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Abstract. We discuss the development of a new format for beacons– 
servers which provide a sequence of digitally signed and hash-chained 
public random numbers on a fixed schedule. Users of beacons rely on 
the trustworthiness of the beacon operators. We consider several possible 
attacks on the users by the beacon operators, and discuss defenses against 
those attacks that have been incorporated into the new beacon format. 
We then analyze and quantify the effectiveness of those defenses. 

1 Introduction 

A randomness beacon is a source of timestamped, signed random num-
bers; randomness beacons (among other kinds) were first described by 
Rabin in [7]. 
At high level, a randomness beacon is a service that regularly outputs 
randomness, with certain cryptographic guarantees and with associated 
metadata, including a timestamp and a cryptographic signature. Each 
output of a beacon is called a pulse, and the sequence of all associated 
pulses is called a chain. An individual pulse from a given beacon can 
be uniquely identified by its timeStamp, and a pulse must never become 
visible before its timestamp. 
In 2013, NIST set up a prototype beacon[5] service. Recently, a new 
beacon format has been developed with a number of new security fea-
tures. Several independent organizations are currently planning to adopt 
this format, which offers the opportunity to have multiple independent 
beacon operators (in different countries) supporting an identical format, 
and supporting the generation of random values using multiple beacons 
inputs. 
A beacon is a kind of trusted third party(TTP)–an entity which is trusted 
to behave properly, in order to get some cryptographic protocol to work 
securely. It’s very commonly the case that we need a TTP to get a crypto-
graphic protocol to work, or to make it efficient. However, this introduces 
a new security concern: the TTP is usually in a position to violate the 
security guarantees of the system. In the case of a beacon, users of a bea-
con gain the benefits of a convenient source of public random numbers, 
but must now worry that the beacon operator may reveal those random 
numbers in advance to favored parties, manipulate the public random 
numbers for his own purposes, or even “rewrite history” by lying about 
the value of previous beacon pulses. 



The design of the new beacon format was largely an exercise in trying 
to limit the power of a TTP (the beacon) to violate its users’ security. 
We believe this effort has some lessons for anyone trying to design a 
cryptographic protocol or standard that requires a trusted third party. 
In the remainder of this document, we first propose a few principles for 
designing protocols with trusted third parties to minimize their poten-
tial harm. We then discuss the current NIST beacon and the general 
applications of public randomness. Next, we illustrate our TTP-limiting 
principles with specific aspects of the design of the NIST beacon for-
mat. We conclude by considering the ultimate effect of our efforts, and 
consider some possible improvements for the future. 

2 Trusted Third Parties 

A trusted third party (TTP) is an entity in some cryptographic protocol 
who must behave properly, in order for the protocol to meet its security 
goals. For example, in a public key infrastructure, a certificate authority 
(CA) is a TTP. The CA’s job is to verify the identity of users, and then 
to issue users a certificate that binds their identity to a public key. A CA 
which is careless or malevolent can issue certificates to the wrong users– 
for example, giving an attacker a certificate that lets him impersonate an 
honest user. In most currently-used voting systems, the voting hardware 
is a kind of trusted third party; if it misbehaves, it may undermine the 
security of the election. A good discussion of the downsides of TTPs 
appears in [12]. 
Many important real-world cryptographic systems require TTPs to func-
tion. However, a TTP in a system is always a source of vulnerabilities 
to attack–if the TTP misbehaves, the security of the system will be vio-
lated. Because of this, anyone designing or standardizing a cryptographic 
system with a TTP should try to minimize the potential for abuse or 
misbehavior of the TTP. In general, this requires going through a few 
steps: 

1. Enumerating each way that the TTP might misbehave so as to un-
dermine the security claims of the system. 

2. For each such potential attack, adding features to mitigate the at-
tacks as much as possible. 
(a) In some cases, the attack may be possible to eliminate entirely. 

This essentially means removing one area of required trust from 
the TTP. 

(b) Sometimes, it may not be possible to eliminate the attack, but 
it may still be possible to limit its power or scope. 

(c) In other cases, the design of the TTP or protocol can be altered 
so that misbehavior creates evidence that can be shown to the 
world. 

(d) In still other cases, the design may be altered so that misbehavior 
is at least likely to be detected when it is attempted, even if this 
produces no solid evidence that can be shown to others. 

(e) Sometimes, an external or optional auditing step can be added 
that makes the misbehavior likely to be detected. 



(f) In the worst case, it may be impossible to make this kind of 
misbehavior impossible or even detectable–in that case, we can 
at least document the risk of this kind of misbehavior. 

Each of these steps is valuable. Once the designer of a system realizes 
that the TTP could misbehave in some way, it is often possible to work 
out mechanisms to move up the list–to make an undetectable attack 
detectable, or to make some kind of misbehavior by the TTP leave evi-
dence that can be shown to the world. Even the final step, documenting 
the risk of misbehavior, is worthwhile, as it allows users of the TTP to 
understand exactly what risks they are accepting. 
When there is some auditing step added to the protocol to keep the TTP 
honest, it is very important to consider how practical the auditing step is. 
If it is extremely computationally expensive or otherwise inconvenient, 
it may never be done even if it is, in principle, possible. 

2.1 Incentives for the Honest TTP 

An entity that wants to run an honest TTP has many strong incentives 
to try to reduce its own scope for abuse. 

Fear, Uncertainty, and Doubt When silent, undetectable misbehavior 
is possible, there will always be suspicions swirling around that it is being 
done. This can undermine the TTP’s reputation, or even convince people 
to avoid the system that relies on the TTP. Sometimes, this will happen 
even when the alternative is obviously less secure. 

Insider and Outsider Attacks An organization trying to run a TTP 
honestly must deal with the possibility of both insider and outsider at-
tacks. An insider might cause the TTP to misbehave in some way, despite 
the good intentions of the organization running the TTP. Or an outsider 
might subvert the security of the TTP in some way. Both of these have 
the potential to damage the reputation of the organization running the 
TTP. 

Coercion The organization running a TTP must also worry about the 
possibility that they will be coerced in some way to misbehave. This 
might be done via legal means (such as a national security letter), or ex-
tralegal ones (a mobster threatening the head of the organization if some 
misbehavior isn’t done). It might involve financial pressure (a business 
partner threatening some dire reprisals if the misbehavior isn’t done), or 
a change in management of the organization in the future. It could even 
involve some intense short-term temptation to do the wrong thing that 
might be hard to resist in the future. The best way to resist this coercion 
is to have bad behavior simply be unworkable; what you cannot do, you 
cannot be coerced to do. 
This follows the general pattern noted in [9], in which it is sometimes 
possible to improve one’s position by limiting one’s options. When it 
comes to the design and operation of a TTP, both the users and the 
operators of a TTP benefit from having a TTP and surrounding sys-
tem designed to minimize the scope for abuse, and to make any abuse 
instantly detectable. 



3 Public Randomness and the NIST Beacon 

As described above, a beacon is a source of public random numbers, 
released in self-contained messages called pulses. The numbers should 
be random–unpredictable and impossible for anyone to influence. Each 
pulse contains a timestamp, and neither the pulse nor its random values 
may be released before the time indicated in the timestamp. Pulses are 
digitally signed and incorporated into a hash chain to guarantee their 
integrity. In order to be useful, a beacon should issue pulses on a fixed 
schedule, and should keep a database of all old pulses which it will provide 
on request. 

3.1 Public Random Numbers? 

Most discussions of random numbers in cryptography involve secret ran-
dom numbers, such as those used to generate keys. However, there are 
many places where it is more useful to have public random numbers– 
numbers which are not known by anyone until some specific time, and 
then later become known (or at least available) to the whole world. 
Why would we want public random numbers? 
– Demonstrate we did something randomly (outside our own control). 
– Bind something in time. (It couldn’t have happened before time T .) 
– Coordinate a random choice among many parties. 
– Save messages in a crypto protocol. 

The added value of a beacon is that these random numbers can be shown 
even to parties who were not present or involved at the time some event 
occurred. For example, if the random numbers from a beacon pulse are 
used to select a subset of shipping containers to open for inspection, then 
people who weren’t present and weren’t participating can verify that the 
selection was random–assuming they trust the beacon. 
There are a number of properties that users need from public random 
numbers: 
– Genuinely random. 
– Unpredictable to anyone until they become public. 
– Verifiable by everyone after they become public. 
– Impossible for anyone to control or manipulate. 
– Impossible to alter past values. 

3.2 A Beacon as a TTP 

All these applications work well with a beacon1. However, users of the 
beacon (including anyone trusting the randomness of the choices made) 
need to trust that the beacon is behaving correctly. A corrupt beacon 
might do all kinds of bad things, such as: 

1 There are other ways to get public random numbers. Many also depend on some 
trusted third party; others introduce other practical problems–ambiguity about cor-
rect values, lack of a fixed schedule, etc. Overall, we believe beacons are the best 
way to get practical public randomness for real-world applications 



– Reveal future random values early to favored people. 
– Control or influence random values to undermine the security of 

some user. 
– “Rewrite history” by altering old pulses, thus changing claimed his-

torical results. 
The NIST beacon is a practical source of public random numbers that 
has been running continuously (with occasional downtime) for five years. 
The NIST beacon consists of several parts: 
– Engine: the device that actually generates the pulses. 
– Multiple independent cryptographic RNGs used to generate random 

values. 
– A commercial hardware security module (HSM) used both as one 

source of random bits, and also to sign pulses. 
– Frontend–the machine talking to the world, providing the random 

numbers. The frontend must support various requests from users. 
The beacon format used since 2013 had only a few fields: 
– Version 
– Frequency 
– Seed Value 
– Previous Output 
– Signature 
– Status 
– OutputValue 

The new format has added many new fields. In figure 1, the new fields 
appear in red. 

uri
version

cipherSuite
period

certificateID
chainIndex
pulseIndex
timestamp

localRandomValue
external.sourceId
external.statusCode
external.value

previous
hour
day

month
year

precommitmentValue
statusCode

signatureValue
outputValue

What signature and hash are used?

Hash of signing certificate

Earliest time pulse will be available

} External source 
} fields (optional)
}
...... } Hashes
...... } of
...... } earlier
...... } pulses
...... }
Hash of NEXT localRandomValue

RSA sig on everything above
Hash of everything

Fig. 1. The new pulse format 

Despite the complexity of the new format, there are only a few fields in 
each pulse which are actually important for users: 



– timeStamp – the timestamp (UTC) at which the value will be re-
leased. 

– localRandomValue – the internal random value produced once a 
minute. 

– signatureValue – a digital signature on the pulse contents. 
– outputValue – the output of the pulse–the hash of all other fields of 

the pulse. 

The other fields (including all the new fields) add security or improve 
convenience in using the pulses. 

3.3 Timestamps 

The timeStamp in the new pulse format is always in UTC, so that the 
time at which a pulse is created is easy for any user to determine, with-
out the need to determine time zone or daylight savings time rules. 
The beacon promises never to release a pulse (or any information about 
the localRandomValue or outputValue field from the pulse) before the 
time in the timestamp, and never to issue more than one pulse with a 
given timestamp. The beacon also issues pulses on a fixed timetable– 
each timestamp is separated by period milliseconds. In the new format, 
timeStamp always appears as a string in RFC3339[RFC3336] format. 

3.4 Where the Random Numbers Come From 

Each pulse contains a new random value, called localRandomValue. This 
value is generated using multiple independent, strong random number 
sources. At present, the NIST beacon uses two RNGs–the Intel RNG 
included in the Beacon Engine machine, and the hardware RNG inside 
the HSM. We are currently working on adding a third RNG based on 
quantum phenomena (single-photon detection), custom built by NIST 
scientists. 
Suppose the beacon has k different RNGs. Let Ri be the 512-bit random 
output from the i-th RNG. Then, we have the following formula: 

localRandomValue ← SHA512(R0 k R1 k . . . k Rk−1) (1) 

That is, we take 512 bits from each independent RNG, concatenate them, 
and then hash them with SHA512[10]. The resulting 512-bit value be-
comes localRandomValue in the pulse. If any of the internal RNGs gen-
erate unpredictable, random values, then the result will also be unpre-
dictable and random. Even if one of the RNGs is flawed or backdoored, 
the value of localRandomValue will still be secure, as long as at least one 
of the RNGs is good. 
However, there is no way for any outside observer to verify localRandomValue 
is generated in this way. If the beacon began simply putting any value 
it wanted in that field, there would be no way for users to detect this. 



3.5 Signing Pulses 

At any given time, the beacon is using a particular signing key. The 
beacon also has a corresponding certificate, issued by a well-known com-
mercial CA. (The beacon frontend has an entirely different certificate and 
key used so that it can support TLS; there is no relationship between 
these keys.) 
In the new format, each pulse contains: 
– signatureValue is an RSA[11] signature over the entire contents of 

the pulse. 
– certificateId contains the SHA512() of the X.509[3] certificate of 

the signing key used for pulses. (The full X.509 certificate is available 
from the beacon frontend.) 

Having each beacon pulse digitally signed accomplishes two security 
goals: First, it ensures that impersonating the beacon will be difficult. 
Second, it ensures that a beacon which issues invalid pulses is creating 
permanent evidence of its misbehavior. 
In the NIST beacon, the RSA key used for signing the pulse is kept inside 
a commercial HSM. The HSM is designed to prevent the beacon engine 
from extracting the RSA key. This limits the ability of some attackers 
(both insiders and outsiders) to carry out some attacks, as discussed in 
detail below. 

3.6 The Output Value 

The current beacon format (like the previous one) defines the output 
value of the pulse as the final field in the pulse, labeled outputValue. 
The output value is defined as 

outputValue ← SHA512( all other fields in the pulse ) (2) 

Because this includes the value of localRandomValue, outputValue con-
tains the all the randomness in the pulse. However, users of the beacon 
can always verify that outputValue was computed correctly. As described 
below, the fact that users of the beacon will normally use outputValue 
has important security consequences. 

4 Limiting the Beacon’s Power 

4.1 Attacks 

Above, we noted the sorts of bad behavior possible for a corrupt beacon 
operator: 
– Reveal future random values early to favored people. 
– Control or influence random values to undermine the security of 

some user. 
– “Rewrite history” by altering old pulses, thus changing claimed his-

torical results. 



A good design of the beacon format and the normal operations of a bea-
con should ideally make such violations impossible; if not, it should at 
least make them harder, or at least detectable. In this section, we discuss 
mechanisms in the new beacon format which either add difficulty to mis-
behavior by the beacon, or which support users of the pulses protecting 
themselves from misbehavior. 

4.2 Prediction: Revealing the Value of outputValue in 
the Future 

The first way a beacon operator can misbehave is to reveal future outputs 
to selected people. 
A beacon that is operating correctly generates a new random value very 
soon before issuing a given pulse, and so can’t possibly tell anyone a 
value of the pulse very far into the future. However, a misbehaving bea-
con operator can, in principle, generate its pulses far in advance. All the 
computations needed to compute a pulse are relatively cheap, so com-
puting a year’s worth of pulses in advance can easily be done in an hour 
or two. 
There are two limits on the ability of a corrupt beacon to reveal future 
pulses: 

The Certificate ID The certificateId is the SHA512() of the cer-
tificate currently being used to sign pulses. Certificates normally have a 
fixed validity period–for example, one year. A corrupt beacon operator 
cannot predict the value of a certificate until he has seen it. Therefore, 
the validity period of the certificate imposes a (very generous) limit on 
the ability of the beacon to precompute future pulses. 
Suppose each certificate has a validity period of one year, and is issued 
one month ahead of its validity period. Then the beacon is limited to 
precomputing pulses no more than 13 months in advance. 

The External Source The new format allows beacons to optionally 
incorporate an external source into pulses. For example, a given beacon 
could incorporate the winning Powerball lottery numbers twice per week, 
or the closing value of the DJIA at the end of every stock trading day. 
By incorporating an external source that is outside the control of the 
beacon, the beacon operator can demonstrably lose a huge amount of 
power. 
Each pulse contains a field called external.value, which contains the 
SHA512() of the current external value. It is updated only when a new 
external value appears; otherwise, it retains the value it had previously. 
Each pulse also contains a field called external.sourceId, which con-
tains the SHA512() of a text description of the external source and how 
and when the external value will be updated. This should almost never 
change. 
Suppose a beacon incorporates a lottery drawing which occurs once per 
day as its external source; the result is incorporated six hours after the 
result is made public. In this case, the beacon is limited to precomputing 
future values no more than 30 hours in advance. 



Prediction: Summary 
1. A corrupt beacon can precompute its pulses far in advance and reveal 

the output values to friends. 
2. Incorporating an optional external.value into the pulse limits the 

precomputation (and thus the ability to reveal future outputs) to 
the time between updating the external.value. 

4.3 Influencing Outputs 

Recall that the output of the pulse is computed as: 

outputValue ← SHA512(all other fields of the pulse) 

Further, the recipient of the pulse can verify that this value is correct by 
recomputing the hash. This means that, while the beacon operator can 
completely control the value of localRandomValue, he cannot directly 
control the value of outputValue. Instead, in order to exert control over 
this value, he must try many different inputs; each input leads to a 
different random output value. With 2k tries, he can expect to get any 
property he likes for outputValue which has a probability no lower than 
2−k . 
For concreteness, in the rest of this discussion, we will assume that the 
beacon operator wants to force the least significant bits of a given pulse’s 
outputValue to be zeros. Thus, with 2k work, he can expect to force the 
low k bits to zero. This generalizes; an output value with any property 
that has a 2−k probability can be found about as easily. 
From [1], we can get benchmarks for an 8-GPU desktop machine doing 
brute-force hashing2. The listed system can do about 8.6 million SHA512 
hashes per second, which is about 223 hashes per second. An attacker 
with such a system could do about 239 hashes per day, or 247 hashes per 
year. Because the whole process is parallelizeable, spending N times as 
much money will get an N -way speedup. However, in order to add one 
bit of control of outputValue with the same hardware, an attacker must 
double the time taken for the computation. 
At the time of this writing, the most powerful attacker imaginable might 
conceivably have the computing resources to compute 290 SHA512 hashes 
in a year. This puts an upper bound on the beacon operator’s control of 
outputValue. However, for concreteness, we will assume in the rest of this 
discussion that the attacker has the 8-GPU desktop machine described 
in [1], and is trying to control bits of outputValue using it. 
There are several components of the new pulse format which limit the 
attacker’s control of the output bits. 

The Certificate ID As described above, the beacon operator can’t 
predict the value of its next certificate, incorporated into every pulse 
in certificateId. This limits the attacker to no more than about 13 
months of precomputation–with only about a year to do his attack, he 
is limited to controlling 47 bits of outputValue. 

2 That system is doing password cracking attacks. Trying to control some bits of the 
output of the beacon is very similar to password cracking. 



The Signature Each pulse contains an RSA signature, signatureValue, 
over all fields except the outputValue. This affects the attack in two 
ways: First, it means that each new value of a pulse will require a 
new RSA signature–adding slightly to the work needed per new output 
value computed. This probably reduces the attacker’s ability to control 
outputValue by a small number of bits. 
More importantly, in the NIST beacon, the RSA signing key is stored 
inside an HSM, and should be very difficult to extract. If the attacker 
doesn’t have access to the signing key3, then the attacker must involve 
the HSM in every new computation of an output value. 
Suppose the HSM can do 100 RSA signatures per second. Then, the 
attacker is limited to only about 232 trial values for the output in a year 
of trying, and so can control only about 32 bits of outputValue. 

external.value As described above, the new format allows beacons 
to optionally incorporate an external source into pulses. 
Once again, suppose the external source is updated from a lottery draw-
ing carried out each day. The lottery drawing results become public six 
hours before the value is incorporated into the external.value field. 
(This must be described precisely in the text whose hash appears in 
external.sourceId.) The attacker’s ability to control outputs is now 
enormously diminished–his precomputations can now run for at most 30 
hours. 
An attacker who has extracted the RSA key from the HSM and has the 
8-GPU system can thus carry out no more than 240 computations, and 
so can control about 40 bits of outputValue. An attacker who hasn’t 
extracted the RSA key from the HSM can control only about 23 bits of 
the output value. 
This makes a pretty good argument for the idea that the private key for 
the beacon should be generated inside the HSM once and never released 
to anyone, even encrypted. In the best case, we’d have some kind of 
guarantee that even the beacon operator could never see the private key. 

Influence: Summary Consider an attacker trying to control outputValue: 
1. A vastly powerful and well-funded attacker might be able to control 

as many as 90 bits given a year of computation. 
2. An attacker with a powerful setup for password cracking can control 

47 bits in a year of computation. 
3. When the attacker is unable to extract the RSA key from the HSM, 

his attack is limited by the speed of RSA signatures from the HSM. 
If the HSM can do 100/second, then the attacker can control about 
40 bits of the output value with a year of computation. 

4. If the beacon incorporates external values, the attacker’s power is 
massively diminished. Assuming an external value known to the at-
tacker for only 30 hours: 

3 This might be an outsider who has compromised the beacon engine, or an insider 
with access to the engine but not the HSM or RSA keys. 



(a) With the RSA key from the HSM, the attacker can control 40 
bits. 

(b) Without the RSA key from the HSM, the attacker can control 
23 bits. 

It is important to note that there is no way for any user to detect these 
attacks from the outside–as far as the user is concerned, the beacon is 
behaving normally, and the pulses look just like any other pulses. 

4.4 Combining Beacons 

Having multiple beacons operating at the same time gives users a choice 
of which beacon to trust. However, multiple beacons allow a user to com-
bine outputs from two or more beacons. The goal of combining beacons 
is to reduce trust in the beacon operators: if we combine pulses from 
N beacons and at least one is honest, then the resulting random value 
should be random, unpredictable, and outside anyone’s control. Instead 
of having to trust a single beacon operator, the user can end up needing 
to trust that any one of two or three operators is honest. 

Notation for talking about beacons In order to discuss combin-
ing of beacons, we need to introduce some notation: Suppose A and B 
are beacons: 
– A[T ] is beacon pulse at time T from A. 
– B[T ] is beacon pulse at time T from B. 
– B[T + 1] = next pulse, B[T − 1] = previous pulse. 
– B[T ].localRandomValue is the localRandomValue field of the pulse 

at time T from beacon B. 

Combining Beacons: What doesn’t work? A natural approach would 
be to XOR the outputValue fields from two beacons, getting 

Z ← A[T ].outputValue ⊕ B[T ].outputValue 

For simplicity, let’s suppose A is a corrupt beacon and B is an honest 
one. 
Combining the beacons even in this simple way prevents the prediction 
attack: A can’t know what random number B will produce at time T , 
so he cannot reveal the future Z to his friends. 
Unfortunately, A can still exert control over the combined output Z. A 
uses the following strategy to exert control over the bits of Z, despite 
B’s genuinely random contribution: 
1. B does a precomputation of 232 possible values of B[T ].outputValue. 
2. A sends pulse A[T ]. 
3. B observes A[T ].outputValue 
4. B chooses B[T ] to control low 32 bits of 

A[T ].outputValue ⊕ B[T ].outputValue 

. 



This attack led us to add a new field to the beacon format: precommitmentValue. 

A[T − 1].precommitmentValue = SHA512(A[T ].localRandomValue) 

That is, A[T −1] commits to localRandomValue in A[T ]. Once a user has 
seen A[T −1], A has no choice about the value of A[T ].localRandomValue. 
Note that precommitmentValue requires that the beacon engine compute 
the value of localRandomValue one pulse in advance. 
By forcing the beacon to commit up front to the next pulse’ random 
value, we can construct a protocol for combining beacons that is much 
more secure. 

Combining Beacons the Right Way In order to combine beacons 
from A and B, the user does the following steps: 

1. Receive A[T − 1] and B[T − 1]. 
2. Verify that both pulses: 

(a) Are valid 
(b) Were received before time T 

3. Receive A[T ] and B[T ]. 
4. Verify that the precommitmentValue fields are in agreement with the 

localRandomValue fields: 

A[T ].precommitmentValue = SHA512(A[T ].localRandomValue) 

B[T ].precommitmentValue = SHA512(B[T ].localRandomValue) 

5. Compute combined value by hashing together: 
– outputValue fields from T − 1 
– localRandomValue fields from T 

Z ← SHA512(A[T − 1].outputValue k B[T − 1].outputValue 

k A[T ].localRandomValue k B[T ].localRandomValue) 

This is a somewhat more complex way of combining beacons, but the 
added complexity adds security: 

1. By incorporating A[T − 1].outputValue and B[T − 1].outputValue, 
we incorporate the external value, RSA signatures, and other secu-
rity mechanisms described above. 

2. By incorporating A[T ].localRandomValue and B[T ].localRandomValue, 
we incorporate a fresh random number from each beacon. Any hon-
est beacon will provide a completely unpredictable random value. 

3. Thanks to the precommitmentValue fields in A[T − 1] and B[T − 1], 
neither beacon can change the value of their localRandomValue fields 
after they see the random value from the other beacon. 

As long as the beacons output their values on time, the result is that 
if at least one beacon is honest, Z is random, it can’t be predicted by 
anyone before time T , and it cannot be influenced by either beacon. 



Hitting the RESET button Combining beacons massively im-
proves security, but isn’t quite perfect–a corrupt beacon still has a very 
small amount of influence. 
Once again, suppose A is an evil beacon, and B is an honest one. The 
attack works as follows: 
1. Both beacons send out pulses for time T − 1. 
2. At T , B sends out A[T ]. 
3. A computes combined output Z. 
4. If it doesn’t like Z, it simulates a failure. 

Note that this attack follows a common pattern: simulating a failure that 
really could happen for innocent reasons. If the corrupt beacon is willing 
to do this once for a given attempt to combine beacons, then it gets a very 
small amount of influence on Z–it gets one opportunity to veto a value 
of Z it finds unacceptable. Along with massively decreasing the power 
of a corrupt beacon, this attack also forces a corrupt beacon trying to 
influence the combined output to take a visible action–it must simulate 
a failure and stop producing pulses for awhile. This is very visible to 
the user trying to combine beacon pulses, and also leaves a permanent 
record in its sequence of pulses. 

Summary: Combining Beacons 
1. Combining beacons massively decreases the scope of a corrupt beacon– 

as long as at least one beacon used is honest, the user’s security is 
massively improved. 

2. Prediction attacks become impossible–a corrupt beacon cannot re-
veal the value of a future combined value to a friend even one minute 
in advance. 

3. Influence attacks become much harder–a corrupt beacon can veto 
one combined value, but must do so in a way that is obvious and 
leaves a permanent record in the chain of pulses. 

4.5 Rewriting History 

Both the old and new beacon pulse format have two fields that make 
it impossible for a beacon operator to “rewrite history” without leaving 
permanent evidence that it has done so. 
First, each pulse has a signatureValue field, signing the pulse with a key 
for which the beacon operator has the key and certificate. Second, each 
pulse contains the outputValue of the previous pulse, in its previous 
field. Since the output value is the hash of the contents of the pulse, this 
means that a sequence of pulses forms a hash chain. 
A hash chain has the property that introducing a change anywhere in 
the chain requires changing every block after the chain. Figure 2 shows 
the hash chain (with most fields omitted for clarity) when a change is 
made to a pulse. 
The result of this is that if the beacon operator makes such a change to 
some pulse in the past, then that pulse’s output value becomes inconsis-
tent with the later pulses in the chain–pulses that users have already seen 
and stored, and that have valid signatures from the beacon operator. A 
change to any pulse leaves an inconsistency in the chain. Examining the 
chain will always detect the inconsistency. 



4.6 Changing a pulse changes all future pulses! 
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Fig. 2. Altering a pulse affects every future pulse in the hash chain 

The result of this is that any attempt to “rewrite history” by changing 
the value of some past pulse creates permanent evidence of the beacon’s 
misbehavior. Unfortunately, verifying that the beacon hasn’t rewritten 
history can be expensive. Consider the situation where a user know the 
value of 2022-10-04 17:35, and wants to use this to verify the value of 
2019-11-29 22:58. There are about 1.5 million pulses between these two, 
so a user wanting to do this verification would have to request 1.5 million 
pulses from the beacon, and then verify the entire hash chain. 

Skiplists An auditing step that is unworkably complex and expensive 
will seldom be done. In order to make this auditing step more efficient, 
we added several fields to the pulse format, in order to support a much 
more efficient way to verify that a given pulse has not been changed, by 
returning a sequence of pulses we refer to as a skip list. A skiplist between 
two pulses, TARGET and ANCHOR, guarantees that pulse TARGET is 
consistent with the value of pulse ANCHOR–the beacon cannot construct 
a valid skiplist if the value of TARGET has been changed. 
A hash chain used to verify the value of the pulse at 2019-11-29 22:58 
given knowledge of the value of the pulse at 2022-10-04 17:35 would 
require about 1.5 million pulses; the skiplist requires nine pulses. More 
generally, when the known (ANCHOR) pulse and the pulse to be verified 
(TARGET) are Y years apart, the skip list will be about Y + 46.5 pulses 
long on average. 
The construction of skiplists is described in detail in appendix A. 

5 Conclusions and Open Issues 

In this article, we have described the design of the new NIST beacon 
format from the perspective of minimizing the power of a beacon oper-
ator to misbehave. By adding fields to the pulse format, and defining a 
protocol for combining pulses from multiple beacons, we have massively 



decreased the power of the beacon operators to misbehave without detec-
tion. In the case where a user can combine pulses from two independent 
beacons, he can be extremely secure from misbehavior by any one beacon 
operator. 

Attack Resources and Modifications Vulnerability 
Prediction4 

Influence5 

Rewriting History 

Original format 
No external value 
External value 
Combined pulses 

Original format 
No external, RSA key known 
No external, RSA key unknown 
External, RSA key known 
External, RSA key unknown 
Combined pulses 

Original format 

New format 

unlimited 
13 months 
30 hours 
attack blocked 

At least 47 bits 
47 bits 
32 bits 
40 bits 
23 bits 
1 bit, but attack is visible 

Permanent evidence, 
expensive verification 
Permanent evidence, 
cheap verification 

Table 1. What can an evil beacon operator do? 

Table 1 shows how various ways for the beacon to operate and be used 
affects the vulnerability of the users to attacks by a corrupt beacon op-
erator. The important points from this table are: 
1. A beacon that includes an external value enormously reduces the its 

own scope for misbehavior. 
2. Combining pulses from multiple beacons gives very high security, 

assuming at least one beacon is honest. (If all the combined beacons 
are corrupt, then it makes no difference.) 

There are two possible directions for further work: we can make changes 
to future versions of the beacon format, and we can add new recom-
mended protocols for users of the beacon. 

5.1 Improving the Beacon Format 

The influence attacks described above are computationally expensive. 
If the output value were computed using a memory-hard function de-
signed to foil password cracking attacks, such as scrypt[6] or Argon 2[2], 
these attacks would become enormously less practical. Even implement-
ing scrypt with a minimal set of hardness parameters would easily cut 
ten or more bits off the ability of an attacker to influence outputs. 



The “hitting the RESET button” attack exploits the fact that when a 
beacon commits to its next pulse’s localRandomValue field, it can still 
refuse to disclose that. In [4], the authors propose a number of techniques 
to foil this attack, including the use of time-lock puzzles[8] for the random 
value in each pulse, and the use of “Merlin chains” to take away any 
ability for a beacon operator to simulate a failure without permanently 
shutting down the beacon. We could consider adding these to a future 
beacon format. 

5.2 Improving Protocols and Recommendations for 
Users 

A simple way for a user to protect itself from a corrupt beacon is simply 
to pre-commit to how it will use the beacon pulse at time T , and also to 
pre-commit to a secret random number kept by the user. The user reveals 
his random number at the same time the pulse is revealed, and derives 
a seed by hashing the pulse’s output value and his own random number 
together. Note that this completely blocks any influence or prediction by 
the beacon operator, assuming the user is honest. 
Instead of adding a memory-hard function to the calculation of the 
outputValue, we could also recommend using a memory-hard function 
for the computation of the final seed. By choosing the hardness param-
eters to make this seed calculation take 30 seconds on a reasonably fast 
desktop machine, the user can massively increase the difficulty of influ-
encing attacks by the beacon operator. 
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A Skiplists 

In order to support skiplists, we added four additional fields to the pulse 
format which contain the outputValue of previous pulses. (previous was 
defined in the old beacon format.) 
previous outputValue of previous pulse. 
hour outputValue of 1st pulse of hour of previous pulse. 
day outputValue of 1st pulse of day of previous pulse. 
month outputValue of 1st pulse of month of previous pulse. 
year outputValue of 1st pulse of year of previous pulse. 
By adding these fields, we ensure that instead of a sequence of pulses 
having a single hash chain, any long sequence of pulses has a huge number 
of different hash chains running through them, of varying lengths, as 
shown in figure 3. 
The algorithm for extracting a minimal chain (what we call a skiplist) is 
illustrated in figure 4. 
A more precise description of the algorithm appears in algorithm 1. 
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Fig. 3. A long sequence of pulses has a huge number of different hash chains 
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Fig. 4. Constructing a skiplist from TARGET to ANCHOR 

In this case, the result is that instead of needing to verify a chain of 1.5 
million pulses, the user requests a skiplist of nine pulses from the beacon 
frontend, and verifies them very efficiently. If the beacon has altered 
the TARGET pulse, it will not be able to provide a valid skiplist from 
TARGET to ANCHOR. 
In general, a skiplist between a value of TARGET and ANCHOR that 
are Y years apart will be about Y + 46.5 pulses long. 



Algorithm 1 Construct a skiplist from TARGET to ANCHOR. 
1: function make skiplist(TARGET, ANCHOR) 
2: path ← [] 
3: current ← TARGET 
4: while current< ANCHOR do 
5: path ← pp kcurrent 
6: if current is first pulse in its year then 
7: current ← first pulse in NEXT year 
8: else if current is first pulse in its month then 
9: current ← first pulse in NEXT month 
10: else if current is first pulse in its day then 
11: current ← first pulse in NEXT day 
12: else if current is first pulse in its hour then 
13: current ← first pulse in NEXT hour 
14: else 
15: current ← NEXT pulse 

16: path ← path kANCHOR 
17: return (path) 


