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Abstract—Ferroelectric materials are attractive for tunable
components because their permittivity can be controlled by an
applied electric field. The permittivity of these materials also
depends on frequency, and can have a strongly nonlinear electric
field dependence. A quantitative understanding of these behaviors
is relevant for integration of tunable materials into devices. In
this paper, we provide a simple closed-form expression for this
dependence, which to our knowledge has never appeared in the
literature. This expression is based on thermodynamic principles,
and we expect it to be both widely applicable and generalizable.
We test this model with measurements of transmission lines
lithographically patterned on a ferroelectric thin film, and find
that the relaxation timescales become shorter at higher bias fields.
We attribute this faster relaxation to the steepening of the free
energy gradient when a bias field is applied.

Index Terms—tunable microwave materials, tunable compo-
nents, materials characterization, functional materials, device
modeling

I. INTRODUCTION

Tunable dielectric materials are an attractive solution for
frequency-agile microwave components because their permit-
tivity can be tuned by an applied electric field. This field-
dependent permittivity translates into a variable capacitance,
which can be used to build voltage-tunable filters, phase
shifters, and other components [1], [2]. In particular, reconfig-
urable phase shifters are a key enabling technology for phased
array antennas, which will be employed in 5G [3] communica-
tions systems operating in the tens of GHz. To design tunable
devices, we need to have a quantitative understanding of the
tuning behavior of any materials involved. The alternative is
costly iterations of trial and error design. Simple, closed-form
models are convenient when available. An accurate and simple
model of ferroelectric capacitors based on thermodynamic
theory was provided by [4]. However, this model does not
attempt to describe frequency dependence of the material,
which is an important physical feature of nonlinear dielectrics.
Ferroelectric materials often have relaxation processes that are
active in the tens of GHz [5], [6].

In this paper, we present a thermodynamic model for
the electric field and frequency dependence of ferroelectric
materials based on very general physical considerations. We
test this model by measuring coplanar waveguides (CPWs)
lithographically patterned on a thin film of Ba0.5Sr0.5TiO3

* This paper is an official contribution of the US government; it is not
subject to copyright in the US.

(BST). We find good agreement between our model and our
measurements.

II. MODEL

The tuning of ferroelectric materials with an electric field is
often described in terms of a free energy G with an anharmonic
dependence on the polarization P [4], [7]:

G =
1

2
αP 2 +

1

4
βP 4 + ... (1)

Here, α and β are coefficients that describe the shape of the po-
tential well. In equilibrium, the electric field is E = ∂G/∂P .

A frequency-dependent model must describe how the ma-
terial responds in time to an applied perturbation. In the
Landau-Khalatnikov model, the material displays Debye-like
relaxation with time constant τ [7]:

τ
dP

dt
+ P = ε0εs

[
E(t)− βP 3

]
, (2)

where ε0 is the permittivity of free space and εs = ε0/α.
Equation (2) does not accurately describe BST, because

BST has a more complex time dependence. At microwave
frequencies, BST shows dispersion over a wider range of
frequencies. This dispersion can be described as a distribution
of relaxation times, which are attributed to polar nano-regions
(PNRs) [8]. According to [9], the distribution of relaxation
times corresponds to a statistical distribution of sizes of
PNRs. Acknowledging the non-Debye relaxation behavior of
materials with PNRs, Glazounov and Tagantsev proposed a
more general model which reduces to Equation (2) as a special
case [7]:

P (t) = ε0εs

∫ ∞
−∞

dt′ f(t− t′)
[
E(t)− βP 3(t)

]
. (3)

Equation (3) accommodates very general time-domain dy-
namics: f(t − t′) could potentially describe any linear, time-
invariant behavior. These dynamics may also be expressed
in the frequency domain via the Fourier transform f̂(ω) =∫
dt f(t) exp (−jωt). For BST, the distribution of relaxation

times has been phenomenologically parameterized by the
Cole-Cole model, which we employ in this paper [5]:

f̂(ω) =
1

1 + (jωτ)a
(4)

In Equation (4), τ and a are empirical parameters. The special
case a = 1 corresponds to Equation (2).
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To derive a frequency- and electric field-dependent model,
we Taylor-expand Equation (3) to first order about a large
dc bias field. To do this, we write the electric field and
polarization as E(t) = Edc + e exp (jωt) and P (t) = Pdc +
p exp (jωt). This linearization of Equation (3) yields:

Pdc = ε0εs
[
Edc − βP 3

dc

]
, (5)

p = ε0εs f̂(ω)
[
e− 3βP 2

dcp
]
. (6)

The numerical value of β can be hard to interpret intuitively.
For this reason, we use the scaled parameter

ENL =

√
4α3

3β
. (7)

The parameter ENL has units of electric field, and can be
interpreted as the electric field that must be applied to tune
the dc permittivity of the material by about 62% of its zero-
bias value. In terms of this scaled parameter, Equation (5) can
be solved in closed form [4]:

Pdc = (εsε0)ENLT

(
Edc

ENL

)
, (8)

where T
(
Edc

ENL

)
= sinh

[
1

3
sinh−1

(
3
Edc

ENL

)]
. (9)

The function T (·) describes the tunability of the material. For
small arguments, this function is approximately linear with a
slope of 1, but it begins to saturate as Edc ∼ ENL.

Equation (6) can be rearranged to describe the frequency-
and electric field- dependent susceptibility, χ = p/ε0e:

χ(ω,Edc) = ε∞ +
εsf̂(ω)

1 + 4T
(

Edc−Ec

ENL

)2
f̂(ω)

. (10)

For the remainder of this paper, we choose f̂(ω) to be given by
Equation (4) because this function fits our data well, but this
is not essential to the theory. We have also added a parameter
Ec, the coercive electric field, to reflect that our sample has
a small amount of hysteresis at room temperature, and ε∞, to
model non-tunable contributions to the polarization. Thus, the
parameters in our model are a, τ , εs, ε∞, ENL, and Ec.

III. EXPERIMENT

To test our model, we deposited a 1 µm-thick
Ba0.5Sr0.5TiO3 film by pulsed laser deposition on a
LaAlO3 substrate. In order to measure the permittivity, we
lithographically patterned gold coplanar waveguides on the
sample. The metalization thickness was 500 nm, and the
ground planes had a width of 200 µm, the center conductor
had a width of 20 µm, and the gap widths were 5 µm.

To characterize the permittivity, we performed on-chip scat-
tering parameter measurements. We measured 6 CPWs whose
lengths varied from 0.420 mm to 7.000 mm. Our network
analyzer was calibrated to the probe tips by a multiline Thru-
Reflect-Line calibration on a reference substrate with a known
capacitance per unit length [10]. The dc bias voltage was
applied between the center conductor and the ground planes

by use of a bias tee. Electric field values are estimated from
the bias voltage divided by the gap width.

We then determined the permittivity from the distributed
circuit parameters of the CPWs: the inductance L, resistance
R, capacitance C and conductance G. We assume that the
electromagnetic fields of the waveguide mode are confined to
the transverse direction (TEM propagation). This assumption
is common in the literature [5], but we hope to evaluate its
accuracy in the future. If the mode is TEM, R and L do
not depend on the permittivity of the sample, but C and
G are proportional to the real and imaginary permittivity,
respectively [11]. Thus R and L can be estimated through
quasi-static finite element simulations. From the scattering
parameters, we can estimate the propagation constant, γ, given
by γ =

√
(R+ jωL)(G+ jωC) [10]. Thus we can estimate

C and G for our transmission lines, which can be used to
determine the permittivity. The permittivity is related to C
and G in a straightforward way:

C +
G

jω
= c0 + c1ε(ω). (11)

Equation (11), along with the values of c0 and c1 was derived
analytically [12], but we determined the constants c0 and c1
from quasi-static finite element simulations.

IV. RESULTS
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Fig. 1: Frequency dependence of the a) real and b) imaginary
parts of the complex permittivity at different bias electric
fields. We have used the notation ε = 1 + χ = ε′ − jε′′.

Fig. 1 shows the frequency dependence of the complex
permittivity for several values of the bias electric field, and
a fit of he model to the data. The fit parameters were:
ENL = 3.04 V/µm, Ec = −0.06 V/µm, a = 0.46, τ = 1.9
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ps, εs = 2760, and ε∞ = 70. Anticipating that our sample
may exhibit hysteresis, we swept the field from 0 up to
20 V/µm, down to -20 V/µm, and up again. Here, we plot
the 2nd increasing sweep. We note small variations in the
frequency dependence, which we attribute to imperfections in
our calibration. The loss, ε′′, increases with frequency, and
both the real and imaginary parts of the permittivity decrease
with applied electric field.
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Fig. 2: Electric field dependence of the a) real part of the
permittivity and b) imaginary part of the permittivity at 20
GHz. An interval of width 2ENL centered on the peak value
is indicated, showing that ENL is a characteristic scale for the
tunability. Note that ε′′ tunes more strongly (82 % at ENL)
than ε′ real part (49 %).

The imaginary part of the permittivity (ε′′) tunes more
strongly with bias electric field than ε′, as seen in Figure
2, which shows the tuning of the film with applied voltage
at a frequency of 20 GHz. In our model, the function f̂(ω)
describes the distribution of PNR sizes, and does not depend
on bias field. The change in loss is a direct consequence of the
P 3 term in Equation (3). So, in our model, the loss decreases
with DC bias because the gradient of the free energy with
respect to P is stronger when the sample is biased, so P
relaxes faster.

V. CONCLUSION

We have introduced a physical model of the real and
imaginary parts of the permittivity as a function of electric
field and voltage. Because generalizations of Equations (1)
are widely used in the ferroelectic literature, and Equation
(3) is a straightforward generalization, we expect this model
to be widely applicable. At the very least, the model works

for BST in the paraelectric phase at microwave frequencies.
We anticipate no difficulties with this model up to the THz
regime, where phonon dispersion becomes important. The
biggest approximation we have made is that the electric field
in the CPW gaps is constant, which is not the case. Still, the
model fits the experimental data well (root-mean-square error
140 permittivity units). In addition to the variations in the data
that we attribute to imperfections in the calibration, there is
some voltage-dependent deviation of the model from the data
that we attribute electric field inhomogeneity.

In addition to fitting a complicated data set with a few pa-
rameters, our model offers some physical insight. In particular,
the imaginary part of the permittivity tunes more strongly than
the real part. We interpret this in terms of the gradient of the
free energy with respect to P . Finally, we note that Equation
(3) also predicts higher order nonlinear dynamical behavior,
including frequency dependence for intermodulation products
and harmonics. This characterization is underway [13].
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