
computer programs

1500 https://doi.org/10.1107/S1600576718011974 J. Appl. Cryst. (2018). 51, 1500–1506

Received 24 April 2018

Accepted 23 August 2018

Edited by Th. Proffen, Oak Ridge National

Laboratory, USA

Keywords: neutron reflectometry; X-ray

reflectometry; data reduction; computer

programs.

reductus: a stateless Python data reduction service
with a browser front end

Brian Maranville,* William Ratcliff II and Paul Kienzle

NIST Center for Neutron Research, 100 Bureau Drive, Gaithersburg, MD 20899, USA. *Correspondence e-mail:

brian.maranville@nist.gov

The online data reduction service reductus transforms measurements in

experimental science from laboratory coordinates into physically meaningful

quantities with accurate estimation of uncertainties from instrumental settings

and properties. This reduction process is based on a few well known

transformations, but flexibility in the application of the transforms and

algorithms supports flexibility in experiment design, enabling a broader range

of measurements than a rigid reduction scheme for data. The user interface

allows easy construction of arbitrary pipelines from well known data transforms

using a visual data flow diagram. Source data are drawn from a networked, open

data repository. The Python back end uses intelligent caching to store

intermediate results of calculations for a highly responsive user experience.

The reference implementation allows immediate reduction of measurements as

they are recorded for the three neutron reflectometry instruments at the NIST

Center for Neutron Research, without the need for visiting scientists to install

additional software on their own computers.

1. Motivation

The transformation of raw measurements into meaningful

interpretable data with attached uncertainties (data reduc-

tion) is a ubiquitous task in the experimental sciences. In the

case where the workflow is well established and the commu-

nity is small the most direct way to accomplish this is to

develop a custom application to be installed on a limited

number of dedicated computers. However, at a scientific user

facility a large number of visiting researchers are using the

measurement tools on a part-time basis. Thus, it is necessary to

make reduction capabilities widely available and flexible. In

this case a web-based application is an attractive alternative to

distributing dedicated installable executables.

The main benefit of a web application is the almost

universal accessibility to potential users. On top of this, a

centralized reduction server also benefits from the ability to

update the calculation code at any time without requiring all

users to update their software, as well as largely eliminating

the non-trivial time cost of maintaining an installable appli-

cation for more than one target platform.

Users can also install the service locally, much as they would

if reduction were a desktop application. This allows them to

access their own data and develop reduction applications for

their own instrumentation.

The specific implementation described herein, reductus, was

developed to provide reduction for reflectometry instruments,

but the system was designed to be extensible and usable for

other data processing problems and work is underway to

support reduction for off-specular reflectometry, small-angle

ISSN 1600-5767

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576718011974&domain=pdf&date_stamp=2018-09-24


neutron scattering and triple-axis spectrometry. The approach

can be adapted to any type of computational problem, but the

level of flexibility and computational complexity supported is

driven by the needs of a data reduction engine.

1.1. Data reduction for reflectometry

Neutron reflectometry is a technique for characterizing

surfaces, thin films and multilayers by analyzing the intensity

of a reflected signal relative to the incident beam. This fraction

of number reflected/number incident is called the reflectivity,

and it can be modeled and interpreted by using, for example,

an optical matrix formalism analogous to the one used in the

analysis of electromagnetic reflectivity (Born & Wolf, 1959;

Abelès, 1950), but where the relevant potentials arise from

interactions between the neutron and nucleus, or the neutron

and the internal magnetic field of the sample, rather than

electromagnetism. The theory provides a prediction for the

reflectivity as a function of momentum transfer (difference of

momentum for incident and reflected photon or neutron, in

this case).

As an illustrative example, we will describe just one of the

many types of reflectometry instrument setups: one with a

monochromatic beam and with no polarization analysis.

In order to measure this reflectivity, an apparatus is

constructed such that a collimated beam (of known energy,

and known angular and energetic resolution) is made incident

on a planar sample, and a neutron detector is placed after the

sample to record the number of neutrons that are specularly

reflected (where the angle of incidence equals the angle of

reflectance) in a given time. This measurement is repeated for

a number of incident and reflected angles, which correspond to

a range of momentum transfers, so that the results can be

compared with the prediction from theory as described above.

In order to calculate the reflectivity, though, we need to divide

the number of reflected neutrons at each momentum transfer

by the number of incident neutrons, and so we also have to

measure the ‘direct-beam’ intensity separately, with no sample

in the beam, with the instrument collimation set up exactly as

it is for the reflection measurement. In our case, the collima-

tion is controlled by the opening of two slits in the beam path

before the sample position, so setting the direct beam to the

same collimation just requires opening those two slits to the

same position they were in during the reflected-beam

measurement. We also wish to subtract spurious detection

events, such as incoherent scattering from the sample holder,

so we perform another set of experiments where the sample is

in the beam but the detector is not placed at the specular

reflection position (the angle of reflection is intentionally set

to be different from the angle of incidence). These measure-

ments we call the ‘background’. Often two background

measurements are taken, where the angle is offset from the

specular condition in either the positive or negative direction

(later labeled bg+ and bg� in the text and figures.)

Then in the simplest case, in order to extract the physically

meaningful reflectivity (number of neutrons reflected/number

of neutrons incident for a given momentum transfer) we first

subtract the ‘background’ signal at the corresponding incident

angle from the measured reflected intensity, and then divide

the subtracted value by the ‘direct-beam’ measurement with

the same collimation. The incident angles and wavelengths of

the measurements are converted to more meaningful reci-

procal space Qz. The generation of error bars for the counts is

based on the fact that these are drawn from a Poisson distri-

bution, and instrumental angular and energy resolutions are

calculated on the basis of the collimation and optics (mono-

chromator) of the measurements.

Within the application, the process is treated as a series of

data transformations, with data flowing from one transfor-

mation module into the next. Corrections are chained together

in a data flow diagram (Sutherland, 1966), with the final data

set saved as the result of the reduction. This yields the

computer programs

J. Appl. Cryst. (2018). 51, 1500–1506 Brian Maranville et al. � reductus 1501

Figure 1
(a) Measured signal and background counts. Each color represents an
independent data file from our data acquisition system, plotted against
the instrument motor that controls the incident beam angle, which in this
case is ‘sample/angle_x’. The upper curves are the signal and the lower
curves are the background. (b) Data flow diagram, with the left boxes for
each node representing the input data and the right boxes representing
output. The experimentalist can select the signal, �background and slit
normalization for the load nodes, producing the reduced data as the
output from the divide node. (c) Reduced data in physical coordinates.



estimated reflectivity versus the momentum transfer, Qz (see

Fig. 1).

Users must first identify the data files that will be read as the

inputs of the ‘load’ modules at the left of the diagram; then

further individual modules may have control parameters, such

as a scale factor for a scaling module (needed if there is a beam

attenuator in one measurement but not in the others, for

example). The measured reflectivity is the output of the

‘divide’ module at the right, in physical coordinates with

instrument-specific details removed.

Other, more complicated setups are in common use for

measuring reflectivity, including polychromatic sources

(multiple incident energies), polarized-beam components etc.,

and correction modules are included for many of these cases

so that the user can construct a reduction pipeline that

matches their experimental setup.

2. Web interface

The user interface for reductus is a JavaScript application that

runs in a browser. The application relies on a number of

advanced JavaScript libraries, and as such it is supported only

by browsers that have reasonably standards-compliant

implementations of JavaScript (ECMAScript version �5).

The application is made up of these key components (see

Fig. 2):

(a) data source file browser

(b) plotting panel to show results

(c) panel for setting parameters for individual computation

modules

(d) visual, interactive data flow diagram

The components and user interactivity thereof are

described in the following subsections.

Once connected to the server, the web client requests a

listing of the public data stores, the available reduction steps

and a set of predefined template diagrams representing the

usual reduction procedures for the data. The menus and

default options are populated on the basis of this information.

2.1. Data flow diagram

The user interacts with the data flow diagram in order to

navigate the reduction chain: by clicking on a module within

the diagram to bring up the parameters panel for that module,

or by clicking on the input (left) or output (right) terminals to

display calculation results. Changes made in the parameters

panel are by default immediately applied to the active tem-

plate, though by un-checking the auto-accept parameters

box in the data menu an additional confirmation step

(pressing the ‘accept’ button in the panel) can be imposed to

avoid accidental changing of the active template. In that

context, if a user makes a parameter change but then selects a

different module without first pressing ‘accept’, that change is

lost.

The ‘clear’ button removes all values from the active

parameters; the client then repopulates the panel with default

values for each parameter.

The web client creates a JavaScript object notation (JSON)

representation of the data flow diagram along with an indi-

cator of the input or output of interest, and sends the request

to the server via HTTP POST. The response is a plottable

representation of the data for that connector encoded either

as JSON or MSGPACK (Furuhashi, 2013), which is then

displayed in the plotting panel.

Clicking on any output within the data flow diagram,

including the rightmost final output (‘Correct Footprint’ in

Fig. 2), will trigger a calculation of all ancestor results for that

result in the diagram on the server, as described in x4.1.1. So,

while the user has the option to inspect intermediate calcu-

lation steps, for a routine reduction they can simply click on

the final output to export the completely reduced data.

2.2. Parameters panel

At the beginning of a reduction, a user chooses an instru-

ment definition for working with the data. As described in

x4.1.1, this includes a list of data types and a list of reduction

steps (modules) to act on those data types. The rendering of

the parameters panel is based on the definition for the chosen

module type, using the predefined types for each input field to

the module function, mapping the simple known types (int,

float, bool etc.) to HTML form elements. Some field types

have renderers with enhanced interaction with the plot panel,

such as an index type, which allows clicking on data points to

add them to an index list in the parameters panel. Another

example of enhanced interactions is the scale type, which

enables dragging a whole data set on the plot to set the scaling

factor in the parameters panel.

When parameters are changed in this panel and committed

with ‘accept’, they will be used in any calculation of data

flowing through that module.

computer programs

1502 Brian Maranville et al. � reductus J. Appl. Cryst. (2018). 51, 1500–1506

Figure 2
reductus user interface panels: (top left) data source file browser, (top
center) plot of the data corresponding to the current module, (top right)
current module parameters and (bottom) interactive data flow diagram.



2.3. Browser caching of calculations

In addition to the caching provided on the server for

avoiding recalculation of identical results, a local browser

cache of calculations is provided. This is particularly useful for

the initial source data load, in which metadata from all of the

files in a source directory are passed to the client for inspec-

tion and sorting in the source file browser. Naturally in a data

reduction scheme, the quantity of data on the input side

(loaders) is much greater than the output result, so caching of

the inputs helps tremendously when making small adjustments

interactively to the data flow algorithm or parameters.

2.4. Sessions and persistence

The reductus server is stateless; the reduction diagrams

created by the user are not stored (a unique hash of the

template representation may be associated with cached

calculations on the server, but no user template is ever stored

there). The only state associated with a session is stored in the

browser or on the filesystem of the user’s computer.

2.4.1. Stashing in-browser. Results of calculations can be

‘stashed’ in the local persistent memory of the browser. A list

of these results can be recalled in the client and reused in two

ways: by reloading the entire calculation into the active data

flow panel, or by selecting multiple stashed results to directly

compare their outputs.

2.4.2. Saving to and loading from filesystem. In addition to

the local browser store, the user may download a text version

of the data flow diagram in JSON format with Menu !

Template ! Download, which can be reloaded with

Menu ! Template ! Upload. The file contains the

diagram along with any field values, including the names of the

input files. The actual data are not included.

The data for the currently selected node can be saved with

Menu! Data! Export. This prompts the user for a file-

name, then produces a tab-delimited column-format text file

with the data flow diagram prepended as a comment header.

The stored diagram allows a full reduction to be reloaded into

the client with Menu ! Data ! Reload ! Exported

(note that this may trigger recalculation if the raw data have

been updated since the reduction was exported).

As a result of security limitations built into all current

browsers, the data may only be saved to the user’s ‘Down-

loads’ folder, while uploads can of course originate from any

user-readable folder.

2.4.3. Sharing data among collaborators. The data flow

diagram is self-contained. The reduced-data text files

produced by the reductus system can be shared with others

easily by e-mail or portable media, and provide both useful

data and a recipe in the header for recreating the data from

known sources with known transformations; the chain of logic

can be inspected and verified by reloading the data flow into

the web client at any time, thus assuring data provenance. This

allows for easy collaboration amongst users without the need

for accounts or passwords.

3. Data flow diagram as a template for computation

3.1. Data types

The data set flowing between modules has a type associated

with it. In order to connect the output of one module to the

input of the next module, the type of the output parameter on

the first module must match the type of the input parameter

on the subsequent module. For each data type, there are

methods to store and load the data, to convert the data to

display form, and to export the data. The stored format should

be complete, so that reloading saved data returns an equiva-

lent data set. The displayed and exported forms might be a

subset of the total data.

3.2. Operations

By implementing the transformation modules in Python,

the instrument scientist has access to a large library of

numerical processing facilities based on NumPy and SciPy

(Oliphant, 2007) and, in particular, libraries which support

propagation of uncertainties (Lebigot, 2013). The reductus

library includes additional facilities for unit conversion, data

rebinning, interpolation and weighted least-squares solving as

well as its own simplified uncertainties package for handling

large data sets.

3.3. Bundles of inputs

It is often the case that many measurements need to be

combined, with the same computation steps applied to each

data file. Rather than defining a separate chain for each file,

reductus instead sends bundles of files between nodes. To

interpret the bundles, the module parameters are defined as

either single or multiple. If the primary input is single, then the

module action operates on each of the inputs separately; if

multiple, then all inputs are passed to the module action as a

single list. For example, if several measurements must be

scaled independently then joined together into a single data

set, the scale module input would be tagged as single, but the

join module input would be tagged multiple. The scale factor

would be tagged multiple, indicating a separate scale factor for

each input. Outputs can also be single or multiple. Unlike the

join module, which produces a single output from multiple

inputs, a split module would produce multiple outputs from a

single input. A module which rebalances data amongst inputs

(e.g. to correct for leakage between polarization states in a

polarized beam experiment) takes multiple inputs and

produces multiple outputs.

3.4. Instrument and module definition

An instrument is a set of data types and the computation

modules for working with them. A computation module has a

number of properties, including name, description, version,

module action and parameters. Each parameter has an ID, a

label, a type, a description, and some flags indicating whether

the parameter is optional or required, and if it is single or

multiple.

computer programs

J. Appl. Cryst. (2018). 51, 1500–1506 Brian Maranville et al. � reductus 1503



Input and output parameters use one of the data types

defined for the instrument. Control parameters can have a

variety of types, including simple integers, floats or strings, or

more complicated types such as indices into the data set or

coordinates on the graph, allowing some parameter values to

be set with mouse pointer interaction in the user interface.

3.5. Module interface definition

The module interface definition, including the input chan-

nels, the controlling parameters and the output channels, is

encoded in the model documentation. As a result, the docu-

mentation should remain consistent with the user interface to

the module. The stylized documentation starts with an over-

view of the module action. For each input, control and output

parameter it gives the data type and units and provides a short

description of the parameter which can be displayed as a tool

tip in the user interface. Inputs and control parameters are

distinguished by examining the action declaration; the posi-

tional parameters are inputs that can be wired to another

node’s output and the keyword parameters are control para-

meters. After the parameters, the module documentation

should define the author and version. The module name is set

to the name of the action function.

The module documentation is valid reStructuredText, which

means that the standard docutils toolset for Python (https://

pypi.org/project/docutils/) can be used to convert the docu-

mentation string to hypertext markup (HTML) or portable

document format (PDF). The conversion to HTML is

performed with Sphinx (http://www.sphinx-doc.org/), allowing

for the creation of an independent user manual for each

instrument; it is also done dynamically for each module for

display in the user interface. Embedded equations are

rendered in HTML using mathjax (https://www.mathjax.org/),

a TeX equation interpreter for JavaScript.

3.6. Serialization of the diagram

A data flow diagram is represented as a list of nodes

numbered from 0 to n, with each node having a computation

module, a label, an (x, y) position and values for the control

parameters of the computation module. The connections are

defined as a list of links, with each link having a source (node

number and output parameter name) and a target (node

number and input parameter name).

Every diagram can be used as a template, with the config-

uration values for the nodes packaged separately from the

diagram. The computation engine looks first in the config-

uration for control parameter values for the node, using the

value given in the diagram if a specific configuration value is

not found. If no value is provided in the configuration or in the

diagram then the default parameter value for the module is

used.

4. Back end

The back end is composed of two main pieces: a traditional

web (HTTP) server providing static resources including

HTML, JavaScript and cascading style sheet (CSS) source

code for the client application in the user’s browser, and a

computation engine that handles requests for reduction

calculations as remote procedure calls (RPC), as diagrammed

in Fig. 3. A pool of shared calculation engines is shown but is

only recommended for a production server, as a single engine

is sufficient for a single-user test environment. A shared disk-

backed computation cache is not required but is strongly

recommended for a responsive server, even in a single-user

environment (a per-instance non-persistent in-memory cache

is the fallback option.)

The Data Store in Fig. 3 is not part of the server but is an

HTTP-accessible source of raw data1 which is loaded as the

first step of a reduction. This arrangement makes it possible to

perform data reduction without handling the raw data files on

the client computer – the user can download just the reduced

data if they wish.

4.1. Computation server

The point of contact for the client is the web server, which

serves the static resources (HTML, JavaScript, CSS) as well as

being a proxy gateway to the calculation engines through the

Python web services gateway interface (WSGI).

4.1.1. Converting the diagram to computations. A data

flow diagram is a directed acyclic graph (DAG), with the

modules as the nodes in the graph and the connections from

outputs to inputs as the links between the nodes. No cycles are

allowed, which means that the output of a module cannot be

used to compute its own input. Every DAG has topological

order, so the nodes can be arranged linearly such that the

independent nodes appear first, and each dependent node

appears after all of its input nodes. By computing nodes in

topological order all inputs are guaranteed to be computed

before they are needed. Although there are linear time

algorithms for sorting a DAG, the diagram sizes for data

reduction are small enough that a naı̈ve Oðn2Þ algorithm can

be used.

computer programs

1504 Brian Maranville et al. � reductus J. Appl. Cryst. (2018). 51, 1500–1506

Figure 3
reductus system diagram. Upon receiving a request from the user
interface, the load balancer on the web server will find an available
Python thread to run the reduction diagram. The first step will be to fetch
the requested data files from the data source and save them in the Redis
cache. Intermediate calculations may also be cached allowing future
repeated requests to be returned immediately to the client, trading
efficiency against the size of the cache. As demand increases the different
parts can be run on different servers to spread the load.

1 For example, the NIST Center for Neutron Research (NCNR) data store is
located at https://dx.doi.org/10.18434/T4201B.



4.1.2. Results and source caching. The results of every

calculation request are cached on the server. There are several

choices in the configuration of the server but the default is to

use a Redis (Sanfilippo & Noordhuis, 2012) key-value store

with a least recently used expiry algorithm and a maximum

cache size. This can be started automatically as a system

service at startup on a Linux server, allowing worry-free

operation between server reboots.

The server cache is very important to the performance of

the service: the slowest part of many computations is

retrieving the source data files from the data repository to the

server. With caching, this typically will only happen once per

data file per experiment, and after that the server-local cached

version will be used. For data files, it is assumed that they can

be uniquely identified by their resource path (URL) and last-

modified time (accurate to a second because of the filesystem

mtime limitations). It is therefore fallible if the file is

rewritten in a time span of less than a second, but the data files

we are using are updated much more slowly than that.

Each calculation step is identified by a unique id, created by

hashing all of the input values along with the version number

of the code for the step itself. For inputs which are the result of

a previous calculation step, the hash of that step is used to

identify the input. Since the calculations on the same data

should give the same results each time, the results can be

cached using this key and retrieved for future calculation steps

or returned to the web client for display. If the calculation

parameters change (for example, the scale factor for a scaling

step), then the hash will change, and the step will be recal-

culated and cached with the new key. This will change the

input values for the subsequent step, which will change its

hash, which will cause it to be recalculated as well. In this way,

if there are changes to the source data (timestamp), all

reduction steps which depend upon the data will be updated.

By including the version number of each step in the cache,

changes to the server will automatically cause all future

reductions to be recomputed, even if they are already cached.

4.1.3. Data provenance and reproducibility. In a highly

interactive environment, where parameters, files and even

workflows can be modified and the results saved at any time, it

is important to have a record of the inputs as well as the results

(Simmhan et al., 2005). Therefore, the reduction template and

all its parameters are stored along with the reduced data in

each saved file. By loading a file into reductus the precise steps

required to reproduce the data become visible. The NCNR

data source is referenced through a digital object identifier

(DOI), with the implicit promise of a stable reference even if

the data are moved to a new URL, thus providing long-term

reproducibility of the reduction.

The server uses the current version of each reduction step

to evaluate the outputs. This effectively acts as a behind-the-

scenes update to all steps in the reduction process; any steps

that are newer will be recomputed, and the updated results

can be re-exported. This is particularly useful for reductions

performed during data acquisition. As newer measurements

are added the updated timestamp will force recomputation of

all subsequent steps.

In order to reproduce an existing reduction, the server

version at the time of the reduction must be used. The server

source is managed with the Git source control system

(Torvalds & Hamano, 2010), available on GitHub at https://

github.com/reductus/reductus. Git creates a unique hash of the

entire source tree for each commit which is stored as part of

the template. To reproduce the data from a specific reduction

this hash must be used to retrieve the source code and run it as

a local server. The specific versions of the dependencies

(SciPy, NumPy, uncertainties) can be recorded in the source

tree as well to protect against changing interfaces. Because

users can easily revert to older versions of the software,

developers are free to modify the code at will and maintain a

clean code base.

4.1.4. Statelessness. The computation engine maintains no

state. The user interface manages the interactions of the end

user with the engine and keeps a working copy of the active

data flow template(s); the browser session is the only real

context. This has distinct operational advantages for the

compute engine – it can be restarted at any time with close to

zero impact on the availability and continuity of the service.

The cache is persistent between engine restarts but can be

completely wiped if necessary without destroying user data

(performance will suffer temporarily as the calculations are re-

cached).

4.2. Server configurations

The system is designed to be modular, allowing a number of

possible configurations of the needed resources.

4.2.1. Simple single-computer configuration. The simplest

configuration is to run the web server, calculation nodes and

cache on the same computer. A server implementation using

the Python flask package is provided, which can simulta-

neously serve the static client resources and the RPC calcu-

lation requests. This server is suggested for use when running a

private reduction service.

A private server is required for processing data sets stored

locally; since the service is stateless, providing neither data

upload nor storage of reduction diagrams and reduced data,

there is no other way to reduce data that are not present in the

public data repositories.

Local file access is only enabled for servers running on the

private ‘localhost’ network interface. Such servers should not

allow external connections since access to local files is a

security risk.

Similarly, a private server is required for custom reduction

steps that are not part of the standard service since the stan-

dard service does not allow the execution of arbitrary Python

code. Users at facilities that do not allow external access to the

web will need to copy all the data files to a local machine and

reduce the data with a private server.

4.2.2. Container-based configuration. The service can be

run using a Linux container environment. This allows for

reproducible environments and eases development so that

new developers do not have to learn how to install of the

required packages for a modern web application. A recipe for

computer programs

J. Appl. Cryst. (2018). 51, 1500–1506 Brian Maranville et al. � reductus 1505



Docker (https://www.docker.com/) (the particular container

technology that we used) is provided in the source code for

running the application as three coordinated containers: one

for the web server, one for the Python calculation engine and

one for the Redis cache. The current snapshot of the source

code in the user’s directory is copied into the containers as

part of the build step, so this is a useful setup for development

and testing. The user need only install Docker and Docker

Compose. The supporting tools, including Python, Redis and

all dependent libraries, are pulled in by the Docker Compose

recipe. This greatly eases the ability of users to extend the

project and to test new features.

4.2.3. Scalable production server configuration. For

production (public facing) servers, the static files can be copied

from the /static subfolder of the source repository to a web

server such as Apache or nginx, where requests to the /RPC2

path are forwarded to a pool of Python calculation engines

[e.g. using uWSGI (https://uwsgi-docs.readthedocs.io/) to run

the calculations with Apache mod_uwsgi_proxy acting as

the load balancer], sharing a Redis instance for caching.

An elastic on-demand service could be built from these

components as well, with multiple (replicated) Redis caches

and no limit on the number of worker Python calculation

engines that can be employed by a high-availabilty web server

setup. The statelessness of the server means that no compli-

cated synchronization is required between server components.

5. Conclusions

The reductus system is an interesting experiment in providing

stateful web services with a stateless server. Although users

lose the convenience of cloud services for managing their data,

they are free from the inconvenience of maintaining yet

another user ID and password. Files can be stored and shared

using familiar tools such as e-mail. The server is easy to adapt

and install locally for the rare user that needs more than the

rigid set of functions and data sources provided in the remote

web service; this is no more complex than adapting and

installing the equivalent desktop application would be. For the

developer, the stateless server needs very little maintenance.

There are no database migrations needed and no backups

required, and moving the service to a different computer is as

simple as installing the software and redirecting the domain

name service (DNS) to an alternative IP. JavaScript provides a

flexible environment for interactive applications, with a rich

and growing ecosystem of libraries that work across most

browser platforms. The Python back end provides an

ecosystem for rapid development of numerical code. The web

services middleware gives us scalability with no additional

effort.

Making the data flow graph visible and modifiable increases

flexibility without increasing complexity. Users with simple

reduction problems can enter their data on the left of the

graph (see Fig. 2) and retrieve their results on the right,

ignoring all steps in between. If there are problems, they can

examine inputs and outputs at each step and identify the

cause. Although 85% of reduction is performed on-site during

the experiment, over 150 external users were able to access the

system from across the United States and Europe in 2017.

Without the need to install a local version of the software we

have far fewer support requests; now they only occur for

unusual data sets.

Feedback from the users has been overwhelmingly positive,

and the new system has completely supplanted our old

reduction software for the three neutron reflectometry

instruments at the NCNR, with work underway to adapt the

system to several new instrument classes at the facility.

Acknowledgements

We are grateful to Professor Robert Briber of the Department

of Materials Science and Engineering at the University of

Maryland for providing significant technical support and

operating the servers for early deployments of the reductus

service. The data flow display and editor, plotting routines, and

parameter-setting panels were implemented using the D3.js

visualization library (Bostock et al., 2011). The identification

of commercial products or services in this paper does not

imply recommendation or endorsement by the National

Institute of Standards and Technology, nor does it imply that

the equipment or service used is necessarily the best available

for the purpose.

Funding information

Significant contributions to the early code were made by

Brendan Rowan, Alex Yee, Ophir Lifshitz and Elakian

Kanakaraj as part of the NIST Summer High School Intern-

ship Program (SHIP) and Joseph Redmon as part of the

Summer Undergraduate Research Fellowship (SURF),

supported by NSF CHRNS grant DMR-1508249.

References

Abelès, F. (1950). J. Phys. Radium, 11, 307–309.
Born, M. & Wolf, E. (1959). Principles of Optics: Electromagnetic

Theory of Propagation, Interference and Diffaction of Light.
Oxford: Pergamon Press.

Bostock, M., Ogievetsky, V. & Heer, J. (2011). IEEE Trans.
Visualization Comput. Graph. 17, 2301–2309.

Furuhashi, S. (2013). MessagePack Specification, https://github.com/
msgpack/msgpack/blob/master/spec.md.

Lebigot, E. O. (2013). Uncertainties, http://pythonhosted.org/
uncertainties.

Oliphant, T. E. (2007). Comput. Sci. Eng. 9, 10–20.
Sanfilippo, S. & Noordhuis, P. (2012). Redis: The Definitive Guide:

Data Modeling, Caching, and Messaging. Sebastopol: O’Reilly and
Associates.

Simmhan, Y. L., Plale, B. & Gannon, D. (2005). SIGMOD Rec. 34, 31–
36.

Sutherland, W. R. (1966). PhD thesis, Massachusetts Institute of
Technology, Cambridge, MA, USA.

Torvalds, L. & Hamano, J. (2010). Git, http://git-scm.com.

computer programs

1506 Brian Maranville et al. � reductus J. Appl. Cryst. (2018). 51, 1500–1506

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=po5131&bbid=BB10

