrate several 25 mm-diame-
ter CFVs, one at a time [3]. This use of 21 CFVs in parallel 
is the first of 6 stages of scale-up that uses both CFVs and 

                                                            
1 Unless otherwise stated, all uncertainties are one standard uncertainty corresponding to 68 % confidence level. 

Nomenclature 
a Inner radius 
α Thermal expansion coefficient 
βa Acoustic virial coefficients 
B Density virial coefficients 
c0 Speed of light in vacuum 
DT Thermal diffusivity of gas in BBB 

fmicro Microwave resonance frequency 

lnf σ  Average frequency of a microwave multiplet. 

facoust Acoustic resonance frequency 
γ0 ≡ Cp/CV, zero-density ratio of the constant-vol-

ume specific heat to the constant-pressure spe-
cific heat. 

j0 Zeroth order spherical Bessel function 
κ Pressure expansion coefficient 

Macoust Mass determined from facoust 
MBBB Mass of gas in the BBB 
M∞ Equilibrium mass in BBB at time infinity 

Mgrav Mass of gas determined by a weighing tech-
nique  

ng Refractive index of a gas 
P Pressure 
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turbine meters. The scale-up begins with flows of ≈10 g/s 
and ends with flows encountered in large natural gas pipe-
lines: ≈500 kg/s at pressures near 7 MPa. Each stage of 
scale-up adds cost and uncertainty to the calibration of large 
meters. The purpose of this work is to reduce the number of 
stages in the traceability chain by starting with a novel, pri-
mary gas-flow standard that operates at higher pressures and 
flow rates than NIST’s present primary standard. 
 
In this paper, we characterize a large volume (1.8 m3) en-
closed by a nearly-spherical, steel shell. This volume may be 
used at pressures up to 7 MPa as either a gas source or as a 
gas collector during calibrations of CFVs and other meters. 
Informally, we call the steel shell the Big Blue Ball (BBB). 
We used microwave resonance frequencies fmicro to deter-
mine the Vmicro(P, T) of the BBB, where V, T, P are the vol-
ume, temperature and pressure, respectively. A summary of 
the microwave results is: 
 

3 4
micro

5

4

( , ) 1.84740 m (1 1.1 10 )[1 ( 295K) ),

/ K 5.24 10 (1 0.081),
/ MPa 1.790 10 (1 0.013).

V P T T Pα κ

α

κ

−

−

−

= ± × + − +

= × ±

= × ±

 (1) 

 

Figure 1 displays Vmicro(P, T) and the deviations from Eq. (1). 
We also used a gas expansion technique to independently 
measure the volume of the BBB, Vgas(0.1 MPa, 295 K). As 
shown in Fig. 1(a), the two techniques agreed within com-
bined uncertainties: Vmicro/Vgas − 1 = (2 ± 14)×10−5.  

 
In addition to measuring Vmicro(P, T) we determined MBBB, the mass of the gas in the BBB, by measuring acoustic 
resonance frequencies facoust and the pressure. First, we discuss determining MBBB when the BBB and the gas within 
it are in thermal equilibrium; then we discuss the effects of temperature gradients.   
 
We determined the speed of sound w(P, T) in the gas using the relation  
 

 ( )1/32
acoust micro acoust6 /w f V= π z  , (2) 

 

where zacoust is an exactly-known eigenvalue of a spherical cavity [4]. With w known, we determined the gas density 
ρ(P, w) using tables that we generated using the computer package REFPROP [5]. Finally, we determined the mass 
of the gas in the BBB from the product  
 

 acoust micro ( , )M V P w= ρ . (3) 
 

Nomenclature (continued) 
ρ Gas density 
( )riϕ  Acoustic velocity potential of a standing wave 

as a function of radius in a sphere. 
T Temperature 

〈T〉sh Average shell thermometer readings 
〈T〉V  Volume average temperature 

〈T〉ϕ Acoustic mode-dependent average temperature 
τ Time required for a changing quantity to reach 

63.2 % of its new value. 
u Standard uncertainty 
ur Relative standard uncertainty such that ur(x) = 

u(x)/x 
Vmicro Volume of BBB determined by microwave reso-

nance frequencies 
Vacoust Volume of BBB determined by acoustic reso-

nance frequencies 
Vgas Volume of BBB determined by gas expansion 

Vaddenda  Volume of ports and fittings on BBB that are 
not detected by the long-wavelength micro-
waves and sound waves. 

Vinventory Volume of the connecting plumbing between 
the BBB and the reference volume for the gas 
expansion measurement. 

Vref Volume of the reference used in the gas expan-
sion measurement.  

w Speed of sound 
w   Average speed of sound 

xw Mole fraction of water in a gas 

ln
σξ   Exactly-known microwave eigenvalue of a 

spherical cavity, σ = TM or TE 
Z  = P/(ρRT), compressibility factor. 

zacoust Exactly-known acoustic eigenvalue of a spheri-
cal cavity 
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To provide insight into the sensitivity of Macoust to our meas-
urements and to the REFPROP-generated tables, we follow 
Gillis et al. [6] in using the exact (but truncated) virial ex-
pansions of P(ρ, T) and w(ρ, T) to calculate ρ(P, w). The re-
sult is: 
 

 0 micro
acoust 2 1 ( )a

PV PM B
w RT

 = + − +  


γ
β  . (4) 

 

In Eq. (4), γ0 ≡ CP/CV is the zero-density ratio of the con-
stant-pressure specific heat to the constant-volume specific 
heat, and βa and B are the acoustic and the density virial co-
efficients, respectively. In Eq. (4), the real-gas term, 
(βa − B)P/(RT) is 0.073 for nitrogen at 295 K and 7 MPa, and 
the sum of all the terms in the brackets is 1.097. The uncer-
tainty of Macoust is the combined uncertainties of the meas-
ured quantity γ0PVmicro/w2 and the quantity in the brackets 
obtained from the equation of state. For nitrogen, argon, me-
thane, and several other gases, the relative uncertainty of 
ur(ρ(P, w)) ≤ 3×10−4 for P ≤ 7 MPa and T ≈ 20 °C [5].  
 
Pumping gas into the BBB or bleeding gas out of the BBB 
is accompanied by flow work that generates temperature gra-
dients that can be much larger than the gradients generated 
by fluctuations in the ambient temperature. In one test, the 
shell was insulated by covering it first with a layer of 2 cm-
thick air-filled bubble wrap and then with a 5 mm-thick dou-
ble reflective, air-filled wrap. The nitrogen pressure in the 
shell was raised from 0.1 MPa to 7.0 MPa in 45 minutes. Then, the top of the shell was ≈20 °C warmer than the 
bottom of the shell, as determined by external thermometers, as shown in Fig. 2(a). Subsequently, MBBB, as com-
puted from the average shell thermometer readings 〈T〉sh using MBBB = PVBBB/(Z〈T〉sh), decayed towards its final 
value M∞ with a time constant τ ≈ 5 h, shown by the orange circles in Fig. 2(b). Here, Z = P/(ρRT) is the compress-
ibility factor from REFPROP [5]. For the same test, Macoust from Eq. (4), approached its final value with a time 
constant τ ≈ 1.5 h (the blue triangles in Fig. 2(b)). In a second, more-realistic test, the shell was not insulated and 
the pressure in the shell was raised from 6.6 MPa to 6.9 MPa. In this case, PVBBB/(Z〈T〉sh) approached equilibrium 
with τ ≈ 1.8 h; for Macoust, τ ≈ 0.8 h. The more-rapid equilibration of Macoust is a distinct advantage of the acoustic 
method of determining MBBB.  
  
In deriving Eq. (3), we assumed that the gas was isothermal or, equivalently, ρ(P, w) was constant throughout the 
cavity. When temperature gradients are present, ρ(P, w) is a function of position within the cavity. Then, for Eqs. 
(3) and (4) to remain valid, we must replace ρ with 〈ρ〉 and 1/w2 with 〈1/ w 2〉, where the angled brackets indicate 
averages over the cavity’s volume. In Section 4.2 below, we argue that 1/ w 2, as determined by Eq. (2) is a good 

(a) 

(b) 

(c) 

Figure 1. (a) Effect of pressure on the volume of the BBB 
at 295 K measured using microwaves and gas expansion. 
(b)  fractional volume deviations from Eq. (1) as a function 
of pressure at 295 K, and (c) as a function of temperature 
at 0 MPa. The errors bars are one standard deviation of 
the measurements made with 3 microwave modes. The 
fractional standard deviation of the data from the fit was 
σ = 17×10−6. 
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approximation of 〈1/ w 2〉. Indeed, for plausible temperature distributions, the error of this approximation is on the 
order of (∆T/T)2, where ∆T is a typical temperature difference in the cavity. (For ∆T = 3 K and T = 300 K, the 
fractional error is of order 10−4). 
 
By using the BBB as a gas collection vessel, [2] we have scaled up our experience in characterizing collection 
vessels by a factor of almost 10 in pressure, from 0.6 MPa to 7 MPa, and by a factor of 6 in volume, from 300 liters 
to 1800 liters [6]. The present work is an interim step towards gas-flow measurements traced to standards of fre-
quency and pressure, and to the literature of ρ(P, w) data. This contrasts with NIST’s existing gas-flow measure-
ments traced standards of temperature and pressure and to the literature of Z(P, T) data. If this work is successful, 
it will shorten the scale-up chain and improve equity in large-scale natural gas transactions.  
 
In a future publication, we will compare Macoust with the Mgrav, the mass of gas in the BBB determined by a weighing 
(gravimetric) technique. Our preliminary results indicate that |Macoust/Mgrav − 1| < 5 × 10−4. 
 
The remainder of this paper is organized as follows: Section 2 describes the BBB; Section 3 describes how the 
volume was determined; Section 4 explains the advantages of using acoustic resonance frequencies versus thermis-
tors for temperature measurements and describes how the average temperature is determined using radial acoustic 
modes; and Section 5 is the discussion. 
 

(c) (b) 

(a) 

Figure 2. (a) Temperature differences on the outside of the BBB following pressurizing from 100 kPa to 7 MPa. (b) Approach to 
equilibrium of   and , where 〈T〉sh is the average of the 4 temperature sensors shown in (a).  (c) Similar to 

(b) following a smaller pressure change and without insulation surrounding the BBB.  Note: negative values of the ordinate are 
plotted as open symbols. 
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2. BBB description 
The BBB was a 1.5 m diameter, 
nearly-spherical shell made of 
carbon steel of unknown com-
position. It had a nominal mass 
of 1222 kg including a welded 
metal pallet. See Fig. 3(a). In 
Fig. 3(b), the BBB is wrapped 
with an insulating blanket that 
was used during gas expansion 
measurements (Section 3). Ta-
ble 1 lists the properties of the 
BBB. We believe that the BBB 
was manufactured in the early 
1970’s. Before NIST acquired 
the BBB, it had been stored out-
doors for years. During storage, 

the shell’s ports were open; at times the shell contained rainwater. We prepared the BBB by sandblasting and paint-
ing the exterior and by hydrostatically testing it to 9.7 MPa. To clean the BBB’s interior, we poured methanol 
through the ports and removed it through the drain pipe. This rinsing was repeated until the drained liquid ran clear. 
Then, we dried the BBB by evacuating it (< 100 Pa) for 4 days. We determined the BBB’s pressure-dependent 
internal volume while it was filled with argon. As the argon was removed from the BBB, we measured its dew 
point. The dew point corresponded to a water mole fraction xw < 4×10−5, which had negligible effects2 on our meas-
urements. When the BBB was initially sealed for gas expansion experiments, the fractional leak rate, as determined 
from acoustic measurements [7], was approximately (1/MBBB)(dMBBB/dt) = −4.9×10−5/h; we corrected our data for 
this leak. 
 
The BBB had 5 small volumes (addenda) that were always connected to the spherical cavity. The addenda included 
3 flanged ports and short tubes connecting each port to its flange. The addenda also included the plumbing compo-
nents that permanently connected a pressure sensor to the un-flanged port. The drain tube led to a valve that was 
always closed. Table 2 lists the volume associated with each port, the drain, and the pressure sensor. The total 
volume of these addenda Vaddenda = 965 cm3 = 5.2×10−4 VBBB. As discussed in Section 3.2, Vaddenda is not detected by 

the long-wavelength microwaves and sound waves used 
in these measurements. Therefore, our comparisons of 
the gas-expansion and microwave volume determina-
tions (shown in Fig. 1) compare (Vgas − Vaddenda) to Vmicro. 
 
The diameter of the largest port was only 5 cm; there-
fore, an unaided visual inspection of the inside surfaces 

                                                            
2Adding water vapor at xw = 4×10−5 to argon will increase the square of the speed of sound by the fraction 8.9×10−7 and, at 
5 MPa, increases the dielectric constant by approximately 2.1×10−5. 

Figure 3. The BBB uninsulated (a) and insulated (b) for gas expansion experiments. 

(a) (b) 

Table 1. Properties of the BBB 
Material carbon steel 
Mass 1222 kg 
Inner Diameter  1.5 m 
Wall Thickness 19 mm 
Volume 1.8 m³ 
Hydrostatic Test 9.7 MPa 
Working Pressure 7 MPa 
Operating Temperatures  −40 °C to 49 °C 
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was uninformative. We used an articulating-
head borescope to inspect the internal surfaces. 
To estimate the dimensions of objects in bo-
rescope images, we attached a probe (8 mm 
long and 5 mm wide) to the head of the bo-
rescope. Rust and other debris remained inside 
the BBB after it was rinsed and dried. The im-
ages showed the rough walls and the circum-
ferential weld, which was approximately 2 cm wide and raised approximately 6 mm from the internal surface. The 
lip of the weld contained a layer of rust dust of varying thickness that could not be washed away. Despite these 
defects, we used microwaves to measure the volume of the BBB and used acoustic waves to measure the average 
gas temperature with sufficient accuracy for the present purposes.  We speculate that improved accuracy could be 
obtained using a cleaner pressure vessel. 
 
3. Volume determination 
3.1 Gas expansion 
We measured the internal volume of the BBB by applying the same mass-conserving, volume expansion principle 
and the same reference volume as reported in Ref. [8]. The result was:  
 

 ( )5 3
gas 1.84736 1 9.2 10  mV −= ± ×  . (5) 

 

We expanded argon gas (99.999 % purity) from the BBB into a gravimetrically-calibrated, precisely-thermostated 
[short term: ±1 mK; u(T) = 6 mK] reference volume located in a laboratory where the temperature varied from 
295.3 K to 296.5 K. The final pressures in the BBB after expansions ranged from 35.67 kPa to 93.13 kPa.  
 
Figure 4 is a schematic of the experimental set-up. A 1.27 cm-diameter tube connected the BBB’s drain to the 
reference volume. The internal volume of this tube (1538 cm3) was designated “Vinventory”. In Fig. 4, the components 
of Vaddenda and Vinventory are enclosed by a dashed curve; these components were all outside of the thermostated water 
bath. Initially, the reference and inventory volumes (Vref + Vinventory) were evacuated to a pressure less than 1 kPa 
while (VBBB + Vaddenda) was filled with argon to 126 kPa. After thermal equilibration, the initial temperatures and 
pressures were recorded. Then, the valve on the BBB’s drain was opened to expand the argon from (VBBB + Vaddenda) 
into (Vref + Vinventory). After equilibration (typically ≈15 minutes), final temperature and pressure measurements were 
made. The expansion was repeated 4 times, each time by closing the valve on the BBB’s drain and evacuating 
(Vref + Vinventory) and then opening the valve to expand the argon from (VBBB + Vaddenda) into the evacuated volumes. 
After 4 expansions, the final pressure was 35 kPa. This sequence of 4 expansions was performed 3 times. A fourth 
experiment was performed where Vref was pressurized to 128 kPa and Vinventory and VBBB evacuated to a pressure 
< 1 kPa and the expansion was reversed. The mutual agreement of all four sets of expansions is shown in Fig. 6. 
 
In separate measurements, we determined Vinventory using the same mass-conserving, gas-expansion principle. The 
reference volume Vref was filled with argon to 130 kPa while Vinventory was evacuated to a pressure less than 1 kPa. 
The expansion of the argon from Vref into Vinventory yielded the result Vinventory = (1358 ± 25) cm³, where the uncer-
tainty is one standard uncertainty. 
 

Table 2. Volumes of addenda measured by the gas expansion 
method but not by the microwave method. 

Component Volume [cm3] Volume/VBBB 
2.5 cm diameter drain tube 409 2.2×10−4 

PBBB sensor plumbing 63 3.4×10−5 
5 cm diameter port 396 2.1×10−4 

2.5 cm diameter port 77 4.2×10−5 
1.3 cm diameter port 20 1.1×10−5 

TOTAL 965 5.2×10−4 
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The gas expansion method requires an accurate estimate of the volume-averaged density of the argon in the BBB 
preceding and following each expansion. This estimate requires a model for the temperature distribution in the 
argon. The largest uncertainty component of Vgas results from the uncertainty of the temperature distribution. Tem-
perature fluctuations in the laboratory, combined with limited air circulation, generated time-dependent temperature 
gradients in the BBB. (The BBB was too large to fit in the thermostated laboratory with the reference volume.)   
 
Figure 7(b) displays a typical, approximately-linear, vertical, temperature profile in the argon inside the BBB; the 
top was 0.4 K warmer than the bottom. We determined the volume-averaged temperature3 using 10 thermocouples, 
equally-spaced along the vertical diameter of the BBB and by 4 surface thermistors placed equal-distant along the 
vertical and horizontal axis. (See Fig. 4.) Before insulating the BBB, the temperature uncertainty contributed more 
than 88 % of the density-change uncertainty. Insulating the BBB decreased the temperature difference between the 
top and bottom by nearly a factor of 2 and reduced the relative uncertainty of Vgas from 0.030 % to 0.019 % (k = 1).  
 
3.2 Microwave measurements 
We made an independent determination of the BBB volume by measuring the frequencies of microwave resonances. 
This technique is described in more detail in Ref. [8]. To measure the microwave resonance frequencies, we in-
stalled transmitting and receiving antennas into two of the ports in the BBB (see Fig. 5). One microwave (MW) 
antenna was installed into the 1.3 cm-diameter port, as shown Fig. 5(b). The other MW antenna was installed along 
with a sound source (speaker) into the 5 cm-diameter port, as shown in Fig. 5(c). Electrical connection to each 
antenna was made using a Bayonet Neill – Concelman (BNC) hermetic feedthrough with a 3/8” NPT fitting 

                                                            
3 Technically 〈ρ〉 requires the determination of 〈1/T〉 not 1/〈T〉.  However, the fractional difference between the two averages 
is (σ / 〈T〉)2 ≈ 10−4 to lowest order, where σ is the standard deviation of the temperatures. 

Figure 4. Schematic of BBB gas expansion set-up showing the extra plumbing that the gas expansion method measures but is 
excluded from the microwave measurements. The subscripts “iv”, “ref”, and “B” denotes inventory volume, the reference volume 
and the BBB volume, respectively. 
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mounted into the port flange. The MW antennas were 
made from semi-rigid coaxial cable with solid copper 
shield, polytetrafluoroethylene insulation, and silver-
plated, solid copper center conductor. As shown in Figs. 
5(b) and 5(c), the shield and insulation of the coaxial 
cables extended from the electrical feedthroughs along 
the lengths of ports to the inside surface of the BBB. 
About 2 cm from the opening into the BBB, the coax 
passed through a small hole in a coarse mesh copper 
screen and was secured to it with soft solder. The screen 
performed 3 functions: 1) it rigidly held the coax cen-
tered in the duct, 2) it grounded the shield to the metal 
shell, and 3) it prevented the penetration of microwaves 
into the duct, yet it allowed gas and sound waves to 
freely pass. The bare center conductor extended 11 cm 
further into the BBB forming a straight antenna that 
coupled to the electric field. The antenna protruded into 
the BBB by 14 % of the BBB’s radius, the same length-
to-radius ratio used in Ref [8]. Following Ref. [8], we 
estimate the protruding center conductors shifted the 
microwave resonance frequencies by the frac-
tion 2×10−5 or less. The antenna in the 1.3 cm-diameter 
port had a 1 cm-diameter loop to improve coupling to 
the magnetic field.  
 
The theory for the electromagnetic modes of a spherical 
cavity is described in detail in Refs. [9] and [10]. Fol-
lowing conventional derivations in the literature, we di-
vide the modes into two types: transverse electric (TE) 
and transverse magnetic (TM) modes, according to 
which field (electric or magnetic, respectively) has its 
radial component identically equal to zero. Modes are 
designated TEln and TMln, where l and n are integers greater than zero that identify the eigenfunction and the 
resonance frequency lnf σ  (with σ = TE or TM). In a perfectly spherical chamber, the resonance frequencies form 
(2l+1)-fold degenerate multiplets; however, the degeneracy may be partially or fully lifted by perturbations in the 
shape, such as imperfect sphericity or the existence of ports. The resonance frequencies of a gas-filled spherical 
cavity with radius a and a rigid, perfectly conducting wall are given by 
 

 0

2
ln

ln
g

cf
n a

σ
σ ξ

π
=    , (6) 

 

Figure 5. (a) Port locations and uses. (b) Microwave (MW) an-
tenna mounted in the 1.3 cm-diameter port. (c) MW antenna 
and a 38 mm-diameter loudspeaker (dark blue rectangle) 
mounted in the 5-cm diameter port. Flexible foam material 
dampened the sound emitted from the rear of the speaker. 

(c) 

(b) 

(a) 

2.5 cm port 
microphone 1.3 cm port 

microwave ant. 
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where ln
σξ  is an exactly known eigenvalue, c0 is the 

speed of light in vacuum, and ng is the refractive index 
of the gas.  If the resonance frequency is measured and 
ng(T, P) is known, then Eq. (6) can be inverted to deter-
mine a(T, P). When the degeneracy is lifted by shape 
perturbations, Eq. (6) still holds to first order if lnf σ  is 
replaced by the average frequency of the multiplet 

lnf σ [9]. When the perturbation is small, the multiplet 
will be partially resolved, and a precise determination 
of lnf σ  will be difficult if the multiplicity is large. 
Therefore, we focus on the modes with the lowest mul-
tiplicity, the l = 1 triplets. 
  
We used a commercially-manufactured, microwave 
network analyzer to measure the electromagnetic power 
transmitted from one antenna through the BBB to the 

other antenna as a function of frequency.  The measurements were conducted while the BBB was filled with high 
purity nitrogen or argon. We measured the complex response (the parameter S12) in the vicinity of 3 modes TM13, 
TE12, and TE13. Because each mode was a triplet that was not fully resolved, we fitted the data with a function 
that was the complex sum of 3 resonances plus a complex background, as described in Ref. [10]. The 3 peak fre-
quencies for the resonances in the triplet, resulting from the fit, were averaged to determine the inner radius a of the 
BBB using the relation: 
 

 1 0

12
n

g n

ca
n f

σ

σ

ξ
π

= . (7) 

 

The refractive index ng(T, P) of the gas was obtained from Ref. [5]. The volume at 100 kPa and 295 K determined 
from the 3 microwave modes is 
 

 ( )4 3
micro 1.84743 1 1.1 10  mV −= ± ×  . (8) 

 

Equation (8) includes type A (random) and type B (systematic) uncertainties.  The type B uncertainty is the standard 
deviation of the volume determined from 5 microwave modes (TM12, TM13, TE11, TE12, and TE13) and is an 
estimate of the effects of perturbations, such as non-sphericity and surface roughness, that are not included in our 
model of the microwave modes in the BBB. Figure 6 shows the agreement between Vmicro and Vgas at 100 kPa and 
295 K, Vmicro/Vgas − 1 = (2 ± 14) ×10−5. 
 
We measured VBBB(P, T), the volume of the BBB as a function of temperature and pressure. The results are plotted 
in Fig. 1 and summarized by the fit in Eq. (1). The microwave measurements in nitrogen and in argon spanned the 
pressure range 100 kPa to 7 MPa and spanned laboratory temperatures between 293 K and 298 K. Equation (1) is 
valid over the rated working pressure range of the BBB. We expect, but cannot guarantee, the validity of Eq. (1) 
outside the measurement temperature range. 
 
 

Figure 6. Comparison of the volume of the BBB at 100 kPa and 
295 K as determined by gas expansion using argon gas and mi-
crowave measurements using nitrogen gas. 
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4. Estimating the average temperature  
4.1 Temperature sensor array 
For a traditional PVTt primary gas flow standard, any 
errors in the gas temperature are directly transferred 
into errors in the calculated mass. The average temper-
ature of the collected gas is difficult to measure, espe-
cially in un-thermostated environments. When pressur-
ized gas flows into a large tank, the flow generates dif-
ferent temperatures in different parts of the tank. When 
the inflow stops, buoyancy-driven convection moves 
the warmest gas to the top of the tank and the coolest 
gas to the bottom. This stratification makes it difficult 
to measure the average temperature by conventional 
means. A prompt reading of a few thermometers is in-
herently inaccurate, and temperature gradients persist 
within the stagnant gas in big tanks. 
 
As discussed in Section 3, during the gas expansion ex-
periments, the BBB was instrumented with an internal 
thermocouple array consisting of ten thermocouples 

spaced at approximately 15.25 cm vertical intervals ex-
tending from the top of the BBB to its bottom.  In addi-
tion, 4 surface thermistors were located at the top, the bot-
tom, and on opposite sides of the equator of the BBB. We 
averaged the temperatures determined by the internal 
thermocouple array, weighting each thermocouple by the 
fractional volume of the BBB at its height. Figure 7(a) 
illustrates the volume weighting for a half sphere. Figure 
7(b) shows the stratified temperature distribution for a 
quiescent state in the BBB while it was insulated. Usu-
ally, the temperature distribution in the BBB was a linear 
function of the height whether or not the BBB was insu-
lated. When uninsulated, the quiescent temperature dis-
tribution spanned a larger temperature range (typically 
1 K), reflecting the temperature distribution in the room.   
 
The thermocouple array is advantageous because it cap-
tures the “fast” temperature transients in the BBB, 
whereas the surface thermistors do not. Figure 8 shows 

Figure 7. (a) Graphical representation of how thermocouple 
measurements are volume weighted. (b) Linear temperature 
distribution with respect to height in the BBB. 

(a) 

(b) 

Figure 8. (a) Temperature and pressure profile inside the BBB. 
The solid lines are measurements from the internal thermocou-
ple (TC) array and the dashed lines are the temperature meas-
ured by the surface thermistors (TS). (b)  Expanded view of (a). 

(a) 

(b) 
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the temperature profile in the BBB measured by the thermocouple array and the surface thermistors after pressur-
izing from < 1 kPa to approximately 30 kPa in less than 3 minutes.  
 
The equilibration in Fig. 8 is roughly consistent with a simple model that ignores convective heat transfer. We 
consider the thermal equilibration of a spherical substance with radius a by radial heat conduction only [11]. The 
slowest time constant characterizing equilibration is τ = a2/(DT π2), where DT is the thermal diffusivity of the sphere. 
For argon at 295 K, DT ≈ (0.7 cm2/s)×(P/30 kPa) [5]. This model predicts τ ≈ 14 min for 30 kPa, which is approxi-
mately what we observed.  
 
At 30 kPa, the surface thermistors did not capture the “fast” temperature transient generated by pressurizing the 
BBB; however, they did agree (within 80 mK) with the volume weighted average of the internal thermocouples 
after ≈20 minutes had passed. In these experiments, the BBB was insulated. However, the insulation was removed 
in subsequent experiments allowing the internal gas to more quickly equilibrate with the room. Remaining questions 
are: 1) how long does it take for the temperature to equilibrate following more extreme pressure changes? and 2) 
how accurate are the surface thermistors when the pressure and mass of gas in the BBB are two orders of magnitude 
larger than the conditions in Fig. 8 and the BBB is not insulated? For a PVTt primary standard to be practical, the 
thermal equilibration time and the accuracy of the temperature measurement must be acceptable. To answer these 
questions, we relied on the surface thermistors and measured acoustic resonance frequencies. We could not use the 
internal thermocouple array because the wires leading to the thermocouples interfered with the microwave meas-
urements.  
 
As discussed in Section 1 and shown in Fig. 2, the mass of gas deduced from the acoustic resonance frequencies 
and the internal gas pressure Macoust ∝ ( 2

acoustP / f ) equilibrated significantly faster than the mass determined by the 

pressure and the average surface thermistor reading P/(Z〈T〉sh).  Furthermore, the masses determined by these meth-
ods long after a pressure change (at time infinity, M∞) are inconsistent by as much as 0.25 % because the temperature 
in the laboratory is not controlled and changes in a diurnal cycle.  (There is always at least a small discrepancy 
between the shell temperature and the internal gas temperature.)  In the example in Fig. 2, Macoust was determined 
within a 0.01 % uncertainty 8-times faster than the mass determined from the surface thermistors using P/(Z〈T〉sh).  
 
At this time, we have not completed reference measurements that validate Macoust. In a future publication, we will 
report results utilizing a weighing rig to transfer 20 kg aliquots of argon into the BBB.  Preliminary results indicate 
that |Macoust/Mgrav − 1| < 5×10−4.  
 
4.2 Acoustic resonance frequency 
Figure 5(a) shows the positions of the acoustic transducers in the BBB.  The sound source, a voice-coil speaker with 
a hard-plastic cone, was mounted in the 5 cm-diameter port (Fig. 5(c)). A flexible foam material was placed behind 
the speaker to dampen the sound emitted from the rear of the speaker. The detector transducer (microphone) was 
mounted in the 2.5 cm-diameter port (Fig. 9). The detector was a 32 mm-diameter, 0.38 mm-thick, bimorph piezo-
ceramic bending disk mounted to the flange with flexible caulk. 
 
Previously, we have shown how the mass M of gas in a pressure vessel with volume V may be deduced from 
measurements of the gas pressure P and the frequencies facoust of acoustic resonances within the vessel. The mass 
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determined with this technique was shown to be insensitive to time-independent temperature gradients in the gas. 
The acoustic measurements eliminated the need for multiple thermometers to determine the average gas temperature 
with sufficient accuracy for flow metrology.  
 
In a uniform gas, the speed of sound w is proportional to T  plus small corrections, where T is the thermodynamic 
temperature of the gas. An acoustic mode of the gas in a pressure vessel is a standing wave with velocity potential 

( )
iϕ r  and wavenumber ki, where i denotes a set of indices that identify the mode; ( )

iϕ r  and ki are gas independent. 

A driven sound wave in the confined gas has maximum amplitude at the resonance frequency acoustf w∝ . The basis 
of acoustic gas thermometry is the inversion of the relationship to determine the gas’s thermodynamic temperature 
from measured resonance frequencies.  
 
When the temperature is not uniform, the speed of sound in the gas is spatially dependent. To first order, the reso-
nance frequencies are determined by a mode-dependent, weighted average of [w(r)]2 over the volume, where w (r) 
is the local speed of sound. Thus, 2

acoustf  ∝ 〈 w 2〉ϕ, where [7] 
 

 
( )2 2

2
2

iV

iV

w dV
w

dV
ϕ

ϕ

ϕ
= ∫

∫
r

  (9) 

 

In spherical coordinates, the volume differential 2dV r dr d= Ω , where dΩ is a differential solid angle. The acoustic 

velocity potential iϕ  is proportional to the local acoustic pressure in the standing wave. Regions where 0iϕ = , i.e. 

pressure nodes, do not contribute to the weighted average. (See Fig. 10.) In effect, 〈w 2〉ϕ is proportional to the mode-
dependent average temperature 〈T〉ϕ. However, the average density of the gas in the vessel is dependent on the 
volume average of 1/T. Because typical temperature variations δT are small, we can approximate 〈1/T〉 by 1/〈T〉 with 
fractional errors of order (σ / 〈T〉)2 ≈ 10−4, where σ is the standard deviation of the temperature. The remainder of 

Figure 9. Schematic of the acoustic detector.  (a)  32 mm diameter, 0.38 mm thick bimorph piezoceramic bending disk (red) 
mounted with flexible caulk in flange on the 2.5 cm diameter port. Small vents permit static pressure equilibration and connection 
to electrode. (b) Cross section view of assembled flanges and port duct. Two BNC, 3/8-NPT (10 MPa) feedthroughs are used for 
differential detection of the signal from the bimorph electrodes. 

(a) (b) 
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this section explores the difference between 〈T〉ϕ and 〈T〉V ≡ (1/V) ∫V T(r) dV for simple temperature profiles in spher-

ical and cylindrical pressure vessels and gives specific recommendations. 
 
Gillis, et al. [6] showed that the measured resonance frequencies in a cylindrical vessel did not change to first order 
when a linear temperature gradient was imposed, while VT  was kept fixed, in agreement with first order pertur-
bation theory, i.e. 〈T〉ϕ ≡ 〈T〉V for a linear temperature gradient in a cylindrical vessel. The same is true in a spherical 

vessel. Figure 10 shows plots of [r2 |ϕ (r)|2] for three radial modes of a spherical cavity; the plots are normalized by 
the integral ∫V |ϕ (r) |2 dV ≡ VΛα and plotted on the same scale. (We use radial modes because they are non-degen-

erate and have the highest quality factors.)  Because [r2 |ϕ (r)|2] is an even function about any plane through the 
sphere’s center, a gradient in w2 (or T) that is an odd function of the distance from that plane (e.g. linear) will 
integrate to zero in Eq. (9). Gradients that are not odd functions of the distance will, generally, have non-vanishing 
integrals.  
 
During pressurization of the BBB, gas expanding past a throttle valve in the exterior plumbing cools by 20 °C or 
more before entering the BBB as a jet. Inside, the cold gas sinks to the lower region of the vessel, while the com-
pressing gas heats up and rises to the top. The resulting density gradients and mass currents are too complex to 
model accurately. Instead, to compare the volume and mode averages, we considered the very simple step-function 
temperature distribution given by  
 

 ( ) ( )1 1hT z T H z z T= +  − −  ∆  ,  ( )
0,
1,

h
h

z z
H z z

z z
<

− =  > 

  (10) 

 

Figure 10.  Top: Plots of the weighting function r2|ϕ |2 for 3 radial acoustic modes of a gas in a spherical cavity.  Bottom: Graphs 

of r2|ϕ (r)|2 as a function of r/a.  The plots are normalized by  and have the same vertical scale. 
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shown in Fig. 11. Here, zh ≡ −a + h is the z-coordinate for the location of the interface and ∆T = T1 − T2. The volume-
average temperature defined above becomes 
 

 1 2
1 2V
V VT T T
V V

= + , (11)  
 

which is a function of h.  In a spherical geometry Eq. (11) becomes 
 

 
2

1 2

3 11
4 3

V
h hT T T
a a

 = − − ∆ 
 

. (12) 
 

The mode-average temperature obtained from Eq. (9) for the radial mode (0,n) becomes 
 

 0

2

2
0

1
0

n

n

nV

T T T dV
Vϕ
ϕ

= − ∆
Λ∫   (13) 

 

where the velocity potential is a function of r only 
 

 ( ) ( )0 0 0n nr j r aϕ = z , with ( ) 2
0 0 0

3
2n njΛ =   z , (14) 

 

j0 is the zeroth order spherical Bessel function, and the eigenvalue z0n is the nth root of tan=z z . The averages 〈 T 〉V 

and  〈 T 〉ϕ from Eqs. (12) and (13) are plotted in Fig. 12(a) as a function of h/a for n = 2, 3, and 4. The fractional 
difference between these two averages is approximately 
 

 ( )
( )

0
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22
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n V n

V nV
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T T a a V j

ϕ
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∫

z

z
  (15) 

 

to first order in the small quantity ∆T / T1. For the extreme case considered in Figs. 2(a) and 2(b), ∆T = 20 K and 
T1 = 300 K, ∆T / T1 ≈ 0.07. For a more typical case (Fig. 2(c)) ∆T = 1.5 K and ∆T / T1 ≈ 0.005 immediately after a 
gas collection. 

 
The quantity inside the square brackets in Eq. (15), which 
is a function only of h/a for a given radial mode n, is plot-
ted in Fig. 12(b) for radial modes (0,n) with n = 2, 3, 4, 
and the limit of large n (dashed line). The central result 
from this simple model of temperature gradients in a 
spherical vessel is that the radial-mode-average 〈w 2〉ϕ, 
and therefore the density, may be in error, fractionally, by 
as much as 0.1 × (∆T / T1).   
 
For completeness, we also investigated using non-radial 
modes to measure 〈w 2〉ϕ. Non-radial modes are identified 
by two integers (l,n) with l > 0 and have degeneracy 
2l + 1. The “simplest” non-radial mode is the (1,1) mode, 
and it is 3-fold degenerate. The three components of the 

V1, T1 

V2, T2 

a 

h 

x 

z 

Figure 11. Simple temperature distribution in spherical ves-
sel with radius a and volume V = 4πa³/3 = V1 + V2.  Upper 
region has volume V1 and uniform temperature T1; lower re-
gion with height h has volume V2 and uniform temperature 
T2 < T1.  
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triplet have nodal (zero weight) planes that are mutually 
perpendicular and pass through the sphere’s center. For 
one component the xy-plane is a nodal plane, and the 
greatest weight occurs in lobes above and below the nodal 
plane. Thus, this component will be most sensitive to gra-
dients in the z-direction. The other two components have 
the xz and yz-planes as nodal planes. These components 
will do a better job of averaging over the gradient. Unfor-
tunately, the acoustic microphone and source do not cou-
ple to the three components with equal efficiency, and 
there is no easy way to determine what average over these 
components is appropriate. For these and other reasons, 
we have chosen to measure the frequencies of only the 
(non-degenerate) radial modes.  
 
We also investigated this model for a cylindrical geome-
try. For a cylindrical vessel, we need to consider the ori-
entation of the cylinder’s axis relative to the gradients that 
are likely to develop in earth’s gravity, i.e. the gradient is 
a function of z only. For the reasons discussed above, we 
looked only at non-degenerate modes of the gas-filled cy-
lindrical vessel, i.e. longitudinal and transverse radial 
modes, to determine 〈w 2〉ϕ.  For a horizontal cylinder, the 
temperature gradient is perpendicular to the cylinder axis. 
|ϕ (r)|2 for the longitudinal modes is only a function of 
the axial coordinate, so the temperature in V1 and V2 will be given equal weight. Therefore, the volume-average and 
longitudinal mode-average will be the same. Radial mode averages for a horizontal cylinder could be in error by as 
much as 0.1×(∆T / T1), similar to radial modes in spheres.  
 
For vertically oriented cylindrical vessels, i.e. the gradient is parallel to the cylinder axis, the situation is reversed: 
|ϕ (r)|2 for the radial modes is only a function of the coordinates perpendicular to the gradient, so the mode average 
is the same as the volume average. Longitudinal modes (parallel with the gradient) have averaging errors that di-
minish as 1/(2πl), where l is the longitudinal mode number. Table 3 summarizes the results of the linear and step 
temperature distributions. 

Figure 12.  (a) The averages 〈 T 〉V and 〈 T 〉ϕ in a gas-filled 
spherical vessel from Eqs. (12) and (13) for n = 2, 3, and 4. (b) 
Scaled fractional difference between the volume and mode av-
erages from Eq. (15). The black dashed curve is the large n 
limit. 

(a) 

(b) 

Table 3.  Fractional difference between 〈T〉V and 〈T〉ϕ for a linear gradient (dT/dz = constant) and the step function 
defined in Eq. (10) (Fig. 11).  Results from first-order perturbation theory are given for a spherical resonator (radial 
modes) and a cylindrical resonator oriented horizontally or vertically using longitudinal and radial modes. 

Temperature Spherical resonator Cylindrical vessel 
Distribution  axis horizontal axis vertical 

linear T(z) = T0 + (dT/dz) z  0 (radial) 0 (longitudinal) 0 (radial) 

step T(z) = T1 + [H(z–zh)–1] ∆T < 0.1 (∆T/T1) (radial) < 0.1 (∆T/T1) (radial) 0 (radial) 

   0 (longitudinal) < (∆T/T1)/2πl (long.) 
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5. Discussion  
We characterized a 1.8 m3, nearly-spherical, steel shell at pressures up to 7 MPa for use as a collection vessel or 
source for gas flow standard. We measured the cavity’s microwave resonance frequencies fmicro to determine its 
pressure- and temperature-dependent volume: Vmicro(P, T) = 1.84740 m3× [1 + α(T−295 K) + κP] with a fractional 
uncertainty of 0.011 % at a 68 % confidence level. The coefficients α and κ were consistent with the dimensions 
and properties of the steel shell. The microwave-determined volume Vmicro was consistent, within combined uncer-
tainties, with Vgas the volume determined by a gas expansion method: Vmicro/Vgas − 1 = (2 ± 14)×10−5.  
 
When the shell was filled with gas, measurements of its acoustic resonance frequencies facoust and of the pressure 
quickly and accurately determined the mass of the gas in the shell, even when temperature gradients persisted. We 
have shown that despite the large thermal gradients that develop when gas is added or removed from the BBB, the 
mass Macoust of gas determined from acoustic resonance frequencies settled to within 0.01 % of its final value much 
faster than the estimated mass determined from the shell temperature. Following a pressure change of 0.3 MPa, the 
top-to-bottom temperature difference was 1.5 °C and Macoust settled to its final value in just 0.5 h.  Proportionately 
longer times were required after larger pressure changes generated larger temperature differences.  In a subsequent 
publication, we will compare the mass Macoust of gas in the BBB determined from acoustic measurements with Mgrav 
determined gravimetrically.  This comparison will determine the accuracy with which we can measure the mass of 
gas from acoustic measurements. Our preliminary measurements indicate |Macoust/Mgrav − 1| < 5×10−4. 
 
Finally, based on our study of acoustic measurements in collection vessels with vertical temperature gradients, 
cylindrical vessels may have advantages over spherical vessels. Measurements of 〈w2〉 and, therefore, 〈ρ〉 from the 
longitudinal acoustic modes of a gas-filled, horizontal cylindrical vessel should be insensitive to vertical tempera-
ture gradients, contributing an uncertainty to the mass of order (∆T/T)2.  For a vertical cylinder, the uncertainty due 
to vertical temperature gradients using longitudinal modes are first order in (∆T/T), but decrease as the mode order 
increases. The uncertainty for radial acoustic modes in a vertical cylindrical vessel should be second order. 
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