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A B S T R A C T

Robotic technologies are becoming more integrated with complex manufacturing environments. The addition of
greater complexity leads to more sources of faults and failures that impact a robot system’s reliability. Industrial
robot health degradation needs to be assessed and monitored to minimize unexpected shutdowns, improve
maintenance techniques, and optimize control strategies. A quick health assessment methodology is developed at
the U.S. National Institute of Standards and Technology (NIST) to quickly assess a robot’s tool center position
and orientation accuracy degradation. An advanced sensing development approach to support the quick health
assessment methodology is also presented in this paper. The advanced sensing development approach includes a
seven-dimensional (7-D) measurement instrument (time, X, Y, Z, roll, pitch, and yaw) and a smart target to
facilitate the quick measurement of a robot’s tool center accuracy.

1. Introduction

Advanced technologies are emerging in manufacturing, especially in
the domain of cutting-edge information and communication tech-
nology, to improve manufacturing competitiveness and efficiency.
Smart Manufacturing, which is the fourth revolution in the manu-
facturing industry, presents a fully-integrated and collaborative manu-
facturing system that responds in real time to meet the changing de-
mands and conditions within factories and supply networks [1,2]. The
successful implementation of smart manufacturing will bridge and
connect hardware, software, and data to increase operational effi-
ciency, asset availability, and improve quality while decreasing un-
scheduled downtime and scrap [3–6]. As smart manufacturing evolves,
industrial robots are filling the need for advanced solutions in many
manufacturing environments including automotive [7–9], electronics
[10,11], consumer packaged goods [12], and aerospace manufacturing
[13–15]. Smart Manufacturing is having a positive impact on factory
floor-level robotic operations. More diverse systems, sub-systems, and
components are being connected to increase the robot work cell cap-
abilities. However, more complexity can lead to more sources of faults
and failures. A robot system’s health degradation, including robot tool
center position (TCP) accuracy degradation, can compromise the effi-
ciency, quality, and productivity of a manufacturing system. It is im-
portant that the robot system’s health degradations are understood so
that maintenance and control strategies can be adjusted to compensate
for these degradations.

An industrial robot system is defined to include a robot, end-effector
(s), and any equipment, devices, or sensors required for the robot to
perform its tasks [16]. Many possible faults and failures could occur
within the robot system given this system complexity. Faults and fail-
ures can be divided into three principal categories [17–19]: faults, soft
failures, and hard failures. A fault is defined as a defect that is an inherent
weakness of the design or implementation. For example, a fault could
be an incorrect signal value or an incorrect decision within the system.
A fault may result in a system’s degradation [20]. A soft failure is de-
fined as a condition when the system performance starts to degrade,
where ‘wear and tear’ and/or external changes have occurred that have
compromised the baseline health of the system. Under a soft failure, the
manufacturing process is not capable of meeting its performance spe-
cifications [21]. If the performance degradation worsens, quality can
decrease below specifications indicating a defect or unacceptable result.
A hard failure is defined as a condition when a component or a piece of
equipment breaks, or a system or component is unable to function as
required [20]. In the hard failure condition, the manufacturing process
is typically either frozen or shut down.

Faults and failures can impact a robot system in numerous ways,
including influencing some key performance factors of a robot, e.g.,
accuracy, velocity, force, and torque. These factors are commonly
identified as critical indicators of the system health. Robots are em-
ployed to move and manipulate end-effectors accurately (e.g., grippers,
welding wands) to certain specifications. Tool center accuracy can be
used to assess the health of an industrial robot. For example, accuracy is
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a critical health factor for applications that demand both position and
path accuracy (e.g., arc welding, robot machining, and robot composite
material layout). If accuracy degrades, a robot will weld or drill at in-
correct positions. The production quality will be compromised.
Accuracy is also critical for applications that are using an external
system to position parts relative to the robot arm, or using an external
system to guide a robot’s operation. For example, a vision system may
be used to locate a part; this information would be passed to the robot
controller that would then command the robot to pick it up [22]. The
degradation of a robot’s position and orientation accuracy will lead to a
decrease in manufacturing quality and production efficiency. Given the
high output rate of production lines, it is important to develop tech-
niques to assess a robot system’s health conditions that predict soft and
hard failures. Robot health degradations are less observable compared
to system freezes or shutdowns. In the robot health degradation con-
dition, the robot is still running and appears to be making parts, but
actually working at a decreased level of performance and/or quality.

As a subset of the NIST’s Prognostics, Health Management, and
Control (PHMC) project, PHMC for robotics research is ongoing. The
research aims to develop the measurement science within industrial
robotics domains to promote the advancement of monitoring, diag-
nostic, prognostic, and maintenance strategies [23,24]. One output of
this research involves developing a quick health assessment metho-
dology emphasizing the identification of the robot accuracy changes.
This methodology will enable manufacturers to quickly assess the ro-
bot’s tool center position and orientation accuracy degradation.

Section 2 in this paper will give an overall view of the quick health
assessment methodology. Details of the modeling and algorithm for the
methodology are presented in previous publications (refer to [25,26]).
Section 3 will present the development of the vision-based 7-D mea-
surement system. Section 4 will present the innovative design of the
smart target. Section 5 wraps up the paper and highlights future work.

2. Workflow of the quick health assessment methodology

A quick health assessment is a methodology that aims to assess the
robot tool center accuracy degradation throughout the robot work vo-
lume. The methodology includes: 1) advanced sensing to measure the
robot tool center positions and orientations; 2) a test method to pre-
define the robot movements and model the robot errors to reflect the
robot geometric and non-geometric errors; and 3) algorithms to process
measured data to get the robot health assessment using limited mea-
surements. The quick health assessment methodology addresses the
following challenges:

1) Measuring the actual robot positions and orientations with the
minimum interruption of production. The details of the challenges
and solutions for the advanced sensing development will be pre-
sented in Section 3 and 4 of this paper.

2) Assessing the robot tool center errors from all directions. As shown
in Fig. 1(a), a robot could have multiple inverse kinematic solutions
to reach to a three-dimensional position in Cartesian space. As a
result, the error magnitude and direction can change by choosing
different inverse kinematic solutions. This makes the assessment of
the tool center accuracy difficult since it’s hard to measure the ac-
curacy from all directions.

3) Assessing the accuracy of the whole robot work volume using lim-
ited measurements. A robot may work on different tasks within its
work volume using different poses. As shown in Fig. 1(b), the
spherical space is the work volume calculated for this robot. The
inner layer represents the work volume calculated for the robot tool
center. The outer layer of the spherical space represents the work
volume calculated for the current tool. The quick health assessment
methodology should assess the robot’s accuracy degradation over
the whole work volume with all possibilities of different poses of the
arm. It’s impossible to take unlimited measurements since the in-
terruption of production is expensive. An efficient test method is
needed to assess the robot’s overall health using limited measure-
ments.

4) Decoupling the measurement instruments’ uncertainty from the
actual robot errors: The uncertainties coming from measurement
instruments are usually treated as joint errors [27]. In this case, the
assessment results may be biased. The modeling and algorithm de-
velopment are needed to solve these challenges.

The goal of the methodology is to enable manufacturers to assess a
robot’s tool center accuracy degradation quickly. The quick health as-
sessment can quickly detect problems if the of environmental condi-
tions change, reconfigurations occur in the work cell, or manufacturers
need to make sure the robot has not experienced a degradation when an
important part is put in the work cell. The use of this methodology will
monitor the degradation of robot performance, reduce unexpected
shutdowns, and help the optimization of maintenance strategy to im-
prove productivity.

The workflow of the quick health assessment development is shown
in Fig. 2. The workflow contains the development of advanced sensing
used to take measurements (will be presented in Section 3 and 4), a test
method, algorithms for data processing and health assessments, the root
cause analysis, and PHMC remedy techniques.

To address the second and the third challenges previously listed, a
test method with a fixed loop motion was developed. An important
feature of the test method is that it requires the robot movements to be
evenly distributed in both joint space and Cartesian space. The even
distribution in joint space prevents missing errors or adding too heavy
weights on errors. The even distribution in Cartesian spaces enables the
evaluation of the arm accuracy and rigidity throughout the robot
working volume. A fixed loop motion is designed to satisfy those re-
quirements. In the meantime, collision avoidance of the robot arm with

Fig. 1. Robot working volume and multiple inverse kinematic solutions in Cartesian space.
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obstacles and with the robot structure itself is also performed (the de-
tails of creating a fixed loop motion are presented in the papers
[25,26]). The fixed loop motion for the test method will be executed
periodically and in a relatively short amount of time (10–15min).
While the robot tool center is moving to these pre-determined positions,
X, Y, Z, roll, pitch, yaw, and time (7-D information) data are being
captured from the 7-D measurement system developed at NIST (as
shown in the top block of Fig. 2). All measurements will be taken under
a global coordinate system which is defined on the 7-D measurement
system. Measurement data is inputted into the test method model.

Traditional modeling methods for robot errors assume that robot
joint motion is ideal, and the geometric relationships between the joints
are constant [27]. Yet there exist non-geometric errors, such as the non-
ideal motion of joints, and deflections of the structure and joints due to
external loading, gravity, backlash, etc. These errors are not constant
values. They are position dependent errors. The error model built for
the quick health assessment test method is different from the traditional
error model. Parameters that describe the geometric relationships are
not constant values, but are functions of the axis locations. This means
the error model can model not only the position-independent geometry
errors, but also the position-dependent motion errors. An example of a
robot’s serial kinematic structure with coordinate frames is shown in

Fig. 3. The real axis has deviated from its designed position. The errors
of this axis are represented as: (1) δx - radial error motion of i-axis in the
X direction; (2) δy - radial error motion of i-axis in the Y direction; (3) δz
- axial error motion of i-axis in the Z direction; (4) εx - tilt error motion
around X of i-axis; (5) εy - tilt error motion around Y of i-axis; and (6) εz
- angular positioning error (also called scale error of the rotation axis).
The error model of the joint is described in the equation in Fig. 3. The
δ(θ) and ε(θ) are not constant values. They are functions of axis loca-
tions which we refer to as a higher order model (compared to the zero
order model) [28], which means the model can handle non-geometric
errors, such as the non-ideal motion of joints and deflections of the
structure and joints. Also, to decouple the measurement instruments’
uncertainty from the actual robot errors, an implicit loop method is
implemented. In the implicit loop method, a closed loop is formed from
the first link out to the tool tip, and then back to the first link via a
measuring device. The displacements around a closed loop sum to zero
(or Identity matrix). With this convention, the measurement instru-
ment’s uncertainty is modeled inside the model equation using a
weight. Joint and end-effector measurements are equally weighted,
with weights assigned according to the accuracy of each joint. There are
two outputs from data analysis. The first one is the derived errors from
the calculation of the robot tool center accuracy of the robot through
the work volume. The advantage of this method is that the uncertainties
of the measurements are decoupled from the true errors and won’t bias
the analysis result. The second output is to find the maximum likelihood
estimation of parameters to minimize the error function. This result can
be used to detect the root cause of axis errors. Moreover, compensation
can be calculated to improve the accuracy of the kinematic model,
which can be used in the future root cause analysis and PHMC remedy
development as shown in the two bottom blocks in Fig. 2.

The advanced sensing development is an important part of the quick
health assessment methodology. The time and the 6-D information (X,
Y, Z, roll, pitch, and yaw) are needed to describe the robot tool center
accuracy. Sections 3 and 4 of this paper will focus on advanced sensing
to measure the robot’s tool center position and orientation.

3. Advanced sensing development to support the quick health
assessment methodology

The advanced sensing developed at NIST provides the time and the
6-D information as the inputs to support the quick health assessment
methodology. The integrated 6-D sensor is needed. The reason to avoid
using multiple lower dimensional sensors (e.g., using one-dimensional
sensor or two-dimensional sensors) is that the setup is complex and
introduces error stacking.

Fig. 2. Workflow of the quick health assessment methodology.

Fig. 3. Six errors of a rotation axis.

G. Qiao, B.A. Weiss Journal of Manufacturing Systems xxx (xxxx) xxx–xxx

3



The advanced sensing development includes the development of the
measurement instrument and a special target. Existing measurement
instruments that can measure either 3-D (three dimensional - x, y, and
z) or 6-D information are shown in Fig. 4. The outputs of the instru-
ments are actually defined by what targets are used. If 3-D targets are
used, measurement instruments can measure 3-D information. If 6-D
targets are used, the measurement instruments output 6-D information.

Instruments in Fig. 4 use different principles to take measurements,
including laser-based (laser trackers), time-of-flight (laser radars), and
vision-based (optical trackers) technologies. In Fig. 4, the number one
through number three measurement instruments are laser trackers from
different manufacturers. Laser trackers are instruments that can mea-
sure 3-D coordinates by tracking a laser beam to a spherically-mounted
retroreflector (SMR) target (as shown in the top left 3-D target picture
of Fig. 4). Since measurements need to be taken by holding an SMR in
contact with the object of interest [29], laser trackers are contact
measurement instruments. A laser tracker contains a laser beam and
two angular encoders. The laser beam is used to measure the distance
from the laser tracker to the SMR. Encoders measure the angular or-
ientation of the tracker’s two mechanical axes: the azimuth axis and the
elevation axis. The angles from the encoders and the distance from the
laser are sufficient to precisely calculate the center (x, y, z) of the retro-
reflective targets. For laser-based instruments, one laser beam can track
only one SMR target at a time. Sometimes multiple SMRs are used to
represent a coordinate frame. In this condition, laser-based instruments
need to measure the SMR targets one by one. Because the beam
switching and re-lock on different targets take time, the SMRs and the
object of interest need to stay stationary during the measurement pro-
cess. Using multiple SMRs and laser-based instruments to measure 6-D
information cannot be applied to dynamic measurements, such as
measuring the movements of a robot arm. As a result, it cannot satisfy
the measurement requirements of the robot quick health assessment
methodology. To increase measurement speed and efficiency, special 6-

D targets are designed for laser trackers to capture the extra orientation
information as shown in the picture of the 6-D targets in Fig. 4. The
extra orientation information is measured by embedding other sensors
in the target or adding a camera system on the tracking head to capture
the features that define the coordinate frame. For example, in the
bottom left picture in Fig. 4., the 6-D target uses an SMR and multiple
light-emitting diodes (LEDs) to define a coordinate frame. However,
since the laser beam still needs to lock on the SMR(s) on the 6-D target,
laser-based instruments require the maintenance of line-of-sight be-
tween the laser tracker and the target. This means that the tracker will
ultimately lose its view of the target when observing the target on a
robot rotating to an angle. In this case, the robot’s rotation has to be
limited, which is not suitable for the quick health assessment metho-
dology. For the quick health assessment methodology, the robot tool
center needs to be measured in different positions and orientations
throughout the robot’s work volume.

The fourth measurement instrument in Fig. 4 is a laser radar. This is
a typical scanning instrument (using the time of flight technologies
typically) [29]. Laser radar scans parts and outputs measurement data
as 3-D point clouds. Laser radar can measure a 6-D target (e.g., with
multiple reflective spheres that define a coordinate frame as shown in
Fig. 4). However, getting the 6-D information from point clouds may
take multiple steps in software operations. The first step is to segment
the 6-D target’s point cloud from the surrounding objects. Then outliers
need to be removed. After that, best-fit is performed to fit a sphere. The
last step is to extract the sphere center from the fitted sphere. The best-
fit accuracy varies depending on the quality of the point cloud and the
quality of segmentation. Laser radar is expensive and not an efficient
measurement system for the robot 6-D information collection.

The fifth measurement instrument in Fig. 4 is an example of optical
trackers. Optical trackers are vision-based instruments, using two or
more cameras. Each camera is equipped with an infrared (IR) pass filter
in front of the lens. A ring of IR LEDs is mounted around the lens to

Fig. 4. Existing 3-D and 6-D measurement systems.
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illuminate IR light to the measurement space periodically. Objects that
need to be tracked are equipped with retro-reflective markers (e.g.,
reflective spheres). The 3-D position can be measured by using a single
marker in the measurement space. Multiple markers can be used to
define a coordinate frame. For example, the 6-D target at the bottom
right in Fig. 4 has large mechanical fixtures holding 2-D markers to
define a coordinate frame. The large mechanical fixture may interfere
with the robot’s end effector tools. The shortcoming of the IR vision-
based measurement instrument is that the images of the infrared
cameras only contain the markers. They cannot see the measurement
objects or the environment. When ambient lights exist in the

environment, the reflected lights from ambient objects or targets will be
treated as real targets. There is no redundancy when applications are
used under a complex industrial environment [30].

To avoid the limitations of the existing measurement instruments
and address the challenges of advanced sensing requirements to support
the quick health assessment, a 7-D measurement system was developed
at NIST as shown in Fig. 5. The measurement system consists of a vision
based measurement instrument and a target. Outputs from the 7-D
measurement system are time, X, Y, Z, pitch, yaw, and roll information
under the fixed instrument coordinate system. The 7-D measurement
system is designed and embedded with a time synchronization feature.

Fig. 5. 7-D measurement system.
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Time synchronization is important for the analysis when fusing this
data with other sensor data for deep robot system health analysis. The
7-D measurement instrument uses two high-speed color cameras. The
reasons to use a vision-based design are because: (1) A vision-based
system can measure position and orientation information simulta-
neously; (2) Novel camera technologies enable the achievement of
camera sub-pixel accuracy. The sub-pixel accuracy converts to the
measurement system’s high degree of accuracy after optical triangula-
tions; and (3) Since camera technology has become mature, a vision-
based system is relatively cost-effective to integrate [31]. The 7-D
measurement system doesn’t use infrared cameras, but rather high-
speed color cameras. Redundant information from color images and
advanced color image processing technologies are utilized to get more
accurate target detection results. A high-performance computer will be
used to perform the image processing. A special target was designed to
work with the measurement instrument to measure the robot position
and orientation information. Software tools were developed to perform
the measurements. As shown in Fig. 5, the 7-D measurement instrument
is mounted on the floor or table, which is at the opposite end of the
kinematic chain from the target. The smart target is mounted on the last
link of the robot arm. No alignment is needed from the 7-D measure-
ment instrument to the smart target so that the 7-D measurement in-
strument can be moved to other robots/stations without the need for
time-consuming alignment procedures.

For the vision-based system, three major technologies determine the
accuracy of the measurement instrument. These technologies include
the distortion correction for camera sensors and lenses, instrument
calibration of the two camera relationships, and the accurate feature
detection of targets. Since the measurement volume of the 7-D mea-
surement instrument is large (needs to cover a robot’s work volume), an
advanced image distortion correction algorithm is developed for the
camera sensor distortion. The algorithm uses a checkerboard plus a “3-
D rig” technology. An initial camera distortion model is built utilizing
the checkerboard. Then the distortion parameters are optimized using
known positions in a large 3-D volume. To verify the distortion cor-
rection results, multiple line features are printed on an adhesive sheet
and put on top of a precision flat plate (the flatness of the plate is
20 μm). Cameras take images of the lines from different angles and
distances. Algorithms for line center detection with sub-pixel accuracy
are developed to get the straightness errors of the fitted line. Results are
compared with and without image correction. For the two camera re-
lationships calibration, the common set of checkerboard images and the
3-D rig data (taken by both cameras) can be used to calibrate the re-
lative positions and orientations of the two cameras. Additionally, a
self-calibration method is created by utilizing the features (e.g., size and
angle features) in the smart target to self-calibrate the cameras with
respect to one another when the system is used on site. For the accurate
feature detection of targets, an innovative smart target is designed
which will be detailed in the next section. High-frequency differential
technology is also used to subtract background noises to improve

accuracy. Parallel calculation and hardware acceleration are used for
fast image processing. Graphical processing unit (GPU) programming is
utilized to enable the implementation of complex image processing
algorithms. The innovative target design is described in the next sec-
tion.

4. An innovative target - smart target development

Innovative target design is an important part of this measurement
system development. To measure a robot tool center’s x, y, z, yaw,
pitch, and roll information allows one to measure the tool center’s co-
ordinate frame. A coordinate frame has an origin that defines the po-
sition x, y, and z information. The axes define the yaw, pitch, and roll
angle information. To design a 6-D target, the target needs to contain
component features that are used to define/build a coordinate frame.
The component features must be measurable by the measurement in-
strument.

A frame has four basic components: an origin, a primary axis, a
secondary axis, and a tertiary axis. A frame can usually be constructed
by defining an origin and two of the axes. The third axis is naturally
defined as an axis that is perpendicular to both other two axes. The
origin is a point feature. The axes are vector features that contain a
position and a direction. The most traditional way to define a co-
ordinate frame is the three-point method, which is widely used by many
vision-based measurement instruments. In this method, three point
features are needed. As the example shown in Fig. 6 illustrates, there
are three points: P1, P2, and P3 (in Fig. 6(a)). The three points are used
as origin, the point defining an axis (e.g., X-axis), and the point in a
plane (e.g., XY plane). P1 is used to define the origin of the frame (as
shown in Fig. 6(b)). P1 and P2 form a vector which represents the X-
axis. P1, P2, and P3 create the XY plane. The Y-axis is located in this XY
plane, going through the origin, and perpendicular to the X-axis. The P3
point is not necessarily located on the Y-axis. It only indicates the Y-
axis’s positive direction.

Spherical targets (the top two pictures as shown in Fig. 7) are the
most common artifacts used to define point features in Cartesian space.

Fig. 6. Three-point method to define a coordinate frame.

Fig. 7. Spherical targets and 6-D targets using sphere artifacts.
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The roundness of the sphere target needs to be controlled so that the
measurement of the sphere center will be the same when observed from
different angles and views. The spherical targets can be used by dif-
ferent instruments from laser trackers, to radars, and to vision-based
instruments. For point cloud generating instruments (e.g., scanning or
radar measurement instruments), the surface of a spherical target is
captured as a point cloud. Later the point cloud is best-fitted to a
sphere. Then the center of the sphere is detected and used as a point
feature. For vision-based systems, each camera captures a 2-D image of
the spherical target from its view (a solid circle). The centroid of the
solid circle is detected from each camera. Two (or more) cameras
perform triangulation to construct a 3-D center of the spherical target.

Three or more spheres can be structured together to build a 6-D
target that defines a coordinate frame (e.g., the structures of the bottom
three pictures in Fig. 7). The reason for using more than three spheres is
to provide redundant spheres when image blocking or overlapping
occurs. The blocking/overlapping may come from different views of the
target, or when the target rotates with the object of interest, the sur-
rounding objects may block the view. An advantage of using traditional
spherical artifacts and point features to define a 6-D target is that the
algorithm is relatively simple (either circle center detection or best fit of
a sphere). However, there are some challenges:

1) Sphere center detection accuracy and uncertainty: Using sphe-
rical artifacts and point features, the center of a sphere is the feature
that needs to be captured by the measurement instrument. For point
cloud measurement instruments, the sphere surface is captured as a
point cloud. The best-fit method is utilized to detect the sphere
center. If the point cloud can cover the whole range of the sphere as
shown in Fig. 8(a), the sphere center detection can achieve good
accuracies. That’s why when using point cloud measurement in-
struments, users need to capture as much of the sphere surface as
possible. In the real situation, only part of the surface will be cap-
tured as shown in Fig. 8(b). The best-fit result will be biased when
one side of the surface data is missing as shown in Fig. 8(c). When
using vision-based systems, a sphere target will project a 2-D solid
circle on the camera sensor. The task is to detect the centroid of the
solid circle. For the solid circle feature, image quality has significant
influences on the accuracy of the centroid detection. Fig. 8(d–f)
shows an example of the grayscale image. Fig. 8(d) shows the center
part of the image is saturated. Under this condition, the camera
exposure needs to be adjusted because a saturated image will lower
the sensitivity of the center detection. The target center’s small
subpixel changes cannot be detected when saturated intensities
cover up the grayscale changes. Fig. 8(e) shows the condition when

the camera is out of focus. Fig. 8(f) shows the condition when a
target is at a far distance and only a few pixels are highlighted on the
camera sensor. These factors cause accuracy problems and create
large uncertainties in locating the sphere center. Ambient light also
has a strong effect on the sphere center detection accuracy and
uncertainty.

2) Target size: The axis of a coordinate frame is defined using two
points (two sphere centers) – the origin and the point on the axis. If
the two points are close to each other, a small position error of the
point can cause a large deviation of the axis direction (or the angular
error of the axis vector). Given the uncertainty of the point detection
(from the sphere center detection), the larger distance between the
two points, the smaller the angular error. So, the target size needs to
be relatively large to have a bigger distance between the points.
However, the target size cannot be too large because of the con-
straint of the mechanical target size. As a result, for this kind of
target, angular measurement contains large uncertainties.

3) The technology used to stand out targets from the background:
To simplify the target identification from a complex background, IR
technology is utilized for existing optical tracking systems. Each
camera is equipped with an IR pass filter in front of the lens, and a
ring of IR LEDs around the lens to periodically illuminate the
measurement space with IR light. Reflective spheres are used as
markers. In this case, the optical tracker’s image only contains the
markers. They cannot see the measurement objects or the environ-
ment. When ambient lights exist, the reflected lights from ambient
objects or targets will be treated as real targets [30]. Also, the ac-
curacy of the reflective sphere needs to be considered. To make a
sphere able to reflect IR light, either reflective material coating
(expensive in manufacturing to guarantee coating accuracy) is ap-
plied, or reflective tapes are wrapped around a sphere. The wrapped
spherical targets have challenges to control the roundness and can
be used in some applications that require moderate accuracy spe-
cifications.

4) Lack of straightforward definition of a coordinate frame: When
a multiple-sphere target is presented in front of the user, any sphere
center can be used to define the origin or an axis. There is no unique
or clear “definition” of a coordinate frame. When multiple co-
ordinates exist in a system (e.g., multiple robots, machines in a
smart manufacturing environment), it is difficult to understand the
relationships of the instruments.

To address these challenges, NIST has developed an innovative
smart target. The smart target is designed to be used by the 7-D mea-
surement instrument, but also can be used by other types of measure-
ment instruments. This smart target design is under consideration for a
patent. The sketch of the smart target is shown in Fig. 9.

The smart target design uses line features to define the coordinate
frame. The intersection of two line features forms the origin of the
coordinate. The coordinate axes are formed as vectors passing through
the origin and having the same normal directions defined by line fea-
tures. As shown in Fig. 9, cylindrical light pipe artifacts are used to
define the line features. The bottom picture in Fig. 9 shows an example
white color light pipe (15mm in diameter and 75mm long). The light
pipe can use different colors of LED illumination. In the smart target
design, three colors of LEDs are used. Wavelengths are selected to
match the narrow band filters on the 7-D measurement instrument’s
cameras to reduce ambient light effects. A specially finished light pipe
surface creates the even light distribution along the cylindrical surface.

As shown in the Fig. 9 the top picture, two cylindrical light pipes
intersect at the center of the smart target as a cross shape (or “T”
shape). The origin of the smart target coordinate system is located at
the intersection center of the two pipes. The two intersection light pipes
are mounted on two or three mechanical rotation axes. Driven by
sensors (e.g., level sensors) or weight balance, the cross pipes can
constantly rotate toward the measurement instrument. This creates aFig. 8. Problem of sphere center detection accuracy and uncertainty.
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non-blocking measurement of the target, even when the target is
moving (e.g., the target is mounted on a robot, and the robot arm is
moving). Moreover, the measurement uncertainty remains the same
when the target rotates at different angles. On the edges of the smart
target, light pipes with three different colors are used to define the x, y,
and z axis directions. In Fig. 9, red light pipes define the X-axis direc-
tion, green light pipes define the Y-axis direction, and blue light pipes
define the Z-axis direction. They are physically aligned perpendicular to
each other. To provide redundancy of direction measurement from
different views, multiple light pipes can be mounted in a parallel
fashion on the smart target.

The bottom picture of Fig. 9 shows a camera image of the example
white color light pipe. A center line feature is detected. The information
of edge features, the parallelism of edges, points on the edge and center,
and the inside intensity distribution are used for centerline detection.
Compared with the traditional two-point method (two spherical centers
in a close distance) to define a line direction, the cylindrical artifacts
method creates high accuracy in line detection by utilizing more points
and other supporting information. Also, the origin definition from the
intersection of two line features (each 75mm long) achieves higher
accuracy compared with the traditional method of using a spherical
center (usually 10mm or 25mm in size) to define the origin.

Electronic boards are placed inside the smart target body. The smart
target is battery driven. The LEDs can be turned on/off using a remote
control. The bottom plate of the smart target is the mounting plate that
can be connected with different adaptors designed for different end
effector tools. The 7-D measurement system needs to be designed such
that its integration and use does not interfere with the robot system’s
normal operations. The adaptor is designed to avoid the scenario where
a robot system’s end-effector needs to be removed or adjusted to ac-
commodate a target sensor. As an optional configuration, a small SMR
target nest can be mounted at the intersection center to enable a laser
tracker instrument to use the smart target. The smart target can be used
as the common target to support the cross-platform systems to acquire
6-D information quickly and accurately.

In summary, the smart target designed at NIST has the following
innovations:

1) High accuracy that comes from the different design concept.
Traditional targets used by vision systems are sphere features that
define 1) the origin and 2) the direction of an axis. The uncertainties
of the sphere center measurement are transferred one-to-one to the
origin definition. The uncertainties are enlarged to axial direction
definition since small distance errors can create large angular errors.
By using the cylinder features, the axial direction is defined along
the cylindrical target’s center line. The constructed center line is
more accurate by fitting with points along the 75mm long light
pipe, compared with the traditional method of using two close-dis-
tance points of two sphere centers. Also, extra features of the light
pipe, such as the color, the edge features, etc., give more redundant
information to improve the line detection accuracy. For the same
reason, the origin that is defined by two-line intersection obtains
higher accuracy compared with the traditional method of defining
the origin using a sphere center.

2) Non-blocking measurement design to measure both static and
dynamic TCP data. Traditional targets have the problem of bad
pose (perpendicular to the camera) which is not sensitive to camera
measurement, or the target may block itself in some poses. The
smart target has the cross center mounted on rotary axes. The cross-
cylinder can always rotate toward the measurement system. This
makes the smart target’s origin good for measurement in different
views without self-blocking. Multiple cylindrical light pipes on the
smart target edges give redundancies for axis direction extractions
in different views.

3) A unique definition of a coordinate frame. Traditional spherical
targets don’t have a unique definition of a frame. Any sphere can be
used to define the origin or the axis. The 6-D smart target has a
consistent and unique definition of a frame to avoid confusion when
multiple coordinates exist in a system.

4) A hybrid target for the cross-platform measurement system.
Other than supporting the robot quick health assessment, the smart
target can be applied to broader applications with the need for 6-D
information measurements. For example, the 6-D smart target can
provide machine vision vendors with a new tool to detect 6-D in-
formation, or the smart target can help to register multiple instru-
ments under a global coordinate. The smart target can be used as a
common 6-D target for cross-platform measurement. In vision-based
non-contact measurement systems, cylinder features are detected
through vision sensors. The color information is used to speed the
calculation and provide more redundant calculation in algorithms.
In scanning-based non-contact measurement systems, cylinders can
be constructed using point clouds captured by the measurement
system. Center lines can be detected, and the cross center can be
found. In contact measurement systems like laser trackers, cylinders
can be measured by SMR probing. Center lines can be detected to
form the two lines for axes direction. A laser target (SMR) nest can
be mounted in the center of the cross to simplify the origin mea-
surement.

The smart target supports the continuous measurement of the 6-D
information of a moving object with high accuracy. The smart target
can be applied to broader applications to acquire the object’s 6-D in-
formation. The measured 6-D information can be used for many pur-
poses besides the quick health assessment. It can also be used as the
feedback control for motion, relative position/orientation monitoring
of two items, and data registration for in-process inspection. These
applications bring innovative ways to design smart functions in modern
manufacturing systems.

5. Conclusions

A quick health assessment methodology for industrial robot health
degradation and the supporting advanced sensing development is pre-
sented in this paper. The novel features of the methodology include: 1)

Fig. 9. Smart target.
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creation of innovative test methods to quickly assess the TCP accuracy
degradation in a volumetric way; 2) capabilities to handle the robot
geometric and non-geometric errors, and 3) capabilities to decouple the
measurement instrument’s uncertainty from the actual robot errors. The
implementation of the quick health assessment can help to reduce un-
expected downtime, improve productivity, efficiency, and quality, and
optimize the maintenance strategy of the robot systems in smart man-
ufacturing.

The advanced sensing was developed to enable the continuous
measurement of the robot tool center 6-D information. The 7-D mea-
surement instrument is designed with several features that differ from
and exceed the performance of traditional stereo technologies, in-
cluding a time synchronization feature that is designed for PHMC data
alignment, advanced color sensor processing technology, and instru-
ment calibration technology. The innovative smart target design is
under consideration for a patent. The smart target can be used as the
common target by cross-platform systems to acquire 6-D information
quickly and accurately. The embedded line features enable the high
accuracy definition of a coordinate frame to output the 6-D informa-
tion. Future efforts are underway to measure the accuracy degradation
during dynamic operations for applications that require high-precision
motions. NIST is also seeking to develop additional industrial use cases.

NIST disclaimer

Certain commercial entities, equipment, or materials may be iden-
tified in this document to illustrate a point or concept. Such identifi-
cation is not intended to imply recommendation or endorsement by
NIST, nor is it intended to imply that the entities, materials, or equip-
ment are necessarily the best available for the purpose.
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