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Abstract

The use of wireless communications in industrial applications has motivated
various advances in manufacturing automation by allowing more flexibility in
installing wireless sensors and actuators than their wired counterparts. The
main challenge in industrial wireless deployment is the strict timing and relia-
bility requirements in these systems. Industrial wireless networks are commonly
characterized by strict packet deadlines. As a result, Time Division Multiple
Access (TDMA) protocols have been widely exploited in various technologies
due to their ease of implementation and packet collision avoidance. Moreover,
the use of frame-based protocols is motivated by the need for short processing
times at the edge nodes of the network. In this work, we consider the prob-
lem of scheduling multiple data flows over a wireless network operating in an
industrial environment. These flows are characterized by random strict dead-
lines for each packet following a given probability distribution. Each of these
flows may represent the data coming from a sensor to the controller or the con-
trol commands from the controller to an actuator. A randomized frame-based
scheduling scheme is analyzed where each time slot in the frame is assigned to
a data flow randomly.

1. Introduction

Wireless communications technology is a key enabler of advances in various
applications due to its better coverage, more flexibility, and massive connec-
tivity. Better coverage is achieved because wireless signals can cover locations
where wires cannot reach either due to the long distances or a harsh environ-
ment. Different applications have different requirements and different perfor-
mance indicators. Industrial wireless is motivated to allow better process and
factory automation where more communications devices can be installed and
larger amounts of data can be transferred.

Due to the criticality of the data transfered in many industrial environ-
ments, industrial wireless has strict requirements on the delay and reliability
of the transferred data. Consequently, industrial wireless protocols are devel-
oped to meet these requirements. Examples of wireless protocols for process
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automation include wireless Highway Addressable Remote Transducer Protocol
(WirelessHART) and the International Society of Automation (ISA) protocol
ISA100.11a [1, 2] and for factory automation include wireless communications
with ultra-high performance protocol (WirelessHP) [3].

Specifically, strict packet deadlines are required in industrial wireless net-
works. The stochastic and broadcast nature of the wireless channels can cause
data errors. As a result, packets may be lost or may have to be retransmitted,
which cause delays. Hence, improving transmission control schemes in indus-
trial wireless has been extensively studied for transmission of packets with strict
deadlines [4]-[7].

In order to overcome the challenges of the broadcast nature of the wireless
channel, time division multiple access (TDMA)-based medium access control
(MAC) protocols are used to avoid packet collisions. Generally, TDMA-based
MAC protocols allow the control of the transmitted packets in any time slot,
and hence, the network can achieve bounded transmission delay [8]. TDMA-
based MAC is used in industrial wireless to eliminate the possibility of packet
collision and hence it increases the likelihood of packets getting delivered by
their deadlines.

In TDMA-based networks, scheduling plays a crucial rule in the network
performance by determining the packets to be transmitted at any given time
slot. Moreover, scheduling can improve reliability by allowing multiple copies of
data to be transmitted over the network. As a result, scheduling has been widely
discussed to achieve the requirements of wireless sensor networks (WSN). In [9],
scheduling in TDMA-based networks is addressed where various performance
metrics are discussed including latency and energy consumption. Addition-
ally, the network parameters that impact the scheduling algorithms are studied.
Heuristic scheduling algorithms have been surveyed in [10].

In this work, we consider a randomized frame-based scheduling policy for
multiple data flows with strict deadlines. In the proposed scheduling policy,
each time slot is assigned to a flow following some probability distribution. In
existing industrial wireless communications protocols, the schedule is commonly
evaluated once every transmission frame composed of many time slots. The dis-
tribution of the transmission probabilities and the schedule may be re-evaluated
at the beginning of each new frame. The route of each data flow is assumed
to be known before the schedule is evaluated. The data flows are not assumed
to be periodic. Instead, the packet generation process and packet deadlines are
assumed to be probabilistic with some defined probability mass functions. A
similar model is previously considered in [11] for the case of a deterministic
scheduling policy obtained by solving a Markov decision problem.

The consideration of data flows with random deadlines is motivated by event-
based signals that may be affected by random events or random processing
delays. In [12]-[15], the concept of data flows with random deadlines is discussed.
In this paper, we use random deadlines in a different setting compared to the
existing literature and we also consider the effects of the wireless channel.

In this work, a randomized scheduling policy is presented and the average
number of packets missing their deadlines per frame is derived . The ability
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of the scheduler to achieve a required performance metric for a set of flows
is discussed. Numerical methods are used to assess the performance of the
scheduling policy for various parameter settings.

The rest of the paper is organized as follows. We introduce the network
model in Section 2. The performance analysis is presented in Section 3. The
performance optimization through formulating the minimization problem of the
packets missing their deadlines is discussed in Section 4. Numerical results are
presented in Section 5. Finally, Section 6 presents the concluding remarks.

2. System Model

We denote the M flows in a wireless network by F = {F1, F2, ....FM}. These
flows are to be scheduled over a single frequency bands. The mth flow has a
predefined route φm with a number of hops h∗m. In Fm, each packet should be
delivered over all the hops successfully before it gets to its destination. The flow
Fm has a new packet when the deadline of the previous packet expires.

The scheduling frame has a fixed length of T time slots. The scheduling
frame length is commonly defined in the literature as the least common multiple
of the packet generation periods of the field devices [16]. This definition is valid
only in the case of periodic data flows. The value of T is commonly referred to
as a hyper-period in industrial wireless networks protocols. In each time slot,
at most one transmission occurs, as we assume a single wireless frequency band
is used.

The wireless link between any two nodes in the network modeled as a binary
erasure channel. It is represented by the success transmission probability ρi,j
between the nodes i and j. We assume that ρi,j = ρ, for all (i,j), for the sake
of simplicity even though the proposed algorithms can still be analyzed in the
more general case with different values for ρi,j . The value of ρ is determined by
the wireless channel and the wireless nodes parameters such as required error
rate, the transmission power, and the modulation and coding scheme. The state
of the wireless channel is independent of the packet generation process.

Each packet in Fm is characterized by a required deadline for delivery to the
destination which is denoted by Dm. The parameter Dm is modeled as positive
integer random variable. The values of Dm are denoted by dm ∈ Bm and drawn
from the set Bm = {h∗m, h∗m + 1, . . . , D∗m}, where D∗m is finite. The probability
mass function of Dm is denoted by fm(.) with the mean µm and the variance
σ2
m. The deadlines are strict such that a packet is discarded if not successfully

received at the destination prior to its deadline. Each packet is generated and
released as the deadline of the previous packet in the same flow expires.

We assume that a network manager takes the role of the schedule generation
at the beginning of the hyper-period. The hyper-period takes a fixed value
which long enough compared to the average packet deadlines to have a negligible
scheduling processing overhead.

In this paper, we exploit the ratio of the average number of packets missing
their deadlines to the average number of packets generated in a hyper-period as

3



the performance metric to evaluate the performance of a randomized schedul-
ing policy. The obtained performance can be compared to a preset value for
schedulability testing or admission control.

3. Performance Analysis

In this section, we analyze the network performance of a randomized schedul-
ing policy. The performance criterion is the average number of packets missing
their deadlines in a hyper-period. The first step is evaluating the probability
of a packet to miss its deadline. Then, the stochastic packets arrival process is
defined and studied to determine the average number of packets missing their
deadlines over the wireless network.

3.1. Probability of a Packet Missing Its Deadline

We consider a randomized scheduling policy which is characterized by the
transmission probabilities for various flows. At a time slot, the flow Fm is to
be scheduled for transmission by the probability pm. The values of pm are
set based on various system characteristics. These values are constrained by∑M
m=1 pm = 1 because only a single flow is scheduled at each time slot and hence

the transmission decision of a flow has to follow a probability mass function.
We define qm(tm, hm, pm) as the probability of a packet in Fm to miss its

deadline if it has hm hops remaining in its route and tm time slots remaining
before its deadline expires given that the probability for a packet to be scheduled
for transmission is pm. In order to evaluate qm(tm, hm, pm), we list the three
events that may occur to a packet in Fm at any time slot. These events are the
packet is transmitted and successfully received, the packet is transmitted but
fails to reach the following node in its route, and the packet is not scheduled.
As a result, the value of qm(tm, hm, pm) is expressed through evaluating the
probability not to have hm successful transmissions in the following tm time
slots as follows

qm(tm, hm, pm) =

hm−1∑
i=0

(
tm
i

)
(pmρ)i(1− pmρ)tm−i, for hm ≤ tm, (1)

Equation (1) is calculated only in cases where hm ≤ tm where the corre-
sponding packets have not missed their deadlines yet. The initial conditions
of the flow states, including the number of remaining hops and the remaining
time slots of the flow packets while the schedule is being built, are not con-
sidered in this analysis because of their negligible effects on performance. The
proposed policy is randomized and the hyper-period is long enough compared
to the average packet deadlines such that the packets at the start and the end
of the observation interval has negligible effect compared to the total number
of missed packets.

Finally, we obtain the average probability q̄m(pm) of a packet in the flow
Fm to miss its deadline given that the scheduling probability is pm. During

4



the schedule evaluation, the exact states of the flows are not known to the
network manager because we use frame-based scheduling where the schedule is
determined before the frame transmission. As a result, the average probability
is calculated at the arrival instant of the packet where the value of the deadline
at the arrival instant is not known and follows the random distribution fm(.).
The average probability is expressed as follows

q̄m(pm) =

D∗
m∑

dm=h∗
m

fm(dm)qm(dm, h
∗
m, pm). (2)

3.2. Average Number of Packets Missing their Deadlines

In the following, we evaluate the average number of packets missing their
deadlines of each flow during T . We start by introducing the random variable
Xm which depicts the number of packets of Fm that are generated within T .
Also, we set the random sequence Tm,x = (Tm(1), Tm(2), ..., Tm(x)) to represent
the sequence of deadlines of x packets of the flow Fm within T . We denote
the sum of the elements of this random sequence by Σm,x and we express it as
follows

Σm,x =

x∑
i=1

Tm(i). (3)

The limiting values of Xm are then evaluated using the limiting values of the
random variable Dm. When all the packet of Fm have the maximum deadline,
the number of packet generated within T is minimum such that

X(min)
m =

⌈
T

D∗m

⌉
, h∗m ≤ D∗m, (4)

where d.e is the ceiling function. On the other hand when all packets have the
minimum deadline, which equals h∗m, the maximum value of the random variable
Xm occurs. As a result, this maximum value is calculated as

X(max)
m =

⌈
T

h∗m

⌉
. (5)

The probability distribution ofXm is then calculated. The event {Xm = xm}
happens when the deadlines of the first xm − 1 packets of Tm,xm

are summed
to a value below T while the deadlines of the first xm packets are summed to
be greater than or equal to T . The probability of this event is denoted by
Pr(Xm = xm) and evaluated as follows

Pr(Xm = xm) = Pr(Σm,xm−1 < T,Σm,xm ≥ T ). (6)

This same event can also be represented by having all the events in which
Σm,xm−1 takes values between 0 to T − 1 and the deadline of the xmth packet
is greater than or equal to T − Σm,xm−1. The sum of the probabilities of the
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corresponding events defines the case in which the xmth packet is the last packet
of the flow Fm. The expression of Pr(Xm = xm) can be stated also as follows

Pr(Xm = xm) =


∑T−1
l=(xm−1)h∗

m
Pr(Σm,xm−1 = l, Tm(xm) ≥ T − l),

for X
(min)
m ≤ xm ≤ X(max)

m ,

0, otherwise.

(7)

By independence of the deadlines of the packets of the same flow, we are able
multiply the probabilities of the two independent events in the above expression
to obtain their joint probability expression. In order to calculate the probability
of the last packet deadline to be greater than or equal to T−l, we use the deadline
probability distribution as follows

Pr(Tm(xm) ≥ T − l) =

D∗
m∑

Tm(xm)=T−l

fm(Tm(xm)). (8)

Then using the independence of the packets’ deadlines, , the expression in
(7) can be evaluated as

Pr(Xm = xm) =

T−1∑
l=0

Pr(Σm,xm−1 = l)

D∗
m∑

Tm(xm)=T−l

fm(Tm(xm))

 . (9)

Furthermore, the Pr(Σm,xm−1 = l) is calculated using the deadline proba-
bility distribution as follows

Pr(Σm,xm−1 = l) =
∑

Tm,xm−1|Σm,xm−1=l

(
xm−1∏
x=1

fn(Tm(x))

)
, (10)

where Txm−1|Σm,xm−1=l is a random sequence of length xm − 1 where the sum
of all its packets’ deadlines equals l. Hence, the sum in the above expression
includes all the combinations of the packets’ deadlines of Fm that lead to this
value.

As a result, the average number of packets missing their deadlines in the flow
Fm is evaluated by obtaining the sum of probabilities of all the packets in Fm to
miss their deadlines over the distribution of Xm. These events of packets missing
their deadlines in Fm are independent of each other with average probability
of q̄m(pm). Thus, the average number of packets missing their deadlines is
expressed as follows

N̄m =

X(max)
m∑

x=X
(min)
m

Pr(Xm = x)

x∑
i=1

q̄m(pm). (11)

6



By rearranging the terms in the sums, the expression is evaluated as follows

N̄m = q̄m(pm)

X(max)
m∑

x=X
(min)
m

xPr(Xm = x). (12)

Moreover, the average number of packets missing their deadlines in all the
M flows over T is expressed as follows

N̄ =

M∑
m=1

N̄m. (13)

On the other hand, the average number of all packets generated by all the
flows over T is calculated as follows

N̄T =

M∑
m=1

X(max)
m∑

x=X
(min)
m

xPr(Xm = x). (14)

Finally, the ratio of the average number of packets missing their deadlines
to the average number of generated packets is evaluated as follows

RMissed =
N̄

N̄T
=

∑M
m=1 q̄m(pm)E[Xm]∑M

m=1E[Xm]
, (15)

where E[Xm] is the expected value of Xm.
This obtained ratio can generally be used for admission control when a ran-

domized scheduling policy is employed for flow scheduling. If M − 1 flows have
been admitted into the network and the value of RMissed is calculated to be less
than or equal to a prescribed threshold, such as 10%. Upon arrival of the Mth
flow, the ratio RMissed is computed again to decide about admitting this flow to
the network. If it does not exceed 10%, the new flow is admitted.

In addition, the value of RMissed for any given choice of {pm : m = 1, ...,M}
serves as an upper bound to the value of RMissed for the optimal randomized
schedule. The optimal value typically can be found by minimizing RMissed over
all possible distributions {pm : m = 1, ...,M}. However, this obtained upper
bound may be loose.

4. Minimization of RMissed

In this section, we consider the problem of minimizing RMissed over the values
of decision probabilities pm. The minimization problem is stated as follows
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min
pm

RMissed

s.t. pm ≥ 0, ∀1 ≤ m ≤M,

M∑
m=1

pm = 1. (16)

The denominator of RMissed is independent of pm and hence it can be re-
moved from the optimization problem to restate it as

min
pm

M∑
m=1

q̄m(pm)

X(max)
m∑

x=X
(min)
m

x.Pr(Xm = x)

s.t. pm ≥ 0, ∀1 ≤ m ≤M,

M∑
m=1

pm = 1. (17)

We then substitute for q̄m(pm) from (2) and denote E[Xm] by Wm which is
independent of pm.

min
pm

M∑
m=1

Wm

D∗
m∑

dm=h∗
m

fm(dm)qm(dm, h
∗
m, pm)

s.t. pm ≥ 0, ∀1 ≤ m ≤M,

M∑
m=1

pm = 1, (18)

where Wm represents the average number of packets of FM generated in a hyper-
period which depends only on the deadline distribution and not on the trans-
mission probabilities.

The optimization problem is finally rewritten substituting qm(dm, h
∗
m, pm)

from (1). The objective function is a positive non-convex polynomial function
of degree D∗m.

min
pm

M∑
m=1

Wm

D∗
m∑

dm=h∗
m

fm(dm)

h∗
m−1∑
i=0

(
dm
i

)
(pmρ)i(1− pmρ)dm−i

s.t. pm ≥ 0, ∀1 ≤ m ≤M,

M∑
m=1

pm = 1. (19)
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In the following, we apply a generalization of Lagrange duality theory to relax
the constrained minimization problems with non-convex objective functions. In
this generalization, the Lagrange multiplier terms are nonlinear combinations
of the constraints. Later, the upper bound of the objective function is obtained
through solving a semidefinite programming (SDP) problem [17, 18] through a
sum-of-squares (SOS) optimization algorithm [19].

We start by defining the functionGm(pm) =
∑D∗

m

dm=h∗
m
fm(dm)qm(dm, h

∗
m, pm)

to include all the terms depending on pm in the objective function.

min
pm

M∑
m=1

WmGm(pm)

s.t. pm ≥ 0, ∀1 ≤ m ≤M,

M∑
m=1

pm = 1. (20)

The Lagrange dual problem is obtained by using nonlinear Lagrange multi-
pliers, namely, λ(pm) and δm(pm).

max
λ(pm),δm(pm)

min
pm

M∑
m=1

WmGm(pm) + λm(pm)(

M∑
m=1

pm − 1)−
M∑
m=1

pmδm(pm)

s.t. λ(pm) ≥ 0, δm(pm) ≥ 0, ∀1 ≤ m ≤M. (21)

In order to deploy the SOS method, we bound the minimum objective func-
tion by a variable γ in polynomial time and try to find a tight bound for the
objective function [20]. In [21], it was shown that a nested family of SDP re-
laxations can produce the exact minimum while the degree of the polynomial
can be exponential with the number of variables. It was observed that a low
order relaxation usually produces the optimal solution. Note that in (20) the
functions Gm(pm) are polynomials in the transmission probabilities pm. We
set the following problem which converges to the optimal value of (20). The
objective function of (22) is the bound for the objective function of (20). This
problem is then relaxed using the SOS optimization in order to get a close to
optimal solution.

max
λ(pm),δm(pm),γ

γ

s.t. γ ≤
M∑
m=1

WmGm(pm) + λm(pm)(

M∑
m=1

pm − 1)−
M∑
m=1

pmδm(pm),∀pm,

λ(pm) ≥ 0,

δm(pm) ≥ 0, ∀1 ≤ m ≤M. (22)

The relaxed problem can be written as follows where the polynomial con-
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straint of (22) is constrained in (23) to be SOS.

max
λ(pm),δm(pm),γ

γ

s.t. γ −
M∑
m=1

WmGm(pm)− λm(pm)(

M∑
m=1

pm − 1) +

M∑
m=1

pmδm(pm) is SOS,

λ(pm) is SOS,

δm(pm) is SOS, ∀1 ≤ m ≤M. (23)

The optimization variables are γ and the polynomial coefficients of λ(pm) and
δm(pm). Let d be the degree of the polynomial of the first constraint in (23)
where for a fixed value of d, the problem is solved using SDP. By increasing
d, the SDP size increases and the obtained value of γ is tighter to the optimal
value. The initial value of d is selected to be the nearest even number greater
than or equal to the degree

∑M
m=1WmGm(pm) which is D∗m. The degree is then

increased by 2 for each following level.
To check that the objective bound has converged to the optimal value, the

following test is performed using the GloptiPoly tool [22]. The test checks
the non-negativity of a polynomial over a semi-algebraic set through finding a
sequence of moments to represent a probability measure with support in this
semi-algebraic set. A sufficient rank evaluation is performed over the moment
matrix which is a positive semidefinite matrix formed by the sequence of mo-
ments [19].

In summary, the following algorithm is used to obtain the optimal solution
of the minimization problem.

Algorithm 1 Sum-Of-Squares Algorithm

1. Formulate the relaxed problem (23) for a given d.
2. Use SDP to solve the relaxation of order d [19].
3. If the result satisfies the sufficiency condition, the value of γ∗(d) is the
optimal objective and the p∗m are the optimal probabilities.
4. Otherwise, increase d by 2, and repeat steps 2-3.

5. Numerical Results

In this section, the performance of the proposed randomized scheduling al-
gorithm is assessed in the case of multiple flows with packets having random
deadlines. The performance criterion is RMissed. In the following, we demon-
strate the performance of the optimal strategy using various system parameters.
Moreover, the performance of the optimal randomized policy is compared to the
basic round robin benchmark in which flows are scheduled over time in equal
proportions and in circular order without prioritizing any of the flows [23]. We
will refer to these strategies, respectively, as ’Optimal’ and ’RR’.

In the case of symmetric flows, all the M flows have the same value for h∗m
and the same value for D∗m, and the deadlines Dm follow the same discrete
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uniform distribution over the range h∗m, ...., D
∗
m. The performance results are

obtained by simulating the system using the optimal scheduling transmission
probabilities, which are pm = 1/M, ∀m due to the use of symmetric flows.
Although the simulations are done over multiple hyper-periods, occasional dips
in curves are observed that are due to the finite time duration of simulations.

5.1. Effects of the Number of Hops

In this subsection, we study the effect of the number of hops on RMissed. In
Fig. 1, we set M = 2 with asymmetric flows such that D∗1 = 30 and D∗2 = 10.
We show the improvement of the performance due to the use of the optimal pol-
icy for the more constrained networks needing a larger number of hops between
sources and destinations. Moreover, we show how the performance of both the
optimal and round robin policies improve with channel quality.
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Figure 1: The ratio RMissed vs. h∗m for different values of ρ with M = 2, D∗
1 = 30 and
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In Fig. 2, we show the ratio RMissed as a function of the number of hops
per flow. We vary the values of ρ and D∗m. In this figure, the relation between
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RMissed and h∗m is monotonically non-decreasing over the whole range of h∗m.
Generally, the slope of the curves is higher at lower values of h∗m and decreases
as h∗m increases. Moreover, the performance is enhanced by having higher values
of D∗m and ρ.

5.2. Effects of the Random Deadline Range

In this subsection, we study the effects of the random deadline range on
performance, specifically, the effects of D∗m on RMissed. In Fig. 3, we set M = 2
with asymmetric flows such that h∗1 = 1 and h∗2 = 5. We show the improve-
ment of the performance due to the use of the optimal policy especially for the
more constrained networks with having tighter deadlines. Moreover, we show
the improvement of the performance for both the optimal and round robin poli-
cies with the improvement of the channel quality. The optimal policy has an
advantage over the simple round robin policy in the case of asymmetric flows.
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In Fig. 4, we demonstrate the variation of RMissed against D∗m. The range
over which the random deadlines is determined through the value of D∗m where
the range is wider for a higher D∗m. It is observed that the value of RMissed

decreases with both D∗m and ρ. As a result, the channel quality has a greater
importance in the case of a tight deadline range.

5.3. Effects of the Channel Quality

In this subsection, we study the performance against transmission success
probability. The optimal strategy has higher improvement compared to the
round robin policy when the difference in the two flows parameters is higher
as shown in Fig. 5. This improvement increases as the transmission success
probability increases.
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In Fig. 6, the value of RMissed is demonstrated against transmission success
probability where a monotonically non-increasing relationship is observed. In
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the case of D∗M = 60, the largest variation in the curve slope is found. Hence,
the importance of the channel quality is more pronounced for networks with a
larger number of hops on the routes of the flows, a larger number of data flows,
or tighter deadlines ranges. In the case of D∗m = 15, the curve is almost linear
such that any change in the value of ρ leads to a corresponding change in the
performance. On the other hand, in the case of D∗m = 60, the performance
improves significantly for small values of ρ and the improvement rate decreases
for the higher values of ρ.

5.4. Effects of the Number of Flows

In Fig. 7, the value of RMissed is demonstrated against M for various settings
of ρ. For all values of ρ, we observe a monotonically non-decreasing relation with
higher slopes at lower M and the slope decreases as M increases. The use of
deadline missing probability analysis in admission control can be explained using
Fig. 7. If a ratio threshold is predefined, we can use the curves to determine
the maximum number of admitted flows.

In the more general case of asymmetrical flows, similar analysis can be used
to check the schedulability of a set of flows or admitting a new flow to the
network in addition to the existing ones while keeping RMissed below a preset
value. Furthermore, in the case of asymmetrical flows, the performance metric
RMissed can be computed for individual flows and different benchmarks enforced
for different flows. Hence, flow admission control or optimization of transmission
probabilities for various flows can be carried out to meet these requirements.
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Figure 7: The ratio RMissed vs. M for different values of ρ with h∗m = 3 and D∗
m = 15

6. Conclusions

In this paper, we have analyzed the performance of randomized frame-based
scheduling for industrial wireless networking. The network has multiple data
flows with random packet deadlines. Each flow is assigned a transmission prob-
ability and the frame schedule is composed at the beginning of each frame. We
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have derived the expression for the probability of a packet to miss its random
deadline. Also, we derived the expression for the ratio of the average number of
packets missing their deadlines to the average number of packets generated by
all the flows per frame. Then, we studied the performance of the system using
the optimal transmission probabilities to minimize that ratio. We have shown
that the optimal policy is robust to the changes of the number of route hops
when the random deadline range is relatively large. Moreover, a good wire-
less channel is needed for more constrained networks, i.e., networks that have a
larger number of data flows, a larger number of hops on the routes of the flows,
or tighter deadlines ranges. We have also shown how to use the derived expres-
sions for flow admission control and schedulability. Lastly, the improvement
in the performance by using the optimal policy is quantified against a simple
round robin benchmark policy. In future work, we plan to study more efficient
algorithms and heuristic alternatives.

Disclaimer

Certain commercial entities, equipment, or materials may be identified in this
document in order to describe an experimental procedure or concept adequately.
Such identification is not intended to imply recommendation or endorsement by
the National Institute of Standards and Technology, nor is it intended to imply
that the entities, materials, or equipment are necessarily the best available for
the purpose.
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