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Abstract. At PQCRYPTO 2014, Porras, Baena and Ding introduced 
ZHFE, an interesting new technique for multivariate post-quantum en-
cryption. The scheme is a generalization of HFE in which a single low 
degree polynomial in the central map is replaced by a pair of high degree 
degree polynomials with a low degree cubic polynomial contained in the 
ideal they generate. ZHFE was constructed with the philosophy that a 
statistically injective multivariate expansion map may have less rigid a 
structure than a bijection, and may be more resistant to cryptanalysis. 
We show that in the case of ZHFE, this intuition is false. 
We present a practical key recovery attack for ZHFE based on the inde-
pendent discoveries of the low rank property of ZHFE by Verbel and by 
Perlner and Smith-Tone. Thus, although the two central maps of ZHFE 
have high degree, their low rank property makes ZHFE vulnerable to the 
Kipnis-Shamir(KS) rank attack. We adapt the minors modeling approach 
to the KS attack pioneered by Bettale, Faugère and Perret in applica-
tion to HFE, and break ZHFE for practical parameters. Specifically, our 
attack recovers a private key for ZHFE(7, 55, 105) in approximately 264 

operations. 

Keywords: Multivariate public key cryptography, encryption schemes, 
ZHFE 

1 Introduction 

The fundamental problem of solving systems of nonlinear equations is thou-
sands of years old and has been very influential in the development of algebra 
and number theory. In the realm of cryptography, the task of solving systems of 
nonlinear, often quadratic, equations is a principal challenge which is relevant in 
the analysis of many primitives, both in the symmetric and asymmetric setting. 
This basic problem is the basis of numerous public key schemes, which, in princi-
ple, add to the diversity of public key options. The subdiscipline of cryptography 
concerned with this family of cryptosystems is usually called Multivariate Public 
Key Cryptography (MPKC). 

In addition to the benefit of creating a more robust toolkit of public key 
primitives, the advent of MPKC offers a potential solution to the problem of 
securing communication against quantum adversaries, adversaries with access 
to a sophisticated quantum computer. Since Peter Shor discovered in the mid 
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90s, see [27], algorithms for factoring and computing discrete logarithms on a 
quantum computer, a dedicated community has been emmersed in the challenge 
of securing data from quantum adversaries. In December 2016 the National In-
stitute of Standards and Technology (NIST) published a call for proposals for 
post-quantum standards from the international community, putting a figurative 
spotlight on public key cryptography useful in an era with quantum computing 
technology. In light of this focus from NIST, the cryptometry and cryptanalysis 
of post-quantum schemes is not simply an academic matter. 

While there are several secure, performant, and well-studied multivariate sig-
nature schemes, see [9,5,16,21], for example, there are very few unbroken multi-
variate encryption schemes in the current cryptonomy. Surprisingly, this general 
absence of secure and long-lived encryption schemes is primarily due to a small 
array of extremely effective cryptanalytic techniques. 

Broadly, we can categorize attacks on multivariate cryptosystems as either 
direct algebraic, directly inverting the multivariate public key via Gröbner basis 
calculation, differential, exploiting some symmetric or invariant structure ex-
hibited by the differential of the private key, or rank, recovering a low rank 
equivalent private key structure by solving an instance of MinRank, i.e. finding 
a low rank map in a space of linear maps derived from the public key. These 
basic tools form the core of modern multivariate cryptanalysis and the algebraic 
objects related to them are of great interest, not only theoretically, but also for 
use in cryptometry, see for example, [4,13,6,18,2,22,28,11,7,10]. 

In the last few years, a few novel techniques for the construction of multivari-
ate encryption schemes have been proposed. The idea is to retain statistical in-
jectivity while relaxing the structure of the public key by doubling the dimension 
of the codomain. The schemes ABC Simple Matrix, and Cubic Simple Matrix, 
proposed in [30,8], are based on a large matrix algebra over a finite field. The 
ZHFE scheme, proposed in [25] (with a significant key generation improvement 

˜from [1]) is based on high degree polynomials F and F over an extension field. 
Decryption in the later is possible, by the existence of a low degree polynomial 

˜Ψ in the ideal generated by F and F . 

The ABC Simple Matrix and Cubic Simple Matrix encryption schemes have 
been shown vulnerable to differential attacks, see [18,19]. Moreover, in [23] and 
independently in [31] a trivial upper bound on the Q-rank, or quadratic rank, of 
ZHFE is provided, further calling into question whether the design strategy of 
enlarging the dimension of the codomain of the public key is an effective way of 
achieving multivariate encryption. 

On the other hand, in [32], a new security estimate is provided for the original 
parameters of ZHFE. The paper not only purports to prove the security of ZHFE 
against the attack methodology of Kipnis and Shamir on low Q-rank schemes, 
see [17], it also improves the estimate of the degree of regularity of the public 
key of ZHFE, indicating that the security level of the original parameters is at 
least 296 instead of the original claim of 280. In particular, their bound on the 
complexity of the KS attack on ZHFE is 2138, placing this attack well out of the 
realm of possibility. 



In this paper, we make the impossible practical. We detail a full key recovery 
attack, that works with high probability from the public key alone, and test 
its effectiveness for small parameters. Our attack adapts the techniques first 
introduced in [17] and later improved in [2], to recover low rank central maps. 
Furthermore, we show how to recover a low degree polynomial equivalent to Ψ , 
that can be used to decrypt. 

Our complexity analysis of the attack demonstrates that ZHFE is also asymp-
totically broken, revealing an error in the analysis of [32]. Specifically, we find 
that the expected complexity of the Kipnis-Shamir attack on this scheme is � � 

(dlogq (D)e+2)ωO n , where D is the degree bound in ZHFE and ω is the lin-� � 
2(dlogq (D)e+2)ωear algebra constant, instead of the complexity O n as reported 

in [32]. Our empirical data from an implementation of this attack support our 
complexity estimate. This correction in the complexity estimate reveals that the 
attack is feasible for the original parameters; instead of a complexity of 2138 as 
claimed in [32], we find the complexity is 264 (A.3). We thus consider ZHFE to 
be broken. 

The article is organized as follows. In the next section, we describe the ZHFE 
construction and discuss the encryption scheme. In the subsequent section, we 
outline our attack, describing our notation, our proof of the existence of a low 
rank equivalent private key, reduce the task of recovering a low rank central 
polynomial to a MinRank problem, and state how to construct a fully functional 
equivalent key from it. In the following section, we derive the complexity of our 
attack, and present our experimental data supporting our complexity bound. 
A detailed comparison of our analysis to previous MinRank analysis and a toy 
example are provided in the appendices for space reasons. In the last section, we 
conclude that ZHFE is broken and discuss the current landscape of multivariate 
public key encryption. 

2 The ZHFE encryption scheme 

The ZHFE encryption scheme was introduced in [25] based on the idea that a 
high degree central map may resist cryptanalysis in the style of [2]. The hope 
of the authors was that having a high degree central map may result in high 
Q-rank. 

Let F be a finite field of order q. Let K be a degree n extension of F. Large 
Roman letters near the end of the alphabet denote indeterminants over K. Small 
Roman letters near the end of the alphabet denote indeterminants over F. An 
underlined letter denotes a vector over F, e.g. v = (v1, . . . , vn). A small bold 
letter denotes a vector over K, e.g. u = (u0, . . . , un−1). Small Roman letters 
near f, g, h, . . . denote polynomials over F. Large Roman letters near F, G, H, . . . 
denote polynomials over K. Large bold letters denote matrices; the field in which 
coefficients reside will be specified, but may always be considered to be included 
in K. The function Frobk() takes as argument a polynomial or a matrix. For 
polynomials it returns the polynomial with its coefficient raised to k-th Frobenius 
power, and for matrices it raises each entry of the matrix to k-th Frobenius power. 



qFix an element y ∈ K whose orbit under the Frobenius map y 7→ y is of 
order n. We define the canonical F-vector space isomorphism φ : Fn → K defined 

i qby φ(a) = 
Pn−1 

aiy . We further define φ2 = φ × φ.i=0 
The construction of the central map of ZHFE is quite simple. Without loss 

of the generality of analysis, we focus on the homogeneous case. One formally 
declares the following relation over K: � � 

0 n−1 0 n−1 

α1F q F q F̃ q F̃ qΨ = X + · · · + αn + β1 + · · · + βn � � 
0 n−1 0 n−1 

+ Xq αn+1F q + · · · + α2nF q + βn+1F̃
q + · · · + β2nF̃

q , 

where juxtaposition represents multiplication in K and where Ψ is constrained 
to have degree less than a bound D. By its construction, Ψ has the form 

1X X 
q i+qj +q k 

Ψ(x) = ai,j,kx . 
i=0 i≤j≤k 

q i+qj +q k ≤D 

One may then arbitrarily choose the coefficients αi and βi and solve the resulting 
linear system for the unknown coefficients of F and F̃ . Even making an arbitrary 
selection of the coefficients ai,j,k of Ψ , we have an underdefined system and have 

˜a large solution space for maps F and F . 
The private key is given by Π = (G, S, T ) where G = (F, F̃ ), S ∈ End(Fn) 

and T ∈ End(F2n). The public key is constructed via 

P = T ◦ φ2 ◦ G ◦ φ−1 ◦ S. 

Encryption is accomplished by simply evaluating P at the plaintext x ∈ Fn . 
The interesting step in decryption is inverting the central map, G. Notice that 
if G(X) = (Y1, Y2) then the following relation holds: 

n−1 n−1 

Ψ(X) = X(α1Y1 + α2Y q + · · · Y1 
q + β1Y2 + · · · + βnY q 

1 αn 2 
n−1 n−1 

+ Xq(αn+1Y1 + αn+2Y1 
q + · · · α2nY q + βn+1Y2 + · · · + β2nY q .1 2 

Since this equation is of degree bounded by D, solutions X can be found ef-
ficiently using Berlekamp’s Algorithm. While it is possible that there may be 
multiple solutions to this equation, it is very unlikely; furthermore, the public 
key can be used to determine the actual preimage. 

3 Key Recovery Attack for ZHFE 

In this section describe a key recovery attack for ZHFE using the MinRank ap-
proach. We first show that with high probability there exist linear combinations 

˜of Frobenius powers of the core polynomials F and F of low rank. Then, we 
show that such linear combinations can be efficiently extracted from the public 
key. Finally, we describe how to construct a low degree polynomial Ψ 0 from those 
low rank polynomials. 



3.1 Existence of a low rank equivalent key 

Φ n−1 q qFix the representation a 7−→ (a, a , . . . , a ) of K. Then the image Φ(K) = A = 
q q{(a, a , . . . , a

n−1 
) : a ∈ K} is a one-dimensional K-algebra. We define Mn by 

Mn = Φ ◦ φ. Using the element y defined in Section 2, we recover an explicit 
representation of Mn ∈Mn×n(K): 

Mn = 

⎛ ⎜⎜⎜⎝ 
1 1 . . . 1 
y yq yq n−1 

. . . . .. 
n−1 n−1 (n−1)q (n−1)qy y y

⎞ ⎟⎟⎟ . ⎠ 
It is well known that the matrix Mn is invertible. The following proposition is 
a particular case of Proposition 4 in [2]. �� 

Mn 0 
Proposition 1. Let M2n = . Then the function ϕ2 = K2 → F2n 

0 Mn 
n−1 n−1 

can be expressed as (X, Y ) 7→ (X, Xq , . . . , Xq , Y, Y q, . . . , Y q )M−1, and its 2n 
inverse ϕ−1 : F2n → K2 as (x1, . . . , x2n) 7→ (X1, Xn+1), where (X1, . . . , X2n) = 2 
(x1, . . . , x2n)M2n 

Two private keys are equivalent if they build the same public key, that is: 

Definition 1. Let Π = (G, S, T ), and Π 0 = (G0, S0, T 0) be private ZHFE keys. 
We say that Π and Π 0 are equivalent if 

T 0 ◦ ϕ2 ◦ G0 ◦ ϕ−1 ◦ S0 = T ◦ ϕ2 ◦ G ◦ ϕ−1 ◦ S. 

We show that given an instance of ZHFE with public key P = T ◦ (ϕ × ϕ) ◦ 
(F, F̃ )◦ϕ−1 ◦S and private key Π = (G, S, T ), with high probability, there exists 
an equivalent key Π 0 = (G0, S0, T 0), where the polynomials G0 = (F 0 , F̃ 0) have 
low rank associated matrices. We only consider linear transformations and homo-
geneous polynomials. This case can be easily adapted to affine transformations 
and general HFE polynomial. 

It was noted by Perlner and Smith-Tone [23] and independently by Verbel [31] 
that there exists a linear transformation of ZHFE’s core map G = (F, F̃ ) with 
low rank associated matrices. Recall that for each ZHFE private key (G, S, T ), 
G = (F, F̃ ), there are scalars α1, . . . , α2n, β1, . . . , β2n in the big field K such that 
the function �� 

˜ ˜Ψ = X α1F0 + · · · + αnFn−1 + β1F0 + · · · + βnFn−1 �� 
+ Xq ˜ ˜αn+1F0 + · · · + α2nFn−1 + βn+1F0 + · · · + β2nFn−1 , 

has degree less than a small integer D. Notice that for s ∈ {0, 1} the polynomial, 

˜ ˜αsn+1F0 + · · · + αsn+nFn−1 + βsn+1F0 + · · · + βsn+nFn−1 



has HFE shape and its non-zero monomials with degree greater than D have 
+q +qthe form ZXq 0 1 j 

, with Z ∈ K and j an integer. Consequently, in each 
case the matrix associated with that polynomial has rank less than or equal to 
dlogq De + 1 and a particular form of tail shown in A.2. 

Let L be the function from K2 to K2 given by L(X, Y ) = (L1(X, Y ), L2(X, Y )), 
such that 

n n n nX X X Xi−1 i−1 i−1 i−1 

L1(X, Y ) = αiX
q + βiY q , L2(X, Y ) = αn+iX

q + βn+iY q . 
i=1 i=1 i=1 i=1 

Notice that L is a linear transformation of the vector space K2 over F. From 
the above observation, the matrices associated with the polynomials in L ◦ G 
are of low rank (less than or equal to r + 1 = dlogq De + 1). Furthermore, if 
L is invertible, then (L ◦ G, S, T ◦ R) is an equivalent key to (G, S, T ), with 
R = ϕ2 ◦ L−1 ◦ ϕ−1 and the matrices associated with the core polynomials L ◦ G2 
are of low rank. Indeed 

(T ◦ R) ◦ ϕ2 ◦ (L ◦ G) ◦ ϕ−1 ◦ S = T ◦ ϕ2 ◦ (L−1 ◦ ϕ−1 ◦ ϕ2 ◦ L) ◦ G ◦ ϕ−1 ◦ S2 

= T ◦ ϕ2 ◦ G ◦ ϕ−1 ◦ S. 

For the above assertion to make sense, the function R must be an invertible 
linear transformation from F2n to F2n, and this is only possible if L−1 is well 
defined. It is easy to see that if the coefficients α1, . . . , α2n, β1, . . . , β2n are chosen 
uniformly at random in K, the probability that L is invertible is very high 
(see [31] for more details). 

Were L singular as suggested in [24], a different approach is also possible. 
Defining the linear transformation R0 = ϕ2 ◦ L ◦ ϕ−1 ◦ T −1 and with the public 2 
key P = T ◦ ϕ2 ◦ G ◦ ϕ−1 ◦ S, we have R0 ◦ P = ϕ2 ◦ (L ◦ G) ◦ ϕ−1 ◦ S. Thus, 
R0 ◦ P has low rank core polynomials L ◦ G, hence we can attack R0 ◦ P and find 
R0 in the process. We do not further discuss this approach, and instead, from 
now on, we assume L is invertible which happens with high probability for the 
scheme as originally proposed. 

3.2 Finding a low rank core polynomial 

In the previous section we saw that, with high probability a ZHFE public key P 
has at least one private key (G0, S0, T 0) such that the matrices associated with 
the polynomials in G0 have low rank. We now discuss how from the public key 
P , we can obtain such an equivalent key and how to further exploit it to decrypt 
without knowing the secret key. 

Let P be a ZHFE public key and let us assume there exists an equivalent key 
(G0, S0, T 0), with low rank core map G0 = (H, H̃), so that P = T 0◦ϕ2◦G0◦ϕ−1◦S0 . 
Let H and H̃ be the low rank (r + 1, with r = dlogq De) matrices associated 

˜with H and H. 
Note that the above relation implies that, algebraically, ZHFE is similar to 

a high degree (but still low rank) version of multi-HFE. Thus, we may suspect 



that all of the consequences of low rank derived in [2] apply. In fact, our attack 
on ZHFE, though related, has some subtle but significant distinctions from the 
cryptanalysis of multi-HFE. The details of the MinRank attack follow. 

Using the notation H ∗k ∈Mn×n(K) to represent the matrix associated with 
the k-th Frobenius power of a polynomial H with matrix H = [ai,j ], it is easy 

qto see that the (i, j)-th entry of H ∗k is a
k 

(indices are modulo n).i−k,j−k 
Now we use the property on the matrices Mn and M2n to deduce a useful 

relation between the matrices associated with the low rank polynomials H = 
ϕ2 ◦ (H, H̃) ◦ ϕ−1 = (h1, . . . , h2n) and the matrices H ∗k0s. The following Lemma 
follows from Lemma 2 in [2]. 

Lemma 1. Let (H1, . . . , H2n) ∈ (Mn×n(F))2n be the matrices associated with 
the quadratic polynomials ϕ2 ◦ (H, H̃) ◦ ϕ−1 = (h1, . . . , h2n) ∈ (F[x1, . . . , xn])2n , 

>i.e. hi = xHix for all i, 1 ≤ i ≤ n. It holds that 

(H1, . . . , H2n) = 
∗0 ∗n−1 

(MnH ∗0M> , . . . , MnH ∗n−1M> , MnH̃ M> , . . . , MnH̃ M>)M−1 
n n n n 2n 

Let (P1, . . . , P2n) ∈ (Mn×n(F))2n be the matrices associated with the quadratic 
public polynomials. Then, 

P (x) = T (H(S(x))) 
>(xP1x , . . . , xP2nx >) = (h1(xS), . . . , h2n(xS))T (1) 
> >(xP1x , . . . , xP2nx >) = (xSH1S

> x , . . . , xSH2nS
> x >)T, 

where S ∈ Mn×n(F) and T ∈ M2n×2n(F). Using this relation and Lemma 1, 
we can derive a simultaneous MinRank problem on the matrices associated with 
the public polynomials, which lie in Mn×n(F), the solutions of which lie in the 
extension field K. This result is similar to, but has consequential differences from, 
[2, Theorem 2]. 

Theorem 1. Given the notation above, for any instance of ZHFE, calculating 
U = T−1M2n ∈ M2n×2n(K) for some equivalent key (G0, S0, T 0) reduces to 
solving a MinRank instance with rank r + 1 and k = 2n on the public matrices 
(P1, . . . , P2n) ∈Mn×n(F). The solutions of this MinRank instance lie in Kn . 

Proof. By Equation (1) and Lemma 1, 

(P1, . . . , P2n)U = 
∗0 ∗n−1 

(WH ∗0W> , . . . , WH ∗n−1W> , WH̃ W> , . . . , WH̃ W>), (2) 

where, W = SMn ∈ Mn×n(K) and U = T−1M2n ∈ M2n×2n(K). If U = [ui,j ], 
by (2) we get the following equations 

2Xn−1 2Xn−1 

ui,0Pi+1 = WHW> ui,nPi+1 = W ̃ . (3), and HW> 

i=0 i=0 



Since H has rank r + 1 and W is an invertible matrix, the rank of WHW> 

is also r + 1 (similarly for H̃). Consequently, the last equation implies that the 
vectors u = (u0,0, . . . , u2n−1,0) and v = (u0,n, . . . , u2n−1,n) are solutions (called 
the original solutions) for the MinRank problem associated with the k = 2n 
public symmetric matrices (P1, . . . , P2n) and the integer r + 1. 

An immediate consequence of Theorem 1 is that if we solve that MinRank 
problem we get the matrix associated with a linear combination of the Frobenius 
powers of H and H̃ composed with ϕ−1 ◦ S. We must next analyze the space of 
solutions of the MinRank problem for ZHFE and complete the key extraction. 

3.3 Finding solution from a MinRank problem 

From the previous section we know that there are at least two solution u and v 
(the original solutions) for the MinRank problem associated with ZHFE. In this 
part we show that every nonzero linear combination of a Frobenius power of the 

k k 
original solutions, i.e, αuq + βvq , is also solution for the MinRank problem 
associated with ZHFE. ��First of all, note that for each nonzero vector (a00, a10) ∈ K × K there is 

a00 a10another vector (a01, a11) ∈ K × K such that the matrix A∗ = is an 
a01 a11 

invertible matrix. If A is the linear transformation associated with A∗, the private 
key (G00, S00, T 00) with 

G00 = Frob k ◦ A ◦ (H, H̃) ◦ Frob n−k 

T 00 = T 0 ◦ ϕ2 ◦ A−1 ◦ Frobn−k ◦ ϕ−1 
2 

S00 = ϕ ◦ Frobk ◦ ϕ−1 ◦ S0 , 

�� ccis equivalent to (G0, S0, T 0). From Proposition 8 in [2], we know that the matrix 
A00 A01A∗associated with ϕ2 ◦A ◦ ϕ−1 

2 is M2n , where and Aij = =A∗M−1 
2n A10 A11 

n−1 q qDiag(aij , aij , . . . , a ).ij 

Also, from Proposition 10 in [2], the matrix associated with ϕ2◦Frob n−k◦ϕ−1 
2 

is M2nP2,n−kM
−
2n 
1 , where PN,k = Diag(Rn,k, ..., Rn,k)(N times), and Rn,k is 

the n × n matrix of a k positions left-rotation. So the matrices associated with 
H 0 , H̃ 0(where G00 := (H 0 , H̃ 0)), T 00−1 and S00 are respectively 

H0 = a00 Frobk(H) + a01 Frobk(H̃), 
0 

H̃ = a10 Frobk(H) + a11 Frobk(H̃), 

T00−1 = T0−1

c

c
S00 = S0M2nP1,kM

−
2n 
1 . 

As Rank(H0) ≤ r + 1, (similarly for H̃0), from equation (3) we get that all 
columns of T00−1

M2n are solutions of the MinRank problem associated with the 
A∗ , so 

M2nP2,kA∗M
−1 ,2n 

) and r + 1. Note that T00−1
public matrices (P1, . . . , P2n M2n = UP2,k 



 

 

c q qthe first column of UP2,kA∗, namely a00u
k 
+ a10v

k 
, is in particular a solution 

for such MinRank problem. Moreover, we expect most solutions to be of this 
form because the system is very overdetermined. Our experiments confirm this 
latest claim (see Section 4). 

So far we know that there are many equivalent keys like (G00, T 00, S00). In the 
following, we explain how we can find one of them. First, we solve the MinRank 

k k0 q q 0 0problem, and use the vector solution u = a00u + a10v = (u1, . . . , u )� 2n�P2n−1 0 0to compute K0 = ker u . Next, we find another solution v = i=0 iPi+1 

0 0(v0, . . . , v2n−1) to the MinRank problem by solving the linear system, ! 
2Xn−1 

K0 xiPi+1 = 0(n−r)×n. 
i=0 

Again, we expect that the new solution v0 preserves the form as a linear combina-
k1 k10 q qtion of the Frobenius power of the original solutions, i.e, v = a01u + a11v . 

Moreover, we claim that both founded solutions come from the same Frobe-
nius power, i.e, k1 = k. Indeed, if u = (u0, . . . , u2n−1) (one of the original��P2n−1
solutions) and we set K = ker uiPi+1 , Theorem 6 in [2] give usi=0 

K0 = Frobk(K) = Frobk1 (K), hence, if K has at least one entry in K \ F, 
then k1 = k. 

It is easy to see that the probability that A = [aij ], i, j = 0, 1 is invertible 
is high. In that case, we already know that the matrix T00, such that, T00−1 = 

n−1 n−10q 0qU”M−1, with U00 := [u0| · · · |u |v0| · · · |v ] is part of an equivalent key. 2n 
In the rest of this section we show how to find the other two elements of the 
already fixed equivalent key. 

Once an equivalent key has been fixed, our second target is to find W00 := 
S00

P2n−1 0 = W00H0W00>Mn. Keeping in mind that i=0 u iPi+1 , and W00 is invert-
ible, we get ker(H0) = K0W00. Assuming H0 has the shape � � 

BTA 
,

B 0(n−r)×(n−r) 

where A is a full rank r × r matrix, and B is a rank one (n − r) × r matrix, it is � � 
easy to see that ker(H0) is of the form 0(n−r−1)×r | C , where C is a full rank 
(n − r − 1) × (n − r) matrix. Thus K0W00 has its first r columns set to zero. 
In particular, if w is the first column of W00, then K0w = 0 leads to a linear 
system of n − r − 1 equations in n variables. Such a system might have spurious 

= S00solutions that do not correspond to a matrix of the form W00 Mn. In order 
to get more equations we can use Frobenius powers of K0. For j = 0, . . . , n − 1, ! 

2Xn−1 � � � � 
W00H0

∗j 
W00> 

W00H0
∗j

Frobj (K
0) = ker ui,j Pi+1 = ker = ker , 

i=0 

hence ker(H0∗j 
) = Frobj (K

0)W00 . Moreover, ker(H0∗j 
) has r zero columns in-

dexed by j + 1, . . . , j + r + 1 mod n. Therefore, for j = n − r, . . . , n − 1, 



  

Frobj (K
0)w = 0 and each of these contributes n − r − 1 equations in the same 

n variables. Note that we only need one column of W00 to build the rest of the 
matrix. 

Once U00 and W00 are recovered, we might find the core polynomials by using 
the following equations ! ! 

2Xn−1 2Xn−1 

H0 = W00−1 0 W00−t 
H̃0 = W00−1 0 W00−t 

u iPi+1 and v iPi+1 . 
i=0 i=0 

At this point, we are not able to decrypt a ciphertext because the recovered 
0 0 

core polynomials H0 and H̃ would have high degree. But fortunately H0 and H̃
satisfy the following equations 

a11H
0 − a01H̃

0 = (a11a00 − a01a10) Frobk(H) = det(A ∗ ) Frobk(H), and 

−a10H0 + a00H̃
0 = (−a01a10 + a11a00) Frobk(H̃) = det(A ∗ ) Frobk(H̃), 

0where the aij s are the ones given by the equivalent key already fixed by T00 . 
0Consequently, if we would know the aij s, we could derive a low degree polynomial 

(useful to invert H 0 and H̃ 0) as shown in the next equation 

X(a11H
0 − a01H̃

0)+Xq(−a10H 0 + a00H̃
0) = h i 

det(A ∗ ) X Frobk(H) + Xq Frobk(H̃) = 

det(A ∗ ) Frobk(Ψ). 

0˜Setting H0 = [hij ] and H := [h̃ij ], we try to find a00, a01, a10, and a11 by first 
solving the overdetemined systems � �> � � 

h1,r+1 h1,r+2 · · · h1,n−1 h1,n x0 = 0 , and ˜ ˜ ˜ ˜h1,r+1 h1,r+2 · · · h1,n−1 h1,n x1 � �> � � 
h2,r+1 h2,r+2 · · · h2,n−1 h2,n y0 = 0.˜ ˜ ˜ ˜h2,r+1 h2,r+2 · · · h2,n−1 h2,n y1 

For n large enough we expect that both solution spaces are one-dimensional, i.e, 
our expected solution are of the form � � � � � � � � 

x0 a11 y0 −a10 = α , = β . 
x1 −a01 y1 a00 

for some α, β ∈ K. Then, we compute 

αa11H
0 − αa01H̃

0 = α det(A ∗ ) Frobk(H), and 

−βa10H 0 + βa00H̃
0 = β det(A ∗ ) Frobk(H̃), 

and by solving a linear system, we can get α, β, and our low degree polynomial 

Ψ 00 := γ det(A ∗ ) Frobk(Ψ), with γ ∈ K. 



4 Experimental Results and Complexity 

In order to experimentally verify our attack, we generated ZHFE instances for 
different parameters and carried out the full attack. We were able to solve the 
MinRank problem associated with each instance of ZHFE and then we recovered 
an equivalent key for every solved MinRank problem. We also recovered the low 
degree polynomial Ψ 00. Every time we successfully solved the MinRank problem, 
we were able to carry out the rest of the attack. This confirms that most solutions 

k k 
for such MinRank problem are of the form a00uq +a10v

q . For these experiments 
we used the fast key generation method propposed by Baena, et al. [26], so we 

rneed to keep in mind that n must be even and the relation q + 2qr−1 < D ≤ q
must be satisfied. The experiments were performed using Magma v2.21-1 [3] on 
a server with a processor Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz, running 
Linux CentOS release 6.6. 

Minors KS 
q r n CPU time [s] Memory [MB] CPU time [s] Memory [MB] 
7 
7 
7 

2 
2 
2 

8 
12 
16 

255 4216 
3111 59651 

280 439 
1272 752 
5487 2537 

17 
17 
17 

2 
2 
2 

8 
12 
16 

277 5034 
3584 68731 

299 503 
1330 817 
6157 2800 

Table 1. MinRank attack to ZHFE 

Table 1 shows the time and memory required for the attacks using either the 
Kipnis-Shamir modeling or the minors modeling for solving the MinRank. These 
few data measures suggests that the Kipnis-Shamir modeling is more efficient. 
The Kipnis-Shamir modeling yields a bilinear system of n(n − r − 1) equations 
in (n − r − 1)(r + 1) + 2n variables. The Groebner Basis computation on every 
reported instance with r = 2 had a falling degree of 4. It follows that under this 
modeling the resulting system is not bi-regular as defined in [14]. To the best of 
our knowledge, there is no tight bound in the literature for the falling degree for 
the system that arises from the Kipnis-Shamir modeling. � �2nAlternatively, the minors modeling yields a system of equations in 2n r+2 
variables, whose complexity can be studied as in [2]. Assuming the conjecture 
about regularity in [12], the Hilbert series of the minors model ideal is 

det A(t)−2nHS(t) = (1 − t)(n−R)2 ,
(R 

t 2 ) 

where R is the target matrix rank (in our case R = r + 1) and A(t) = [ai,j (t)]P � �� � n−max(i,j) n−i n−jis the R × R matrix defined by ai,j = t ` . The degree of `=0 ` ` 
regularity is then given by the index of the first negative coefficient of HS(t). 



In comparison to the Hilbert Series in the multi-HFE case discussed in [2], 
the only difference is the 2n term in the exponent of 1 − t (simply n in their 
case). This does not affect significantly the analysis thereafter. For example, if 
we define HR(t) = (1 − t)(n−R)2−2n det A(t), we can compute 

2H1(t) = 1 + nt − 
1 
n(n − 4)(n + 1)2t + O(t3). 

4 

Note that the coefficient of 1 and t are positive and that the coefficient of t2 is 
negative for n > 4. So the degree of regularity is 2 = R + 1 = r + 2. Similarly, 
with r = 1, R = 2, the degree of regularity is 3 = R + 1 = r + 2 for n > 5.88, 
with r = 2, R = 3, the degree of regularity is 4 for n > 7.71, and with r = 3, 
R = 4, the degree of regularity is 5 for n > 9.54. We thus adventure to claim 
that the degree of regularity of the minors modeling of the min-rank problem 
arising from the attack on ZHFE is less or equal to r + 2 for all cases of interest. �� ��ω � �

2n+r+2 (r+2)ωIt follows that the complexity is O ∼ O n , where 2 < ω < 3 r+2 

is the linear algebra constant. This is polynomial in n for r constant. Even if r 
is a logarithmic function of n, the complexity is barely superpolynomial in n. 

It is worth spelling out the practical consequences of the above analysis. The 
expected degree of regularity r + 2 is also the degree of the minors. Thus, for 
n large enough, these minors span the whole degree r + 2 polynomial ring’s 
subspace. Therefore, to solve this system it suffices to gather enough minors 
and linearly reduce them among themselves. No Groebner basis algorithm is 
necessary. Moreover, in practice two variables can be fixed to 0 and 1, thus we � �

2n+rjust need to row-reduce a square matrix. r+2 

5 Conclusion 

We have shown a practical and asymptotic key recovery attack on the ZHFE 
encryption scheme. The details provided leave no doubt about its effectiveness. 
The asymptotic analysis shows the scheme vulnerable even for larger parameters. 
The rank structure of the central polynomials has proven too difficult to mask. 
Though the concept of ZHFE was directly inspired by a desire to avoid rank 
weakness, ZHFE succombed to rank weaknesses. 

Nevertheless, the idea of an injective multivariate trapdoor function may be 
viable, though ZHFE is not the correct technique. The landscape for multivariate 
public key encryption remains fairly bleak at this time. Fundamentally new ideas 
must emerge to realize the goal of secure multivariate encryption. 
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A Appendix 

A.1 Toy Example 

We provide a small example of the MinRank attack for ZHFE with parameters 
n = 8, q = 3 and D = 9. The small field is F = Fq , the extension field is 

5K = F/hg(y)i, where g(y) = y8 + 2y + y4 + 2y2 + 2y + 2 ∈ F[y], and b is a 
primitive root of the irreducible polynomial g(y). 

For ease of presentation, we consider a homogeneous public key and linear 
transformations. An easy adaptation for the general case can be done following 
the ideas expressed in [2]. �� 

The matrices associated with our private key (F, F̃ ), S, T are 

F = 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

b827 b4873 b3298 b211 b1824 b5374 b6155 b2404 

b4873 b5172 b1526 b1317 b2727 b1863 b3546 b5876 

b3298 b1526 b1842 b3540 b2647 b2349 b4599 b2987 

b211 b1317 b3540 b5242 b5758 b4705 b2663 b4097 

b1824 b2727 b2647 b5758 b4629 b5792 b5196 b666 

b5374 b1863 b2349 b4705 b5792 b6318 b4937 b6150 

b6155 b3546 b4599 b2663 b5196 b4937 b2275 b1436 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 
, S = 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

0 0 2 2 2 2 1 2 
0 1 0 1 0 1 0 1 
2 1 1 0 0 2 2 2 
1 2 2 1 1 1 0 2 
0 2 1 2 0 1 0 2 
0 1 1 0 1 2 2 0 
0 1 2 1 2 1 0 0 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 
b2404 b5876 b2987 b4097 b666 b6150 b1436 b4721 2 1 0 2 2 1 0 2 

F̃ = 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

b5574 b2257 b4540 b880 b2073 b4932 b3441 b5482 

b2257 b301 b5824 b5391 b1155 b1678 b572 b3108 

b4540 b5824 b5208 b3763 b6074 b2097 b3074 b139 

b880 b5391 b3763 b125 b2055 b1763 b1168 b4512 

b2073 b1155 b6074 b2055 b5080 b1720 b5820 b5832 

b4932 b1678 b2097 b1763 b1720 b5850 b1822 b5443 

b3441 b572 b3074 b1168 b5820 b1822 b2857 b939 

b5482 b3108 b139 b4512 b5832 b5443 b939 b1665 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 
⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

and T = [T1|T2], where 

0 2 2 1 0 1 0 1 1 0 1 1 0 1 1 1 
⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

> 

, T2 = 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

2 1 0 2 0 0 1 1 0 1 1 0 0 0 1 0 
2 0 0 0 1 0 2 2 1 1 1 1 1 2 0 0 
1 2 2 2 2 0 0 2 0 0 2 1 1 1 1 2 
2 0 1 1 1 2 1 2 1 1 2 2 1 2 0 1 
0 1 1 1 1 0 0 1 0 0 1 2 2 0 1 0 
0 1 0 1 2 2 0 1 0 0 2 2 0 1 0 1 
1 2 0 0 2 0 0 0 0 1 1 0 2 0 0 1 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

> 

2 2 0 2 2 1 2 2 2 2 0 1 2 2 0 0 
2 0 2 0 2 0 2 2 2 1 1 0 1 2 1 0 
1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1 

T1 = . 
1 0 1 2 2 1 2 0 2 2 1 0 0 0 1 2 
0 1 1 1 2 1 2 0 0 0 1 2 1 1 0 0 
0 1 2 2 1 0 2 2 1 2 2 1 0 2 2 1 
2 0 0 1 2 2 2 2 2 2 1 0 1 1 0 1 0 2 0 0 2 0 2 2 2 0 2 0 2 1 2 0 



 

 

This private key gives us a public key represented by the matrices P1, P2, . . . , P2n. 

⎞⎛⎞⎛⎞⎛⎞⎛ 
0 0 2 0 2 1 0 2 2 1 0 1 1 0 2 0 1 0 0 0 2 1 1 1 0 1 2 2 2 1 1 0 ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

1 0 0 2 0 2 0 2 
2 0 1 0 2 0 2 2 
2 2 0 0 2 2 2 2 
2 0 2 2 0 2 1 0 
1 2 0 2 2 0 1 0 
1 0 2 2 1 1 1 0 

2 1 1 2 0 2 0 0 0 2 1 1 1 0 1 2 1 1 2 1 2 0 2 0 0 2 2 2 0 0 0 1 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

0 2 1 2 2 2 0 1 1 0 2 0 0 0 0 2 0 2 1 2 1 1 2 1 
2 1 0 1 0 0 0 1 0 2 0 2 0 0 2 1 0 1 1 2 0 1 1 2 
0 2 1 1 2 2 1 2 1 0 2 1 1 0 0 1 0 2 2 1 2 2 1 1 

P1 , P2 , P3 , P4 = = = = ,
2 2 0 2 0 2 2 0 1 0 0 1 1 0 0 1 2 1 0 2 2 0 0 2 
1 2 0 2 2 0 0 2 0 0 0 0 0 2 1 0 1 1 1 2 0 0 1 0 
0 0 0 1 2 0 0 0 2 0 2 0 0 1 0 1 1 2 1 1 0 1 2 2 

⎞⎛⎞⎛⎞⎛⎞⎛ 
2 0 1 1 1 0 2 1 0 1 1 0 0 2 1 1 0 1 2 2 1 2 2 0 1 2 0 0 0 2 0 2 ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

2 1 0 2 1 1 0 1 
0 0 2 1 0 1 1 1 
0 2 1 0 1 0 0 1 
0 1 0 1 1 1 0 1 
2 1 1 0 1 2 2 1 
0 0 1 0 0 2 2 1 

1 1 0 0 1 1 2 0 1 2 2 0 1 2 0 2 0 0 0 2 2 1 0 0 2 1 1 1 1 1 1 0 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

0 1 2 0 0 0 2 1 1 2 2 2 2 2 1 2 1 1 2 2 0 1 0 0 
1 2 2 0 0 0 1 0 1 2 0 1 1 2 0 2 2 2 0 1 2 1 1 0 
1 0 0 1 2 1 0 0 0 2 1 0 2 1 2 0 2 2 1 1 0 1 1 2 

P5 , P6 , P7 , P8= = = = ,
1 0 0 2 1 1 2 1 0 2 1 2 0 2 0 1 1 0 2 0 0 2 2 2 
0 0 0 1 1 0 0 1 2 2 2 1 2 2 1 2 2 1 1 1 2 0 0 1 
2 2 1 0 2 0 0 2 1 1 0 2 0 1 2 0 2 0 1 1 2 0 0 0 

⎞⎛⎞⎛⎞⎛⎞⎛ 
2 0 2 1 2 0 1 0 0 2 0 0 0 0 1 1 0 0 0 2 2 2 0 1 0 2 1 0 2 1 1 0 ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

2 2 2 2 0 1 1 1 
0 2 1 2 2 0 1 0 
0 2 2 1 1 1 0 1 
0 0 2 1 1 0 1 1 
0 1 0 1 0 1 1 0 
1 1 1 0 1 1 2 0 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

0 0 0 1 1 2 1 2 0 0 2 0 1 2 0 1 2 1 0 1 2 1 1 2 
2 0 1 2 1 2 2 2 0 2 2 0 1 2 2 1 1 0 0 1 0 0 1 2 
1 1 2 1 2 2 2 0 2 0 0 0 2 2 1 0 0 1 1 2 2 2 1 1 

P9 , P10 , P11 , P12 = = = = ,
2 1 1 2 0 1 0 1 2 1 1 2 2 1 1 1 2 2 0 2 2 0 2 2 
0 2 2 2 1 2 2 1 2 2 2 2 1 0 0 1 1 1 0 2 0 0 2 2 
1 1 2 2 0 2 0 2 0 0 2 1 1 0 1 2 1 1 1 1 2 2 0 2 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

0 2 2 0 1 1 2 2 1 1 0 1 1 0 0 1 1 1 1 0 1 1 2 2 0 2 2 1 2 2 2 0 ⎞⎛⎞⎛⎞⎛⎞⎛ 
2 0 0 0 2 1 1 0 1 0 0 1 0 2 1 0 1 0 2 2 2 1 1 0 1 1 0 0 1 1 0 0 ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

0 0 2 2 0 1 0 0 
0 2 0 2 1 0 1 1 
1 2 2 2 0 1 0 2 
0 0 1 0 0 0 0 2 
2 1 0 1 0 2 0 1 
1 0 1 0 0 0 1 2 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

0 1 1 2 0 1 1 0 0 2 2 0 2 1 0 2 1 1 2 1 0 1 0 1 
0 1 1 0 2 1 2 1 2 2 2 1 2 1 2 0 0 2 1 2 1 0 1 2 
0 2 0 2 1 1 2 2 2 0 1 1 2 1 2 0 0 1 2 2 0 2 1 0 

P13 , P14 , P15 , P16= = = = .
2 0 2 1 2 0 2 2 2 2 2 2 0 0 2 0 1 0 1 0 1 0 0 0 
1 1 1 1 0 2 1 2 1 1 1 1 0 2 0 2 1 1 0 2 0 2 1 0 
1 1 2 2 2 1 1 0 1 0 2 2 2 0 1 2 0 0 1 1 0 1 2 1 
0 0 1 2 2 2 0 0 0 0 1 2 2 1 2 0 0 2 0 0 0 2 2 0 0 1 2 0 0 0 1 1 

Recovering T : The first and harder step to recover an equivalent linear trans-
formation T is to solve the MinRank problem associated with the public matrices 
P1, . . . , P16 and r + 1, with r = dlogq De = 2. Using the minors modeling, we 
construct a degree 4 polynomial system in 2n variables. We can fix the two first 

0 0 0coordinates of the vector u00 = (u0, u1, . . . , u7) as 1 and 0 respectively. A solution 
for this system is 

0 = (1, 0, b5854, b4879, b2843, b2676, b6279, b1845, b6102, b5619, b5448, b6022, b1721, b2632, b3738, b6170).u 

Next we compute 

2Xn−1 
0K0 = ker uiPi+1 

i=0 

! 
= 

⎛ ⎜⎜⎜⎜⎝ 
1 0 0 0 0 b6158 b1567 b6415 

b950 1 0 0 0 b3943 b4591 

0 0 1 0 0 b4461 b4216 b3027 

0 0 0 1 0 b3577 b5899 b1096 

⎞ ⎟⎟⎟⎟⎠ , 
b9070 0 0 0 1 b6554 b4266 

and by solving the linear system ! 
2Xn−1 

K0 xiPi+1 = 0(n−r)×n, 
i=0 



v 

we get another solution 

0 := (b1519, b4750, b4454, b3326, b2077, b4519, b3525, b1978, b5511, b315, b715, b4722, b5003, b1895, b2665, b4505). 

Once we have two solution for the MinRank problem we compute 

T00−1 = U”M−1 
16 , 

n−1 n−10q 0qwith U00 := [u0| · · · |u |v0| · · · |v ], invert the output matrix to obtain 
T00 = [T1 

00|T00 2 ], with 

T00 1 = 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

2 0 2 1 1 0 1 0 
1 2 2 2 0 2 0 0 
1 1 0 2 0 0 0 2 
2 2 1 2 0 1 0 0 
0 2 2 0 2 0 0 0 
2 1 0 1 1 2 0 0 
2 1 1 1 1 1 0 0 
2 2 1 0 2 1 0 1 
0 0 2 0 0 1 2 0 
1 2 2 0 0 0 0 1 
0 1 1 2 2 2 2 2 
2 2 0 1 0 1 2 1 
1 0 0 1 1 0 0 1 
1 2 2 1 1 2 1 0 
1 0 0 1 1 0 1 0 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

, T00 2 = 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

1 1 0 0 2 1 1 1 
1 0 0 1 0 2 1 1 
2 1 1 2 2 1 1 0 
1 2 2 1 2 2 0 0 
0 1 1 2 0 1 2 1 
2 0 2 1 2 0 1 2 
2 0 2 2 2 0 2 1 
2 2 1 0 2 2 0 1 
2 1 0 1 2 1 1 0 
0 1 2 1 0 2 1 1 
2 2 2 1 1 0 1 2 
0 0 0 0 1 2 2 0 
0 2 0 0 2 1 1 0 
0 1 2 0 1 1 2 1 
1 2 0 2 0 1 2 1 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 
0 0 2 0 2 2 1 1 1 2 0 0 0 1 1 0 

Recovering S : To find W00 := S00Mn = [w00|w00q| · · · |w00q n−1 
], we find its first 

00column w00, which satisfy Frobj+1(K
0)w = 0, for j = n − r, . . . , n − 1 = 7, 8. 

By solving the overdetermined system 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

1 0 0 0 0 b6158 b1567 b6415 

b950 1 0 0 0 b3943 b4591 

0 0 1 0 0 b4461 b4216 b3027 

0 0 0 1 0 b3577 b5899 b1096 

b9070 0 0 0 1 b6554 b4266 

1 0 0 0 0 b6426 b2709 b4325 

0 1 0 0 0 b3501 b3717 b4405 

0 0 1 0 0 b1487 b3592 b1009 

0 0 0 1 0 b3379 b4153 b2552 

0 0 0 0 1 b6558 b1422 b2489 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 
w 00 = 0, 

� � 
K0 00 w = 

Frob7(K
0) 



00we obtain w = (b929, b2174, b2323, b4231, b3677, b6313, b2372, b3245). We then com-
pute 

W00 = 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 
, 

b929 b2787 b1801 b5403 b3089 b2707 b1561 b4683 

b2174 b6522 b6446 b6218 b5534 b3482 b3886 b5098 

b2323 b409 b1227 b3681 b4483 b329 b987 b2961 

b4231 b6133 b5279 b2717 b1591 b4773 b1199 b3597 

b3677 b4471 b293 b879 b2637 b1351 b4053 b5599 

b6313 b5819 b4337 b6451 b6233 b5579 b3617 b4291 

b2372 b556 b1668 b5004 b1892 b5676 b3908 b5164 

b3245 b3175 b2965 b2335 b445 b1335 b4005 b5455 

and 

S00 = W00M−1 = 8 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

2 2 2 1 2 0 0 2 
1 2 1 1 2 0 1 2 
2 1 0 2 0 2 1 0 
2 2 1 1 2 1 2 2 
0 2 1 2 0 0 0 2 
1 0 1 0 1 1 1 2 
1 0 2 0 1 2 2 0 
0 1 1 0 2 2 0 1 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 
�Recovering core polynomials: To find our equivalent core polynomials H 0 �P7

H̃ 0 = W00−1
and we calculate H0 W00−t0 

iPi+1 as well as the value of i=0 u� �P7 0 
iPi+1 W00−t

H̃0 = W00−1 and obtain i=0 v

⎛ ⎛⎞ 
b2287 b992 b5159 b4953 b4144 b6518 b3920 b4127 b87 b1874 b3075 b2869 b2060 b4434 b1836 b2043 

b992 b5165 b5229 b5023 b4214 b28 b3990 b4197 b1874 b6189 b1832 b1626 b817 b3191 b593 b800⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

, H̃ 
0 
= 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

b5159 b5229 b3075 b18320 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

b4953 b5023 b2869 b1626 
0H = 

b4144 b4214 b2060 b817 

b6518 b28 b4434 b3191 

b3920 b3990 b1836 b593 

b4127 b4197 b2043 b8000 0 0 0 0 0 0 0 0 0 0 0 

Recovering the low degree polynomial: Once the core polynomials H0 = 
0˜[hij ], H = [h̃ij ] are recovered, our target is to build the low degree polynomial 

Ψ 00 fundamental for the attacker to be able decrypt. So, we solve the following 
overdetermined systems 

� �> � �� �>
b5159 b4953 b4144 b6518 b3920 b4127 

�� 
h1,r+1 h1,r+2 · · · h1,n−1 h1,n x0 x0 = 0,= ˜ ˜ ˜ ˜ b3075 b2869 b2060 b4434 b1836 b2043h1,r+1 h1,r+2 · · · h1,n−1 h1,n x1 x1 � �> � �� �> � 

b5229 b5023 b4214 b28 b3990 b4197 
� 

h2,r+1 h2,r+2 · · · h2,n−1 h2,n y0 y0 = 0,= ˜ ˜ ˜ ˜ b1832 b1626 b817 b3191 b593 b800h2,r+1 h2,r+2 · · · h2,n−1 h2,n y1 y1 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 



0 
0 
0 
0 
0 

and we obtain the solutions [x0, x1]> = [b1418, b222]> and [y0, y1]> = [b2162, b2279]> . 
0 0 

+b222 ˜ and b2162H0 +b2279 ˜Then, we compute b1418H0 H H obtaining respectively ⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 
, 

⎛ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

b106 b6092 0 0 0 0 0 0 
b6092 b3643 b4437 b4231 b3422 b5796 b3198 b3405 

b1294 b536 b3144 b2938 b2129 b4403 b1905 b2112 

b536 b844 0 0 0 0 0 0 
b4437 b31440 0 0 0 0 0 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 

b4231 b2938 
. 

b3422 b2129 

b5796 b4503 

b3198 b1905 

b3405 b21120 0 0 0 0 0 0 0 0 0 0 0 0 0 

Finally, we form the system � �> � 
b4437 b4231 b3422 b5796 b3198 b3405 z0 

� 
= 0,

b3144 b2938 b2129 b4403 b1905 b2112 z1 

[b1024we a solution [z0, z1]
> = , b5597]>, and we use it to compute our low 

degree polynomial, 

Ψ 00 = b1024X(b1418H 0 + b222H̃ 0) + Xq(b2162H 0 + b2279 H̃ 0) 

= b6441X9 + b2097X7 + b852X5 + b1130X3 

A.2 Low rank matrix forms 

⎞⎛⎞⎛ 
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . ∗ ⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

∗ ∗ ∗ . . . ∗ ∗ . . . ∗ 
∗ ∗ ∗ ∗ 
. . . . . . 

∗ ∗ ∗ ∗ 
∗ 
. . . 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

∗ ∗ ∗ . . . ∗ 
∗ ∗ ∗ ∗ 
. . . . . . 

∗ ∗ ∗ ∗ 
∗ 
. . . 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 
∗ ∗ 
Case s = 0. Case s = 1. 

A.3 Comparison to Previous MinRank Analysis 

It has been noted in [26] and [32], for example, that we may consider ZHFE 
to be a high degree instance of multi-HFE with two branches, i.e. (X1, X2) 7→ 
(F1(X1), F2(X2)). This intuition is, however, mistaken. If we regard ZHFE as an 
instance of multi-HFE with N = 2, we must impose the relation X1 = X2, which 

⎞ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 



considerably changes the rank analysis. This fact is missing from the discussion 
of the KS-attack complexity in both [26], before the low Q-rank property was 
discovered and in [32] after the low Q-rank property of ZHFE was announced in 
[23]. 

Although our complexity analysis is quite similar to the analysis of the multi-
HFE attack of [2], there are, however, a few important distinctions that arise 
and elucidate the disparity between the complexity reported in [32] and our de-
rived complexity. First, in multi-HFE, with N branches, the number of variables 
over the extension field required to express the quadratic function is N ; thus 
the dimension of matrices required to construct a matrix representation for the 
central map is Nn, see [2, Proposition 5]. In ZHFE, a single variable is required 
over the extension field, and thus dimension n matrices are all that is required. 
Another distinction is that the rank bound for multi-HFE is due to a simulta-
neous degree bound in each of N variables over the extension field, producing 
a rank bound on the dimension Nn matrices of NR, where R is the rank, see 
[2, Lemma 3]. In ZHFE, the rank bound is due to the degree bound on Ψ , and 
only applies to a single variable; thus the rank bound is merely R = r + 1 where 
r = dlogq(D)e. Moreover, the minrank instance involves twice as many matrices 
in relation to the dimension of the matrices when compared with the minrank 
instances arising in multi-HFE. A final important distinction is that after the 
simultaneous MinRank is solved, an extra step, the derivation of an equivalent 
Ψ map, is required to recover a full private key. 

These distinctions lead to vastly different complexity estimates on the KS-
attack with minors modeling for ZHFE. In [32], the complexity of the KS-attack 
is reported as O(n2(R+1)ω) citing the complexity estimate in [2]. Indeed, the 
complexity would be O(n(2R+1)ω ) for the KS-attack on a multi-HFE instance 
with Q-rank R according to [2, Proposition 13]. We are uncertain where the 
extra power of ω enters the analysis of [32]. We note that in [32] they claim 
that with an unrealistic linear algebra constant of ω = 2 they obtain from this 

2(R+1)ωformula a complexity of 2138 for the KS-attack; however, computing n = 
552(4+1)(2) ≈ 2115, whereas using the more realistic value ω = 2.3766 we obtain 
2138 as reported. This is apparently a minor editing mistake. 

The reality is that the analysis in [2, Proposition 13] is related but not directly 
applicable to ZHFE since ZHFE does not correspond to multi-HFE with N = 2. 
Using an analysis analogous to the techniques in [2, Section 7], we derive above, 
using rank R = r +1, an estimate of O(n(r+2)ω). Using the proposed parameters 
q = 7, n = 55, and D = 105 which imply r = 3, we obtain an attack complexity 
of 264. We thus conclude that ZHFE is broken. 


