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ABSTRACT 
Measuring the agility performance of the industrial robots 

as they are performing in unstructured and dynamic 

environments is a thought-provoking research topic. This paper 

investigates the development of industrial robotic simulation 

algorithms for the effective application of robots in those 

changing environments. The distributed framework for this 

investigation is the Robot Operating System (ROS) which is 

extensively used in robotic applications. ROS-Industrial (ROS 

I), which extends the capabilities of ROS to manufacturing, 

allows us to interoperate between industrial robots, sensors, 

communication buses and other kinds of automation tools. 

Gazebo is used as the open-source 3D simulator to design a 

virtual industrial robotic system, which is a prevailing tool as a 

node in the ROS environment. An effort is underway to 

replicate the in-house experimental robotic kitting lab with a 

graphical physics simulation that can be shared worldwide. This 

graphical physics simulation is not tied to a specific robotic 

control system. An experimental approach will be presented 

detailing the issues related to a physics based simulation of 

kitting with multiple collaborative robots, multiple tools, parts, 

tool changers, safety system, and sensors. In this realm, the 

ability for the simulation environment to encompass the current 

system as well as additional more complex sensors and 

actuators will be discussed. To make this simulation 

environment more realistic, Gaussian noise will be introduced 

to the data generated by virtual sensors. We expect that this 

experimental approach will be a seamless way for users to 

verify and validate their control systems even if they do not 

have a physical robot at their facilities.  

INTRODUCTION 
Industrial robots have traditionally been applied to 

automate tasks that are dirty, dull, or dangerous, and have been 

a key driver of continued productivity growth in high-volume 

applications such as automotive and electronics manufacturing. 

Worldwide, there were about 1.8 million installed industrial 

robots at the end of 2016, with a 10 % annual growth rate since 

2010 [1]. In these high-volume applications, long up-front 

programming times are acceptable. However, as manufacturing 

requires more flexibility to support quickly changing product 

requirements in a high-mix, low-volume environment, robots 

need to become more agile. Agility in this context refers to the 

ability of a robot to be rapidly re-tasked for new activities 

without being taken offline for programming, the ability of a 

robot to recover from errors or uncertainty in the environment, 

and the ability to move applications between robots from 

different vendors without the need for program translation.  

We have focused on how to represent the knowledge 

needed to achieve robot agility, the system architecture and 

component integration, planning, sensing and control, and how 

to measure the agility performance of robotic systems [2]. In 

support of this work, we have relied on simulation as a tool for 

the development of robotics systems to find ways to make 

better-informed decisions. In our laboratory, simulation allows 

tests to be run without contending for scarce time on physical 

robots, and to conduct tests safely without risk to damaging 

robots and tooling or injuring people. Simulation has also been 

used as the basis for competitions on robot agility, enabling 

competitors to practice at their facilities and compete in a 

controlled and instrumented environment. These simulations 

have used the Gazebo physics-based simulation package [3], 
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supplemented with the Robot Operating System (ROS) open-

source framework for robot control [4].  

There are several reported works aimed at simulation and 

robot control which are based on Gazebo and ROS. Aguero et 

al. [5] presented a Gazebo simulation platform for a cloud-

hosted humanoid robot simulation with a wide range of sensors, 

controllers, and actuators to address the challenge of real-time 

task-oriented rescue robot competition for the Defense 

Advanced Research Projects Agency (DARPA) Virtual 

Robotics Challenge (VRC), and showed that simplified 

dynamics while maintaining sufficient accuracy is feasible. 

Swanson et al. [6] studied a Hardware-in-the-Loop (HIL) 

driving simulator that served as a training platform for driving 

performance, and presented a driver-in-the-loop simulation 

environment in which the driver and vehicle hardware 

components interacted with each other using ROS and Gazebo. 

The authors emphasized the effect of computer processor 

choices on decreasing the latency in the simulator and 

increasing the system fidelity. Fernandes et al. [7] analyzed the 

simulation of autonomous control of a robotic car using ROS 

and Gazebo, a research challenge of the Brazilian National 

Institute of Science and Technology on Embedded Critical 

Systems (INCT-SEC); however, very little information was 

provided on the driving simulation environment itself. Qian et 

al. [8] investigated the simulation of a robotic arm for 

manipulating objects by building a model of a pick-and-place 

robot with seven degrees of freedom, and demonstrated 

methods to implement robot control in a short period of time 

using ROS and Gazebo. 

Unlike the research reported here, most of the simulation 

studies in the literature deal with non-industrial robotics 

applications. Some of the novel contributions presented in our 

research are a standard for sending commands and receiving 

status between an industrial robot and controller, a method of 

providing noisy sensor information to the object recognition 

system in our laboratory, and an overall effort to replicate the 

entire NIST agility laboratory with physics-based simulation to 

make it available to external collaborators allowing them to test 

their algorithms worldwide. The following sections will provide 

some background in the research, and describe how physics-

based simulation of system components has helped in the 

research efforts.  

Knowledge Representation 
To help automate the planning of robot activities, a model 

of the robot’s attributes, capabilities, and environment is 

needed. IEEE 1872, the Core Ontology for Robotics and 

Automation (CORA), is a standard for representing this 

information [9]. CORA provides definitions for general 

concepts for robotics, to support automated reasoning about 

robot activities, and as the basis for exchanging information 

about robotics.  

Supplementing CORA, the authors have developed a 

messaging language for sending commands to robots and 

receiving real-time status from them. This messaging language, 

the Canonical Robot Command Language (CRCL) [10], is an 

eXtensible Markup Language (XML) Schema Definition (XSD) 

for information used to integrate and task robots independent of 

their internal programming language. Command message 

content includes: 

• setting units, speeds, accelerations, and tolerances, 

• setting robot parameters, 

• performing Cartesian motions, 

• performing joint-level motions, 

• operating an end effector, 

• configuring status reports, 

• getting a status report immediately, 

• displaying messages, and 

• pausing or stopping motion. 

Planning 
A hallmark of agile robot systems is their ability to 

automatically plan and replan their activities in a dynamic and 

changing environment. To test this ability, the authors have used 

the Planning Domain Definition Language (PDDL) [11] as a 

source for specifying planning test inputs and results. PDDL is a 

language for encoding information needed for general planning 

problems, such as vehicle routing [11] and robot assembly [12]. 

Planners that use PDDL refer to models of objects, predicates 

about objects that can be true or false, the initial state and goal 

state of the world, and actions that are available to move objects 

and transform the initial state of the world to its desired goal 

state. These are placed into a domain file (for predicates and 

actions), and a problem file (for objects and world states). 

Given these files, a PDDL planner generates a series of actions 

to solve the planning problem. PDDL thus provides a standard 

way to measure the performance of planning algorithms in 

terms of time taken, memory used, quality of plan, or other 

metrics.  

Figure 1 shows an excerpt from a PDDL domain file for a 

kitting application. The :types are tags for the resources 

referenced by the problem specification and the resulting plan 

file. The :predicates identify tags for resources whose 

state will be queried when evaluating the predicates. Predicate 

definitions are not shown, but are essentially lists of conditions 

to be evaluated by the application that executes the plan.  
 

(define (domain kitting-domain) 

 (:types  

 EndEffector 

 EndEffectorChangingStation 

 EndEffectorHolder 

 Kit 

 KitTray 

 LargeBoxWithEmptyKitTrays 

 LargeBoxWithKits 

 Part 

 PartsTray 

 Robot 

 StockKeepingUnit 

 WorkTable) 

(:predicates 

 ; part is held by endeffector 

 (part-has-physicalLocation-refObject-endEffector 
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  ?part - Part ?endeffector - EndEffector) 

 ; parts tray contains part 

 (partsVessel-has-part ?partstray – PartsTray 

  ?part - Part) ... ) 

 
Figure 1. Sample PDDL domain for a robotic kitting application. 

 

Figure 2 shows an excerpt from a PDDL problem file that 

is to be solved by a planner, to take the kitting application from 

a stating initial state :init to ending goal state :goal. The 

planner’s objective is to determine a series of actions that take 

the system from the initial state to the final state as efficiently as 

possible.  
 

(define (problem kitting-problem) 

 (:domain kitting-domain) 

 (:objects 

  robot_1 – Robot ... ) 

 (:init 

  (endEffectorHolder-has-endEffector 

tray_gripper_holder part_gripper) 

  (partsVessel-has-part  part_small_gear_tray 

small_gear_1) ... ) 

 (:goal (and  

  (= (final-quantity-of-parts-in-kit kit_s2b2) 4) 

  (= (quantity-of-parts-in-kit  

   sku_part_small_gear kit_s2b2) 

    (capacity-of-parts-in-kit 

   sku_part_small_gear kit_s2b2)) ) ) ) 

 
Figure 2. Sample PDDL domain for a robotic kitting application. 

 

Figure 3 is a sample plan showing actions for locating, 

picking, and placing a part in one step of an overall larger plan 

for kitting.  
 

(look-for-part robot_1 large_gear_1 

 sku_part_large_gear kit_s2b2 part_gripper) 

(set-grasp robot_1 large_gear_1  

 sku_part_large_gear part_gripper) 

(take-part robot_1 large_gear_1 sku_part_large_gear 

 part_large_gear_tray part_gripper kit_s2b2) 

(look-for-slot robot_1 large_gear_1 

 sku_part_large_gear kit_s2b2 part_gripper) 

(place-part robot_1 large_gear_1 sku_part_large_gear 

 kit_s2b2 part_gripper work_table_1 

 part_medium_gear_tray) 

 
Figure 3. Sample PDDL plan. 

 

As noted by Mösenlechner and Beetz [13], the logical 

PDDL model of actions that trigger known changes in state is 

not well suited to autonomous robot systems, where the 

outcome of actions may not be predictable. Another problem is 

that the high-level nature of PDDL states for the initial 

conditions, goal conditions, preconditions, and postconditions 

do not incorporate finer-grained detail whose slight variation 

could lead to different choices of actions. As described in the 

next section, the first shortcoming of PDDL has been overcome 

by incorporating continuous replanning when actions do not 

result in the predicted outcome. The second shortcoming has 

been addressed to by choosing actions with parameters at a 

level of resolution low enough be adjusted through real-time 

sensor feedback from vision.  

System Architecture 
Work supporting CORA and CRCL has taken place in the 

Agility Performance of Robotics System (APRS) laboratory at 

the National Institute of Standards and Technology (NIST) [2]. 

The lab contains two industrial robots, a Fanuc LR-Mate 200iD 

and a Motoman SIA20F. The robots share tooling for 

open-and-close gripping and vacuum gripping. The primary 

application is kitting, where parts are moved from their initial 

location in storage trays to a final target arrangement in kit 

trays. Overhead cameras in the work volume are used to 

determine the location of parts, storage trays, and kit trays. This 

laboratory is shown in Figure 4.  
 

 
 

Figure 4. APRS Laboratory Workcell.  

 

Figure 5 shows the APRS system architecture. The purpose 

of the system is to put together kits of parts based on a request 

composed by the operator, shown at the top of the figure. The 

resulting PDDL goal is a set of kits and their contents of parts. 

This goal is sent to the PDDL planner, which consults the 

definitions of actions, preconditions, and postconditions in the 

kitting problem domain and determines a feasible sequence of 

actions that achieve the kitting goal. These actions are sent to 

the PDDL executor, which fills in actual values for part and kit 

locations based on the current state in the world model 

database. This database is continually updated with the 

locations of parts as measured by the object recognition system. 

After the actions are instantiated, the resulting CRCL program 

is sent to the CRCL client for execution. This client steps 

through the program, sending messages to the robots and 

grippers and monitoring execution status until the program has 

completed. Any failures are reported by the client, which 

triggers replanning if possible until the kitting request is 

fulfilled, or stopped due to unrecoverable problems.  
 



 4 Copyright © 2018 by ASME 

 
 

Figure 5. System Architecture.  

Measuring Agility 
To advance the state of robot agility, a series of 

competitions was organized that measure the effectiveness of 

planning systems to rapidly re-task robots without the need for 

human intervention. Such tasking includes the ability of robots 

to recover from errors such as dropped parts, the ability of 

perception systems to identify problems, and the ability of 

manipulation systems to reposition objects for better error 

recovery. The Agile Robotics for Industrial Automation 

Competition (ARIAC) is sponsored by NIST in collaboration 

with the Open Source Robotics Foundation (OSRF), developers 

of the Robot Operating System (ROS) [4] and the Gazebo 

physics-based simulation environment.  

Competitions are organized around a kitting application, 

where robots are given the task to move objects from a set of 

trays to a goal kit. Virtual sensors for determining object 

locations include cameras, beam break detectors, laser range 

scanners, and laser line curtains. Teams are given the flexibility 

to choose which sensors to use. Costs are associated with the 

sensors selected and factored into the scoring metrics.  

THIS RESEARCH 
The goal of this research is to use a physics-based 

simulation to stand in for the APRS laboratory environment, 

and use the uncertainty in part location and activity completion 

to test the ability of the planning system to recover from 

failures. The intent of the simulation is to provide the following 

enhancements:  

• the ability to test strategies for sensor-based recovery from 

errors in a repeatable environment; 

• enabling hybrid real-virtual operation, where one real robot 

and camera and one simulated robot and camera can be 

used simultaneously;  

• and to provide additional implementations of CRCL-

conforming robots to validate this specification.  

 

Gazebo was selected as the simulation environment [3]. 

Gazebo provides realistic visual rendering of physical scenes, 

linked to one of a set of configurable physics engines that 

update the state of objects in the simulated world according to 

physics principles such as friction, inertia, and gravity.  

Figure 6 shows a Gazebo visualization of the physics-based 

simulation of a kitting activity used in the ARIAC competition. 
 

 
 

Figure 6. Gazebo Simulation of Robot Kitting in the ARIAC Competition. 

Simulating the APRS Environment 
The NIST agility kitting robot control laboratory was 

ported to a physics-based simulation environment. Simulation 

can be kinematic or physics-based. Kinematic simulation uses 

visualization of the sequence of operations to verify correctness. 

Physics-based simulation models the physical elements’ 

interactions and collisions and the effects of physical properties 

such as gravity, friction, and inertia. The intent of physics-based 

simulation is to study control and sensing, reveal inaccuracies, 

and verify correctness. For example, placing of a “gear” into a 

slot holder in a visualization could overlay two images at the 

bottom of the slot (the gear and holder) without repercussions. 

However, in the case of physics-based simulation, the gear 

would “bounce” out of the slot as it is physically impossible for 

a solid object to atomically combine with another solid object.  

Figure 7 shows the Gazebo physics-based simulation of the 

agility lab. The simulation modeling includes the two robots, 

the agility lab physical space, which consists of the tables, the 

walls, and finally the gear, kitting, and tray objects. The two 

overhead vision cameras and enclosing safety system are not 

visualized in the simulation; however, the camera images are 

simulated by a Gazebo plugin that can be used to test the actual 

robot planning and control system. Robotiq two-finger gripper 

models available on the Internet were used, saving the effort of 
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modeling the custom 3D-printed fingers used in the lab. 

Grippers and the robot base location are handled in a kinematic 

ring (discussed later), which makes substitution of different 

grippers and relocation of the robots in the agility lab done with 

a different transform.  
 

 
 

Figure 7. Agility Lab Physics-Based Simulation 

Modeled objects in the simulation environment. 
The Gazebo physics-based simulation relies on either 

Gazebo Simulation Description Format (SDF) or ROS 

Universal Robotic Description Format (URDF) to model robots 

and other world elements. Both SDF and URDF are XML file 

formats that describe objects and environments for robot 

simulators, visualization, and control [14, 15]. Both URDF and 

SDF include mechanisms to describe links, joints, kinematic 

chain relationships, the limits and capabilities of the joints, 

obstacle volume of a link, and a visual representation of each 

link. SDF includes mechanisms to describe physical elements 

such as mass, inertial frame, gravity interaction, among a 

multitude of physics descriptors. Often, ROS URDF was 

converted into Gazebo SDF format. Thus, in the physics-based 

agility simulation, the robot and gripper, the kitting objects, and 

the agility lab were defined with either SDF or URDF. 

For example, the agility simulation includes gears, holders, 

and kits that were originally modeled for 3D printing, but the 

Computer Aided Design models were translated into STL 

format (i.e., stereolithography), and modified to satisfy the 

Gazebo world (for example, adding mass and inertial frames 

while adjusting the origin coordinate frame).  

Robot Control 
The agility robot control application domain is multi-axis, 

coordinated motion control. In addition, process control is 

necessary to handle input/output, and auxiliary equipment. 

Representative robot controller applications include 

manipulation, assembly, and collaboration. 

The robot controller software modules include: (1) Joint 

control, which performs servo control of axis motion by 

transforming incoming motion goal points into set-points for the 

corresponding actuators, (2) Cartesian motion planning, which 

coordinates the motions of an individual joint by transforming 

an incoming motion segment specification into a sequence of 

equi-time-spaced setpoints for the coordinated axes, and (3) 

Task Coordinator modules, which sequence operations and 

coordinate the various motion, sensing, and event-driven 

control processes. Overall, the robot control architecture was 

based on open-source components. Its source code is available 

for public use.  

The inverse and forward kinematics use OpenRAVE IKFast 

software to solve the forward and inverse kinematics [16]. In 

general, IKFast can analyze the robot kinematics, solve the 

kinematics equations, and write the solution to a C++ file.  

Because the NIST agility robot motion control relies on 

Cartesian based straight-line motion and assumes a collision-

free industrial environment, trajectory planning is done with 

“Gotraj” [17]. Gotraj computes a smooth trajectory based on 

either time or dynamical properties (velocity, acceleration, and 

jerk). Gotraj assumes a final velocity of zero. Users can append 

poses onto the Gotraj motion queue that will result in additional 

trajectories. Gotraj supports a “stop” motion directive that will 

generate a trajectory which will stop as soon as possible given 

the motion dynamical properties (velocity, acceleration, and 

jerk).  

Another common robotic concept that was required to 

handle different robots, grippers, and robot locations within the 

simulation world was the kinematic ring. Thus, any CRCL 

commanded robot Cartesian motion in world coordinates is then 

expressed in terms of kinematic ring made up of a series of 

homogeneous matrix transforms from the base robot frame, 

including the robot transformation, and robot gripper transform. 

With this mechanism, it was easy to shift between world and 

robot coordinate frames. This is important as although the robot 

and kitting objects are modeled precisely, the location of the 

robot base and the gripper tooling can vary, and kinematic rings 

offer a convenient scheme for resolving the variances.  

Integration with CRCL. At NIST, kitting commands to 

the robot(s) are expressed in CRCL, which is a messaging 

language for controlling a robot that is executed by a low-level 

device robot controller. CRCL is an abstraction of the robot 

control capabilities that is fully defined in an XML schema. 

CRCL contains the ability to command robot joint, Cartesian 

position and gripper control. In addition, CRCL supports status 

streaming or service requested communication patterns. CRCL 

uses XML messages for communication, which typically uses a 

stream based Transmission Control Protocol (TCP) socket to 

communicate the XML. 
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Figure 8. ROS Nistcrcl Package Architecture.  

 

Figure 8 shows the ROS Nistcrcl package architecture used 

to handle CRCL communication in the physics-based robot 

agility simulation. The ROS Nistcrcl package is a ROS node 

that was developed to listen and broadcast CRCL XML 

command and status messages, while translating CRCL from/to 

ROS representation and communication ideology. The Nistcrcl 

ROS package uses several open-source software technologies to 

adapt CRCL into ROS. The CodeSynthesis XSD tool generates 

a C++ object model from XSD that is used to parse and 

serialize CRCL XML. CodeSynthesis relies on the Xerces XML 

parser. The Boost C++ library Asynchronous IO (Asio) was 

used to handle socket command and status communication with 

the CRCL client. The ROS message infrastructure (based on the 

Google protobuf open source communication scheme) was used 

to build “custom” ROS topics that encapsulated CRCL 

functionality. Two ROS custom messages were developed - one 

for CRCL command messages and one for CRCL status 

messages.  

Gripping objects. In general, an end effector is the 

device at the end of a robotic arm, meant to interact with the 

environment. Kitting is concerned with grasping objects and 

relocating the objects. This can be done with a vacuum gripper, 

or a gripper with two or more fingers. We are interested in the 

case of using grippers to achieve object manipulation (i.e., 

grasping and releasing). 

One gripper used for simulation was the Robotiq's 2-Finger 

Adaptive Robot Gripper. An open source ROS URDF 

description existed to describe the kinematics and visualization, 

which simplified implementation. 

Another gripper used in the simulation was the NIST in-

house 3D printed parallel jaw gripper. Grasping objects 

highlights the difficulty of physically modeling gripper and 

grasped object interaction, because explicit enumeration of 

friction, collision, and other dynamical behavior elements play 

an important role in grasp control. By comparison, in the real 

world, grasping generally ignores the interaction of the 

underlying physics. 

Calibration 
The APRS has four coordinate systems: the Fanuc and 

Motoman robots, and the two cameras located above their work 

volumes.  

Calibration of camera coordinates to robot coordinates is 

done following a four-point registration procedure:  

1. A marker object (e.g., a gear) is placed at a location in 

the work volume of one of the robots.  

2. The object detection system’s coordinates for the center 

of the marker object are recorded.  

3. An operator guides the robot to the center of the marker 

object, and the robot controller’s coordinates of this point are 

recorded.  

4. This procedure is repeated for a total of four locations, 

placed near the corners of the work volume.  

5. Offset transformations from object detection system 

coordinates to robot coordinates are computed at each of the 

four locations.  

These offset transformations are determined only 

occasionally, when the robots or cameras are repositioned. 

Table 1 shows the results of four-point registration for the 

Motoman robot.  
 

Table 1. Calibration Offsets from Object Recognition System to Motoman 

Robot.  

 

X (mm) Y (mm) X offset (mm) Y offset (mm) 

535.9 157.7 0.0 5.0 

723.1 -400.3 -9.0 -7.0 

523.8 -106.7 -4.0 0.0 

747.3 155.4 5.0 0.0 

 

During operation, object locations from the object 

detection system are interpolated between these four 

registration transforms, resulting in a location of the object in 

robot coordinates. This interpolation is done by weighting each 

of the contributions of the registration points by their inverse 

distance to the point whose offsets are to be interpolated, 

normalized by the sum of the inverse distances. The 

problematic infinities for the values of the inverse distances at 

the registration points themselves are avoided by algebraically 

changing the formula to that in Eqn. (1): 
 

 

 (1) 

 

 

where δp is the interpolated offset, the set of δi are the offsets at 

the n registration points, and set of dj are the distances from the 

point to be interpolated to each of the registration points. This 

equation works for offset translation vectors as well as offset 

orientations, when orientations are represented as rotation 

vectors.  

The four-point registration procedure is also used to 

determine the transformation between the Fanuc and Motoman 

robot coordinate systems. Using this procedure, a best-fit 

transform is computed following Horn’s solution to the absolute 

orientation problem [18].  

Inverse error compensation. It is desirable for the 

simulated behavior to match the real-world behavior, so that the 

four-point registration procedure need not be repeated in 

simulation and consequently require the control system to 
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switch between real and simulated operation. Therefore, the 

simulated object detection system needs to adjust its output with 

the inverse of the interpolated transform. Figure 9 shows a map 

of the magnitude of the compensating error throughout a region 

bounded roughly by the registration points. 
 

 
Figure 9. Inverse Error Compensation 

 

The inverses of these positional compensation errors will 

be applied to the reporting of simulated object locations, as 

detailed in the following sections.  

Object Recognition and Reporting 
There are two methods for recognizing objects: ground 

truth with noise, and camera image generation with noise. For 

the first method, the computer vision system is not used, and its 

output (object locations) is simulated directly. For the second 

method, synthetic camera images are produced from the 

simulation, and fed to the computer vision system instead of 

images from real cameras. The goal of the simulation is to be 

able to provide realistic object data streams to the CRCL 

executor, without reconfiguring the executor based on whether 

real or simulated sensor data is used. Figure 10 shows view of 

the objects in the real object detection system.  
 

 
 

Figure 10. Objects Appearing in the Object Detection System.  

 

The output characteristics of the object recognition system 

were first determined based on a test of its measurements of a 

single object. Figure 11 shows a plot of the X-Y positions of 

1487 measurements of the position of a single object by the 

object recognition system. The figure shows clustering of points 

and does not suggest any well-known underlying distribution. 

For the purposes of simulating randomness consistent with the 

variation shown, a normal distribution was fit to the data, with a 

mean and standard deviation of µ = 416.65 mm and σ = 0.28 

mm for X, and µ = 342.50 mm and σ = 0.33 mm for Y. The 

following sections describe how the simulation was developed 

so that it produces sensor data consistent with that produced by 

the actual sensing system.  

Ground truth with noise. Gazebo provides the true 

locations of all objects in the world through a ROS topic 

updated at the simulation frequency, measured to be about 2 

milliseconds. These ideal locations of the gears, kits, and trays 

are fed into an application that adjusts the poses of each object 

with noise representative of that measured by the real object 

detection system.  
 

   

   

 
 

Figure 11. X-Y Location Variance from Object Recognition System, Real and 

Simulated. Left Images Are Real, Right Images Simulated.  

 

The noise-adding application was customized so that it 

replicates the clustering exhibited by the real object detection 

system. For each of the X and Y distributions shown in Figure 

11, three normal distributions were composed with means, 

standard deviations, and relative contributions that 

approximated the clusters. This empirical customization, while 

not perfect, replicates the behavior of the system to a degree 

that is visible to the CRCL executor and has the same 

qualitative influence. 

Camera image generation with noise. With this 

method, the existing object recognition is used, and synthetic 

camera images are provided to it as if they originated from 
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actual cameras. Gazebo is equipped with a camera sensor 

plugin which publishes images on a ROS topic. The overhead 

physical camera was emulated by introducing noise to the data 

streams generated by the virtual camera to help making the 

synthetic camera images more realistic because the Gazebo 

camera sensor model views the virtual world flawlessly. Gazebo 

also provides a sensor noise model which can add Gaussian 

noise parameters to the virtual camera sensor [19]. To achieve 

the goal of making our world experiment closer to the realistic 

environment, we implemented these Gaussian noise parameters 

and used three different values for noise standard deviation: σ = 

0.007, 0.09 and 0.3. 

Figure 12 shows images retrieved from the sensor with 

varying levels of Gaussian noise. The image on the left depicts 

standard deviation of σ = 0.003. In the central image, the virtual 

camera has standard deviation of σ = 0.03, which illustrates 

moderate level of noise. Finally, the image on the right 

represents the virtual camera with σ = 0.3 standard deviation, 

which shows high level of noise. A value of σ = 0.007 is 

considered to be reasonable for a decent digital camera [20]. 
 

   
 

Figure 12. Image Data of the Virtual Camera Sensor with Low (on the left), 

Moderate (in the center), and High Level of Noise (on the right).  

 

Sets of 1634 sequences of each of these three noisy camera 

streams were input to the object recognition system, which 

calculated three lists of the X-Y points. These are shown in 

Figure 13. Like Figure 11, these data showed normal-like 

distributions of the X and Y values, although the simulated 

images were much closer to a normal distribution and did not 

exhibit the clustering shown from real camera images. To more 

accurately replicate this clustering, the Gazebo noise model 

must be extended with a plug-in that allows for arbitrary 

customization, as noted in the description of future work in the 

concluding section.  

 

 
 

Figure 13. X-Y locations from the object recognition system for high (red), 

medium (green), and low (red) levels of simulated camera noise.  

RESULTS AND CONCLUSIONS 
This paper describes how the Gazebo physics-based 

simulation was applied to model the environment, objects, and 

robots in a laboratory used to measure the agility performance 

of robot systems. Simulation is an effective means that allows 

researchers to test their systems without tying up the actual 

robots, relieving the pressure on scarce resources and enabling 

safer and more repeatable testing. The goal was to replicate the 

noisy behavior of the real world in simulation, so that 

compensations and calibrations already built into the real 

planning and control system would function without 

modification. This necessitated performing effectively the 

inverses of the compensations and calibrations within the 

simulation. These apply to both the locations of the objects to 

be manipulated, and the poses of the simulated robots. Two 

methods of object pose adjustments were implemented, one that 

bypassed the object detection system and simply applied a noisy 

transform to the ideal poses, and one that included the object 

detection system and provided it with noisy camera images. 

Testing validated that the approaches achieved the intent, but 

could be improved with better registration of the simulated 

world with the physical world.  

Toward the objective of testing strategies for sensor-based 

recovery from errors in a repeatable environment, the 

simulation is set up to allow either scripted configuration of 

initial testing conditions, or interactive placement of objects and 

robot starting locations. The integration of ROS with Gazebo 

allows for the timestamped logging of simulation states that can 

be compared between tests. Enabling hybrid real-virtual 

operation was achieved with minimal impact on the workcell 

configuration. CRCL interfaces and object detection reporting 

from the simulation followed the real robot protocols, with the 

selection of the real or virtual targets localized in a controller 

configuration that can be changed while the system is running. 

Another enhancement arose from the need to build a CRCL 

interface onto the Cartesian motion planner used with Gazebo. 
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This provided another validation test of CRCL and its 

command-state protocol. While no changes to the CRCL XSD 

were required, the additional independent testing pointing to 

some assumptions on how to start and stop motions between 

pick-and-place activities, which were clarified in the 

documentation.  

The overall research contribution is the use of simulation to 

supplement validation testing of a standard for knowledge 

representation of industrial robot tasks, CRCL. The use of 

simulation allows for more repeatable testing, enabled by the 

world model state inspection and logging features of Gazebo 

and ROS. A unique aspect of the research is the dual method of 

providing noisy sensor information to the object recognition 

system, using both noisy camera images and noisy object states, 

that attempt to match the clustering effects shown by the real 

system.  

Future work includes doing better registration, including 

more capabilities of the real testbed such as shared tooling and 

vacuum gripping, and building simulated cameras that better 

match the actual cameras used. Ultimately, the simulation will 

be made available to external collaborators, such as those 

participating in the ARIAC challenges, to allow them to test 

their algorithms prior to running on the actual hardware in the 

APRS.  

Disclaimer: Certain commercial/open source software, 

hardware, and tools are identified in this paper to explain our 

research. Such identification does not imply recommendation or 

endorsement by the authors or NIST, nor does it imply that 

items identified are necessarily the best available for the 

purpose.  
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