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Abstract—In this paper, we propose an analytical framework to
derive all positive integer moments of MIMO mutual information
in high-SNR regime. The approach is based on efficient use
of the underlying matrix integrals of the high-SNR mutual
information. As an example, the framework is applied to the
study of Jacobi MIMO channel model relevant to fiber optical
and interference-limited multiuser MIMO communications. For
such a channel model, we obtain explicit expressions for the exact
moments of the mutual information in the high-SNR regime.
The derived moments are utilized to construct approximations
to the corresponding outage probability. Simulation shows the
usefulness of the results in a crucial scenario of low outage
probability with finite number of antennas.

I. INTRODUCTION

Mutual information is among the most important quanti-

ties in information theory. For Multiple-Input-Multiple-Output

(MIMO) communications, the supremum of mutual infor-

mation provides the fundamental performance measure, the

channel capacity. A great effort has been made to under-

stand the statistical behavior of MIMO mutual information of

various channel models. Existing knowledge in the literature

is, however, mostly limited to either exact mean values (first

moments) [1–4] or asymptotic (in channel dimensions) means

and variances [5, 6]. The first moment corresponds to the

ergodic mutual information, whereas the higher moments are

needed to describe the outage probability relevant to slow

or block fading scenarios. Another motivation of our study

is that the prevailingly adopted asymptotic variances based

approximate outage probabilities [5, 6] fail to capture the true

one when the number of antennas is small and/or the outage

probability is low. An accurate characterization requires the

exact higher moments of mutual information that governs the

tail behavior of the distribution.

Determining the exact higher moments of MIMO mutual

information for an arbitrary Signal-to-Noise Ratio (SNR) is

a well-known difficult task. We will show in this paper that

progress can be made when assuming the SNR is high. In

particular, we propose an analytical framework to obtain the

exact moments of any order in the high-SNR regime, which is

valid for a family of channel models. The idea comes from the

observation that moments of high-SNR mutual information can

be efficiently calculated via the underlying matrix integrals.

The high-SNR regime provides crucial insights to the behavior

of the MIMO channels. For example, it characterizes the

minimum required transmit power, also known as the high-

SNR power offset [7].
To demonstrate the usefulness of the proposed framework,

we study the mutual information of the Jacobi MIMO chan-

nels. The Jacobi MIMO channel is a useful channel mod-

el for MIMO optical communications [2, 6] as well as the

interference-limited multiuser MIMO [5]. The main result

of this paper is the exact yet explicit expressions for the

mutual information moments of any order of the Jacobi MIMO

channels in the high-SNR regime.

II. PROBLEM FORMULATION

A. MIMO Mutual Information
For a generic MIMO system consisting of n transmit and

m receive antennas, the communication channel in between

is described by an m × n random matrix H. Assuming i.i.d.

input across transmit antennas and that the channel matrix

H is only known to the receiver, the mutual information in

nats/second/Hz of the MIMO system is [1]

I = ln det
(
Im + rHH†

)
=

m∑
i=1

ln (1 + rθi) , (1)

where it can be made without loss of generality to first assume

that m ≤ n. Here, ln(·) is the natural logarithm, det(·) is the

matrix determinant, r is the SNR, and θm ≤ · · · ≤ θ2 ≤
θ1 denote the eigenvalues of the Hermitian matrix HH†. In

the high-SNR regime, by ignoring the constant Im in (1) the

mutual information can be approximated by

I = m ln r + ln det
(
HH†

)
(2a)

= m ln r +

m∑
i=1

ln θi. (2b)

The above approximation becomes exact as the SNR r grows

to infinity.
A fundamental information-theoretic quantity of MIMO

channels is outage probability, which is the probability that

a given rate exceeds the value of the mutual information. For

the high-SNR case (2), the channel outage probability Pout(z)
as a function of the rate z is defined as

Pout(z) = P (I < z) . (3)
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B. Jacobi MIMO Channels

As will be seen, the Jacobi MIMO channel is a channel

model for both MIMO optical communications [2, 6] and

interference-limited multiuser MIMO [5]. However, we will

formulate the problem and set up the notations mainly in the

context of the former application. The relevance to the latter

application will only be briefly mentioned.

The spatial degrees of freedom of the MIMO Rayleigh chan-

nels provide the well-known linear capacity scaling law [1]

with respect to the number of transceiver antennas. The idea

of the MIMO fiber optical channels is to achieve a similar

scaling law by also exploiting the spatial degrees of freedom.

In particular, multiple spatial transmission within the same

fiber is achieved by designing a multi-mode and/or multi-core

fiber. As a first step to exploring the spatial diversity, the Jacobi

MIMO optical channel has been proposed in [2, 6], which is

based on the following assumptions. The propagation through

the fiber is considered as lossless such that it is modeled as

an l × l random unitary matrix UU† = Il, which is also

known as the scattering matrix. Assuming n transmitting and

m receiving modes with m ≤ n, the effective MIMO optical

channel1 H equals the upper left sub-matrix of the scattering

matrix U = (uij) with the condition l > m+ n, i.e.,

H = (uij)i=1,...,m; j=1,...,n . (4)

Under the above assumptions, the joint eigenvalue density of

the hermitianized channel matrix HH† is given by [2, 6]

p (θ) =
1

c

∏
1≤i<j≤m

(θi − θj)
2

m∏
i=1

θα1
i (1− θi)

α2 , (5)

where 0 ≤ θm ≤ · · · ≤ θ2 ≤ θ1 ≤ 1 and

α1 = n−m, α2 = l −m− n.

For the above parameters α1 and α2, the resulting normaliza-

tion constant c is

c =

∏m
i=1 Γ(i+ 1)Γ(l − n− i+ 1)Γ(n− i+ 1)

Γ(l − i+ 1)
.

The ensemble (5) is known as the Jacobi ensemble [8] in

random matrix theory, and hence the name Jacobi MIMO

channels in the communications theory/information theory

community. The eigenvalue density of the interference-limited

MIMO channel considered in [5] takes the form of (5) with

the same parameter α1 = n−m as the difference between the

number of transmit and receive antennas. For this application,

the parameter α2 is now

α2 = kn−m,

where k is the number of interferers. For detailed information

of the considered interference-limited MIMO channel includ-

ing its connection to the Jacobi ensemble, we refer interested

readers to [5].

1For a detailed physical interpretation of this channel model, we refer the
readers to the excellent discussion in [6].

For the application to MIMO optical communications, the

exact ergodic mutual information E [I] of the Jacobi MIMO

channels has been calculated in [2] by integrating the mutual

information (1) over the eigenvalue density (5), whereas an

unexplicit and an asymptotic second moment expressions are

available in [6]. For the application to interference-limited

MIMO channels, the first two asymptotic moments as well

as a differential equation for the moments have been derived

in [5]. The exact higher moments of the mutual information

E
[
Ik
]
, k = 2, 3, . . . , which are needed to characterize the

outage probability, remain an open problem2. Despite the fact

that even the exact second moment of the mutual information

E
[
I2
]

is notoriously difficult to obtain, we will show that all

the exact moments of the high-SNR mutual information (2),

E
[Ik

]
, k = 1, 2, . . . , can be explicitly calculated. These

moments are utilized to construct approximations to the outage

probability in the high-SNR regime, which are in fact accurate

for moderate SNR values as will be seen.

III. EXACT CUMULANTS OF HIGH-SNR MUTUAL

INFORMATION

To compute E
[Ik

]
, one naturally would like to inte-

grate (2b) over the eigenvalue density (5) rather than to

integrate (2a) over the density of the matrix HH†. This is

because the former integral only involves m variables, whereas

the latter involves m2 variables. Contrary to this intuition,

we show that by working with the corresponding matrix

integrals the exact moment of any order can be obtained

in a straightforward manner. Instead of directly deriving the

moments as in [7, 9], another ingredient that leads to our

results is the study of the cumulants of I, which is technically

more convenient as will be seen.

Since the term m ln r in (2a) is a constant, we first focus

on the statistics of the random variable

x = ln det
(
HH†

)
. (6)

The cumulant generating function K(s) of x is defined as

K(s) = lnE [esx] =

∞∑
i=1

κ̃i
si

i!
, (7)

where the i-th cumulant κ̃i of x is recovered from the

generating function as

κ̃i =
di

dsi
K(s)

∣∣∣∣
s=0

. (8)

Denoting the i-th cumulant of I by κi, we have

κ1 = m ln r + κ̃1, (9a)

κi = κ̃i, i ≥ 2, (9b)

2A representation of the outage probability involving nested sums over
partitions is also available in [6], which is computationally demanding and
provides little insights.



which is obtained by the shift-equivariant and the shift-

invariant property for cumulants, respectively. With the knowl-

edge of cumulants of the mutual information I, the corre-

sponding moments can be determined. Specifically, the i-th
moment of I is written in terms of the first i cumulants as

E
[Ii

]
= Bi (κ1, . . . , κi) , (10)

where Bi is the Bell polynomial [10]. For example, the first

five moments of I are listed below

E [I] = κ1, (11a)

E
[I2

]
= κ2 + κ2

1, (11b)

E
[I3

]
= κ3 + 3κ2κ1 + κ3

1, (11c)

E
[I4

]
= κ4 + 4κ3κ1 + 3κ2

2 + 6κ2κ
2
1 + κ4

1, (11d)

E
[I5

]
= κ5 + 5κ4κ1 + 10κ3κ2 + 10κ3κ

2
1 +

15κ2
2κ1 + 10κ2κ

3
1 + κ5

1. (11e)

With the above preparation, we now present the main

technical contribution of this paper.

Proposition 1. The i-th exact cumulant κi of the high-SNR
mutual information (2) of the Jacobi MIMO channels (4) is
given by

κ1 = m ln r + nψ0(n)− lψ0(l)− (n−m)ψ0(n−m)

+(l −m)ψ0(l −m), i = 1,

κi = nψi−1(n)− lψi−1(l)− (n−m)ψi−1(n−m)

+(l −m)ψi−1(l −m) + (i− 1)
(
ψi−2(n)−

ψi−2(l)− ψi−2(n−m) + ψi−2(l −m)
)
, i ≥ 2,

where

ψi(z) =
∂i+1 ln Γ(z)

∂zi+1
= (−1)i+1i!

∞∑
k=0

1

(k + z)i+1
(13)

are the polygamma functions [11].

The proof of Proposition 1 is in the Appendix. A similar,

yet unsimplified, expression of κ1 in Proposition 1 has been

obtained in the context of mean power offset of interference-

limited MIMO channels [7, Eq. (78)]. In such a setting,

our derived higher cumulants will be useful to study the

distribution of power offset for nonergodic channels.

Note that in the cases i = 0, 1, the polygamma func-

tions (13) of positive integer argument can be reduced to finite

sums as [11]

ψ0(l) = −γ +

l−1∑
k=1

1

k
, (14a)

ψ1(l) =
π2

6
−

l−1∑
k=1

1

k2
, (14b)

which is known as the digamma function and the trigamma

function, respectively, and γ ≈ 0.5772 is Euler’s constant.

It is worth mentioning that the proposed idea of using

matrix-variate integrals to derive cumulants of MIMO mutual

information can be equally applied to study other MIMO

channel models. This includes the MIMO Rayleigh channels

with3 and without4 antenna correlation as well as recent

popular MIMO product channels [3, 4]. Results on all the

integer moments of the above mentioned channel models in

the high-SNR regime will be reported separately.

IV. OUTAGE PROBABILITY IN THE HIGH-SNR REGIME

With the exact cumulants in Proposition 1 and the cumulant-

moment relations (10), (11), closed-form moment-based ap-

proximations to the outage probability (3) can now be con-

structed. Moment-based approximation is a useful tool in

situations when the exact distribution is intractable whereas

the moments are available. The basic idea of moment-based

approximation is to match the moments and support of an

unknown distribution by an elementary distribution and the

associated orthogonal polynomials [14, 15].

For convenience, in the simulation we construct the approx-

imative outage probability via the moments of the random

variable −x in (6). Since −x ∈ [0,∞) has the same support

as a gamma random variable, the gamma distribution and

the associated Laguerre polynomials are chosen. The resulting

approximative distribution function5 Fq(z) = P(−x < z) by

matching the first q moments of −x can be read off from [14,

Eq. (2.7.27)] as

Fq(z) ≈ γ (α, z/β)

Γ(α)
+ ε(z),

where

ε(z) =

q∑
i=3

wi

i∑
j=0

(−1)jΓ(α+ i)

(i− j)!j!

γ (α+ j, z/β)

Γ(α+ j)

with

wi =

i∑
l=0

(−1)l
Γ(i+ 1)E

[
(−x)l

]
(i− l)!l!Γ(α+ l)βl

(15)

and γ(a, b) =
∫ b

0
ta−1e−tdt denotes the lower incomplete

gamma function. The parameters

α =
E
2 [−x]

E [x2]− E2 [−x]
, β =

E
[
x2

]− E
2 [−x]

E [−x]

are obtained by matching the first two moments of −x to

a gamma random variable having a density p(y|α, β) =
1

Γ(α)βα y
α−1e−

y
β , y ∈ [0,∞). Finally, by the relation (2a),

an approximation to the outage probability (3) is obtained as

Pout(z) = 1− Fq (m ln r − z) . (16)

As the number of moments involved in (15) increases, the

accuracy of the approximation (16) is expected to improve.

Fig. 1 shows the outage probability of the high-SNR mutual

information I assuming the channel dimensions m = 4 and

n = 6, where different dimensions of the scattering matrices

3The corresponding first two moments and some bounds on the outage
probability have been derived in [13]

4The corresponding first and second moment has been obtained in [7,
Eq. (15)] and [9, Eq. (105)], respectively.

5Note that the dependence on q is through the summation index in ε(z).
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Fig. 1. Outage probability of high-SNR mutual information (2) for different
l with m = 4, n = 6, and r = 20 dB.
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Fig. 2. Outage probability of mutual information (1) for different SNR values
with q = 5, l = 12, m = 4, and n = 6.

l = 12, 16, and 20 are considered. The numerical simulations

are compared with the moment-based approximative outage

probability (16), where the number of moments considered are

q = 2 and q = 5. We see that the outage probability decreases

as the number of untapped channels l−m−n decreases. This

phenomenon is also observed in [6]. As expected, it is seen

that the accuracy of the proposed approximation (16) improves

especially in the tails as the number of moments used increases

from q = 2 to q = 5.

The impact of finite SNR on the accuracy of the approx-

imation (16) is evaluated in Fig. 2, where the number of

moments used is q = 5 and the channel dimensions are l = 12,

m = 4, and n = 6. Despite the asymptotic nature of the

approximation, we see that it is already reasonably accurate

for not-so-high SNR for outage probability as low as 10−4.

V. CONCLUSION

We study the mutual information of the Jacobi MIMO chan-

nels, which is a realistic model for optical and interference-

limited multiuser communications. The corresponding exact

moments for such a channel model in the high-SNR regime

are derived. The results are possible by making use of the

matrix integrals involving the density of the high-SNR mutual

information. Approximations to the outage probability are

constructed based on the obtained exact moments. Simulation

demonstrates the accuracy of the results in practical scenarios

of low outage probability and finite number of antennas.
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APPENDIX

Before proving Proposition 1, we need the following lemma

on the finite sums of polygamma functions.

Lemma 1. For a positive integer l, we have

n∑
k=1

ψ0(k + l) = (n+ l)ψ0(n+ l)− lψ0(l)− n, (17a)

n∑
k=1

ψi(k + l) = (n+ l)ψi(n+ l)− lψi(l) +

i (ψi−1(n+ l)− ψi−1(l)) , i ≥ 1. (17b)



Proof: By the definition of digamma function (14a), we

have

ψ0(k + l) = ψ0(l) +

k−1∑
i=0

1

l + i
, (18)

which gives

n∑
k=1

ψ0(k + l)

= nψ0(l) +

n∑
k=1

k−1∑
i=0

1

l + i

= nψ0(l) +

n−1∑
i=0

n∑
k=i+1

1

l + i

= nψ0(l) + n

n−1∑
i=0

1

l + i
−

n−1∑
i=1

i

l + i

= nψ0(l) + n (ψ0(n+ l)− ψ0(l))−
n−1∑
i=1

l + i− l

l + i

= nψ0(n+ l) + l
n−1∑
i=1

1

l + i
− n+ 1

= nψ0(n+ l) + l (ψ0(n+ l)− ψ0(l + 1))− n+ 1

= (n+ l)ψ0(n+ l)− lψ0(l)− n.

This proves (17a). To show (17b), by the series representation

of polygamma function (13), one has

ψi(k + l) = ψi(l) + (−1)ii!

k−1∑
j=0

1

(l + j)i+1
, (19)

which similarly gives

n∑
k=1

ψi(k + l) = nψi(l) + (−1)ii!

n−1∑
j=0

n∑
k=j+1

1

(l + j)i+1

=nψi(l) + (−1)ii!n

n−1∑
j=0

1

(l + j)i+1
− (−1)ii!

n−1∑
j=1

j

(l + j)i+1

=nψi(l) + n (ψi(n+ l)− ψi(l))− (−1)ii!

n−1∑
j=1

l + j − l

(l + j)i+1

=nψi(n+ l)− (−1)ii!

n−1∑
j=1

1

(l + j)i
+ (−1)ii!l

n−1∑
j=1

1

(l + j)i+1

=nψi(n+ l) + i

(
ψi−1(n+ l)− ψi−1(l)− (−1)i−1(i− 1)!

li

)

+l

(
ψi(n+ l)− ψi(l)− (−1)ii!

li+1

)
=(n+ l)ψi(n+ l)− lψi(l) + i (ψi−1(n+ l)− ψi−1(l)) .

Note that the equality (17a) and the special case i = 1 of the

equality (17b) appeared in [12, Eq. (A1)] and [12, Eq. (A7)],

respectively, where no proofs were provided.

With the results in Lemma 1, we now turn to the proof of

Proposition 1.

Proof: As previously mentioned, the key ingredient of our

results is to make use of the relevant matrix integral instead of

the integral over the eigenvalue density (5). Mathematically,

the Jacobi MIMO channel (4) is a specific truncation of an

unitary matrix, where the corresponding density of the channel

matrix HH† is given by [8, p. 357]

Γm(α+ l − n)

Γm(α)Γm(l − n)
det

(
HH†

)α−m

det
(
Im −HH†

)l−m−n

.

(20)

Here, Γm(α) denotes the multivariate gamma function [8]

Γm(α) = π
1
2m(m−1)

m−1∏
k=0

Γ(α− k) (21)

and the parameter α in the density (20) equals n.

Now the cumulant generating function (7) of the random

variable (6) over the matrix density (20) is calculated as

K(s) = lnE
[
es ln det(HH†)

]
= lnE

[
det

(
HH†

)s]
= ln

Γm(α+ l − n)

Γm(α)Γm(l − n)
+ ln

∫
det

(
HH†

)s+α−m

×

det
(
Im −HH†

)l−m−n

dHH†

= ln
Γm(α+ l − n)

Γm(α)Γm(l − n)
+ ln

Γm(s+ α)Γm(l − n)

Γm(s+ α+ l − n)
.

The integral in the above can be considered as a trivial

deformation of the density (20), which is directly obtained

by replacing in the normalization constant the appearance of

α by s+α. Setting α = n, according to the definition (8) the

i-th cumulant κ̃i of (6) can now be computed as

κ̃i =
di

dsi
K(s)

∣∣∣∣
s=0

=
di

dsi
ln

Γm(s+ n)

Γm(s+ l)

∣∣∣∣
s=0

=
di

dsi

(
m−1∑
k=0

ln Γ(s+ n− k)−
m−1∑
k=0

ln Γ(s+ l − k)

)∣∣∣∣
s=0

=

m−1∑
k=0

ψi−1(n− k)−
m−1∑
k=0

ψi−1(l − k)

=

m∑
k=1

ψi−1(n−m+ k)−
m∑

k=1

ψi−1(l −m+ k),

where we have used the definitions (21) and (13). Finally, by

using Lemma 1 and the relation between the cumulants (9),

we prove Proposition 1.

It is seen that instead of directly studying the moments,

the use of cumulant generating function turns out to be more

convenient, where all the cumulants are obtained at once via

the polygamma functions.


