
 1 Copyright © 2018 by ASME

Proceedings of the 2018 International Mechanical Engineering Congress and Exposition

IMECE2018

November 9-15, 2018, Pittsburgh, PA USA

IMECE2018-87686

VIRTUAL EXPERIMENTAL INVESTIGATION FOR

INDUSTRIAL ROBOTICS IN GAZEBO ENVIRONMENT

Murat Aksu
National Institute of Standards and Technology

Gaithersburg, Maryland USA

John L. Michaloski
National Institute of Standards and Technology

Gaithersburg, Maryland USA

 Frederick M. Proctor
National Institute of Standards and Technology

Gaithersburg, Maryland USA

ABSTRACT
Measuring the agility performance of the industrial robots

as they are performing in unstructured and dynamic

environments is a thought-provoking research topic. This paper

investigates the development of industrial robotic simulation

algorithms for the effective application of robots in those

changing environments. The distributed framework for this

investigation is the Robot Operating System (ROS) which is

extensively used in robotic applications. ROS-Industrial (ROS

I), which extends the capabilities of ROS to manufacturing,

allows us to interoperate between industrial robots, sensors,

communication buses and other kinds of automation tools.

Gazebo is used as the open-source 3D simulator to design a

virtual industrial robotic system, which is a prevailing tool as a

node in the ROS environment. An effort is underway to

replicate the in-house experimental robotic kitting lab with a

graphical physics simulation that can be shared worldwide. This

graphical physics simulation is not tied to a specific robotic

control system. An experimental approach will be presented

detailing the issues related to a physics based simulation of

kitting with multiple collaborative robots, multiple tools, parts,

tool changers, safety system, and sensors. In this realm, the

ability for the simulation environment to encompass the current

system as well as additional more complex sensors and

actuators will be discussed. To make this simulation

environment more realistic, Gaussian noise will be introduced

to the data generated by virtual sensors. We expect that this

experimental approach will be a seamless way for users to

verify and validate their control systems even if they do not

have a physical robot at their facilities.

INTRODUCTION
Industrial robots have traditionally been applied to

automate tasks that are dirty, dull, or dangerous, and have been

a key driver of continued productivity growth in high-volume

applications such as automotive and electronics manufacturing.

Worldwide, there were about 1.8 million installed industrial

robots at the end of 2016, with a 10 % annual growth rate since

2010 [1]. In these high-volume applications, long up-front

programming times are acceptable. However, as manufacturing

requires more flexibility to support quickly changing product

requirements in a high-mix, low-volume environment, robots

need to become more agile. Agility in this context refers to the

ability of a robot to be rapidly re-tasked for new activities

without being taken offline for programming, the ability of a

robot to recover from errors or uncertainty in the environment,

and the ability to move applications between robots from

different vendors without the need for program translation.

We have focused on how to represent the knowledge

needed to achieve robot agility, the system architecture and

component integration, planning, sensing and control, and how

to measure the agility performance of robotic systems [2]. In

support of this work, we have relied on simulation as a tool for

the development of robotics systems to find ways to make

better-informed decisions. In our laboratory, simulation allows

tests to be run without contending for scarce time on physical

robots, and to conduct tests safely without risk to damaging

robots and tooling or injuring people. Simulation has also been

used as the basis for competitions on robot agility, enabling

competitors to practice at their facilities and compete in a

controlled and instrumented environment. These simulations

have used the Gazebo physics-based simulation package [3],

 2 Copyright © 2018 by ASME

supplemented with the Robot Operating System (ROS) open-

source framework for robot control [4].

There are several reported works aimed at simulation and

robot control which are based on Gazebo and ROS. Aguero et

al. [5] presented a Gazebo simulation platform for a cloud-

hosted humanoid robot simulation with a wide range of sensors,

controllers, and actuators to address the challenge of real-time

task-oriented rescue robot competition for the Defense

Advanced Research Projects Agency (DARPA) Virtual

Robotics Challenge (VRC), and showed that simplified

dynamics while maintaining sufficient accuracy is feasible.

Swanson et al. [6] studied a Hardware-in-the-Loop (HIL)

driving simulator that served as a training platform for driving

performance, and presented a driver-in-the-loop simulation

environment in which the driver and vehicle hardware

components interacted with each other using ROS and Gazebo.

The authors emphasized the effect of computer processor

choices on decreasing the latency in the simulator and

increasing the system fidelity. Fernandes et al. [7] analyzed the

simulation of autonomous control of a robotic car using ROS

and Gazebo, a research challenge of the Brazilian National

Institute of Science and Technology on Embedded Critical

Systems (INCT-SEC); however, very little information was

provided on the driving simulation environment itself. Qian et

al. [8] investigated the simulation of a robotic arm for

manipulating objects by building a model of a pick-and-place

robot with seven degrees of freedom, and demonstrated

methods to implement robot control in a short period of time

using ROS and Gazebo.

Unlike the research reported here, most of the simulation

studies in the literature deal with non-industrial robotics

applications. Some of the novel contributions presented in our

research are a standard for sending commands and receiving

status between an industrial robot and controller, a method of

providing noisy sensor information to the object recognition

system in our laboratory, and an overall effort to replicate the

entire NIST agility laboratory with physics-based simulation to

make it available to external collaborators allowing them to test

their algorithms worldwide. The following sections will provide

some background in the research, and describe how physics-

based simulation of system components has helped in the

research efforts.

Knowledge Representation
To help automate the planning of robot activities, a model

of the robot’s attributes, capabilities, and environment is

needed. IEEE 1872, the Core Ontology for Robotics and

Automation (CORA), is a standard for representing this

information [9]. CORA provides definitions for general

concepts for robotics, to support automated reasoning about

robot activities, and as the basis for exchanging information

about robotics.

Supplementing CORA, the authors have developed a

messaging language for sending commands to robots and

receiving real-time status from them. This messaging language,

the Canonical Robot Command Language (CRCL) [10], is an

eXtensible Markup Language (XML) Schema Definition (XSD)

for information used to integrate and task robots independent of

their internal programming language. Command message

content includes:

• setting units, speeds, accelerations, and tolerances,

• setting robot parameters,

• performing Cartesian motions,

• performing joint-level motions,

• operating an end effector,

• configuring status reports,

• getting a status report immediately,

• displaying messages, and

• pausing or stopping motion.

Planning
A hallmark of agile robot systems is their ability to

automatically plan and replan their activities in a dynamic and

changing environment. To test this ability, the authors have used

the Planning Domain Definition Language (PDDL) [11] as a

source for specifying planning test inputs and results. PDDL is a

language for encoding information needed for general planning

problems, such as vehicle routing [11] and robot assembly [12].

Planners that use PDDL refer to models of objects, predicates

about objects that can be true or false, the initial state and goal

state of the world, and actions that are available to move objects

and transform the initial state of the world to its desired goal

state. These are placed into a domain file (for predicates and

actions), and a problem file (for objects and world states).

Given these files, a PDDL planner generates a series of actions

to solve the planning problem. PDDL thus provides a standard

way to measure the performance of planning algorithms in

terms of time taken, memory used, quality of plan, or other

metrics.

Figure 1 shows an excerpt from a PDDL domain file for a

kitting application. The :types are tags for the resources

referenced by the problem specification and the resulting plan

file. The :predicates identify tags for resources whose

state will be queried when evaluating the predicates. Predicate

definitions are not shown, but are essentially lists of conditions

to be evaluated by the application that executes the plan.

(define (domain kitting-domain)

 (:types

 EndEffector

 EndEffectorChangingStation

 EndEffectorHolder

 Kit

 KitTray

 LargeBoxWithEmptyKitTrays

 LargeBoxWithKits

 Part

 PartsTray

 Robot

 StockKeepingUnit

 WorkTable)

(:predicates

 ; part is held by endeffector

 (part-has-physicalLocation-refObject-endEffector

 3 Copyright © 2018 by ASME

 ?part - Part ?endeffector - EndEffector)

 ; parts tray contains part

 (partsVessel-has-part ?partstray – PartsTray

 ?part - Part) ...)

Figure 1. Sample PDDL domain for a robotic kitting application.

Figure 2 shows an excerpt from a PDDL problem file that

is to be solved by a planner, to take the kitting application from

a stating initial state :init to ending goal state :goal. The

planner’s objective is to determine a series of actions that take

the system from the initial state to the final state as efficiently as

possible.

(define (problem kitting-problem)

 (:domain kitting-domain)

 (:objects

 robot_1 – Robot ...)

 (:init

 (endEffectorHolder-has-endEffector

tray_gripper_holder part_gripper)

 (partsVessel-has-part part_small_gear_tray

small_gear_1) ...)

 (:goal (and

 (= (final-quantity-of-parts-in-kit kit_s2b2) 4)

 (= (quantity-of-parts-in-kit

 sku_part_small_gear kit_s2b2)

 (capacity-of-parts-in-kit

 sku_part_small_gear kit_s2b2)))))

Figure 2. Sample PDDL domain for a robotic kitting application.

Figure 3 is a sample plan showing actions for locating,

picking, and placing a part in one step of an overall larger plan

for kitting.

(look-for-part robot_1 large_gear_1

 sku_part_large_gear kit_s2b2 part_gripper)

(set-grasp robot_1 large_gear_1

 sku_part_large_gear part_gripper)

(take-part robot_1 large_gear_1 sku_part_large_gear

 part_large_gear_tray part_gripper kit_s2b2)

(look-for-slot robot_1 large_gear_1

 sku_part_large_gear kit_s2b2 part_gripper)

(place-part robot_1 large_gear_1 sku_part_large_gear

 kit_s2b2 part_gripper work_table_1

 part_medium_gear_tray)

Figure 3. Sample PDDL plan.

As noted by Mösenlechner and Beetz [13], the logical

PDDL model of actions that trigger known changes in state is

not well suited to autonomous robot systems, where the

outcome of actions may not be predictable. Another problem is

that the high-level nature of PDDL states for the initial

conditions, goal conditions, preconditions, and postconditions

do not incorporate finer-grained detail whose slight variation

could lead to different choices of actions. As described in the

next section, the first shortcoming of PDDL has been overcome

by incorporating continuous replanning when actions do not

result in the predicted outcome. The second shortcoming has

been addressed to by choosing actions with parameters at a

level of resolution low enough be adjusted through real-time

sensor feedback from vision.

System Architecture
Work supporting CORA and CRCL has taken place in the

Agility Performance of Robotics System (APRS) laboratory at

the National Institute of Standards and Technology (NIST) [2].

The lab contains two industrial robots, a Fanuc LR-Mate 200iD

and a Motoman SIA20F. The robots share tooling for

open-and-close gripping and vacuum gripping. The primary

application is kitting, where parts are moved from their initial

location in storage trays to a final target arrangement in kit

trays. Overhead cameras in the work volume are used to

determine the location of parts, storage trays, and kit trays. This

laboratory is shown in Figure 4.

Figure 4. APRS Laboratory Workcell.

Figure 5 shows the APRS system architecture. The purpose

of the system is to put together kits of parts based on a request

composed by the operator, shown at the top of the figure. The

resulting PDDL goal is a set of kits and their contents of parts.

This goal is sent to the PDDL planner, which consults the

definitions of actions, preconditions, and postconditions in the

kitting problem domain and determines a feasible sequence of

actions that achieve the kitting goal. These actions are sent to

the PDDL executor, which fills in actual values for part and kit

locations based on the current state in the world model

database. This database is continually updated with the

locations of parts as measured by the object recognition system.

After the actions are instantiated, the resulting CRCL program

is sent to the CRCL client for execution. This client steps

through the program, sending messages to the robots and

grippers and monitoring execution status until the program has

completed. Any failures are reported by the client, which

triggers replanning if possible until the kitting request is

fulfilled, or stopped due to unrecoverable problems.

 4 Copyright © 2018 by ASME

Figure 5. System Architecture.

Measuring Agility
To advance the state of robot agility, a series of

competitions was organized that measure the effectiveness of

planning systems to rapidly re-task robots without the need for

human intervention. Such tasking includes the ability of robots

to recover from errors such as dropped parts, the ability of

perception systems to identify problems, and the ability of

manipulation systems to reposition objects for better error

recovery. The Agile Robotics for Industrial Automation

Competition (ARIAC) is sponsored by NIST in collaboration

with the Open Source Robotics Foundation (OSRF), developers

of the Robot Operating System (ROS) [4] and the Gazebo

physics-based simulation environment.

Competitions are organized around a kitting application,

where robots are given the task to move objects from a set of

trays to a goal kit. Virtual sensors for determining object

locations include cameras, beam break detectors, laser range

scanners, and laser line curtains. Teams are given the flexibility

to choose which sensors to use. Costs are associated with the

sensors selected and factored into the scoring metrics.

THIS RESEARCH
The goal of this research is to use a physics-based

simulation to stand in for the APRS laboratory environment,

and use the uncertainty in part location and activity completion

to test the ability of the planning system to recover from

failures. The intent of the simulation is to provide the following

enhancements:

• the ability to test strategies for sensor-based recovery from

errors in a repeatable environment;

• enabling hybrid real-virtual operation, where one real robot

and camera and one simulated robot and camera can be

used simultaneously;

• and to provide additional implementations of CRCL-

conforming robots to validate this specification.

Gazebo was selected as the simulation environment [3].

Gazebo provides realistic visual rendering of physical scenes,

linked to one of a set of configurable physics engines that

update the state of objects in the simulated world according to

physics principles such as friction, inertia, and gravity.

Figure 6 shows a Gazebo visualization of the physics-based

simulation of a kitting activity used in the ARIAC competition.

Figure 6. Gazebo Simulation of Robot Kitting in the ARIAC Competition.

Simulating the APRS Environment
The NIST agility kitting robot control laboratory was

ported to a physics-based simulation environment. Simulation

can be kinematic or physics-based. Kinematic simulation uses

visualization of the sequence of operations to verify correctness.

Physics-based simulation models the physical elements’

interactions and collisions and the effects of physical properties

such as gravity, friction, and inertia. The intent of physics-based

simulation is to study control and sensing, reveal inaccuracies,

and verify correctness. For example, placing of a “gear” into a

slot holder in a visualization could overlay two images at the

bottom of the slot (the gear and holder) without repercussions.

However, in the case of physics-based simulation, the gear

would “bounce” out of the slot as it is physically impossible for

a solid object to atomically combine with another solid object.

Figure 7 shows the Gazebo physics-based simulation of the

agility lab. The simulation modeling includes the two robots,

the agility lab physical space, which consists of the tables, the

walls, and finally the gear, kitting, and tray objects. The two

overhead vision cameras and enclosing safety system are not

visualized in the simulation; however, the camera images are

simulated by a Gazebo plugin that can be used to test the actual

robot planning and control system. Robotiq two-finger gripper

models available on the Internet were used, saving the effort of

 5 Copyright © 2018 by ASME

modeling the custom 3D-printed fingers used in the lab.

Grippers and the robot base location are handled in a kinematic

ring (discussed later), which makes substitution of different

grippers and relocation of the robots in the agility lab done with

a different transform.

Figure 7. Agility Lab Physics-Based Simulation

Modeled objects in the simulation environment.
The Gazebo physics-based simulation relies on either

Gazebo Simulation Description Format (SDF) or ROS

Universal Robotic Description Format (URDF) to model robots

and other world elements. Both SDF and URDF are XML file

formats that describe objects and environments for robot

simulators, visualization, and control [14, 15]. Both URDF and

SDF include mechanisms to describe links, joints, kinematic

chain relationships, the limits and capabilities of the joints,

obstacle volume of a link, and a visual representation of each

link. SDF includes mechanisms to describe physical elements

such as mass, inertial frame, gravity interaction, among a

multitude of physics descriptors. Often, ROS URDF was

converted into Gazebo SDF format. Thus, in the physics-based

agility simulation, the robot and gripper, the kitting objects, and

the agility lab were defined with either SDF or URDF.

For example, the agility simulation includes gears, holders,

and kits that were originally modeled for 3D printing, but the

Computer Aided Design models were translated into STL

format (i.e., stereolithography), and modified to satisfy the

Gazebo world (for example, adding mass and inertial frames

while adjusting the origin coordinate frame).

Robot Control
The agility robot control application domain is multi-axis,

coordinated motion control. In addition, process control is

necessary to handle input/output, and auxiliary equipment.

Representative robot controller applications include

manipulation, assembly, and collaboration.

The robot controller software modules include: (1) Joint

control, which performs servo control of axis motion by

transforming incoming motion goal points into set-points for the

corresponding actuators, (2) Cartesian motion planning, which

coordinates the motions of an individual joint by transforming

an incoming motion segment specification into a sequence of

equi-time-spaced setpoints for the coordinated axes, and (3)

Task Coordinator modules, which sequence operations and

coordinate the various motion, sensing, and event-driven

control processes. Overall, the robot control architecture was

based on open-source components. Its source code is available

for public use.

The inverse and forward kinematics use OpenRAVE IKFast

software to solve the forward and inverse kinematics [16]. In

general, IKFast can analyze the robot kinematics, solve the

kinematics equations, and write the solution to a C++ file.

Because the NIST agility robot motion control relies on

Cartesian based straight-line motion and assumes a collision-

free industrial environment, trajectory planning is done with

“Gotraj” [17]. Gotraj computes a smooth trajectory based on

either time or dynamical properties (velocity, acceleration, and

jerk). Gotraj assumes a final velocity of zero. Users can append

poses onto the Gotraj motion queue that will result in additional

trajectories. Gotraj supports a “stop” motion directive that will

generate a trajectory which will stop as soon as possible given

the motion dynamical properties (velocity, acceleration, and

jerk).

Another common robotic concept that was required to

handle different robots, grippers, and robot locations within the

simulation world was the kinematic ring. Thus, any CRCL

commanded robot Cartesian motion in world coordinates is then

expressed in terms of kinematic ring made up of a series of

homogeneous matrix transforms from the base robot frame,

including the robot transformation, and robot gripper transform.

With this mechanism, it was easy to shift between world and

robot coordinate frames. This is important as although the robot

and kitting objects are modeled precisely, the location of the

robot base and the gripper tooling can vary, and kinematic rings

offer a convenient scheme for resolving the variances.

Integration with CRCL. At NIST, kitting commands to

the robot(s) are expressed in CRCL, which is a messaging

language for controlling a robot that is executed by a low-level

device robot controller. CRCL is an abstraction of the robot

control capabilities that is fully defined in an XML schema.

CRCL contains the ability to command robot joint, Cartesian

position and gripper control. In addition, CRCL supports status

streaming or service requested communication patterns. CRCL

uses XML messages for communication, which typically uses a

stream based Transmission Control Protocol (TCP) socket to

communicate the XML.

 6 Copyright © 2018 by ASME

roscore

Kitting
Application

Nistcrcl
ROS

package

NIST
Robot Control

CRCL status

CRCL cmd ROS cmd

ROS status

OSRF
Gazebo

Gz Joint

Gz Model

Gz PluginsCRCL XML

Figure 8. ROS Nistcrcl Package Architecture.

Figure 8 shows the ROS Nistcrcl package architecture used

to handle CRCL communication in the physics-based robot

agility simulation. The ROS Nistcrcl package is a ROS node

that was developed to listen and broadcast CRCL XML

command and status messages, while translating CRCL from/to

ROS representation and communication ideology. The Nistcrcl

ROS package uses several open-source software technologies to

adapt CRCL into ROS. The CodeSynthesis XSD tool generates

a C++ object model from XSD that is used to parse and

serialize CRCL XML. CodeSynthesis relies on the Xerces XML

parser. The Boost C++ library Asynchronous IO (Asio) was

used to handle socket command and status communication with

the CRCL client. The ROS message infrastructure (based on the

Google protobuf open source communication scheme) was used

to build “custom” ROS topics that encapsulated CRCL

functionality. Two ROS custom messages were developed - one

for CRCL command messages and one for CRCL status

messages.

Gripping objects. In general, an end effector is the

device at the end of a robotic arm, meant to interact with the

environment. Kitting is concerned with grasping objects and

relocating the objects. This can be done with a vacuum gripper,

or a gripper with two or more fingers. We are interested in the

case of using grippers to achieve object manipulation (i.e.,

grasping and releasing).

One gripper used for simulation was the Robotiq's 2-Finger

Adaptive Robot Gripper. An open source ROS URDF

description existed to describe the kinematics and visualization,

which simplified implementation.

Another gripper used in the simulation was the NIST in-

house 3D printed parallel jaw gripper. Grasping objects

highlights the difficulty of physically modeling gripper and

grasped object interaction, because explicit enumeration of

friction, collision, and other dynamical behavior elements play

an important role in grasp control. By comparison, in the real

world, grasping generally ignores the interaction of the

underlying physics.

Calibration
The APRS has four coordinate systems: the Fanuc and

Motoman robots, and the two cameras located above their work

volumes.

Calibration of camera coordinates to robot coordinates is

done following a four-point registration procedure:

1. A marker object (e.g., a gear) is placed at a location in

the work volume of one of the robots.

2. The object detection system’s coordinates for the center

of the marker object are recorded.

3. An operator guides the robot to the center of the marker

object, and the robot controller’s coordinates of this point are

recorded.

4. This procedure is repeated for a total of four locations,

placed near the corners of the work volume.

5. Offset transformations from object detection system

coordinates to robot coordinates are computed at each of the

four locations.

These offset transformations are determined only

occasionally, when the robots or cameras are repositioned.

Table 1 shows the results of four-point registration for the

Motoman robot.

Table 1. Calibration Offsets from Object Recognition System to Motoman

Robot.

X (mm) Y (mm) X offset (mm) Y offset (mm)

535.9 157.7 0.0 5.0

723.1 -400.3 -9.0 -7.0

523.8 -106.7 -4.0 0.0

747.3 155.4 5.0 0.0

During operation, object locations from the object

detection system are interpolated between these four

registration transforms, resulting in a location of the object in

robot coordinates. This interpolation is done by weighting each

of the contributions of the registration points by their inverse

distance to the point whose offsets are to be interpolated,

normalized by the sum of the inverse distances. The

problematic infinities for the values of the inverse distances at

the registration points themselves are avoided by algebraically

changing the formula to that in Eqn. (1):

 (1)

where δp is the interpolated offset, the set of δi are the offsets at

the n registration points, and set of dj are the distances from the

point to be interpolated to each of the registration points. This

equation works for offset translation vectors as well as offset

orientations, when orientations are represented as rotation

vectors.

The four-point registration procedure is also used to

determine the transformation between the Fanuc and Motoman

robot coordinate systems. Using this procedure, a best-fit

transform is computed following Horn’s solution to the absolute

orientation problem [18].

Inverse error compensation. It is desirable for the

simulated behavior to match the real-world behavior, so that the

four-point registration procedure need not be repeated in

simulation and consequently require the control system to

 7 Copyright © 2018 by ASME

switch between real and simulated operation. Therefore, the

simulated object detection system needs to adjust its output with

the inverse of the interpolated transform. Figure 9 shows a map

of the magnitude of the compensating error throughout a region

bounded roughly by the registration points.

Figure 9. Inverse Error Compensation

The inverses of these positional compensation errors will

be applied to the reporting of simulated object locations, as

detailed in the following sections.

Object Recognition and Reporting
There are two methods for recognizing objects: ground

truth with noise, and camera image generation with noise. For

the first method, the computer vision system is not used, and its

output (object locations) is simulated directly. For the second

method, synthetic camera images are produced from the

simulation, and fed to the computer vision system instead of

images from real cameras. The goal of the simulation is to be

able to provide realistic object data streams to the CRCL

executor, without reconfiguring the executor based on whether

real or simulated sensor data is used. Figure 10 shows view of

the objects in the real object detection system.

Figure 10. Objects Appearing in the Object Detection System.

The output characteristics of the object recognition system

were first determined based on a test of its measurements of a

single object. Figure 11 shows a plot of the X-Y positions of

1487 measurements of the position of a single object by the

object recognition system. The figure shows clustering of points

and does not suggest any well-known underlying distribution.

For the purposes of simulating randomness consistent with the

variation shown, a normal distribution was fit to the data, with a

mean and standard deviation of µ = 416.65 mm and σ = 0.28

mm for X, and µ = 342.50 mm and σ = 0.33 mm for Y. The

following sections describe how the simulation was developed

so that it produces sensor data consistent with that produced by

the actual sensing system.

Ground truth with noise. Gazebo provides the true

locations of all objects in the world through a ROS topic

updated at the simulation frequency, measured to be about 2

milliseconds. These ideal locations of the gears, kits, and trays

are fed into an application that adjusts the poses of each object

with noise representative of that measured by the real object

detection system.

Figure 11. X-Y Location Variance from Object Recognition System, Real and

Simulated. Left Images Are Real, Right Images Simulated.

The noise-adding application was customized so that it

replicates the clustering exhibited by the real object detection

system. For each of the X and Y distributions shown in Figure

11, three normal distributions were composed with means,

standard deviations, and relative contributions that

approximated the clusters. This empirical customization, while

not perfect, replicates the behavior of the system to a degree

that is visible to the CRCL executor and has the same

qualitative influence.

Camera image generation with noise. With this

method, the existing object recognition is used, and synthetic

camera images are provided to it as if they originated from

 8 Copyright © 2018 by ASME

actual cameras. Gazebo is equipped with a camera sensor

plugin which publishes images on a ROS topic. The overhead

physical camera was emulated by introducing noise to the data

streams generated by the virtual camera to help making the

synthetic camera images more realistic because the Gazebo

camera sensor model views the virtual world flawlessly. Gazebo

also provides a sensor noise model which can add Gaussian

noise parameters to the virtual camera sensor [19]. To achieve

the goal of making our world experiment closer to the realistic

environment, we implemented these Gaussian noise parameters

and used three different values for noise standard deviation: σ =

0.007, 0.09 and 0.3.

Figure 12 shows images retrieved from the sensor with

varying levels of Gaussian noise. The image on the left depicts

standard deviation of σ = 0.003. In the central image, the virtual

camera has standard deviation of σ = 0.03, which illustrates

moderate level of noise. Finally, the image on the right

represents the virtual camera with σ = 0.3 standard deviation,

which shows high level of noise. A value of σ = 0.007 is

considered to be reasonable for a decent digital camera [20].

Figure 12. Image Data of the Virtual Camera Sensor with Low (on the left),

Moderate (in the center), and High Level of Noise (on the right).

Sets of 1634 sequences of each of these three noisy camera

streams were input to the object recognition system, which

calculated three lists of the X-Y points. These are shown in

Figure 13. Like Figure 11, these data showed normal-like

distributions of the X and Y values, although the simulated

images were much closer to a normal distribution and did not

exhibit the clustering shown from real camera images. To more

accurately replicate this clustering, the Gazebo noise model

must be extended with a plug-in that allows for arbitrary

customization, as noted in the description of future work in the

concluding section.

Figure 13. X-Y locations from the object recognition system for high (red),

medium (green), and low (red) levels of simulated camera noise.

RESULTS AND CONCLUSIONS
This paper describes how the Gazebo physics-based

simulation was applied to model the environment, objects, and

robots in a laboratory used to measure the agility performance

of robot systems. Simulation is an effective means that allows

researchers to test their systems without tying up the actual

robots, relieving the pressure on scarce resources and enabling

safer and more repeatable testing. The goal was to replicate the

noisy behavior of the real world in simulation, so that

compensations and calibrations already built into the real

planning and control system would function without

modification. This necessitated performing effectively the

inverses of the compensations and calibrations within the

simulation. These apply to both the locations of the objects to

be manipulated, and the poses of the simulated robots. Two

methods of object pose adjustments were implemented, one that

bypassed the object detection system and simply applied a noisy

transform to the ideal poses, and one that included the object

detection system and provided it with noisy camera images.

Testing validated that the approaches achieved the intent, but

could be improved with better registration of the simulated

world with the physical world.

Toward the objective of testing strategies for sensor-based

recovery from errors in a repeatable environment, the

simulation is set up to allow either scripted configuration of

initial testing conditions, or interactive placement of objects and

robot starting locations. The integration of ROS with Gazebo

allows for the timestamped logging of simulation states that can

be compared between tests. Enabling hybrid real-virtual

operation was achieved with minimal impact on the workcell

configuration. CRCL interfaces and object detection reporting

from the simulation followed the real robot protocols, with the

selection of the real or virtual targets localized in a controller

configuration that can be changed while the system is running.

Another enhancement arose from the need to build a CRCL

interface onto the Cartesian motion planner used with Gazebo.

 9 Copyright © 2018 by ASME

This provided another validation test of CRCL and its

command-state protocol. While no changes to the CRCL XSD

were required, the additional independent testing pointing to

some assumptions on how to start and stop motions between

pick-and-place activities, which were clarified in the

documentation.

The overall research contribution is the use of simulation to

supplement validation testing of a standard for knowledge

representation of industrial robot tasks, CRCL. The use of

simulation allows for more repeatable testing, enabled by the

world model state inspection and logging features of Gazebo

and ROS. A unique aspect of the research is the dual method of

providing noisy sensor information to the object recognition

system, using both noisy camera images and noisy object states,

that attempt to match the clustering effects shown by the real

system.

Future work includes doing better registration, including

more capabilities of the real testbed such as shared tooling and

vacuum gripping, and building simulated cameras that better

match the actual cameras used. Ultimately, the simulation will

be made available to external collaborators, such as those

participating in the ARIAC challenges, to allow them to test

their algorithms prior to running on the actual hardware in the

APRS.

Disclaimer: Certain commercial/open source software,

hardware, and tools are identified in this paper to explain our

research. Such identification does not imply recommendation or

endorsement by the authors or NIST, nor does it imply that

items identified are necessarily the best available for the

purpose.

REFERENCES
1. International Federation of Robotics, Executive Summary:

World Robotics 2017 Industrial Robots. 2018: ifr.org.

2. Kootbally, Z., et al., Enabling robot agility in

manufacturing kitting applications. Integrated Computer-

Aided Engineering, 2018(Preprint): p. 1-20.

3. Koenig, N. and A. Howard. Design and use paradigms for

Gazebo, an open-source multi-robot simulator. in

Intelligent Robots and Systems, 2004.(IROS 2004).

Proceedings. 2004 IEEE/RSJ International Conference on.

2004. IEEE.

4. Martinez, A. and E. Fernández, Learning ROS for robotics

programming. 2013: Packt Publishing Ltd.

5. Agüero, C.E., et al., Inside the virtual robotics challenge:

Simulating real-time robotic disaster response. IEEE

Transactions on Automation Science and Engineering,

2015. 12(2): p. 494-506.

6. Swanson, K.S., et al. Extending driving simulator

capabilities toward hardware-in-the-loop testbeds and

remote vehicle interfaces. in Intelligent Vehicles

Symposium Workshops (IV Workshops), 2013 IEEE. 2013.

IEEE.

7. Fernandes, L.C., et al. Intelligent robotic car for

autonomous navigation: Platform and system architecture.

in Critical Embedded Systems (CBSEC), 2012 Second

Brazilian Conference on. 2012. IEEE.

8. Qian, W., et al. Manipulation task simulation using ROS

and Gazebo. in Robotics and Biomimetics (ROBIO), 2014

IEEE International Conference on. 2014. IEEE.

9. Schlenoff, C., et al. An IEEE standard ontology for

robotics and automation. in Intelligent Robots and Systems

(IROS), 2012 IEEE/RSJ International Conference on.

2012. IEEE.

10. Proctor, F., et al., The Canonical Robot Command

Language (CRCL). Industrial Robot: An International

Journal, 2016. 43(5): p. 495-502.

11. Fox, M. and D. Long, PDDL2. 1: An extension to PDDL

for expressing temporal planning domains. Journal of

artificial intelligence research, 2003.

12. Guimarães, W.H.P., et al., Analysis of automated planning

applied to an assembly and disassembly robot system.

2013.

13. Mösenlechner, L. and M. Beetz. Using Physics-and

Sensor-based Simulation for High-Fidelity Temporal

Projection of Realistic Robot Behavior. in ICAPS. 2009.

14. Meeussen, W., J. Hsu, and R. Diankov, URDF-Unified

Robot Description Format.

15. OSRF. SDF. 2014 [cited 2018 April 18]; Available from:

http://sdformat.org/spec.

16. Diankov, R., Openrave, ik fast module, openrave

documentation. 2016.

17. Proctor, F. go motion. [cited 2018 April 18]; Available

from: https://github.com/frederickproctor/gomotion.

18. Horn, B.K., Closed-form solution of absolute orientation

using unit quaternions. JOSA A, 1987. 4(4): p. 629-642.

19. Newman, W.S., A systematic approach to learning robot

programming with ROS. 2017, Boca Raton: Chapman &

Hall/CRC ©2017. 530 pages.

20. OSRF. Sensor Noise Model. 2014 [cited 2018 April 24];

Available from:

http://gazebosim.org/tutorials?tut=sensor_noise&cat=senso

rs.

http://sdformat.org/spec
https://github.com/frederickproctor/gomotion
http://gazebosim.org/tutorials?tut=sensor_noise&cat=sensors
http://gazebosim.org/tutorials?tut=sensor_noise&cat=sensors

