Appendix C

SUPPORTING DOCUMENTS FOR CHAPTER 4

This appendix contains the supporting documents that are referenced in Chapter 4 of this report. All of the documents contained in this appendix are reproduced with permission of The Port Authority of New York and New Jersey. Table C–1 contains a summary of supporting documents and their location within this appendix. The footnote numbers given in the table correspond to those in Chapter 4.

Table C–1. Supporting documents for Chapter 4.

<table>
<thead>
<tr>
<th>Footnote Number</th>
<th>Document Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Memorandum of Understanding Between the New York City Department of Buildings and the PANYNJ, 1993</td>
<td>216</td>
</tr>
<tr>
<td>2</td>
<td>Supplement to Memorandum of Understanding Between the New York City Department of Buildings and the PANYNJ, 1995</td>
<td>221</td>
</tr>
</tbody>
</table>
November 5, 1993

Charles G. Sturcken, Deputy General Counsel
The New York City
Department of Buildings - Executive Offices
60 Hudson Street
14th Floor
New York, New York

Dear Mr. Sturcken:

Enclosed please find a fully executed original of the Memorandum of Understanding between the Port Authority and the New York City Department of Buildings.

For your information, the gubernatorial review period for the enclosed agreement will end at midnight Wednesday, November 17, 1993. It has been a pleasure working with you on this matter.

Very truly yours,

Walter M. Frank
Deputy Chief, Finance Division
Law Department

Enclosures

cc: William H. Goldstein, Deputy Executive Director, Capital Programs

bcc: J.S. Green, P.S. Cooper (51N), A.A. DiNome (68S), E.J. Fasullo (72S),
L.S. Hofrichter, F.J. Lombardi (72S), C.J. Maliksh (35E), A.J. Raiola,
S.T. Van de Walle
MEMORANDUM OF UNDERSTANDING BETWEEN THE NEW YORK CITY DEPARTMENT OF BUILDINGS AND THE PORT AUTHORITY OF NEW YORK AND NEW JERSEY

This Memorandum shall govern the relationship between the New York City Department of Buildings (the "Department") and the Port Authority of New York and New Jersey (the "Port Authority"), both parties entering into this agreement with the intention to establish procedures to be followed by the Port Authority for any building construction project ("Project"), to be undertaken by the Port Authority or any of its tenants at buildings owned or operated by the Port Authority and located in the City of New York (the "City"), to assure conformance of Projects at such buildings with the standards set forth in the New York City Building Code (the "Code").

While the facilities of the Port Authority, an agency of the States of New York and New Jersey, are not technically subject to the requirements of local building codes, the long-standing policy of the Port Authority has been to assure that its facilities meet and, where appropriate, exceed Code requirements.

The purpose of this Memorandum is not only to restate that long-standing policy as part of an understanding with the City but to provide specific commitments to the Department, as the agency of the City responsible for assuring compliance with the Code, regarding procedures to be undertaken by the Port Authority for any Project at its facilities in the City to assure that the buildings owned or operated by the Port Authority within the City are in conformance with the Building Standards contained in the Code.

Accordingly, the Department and the Port Authority hereby agree as follows:

1. Port Authority Review. To assure conformance with the building standards set forth in the Code at the time of the design and construction of any Project, the Port Authority shall, in the case of each Project, thoroughly review and examine all plans in connection with such Project for conformance with the building standards set forth in the Code. Plans prepared for Projects to be undertaken by Port Authority tenants shall be prepared and sealed by a New York State licensed professional engineer or architect retained or employed by tenant; plans prepared for Projects to be undertaken by the Port Authority shall be prepared by a New York State licensed professional engineer or architect employed or retained by the Port Authority. The Port Authority's examination of plans shall be conducted by New York State licensed architects and engineers retained or employed by the Port Authority. The Port Authority engineer or architect approving the plans for any Project from the standpoint of Code conformance shall be a New York State licensed architect or engineer who shall not have assisted in the actual preparation of such plans.

2. Project File. The Port Authority shall maintain a file (the "Project File") for each Project which file shall at all times contain the most recently
Appendix C

prepared drawings, plans and any other documents required in connection with the review of the Project from the standpoint of Code conformance. In the case of any Project being effectuated by a tenant of the Port Authority (a "Tenant Project") such file shall also include the Tenant Alteration Application prepared by the Tenant. In the case of any project administered by a line department of the Port Authority, such file shall include any construction application prepared in connection with such Project. The Line Departments of the Port Authority are currently its World Trade, Aviation, Interstate Transportation, Port, and Regional Development Departments.

3. Project Certification. For each Tenant Project, the Port Authority shall require the Tenant to obtain the certification of a New York State licensed architect or engineer that such Project was constructed in accordance with the approved plans and specifications for such Project. For any Project effectuated by the Port Authority, the Chief Engineer or his successor in duties shall certify that the Project was constructed in accordance with the approved plans and specifications for the Project. Certifications for each Project shall be maintained in the Project File.

4. Copies of Project File. The Department may at any time request the Port Authority to provide it with a copy of any Project File and the Port Authority shall promptly provide a copy of the Project file to it.

5. Variances. The Port Authority shall promptly advise the Department of any Project approved by the Chief Engineer of the Port Authority which involves, in the judgment of the Chief Engineer of the Port Authority or his successor in duties, a variance from the clear requirements of the Code. In the event that the Department disagrees with the manner in which questions of Code conformance have been or are proposed to be dealt with in connection with such Project, it may so advise the Authority. The Port Authority shall seek expeditiously to resolve the matter. Any matter of Code conformance in connection with such Project which the Department believes involves an unacceptable variance from the requirements of the Code shall be subject to the further review of the Port Authority Board of Commissioners. The Commissioners shall be advised of the Department's views on the matter.

6. Inspections and Surveys. The Port Authority shall continue to conduct or cause to be conducted all building inspections, during both construction and post-construction periods, required under the Code. In addition, the Port Authority will continue to perform structural integrity inspections on a cyclical basis for all of its structures located in the City.

7. Port Authority Responsibility. As indicated above, the purpose of this Agreement is to set forth certain basic understandings between the Department and the Port Authority. It is understood, however, that the Port Authority with its tenants shall continue to bear the responsibility for life safety in buildings at its facilities and nothing in this Agreement is intended to impose any obligations of inspection or review on the Department. The Department shall refer back to the Chief Engineer of the Port Authority any requests for
information or interpretation which it may receive from tenants of the Port Authority with respect to any Project.

8. No Personal Liability. No Commissioner, officer, agent or employee of the Port Authority or the Department shall be held personally liable under any provision of this Agreement or because of its execution or attempted execution or because of any breach or alleged breach thereof.

IN WITNESS WHEREOF, the parties hereto have caused this instrument to be signed, sealed and attested.

ATTEST:

THE PORT AUTHORITY OF NEW YORK AND NEW JERSEY

By: Stanley Brezenoff
Executive Director

DATE: 11/3/13

ATTEST:

THE NEW YORK CITY DEPARTMENT BUILDINGS

By: Stewart D. O'Brien
Acting Commissioner

DATE: 10/28/93
TO: Lysa Meduri, Acting Secretary
FROM: Walter M. Frank
DATE: October 16, 1995
SUBJECT: Transmittal of Letter Agreement - NYC Department of Buildings

Copy to: J. Green, N. Chanfrau, P. Cooper, W. Goldstein, H. Henschel, F. Lombardi

Transmitted for the official records of the Port Authority is a Letter Agreement between the Port Authority and the New York City Department of Buildings providing for a change to the recent Supplement to the Basic Memorandum of Understanding between the Department and the Port Authority in connection with the Port Authority's Tenant Self-Certification Program at the World Trade Center.

Walter M. Frank
Deputy Chief
Commercial Litigation Division

WMF: gk

Encl.
September 15, 1995

Honorable Joel A. Miele, Sr., Commissioner
Department of Buildings
City of New York
60 Hudson Street
New York, New York 10013

Dear Commissioner Miele:

As you know, the Port Authority of New York and New Jersey (the "Port Authority") and the New York City Department of Buildings (the "Department") recently executed a supplement (the "Supplement") to the Memorandum of Understanding between the Department and the Port Authority to provide that the Port Authority's tenant at the World Trade Center could, in lieu of any review by the Port Authority, use New York State licensed architects or engineers meeting qualifications to be established by the Port Authority to: (A) prepare and review such tenant's plans for the construction of any project and certify that such plans conform with the building standards set forth in the New York City Building Code and (B) certify that such project has been constructed in accordance with the approved plans and specifications for such project.

As you also know, the Supplement provides that the person or firm performing the review and certification described in (A) above shall not be the same person or firm providing the certification described in (B) above. A copy of the Supplement is attached.

This letter will confirm the agreement of the Port Authority and the Department that, notwithstanding the last sentence of paragraph 1 of the Supplement, a single licensed consultant may make both certifications described in (A) and (B) of such paragraph, except where the alteration would change the character of the occupancy group under paragraph 27-237 of the New York City Building Code which would have been applicable to such space had such space been located in a privately owned building.

If the foregoing meets with your approval, please be good enough to sign this letter on behalf of the Department where indicated below and return one of the originals to me. In light of the fact that three originals of the Supplement were furnished to the Department, we have, for your record purposes, executed in total four originals of this letter.

Very truly yours,

William H. Goldstein
Deputy Executive Director
Capital Programs

THE NEW YORK CITY DEPARTMENT OF BUILDINGS

AGREED
BY: Commissioner
SUPPLEMENT TO MEMORANDUM OF UNDERSTANDING
BETWEEN THE NEW YORK CITY DEPARTMENT OF
BUILDINGS AND THE PORT AUTHORITY OF NEW
YORK AND NEW JERSEY

In November, 1993 the New York City Department of Buildings (the
'Department') and the Port Authority of New York and New Jersey (the 'Port
Authority') entered into the attached Memorandum of Understanding (the
'Memorandum') establishing certain procedures for the purpose of helping to
assure conformance of construction projects to be undertaken at buildings
owned or operated by the Port Authority in New York City with the standards
set forth in the New York City Building Code.

Recently, the Department implemented its own optional plan
review system providing for professional certifications of applications and plans
and subsequent construction work falling under its jurisdiction.

The purpose of this Supplement to the Memorandum is to provide
under the Memorandum for the adoption by the Port Authority of a procedure
under which any Port Authority tenants at the World Trade Center may utilize
New York State licensed architects or engineers to certify, in lieu of any review
by the Port Authority, that (i) the tenant's construction plans are in
conformance with the standards set forth in the New York City Building Code,
and (ii) construction has been performed in accordance with such plans, it
being understood that the persons making the certifications described in (i)
and (ii) shall not be the same.

Accordingly, the Department and the Port Authority hereby agree
that the Memorandum is amended as follows:

1. Professional Certification. Notwithstanding anything to the
contrary in the Memorandum, the Port Authority may, in lieu of any reviews or
certifications by the Port Authority provided for in the Memorandum, provide
procedures pursuant to which its tenants at the World Trade Center may utilize
New York State licensed architects or engineers meeting qualifications to be
established by the Port Authority to (A) prepare and review such tenant’s plans
for the construction of any project and certify that such plans conform with the
building standards set forth in the New York City Building Code and (B) certify
that such project has been constructed in accordance with the approved
plans and specifications for such project. The person or firm performing the
review and certification described in (A) above shall not be the same person
or firm providing the certification described in (B) above.

2. Other Provisions. Except as provided herein, all the terms and
conditions of the Memorandum shall remain in full force and effect.

3. No Personal Liability. No Commissioner, officer, agent or
employee of the Port Authority or the Department shall be held personally
liable under any provision of this Supplement or because of its execution or attempted execution or because of any breach or alleged breach thereof.

IN WITNESS WHEREOF, the parties hereto have caused this Instrument to be signed, sealed and attested.

ATTEST:

THE PORT AUTHORITY OF NEW YORK AND NEW JERSEY

By: Executive Director

DATE: 6/3/95

WITNESS:

FRANK M. SCHWARTZ
Notary Public, State of New York
No. 45-4632586
Qualified in Queens County, Commission Expires Jan. 31, 1997

THE NEW YORK CITY DEPARTMENT OF BUILDINGS

By: Commissioner

DATE: 6/3/95
This page intentionally left blank.
Appendix D

SUPPORTING DOCUMENTS FOR CHAPTER 5

This appendix contains the supporting documents that are referenced in Chapter 5 of this report. All of the documents contained in this appendix are reproduced with permission of the The Port Authority of New York and New Jersey. Table D–1 contains a summary of supporting documents and their location within this appendix. The footnote numbers given in the table correspond to those in Chapter 5.

Table D–1. Supporting documents for Chapter 5.

<table>
<thead>
<tr>
<th>Footnote Number</th>
<th>Document Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Letter dated July 16, 1964 from Alan G. Davenport of WSHJ to Carl A. Dahlquist of 3M (WTCI-450-L)</td>
<td>226</td>
</tr>
<tr>
<td>5</td>
<td>Internal correspondence dated February 1966 by Richard D. Steyert of WSHJ (WTCI-450-L)</td>
<td>231</td>
</tr>
<tr>
<td>8</td>
<td>Letter dated October 30, 1967 and enclosure from Leslie E. Robertson of SHCR to John H. Kyle (Chief Engineer), PONYA (WTCI-501-L)</td>
<td>240</td>
</tr>
</tbody>
</table>
Mr. Karl Dahlquist
3-M Company
Minnesota Mining and Manufacturing Company
2501 Hudson Road
Minneapolis, Minn.

Reference: Viscoelastic Damping Material

Dear Mr. Dahlquist:

We have an important requirement for a viscoelastic material suitable for damping low frequency mechanical vibrations. It is proposed that this material shall be used in a sandwich between two surfaces and the load will be applied to the damping material by shear. The frequency of vibration is in range 0.1 - 10 cycles per second. The operational temperature range will be 0°F - 80°F. It will have a chemical and mechanical stability such that its action is unimpaired over the course of many years.

We would be grateful if you could suggest what range of materials might be available for such a purpose, their approximate cost and all their pertinent mechanical properties. We have a hunch that an asphaltic or rubber based material might be suitable.

We require to know the storage and loss moduli (c.f. p. 36-18 of "Shock and Vibration Handbook" by Harris and Credo, McGraw-Hill, 1959) over the above operating temperatures and frequencies. (We are looking for a material with a loss modulus probably of the order of 10^-2 lb/sq. in.) We would also like to know the chemical composition of the material and its melting point.

If the material is adopted it will be used in considerable quantities. We would be grateful, therefore, if you would also indicate approximately bulk costs and availability. Your early reply to this inquiry will be appreciated.

Yours very truly,

Alan G. Davenport Ph.D.

AGD:ab

COPY
November 23, 1964

Mr. C. A. Dahlquist
Minnesota Mining and Manufacturing Company
2501 Hudson Road
Minneapolis, Minnesota

Reference: Viscous Damping Material

Dear Mr. Dahlquist:

Thank you for the information which you provided during our phone conversation of November 11. We have enclosed a sheet which lists the types of viscoelastic damping materials and the properties desired. We have also enclosed a sheet which reviews the properties of the #456 Transfer Tape.

We would greatly appreciate any information which you would be able to provide on other materials produced by the Minnesota Mining and Manufacturing Company. Such information would be appreciated at your earliest convenience.

Sincerely yours,

WORTHINGTON, SKILLING, HELLE & JACKSON

Richard D. Stoyert

cc: Mr. Caldwell

RDS:cd
Material: 8466 Transfer Tape
Producer: Minnesota Mining and Manufacturing Company
Parameters: G_2 from 200 to 300
 from 1.2 to 1.5

c = .0015 in.

Max G 20

Cost: $1.52 to $2.00/sq. yd.

Additional Properties: Bonds to steel, wood, or concrete
Physical & Mechanical Properties Required of Visco-Elastic Material

1. Type A. Ease of placement into void either by pouring or pumping under pressure and/or heat and capable of bonding to concrete, steel or wood.

Type B. Available in sheets.

A high degree of durability and stability under normal operating conditions for extended periods. (It is possible that the containing space can be sealed hermetically.)

3. Non-combustible.

Parameters Desired

1. Loss of modulus in shear, \(G_2 \) \(\mu^2 < 10^5 \)

Loss factor \(n = G_2/G_1 \)

for temperature range 30\(^\circ\) - 80\(^\circ\) F.

vibration frequency .1 - 1.0 cycles/second.

2. Stress or strain or fatigue limitations.

3. Cost.

Note: Quantities to be used 1,000 c. f. plus or minus by a factor of 10.

3.40 C Transfer Tape
Pressure Sensitive, on high contact Backliner Tape. Comes on line UV-cure 1½ Thousand

1.20 G 200 - 2000

\(n = 1.2, 1.5 \)

Very Smooth 1 Thousand
Vee nail Bond Type

\(c = 1.5 \)
REVIEW OF STATUS OF DAMPING WORK
DONE BY R. STEYER

Work done prior to Nov. 65
All ordered and filed

Work done subsequent to Nov. 65
Not yet ordered

Key calculations of interest

On truss 4/40 to 4/44 and 4/49

Note: Although I have cross checked this work sufficiently to feel it is consistent with the assumptions made, these few pages should be carefully checked and understood by someone else. The work is of a simple nature, not involving the computer.

On column 8/25 to 8/29

Note: I have checked this work, but not extensively. There appears to be a discrepancy between Dick Taylor's work and my work in this area. The work is of a simple nature, not involving the computer.
Contact with 3M Company

There has been a long series of calls over the past months. Contact has been with Don Caldwell and Alex Donaldson. There is a file of notes on these conversations. Dick Taylor has been in on all recent conversations. The general status is the following:

Initial tests for selection of visco-elastic material have been completed. The material tentatively selected has $G' = 44.5$ psi, $\eta = 0.33$ at $T = 10^\circ$ sec, at 23° C.

Initial cost estimates were made and revised. Initially, truss damper unit was $\$75$, and column damper $\$65$. As revised, truss damper is $\$65$, and column damper $\$55$.

Testing of an assembled truss damping unit has been completed on results agree with theoretical predictions. We should now review our design of the damper unit and forward this design to 3M. 3M is anxiously awaiting a go-ahead on the column damping system. At present, they are up in the air about our intentions. They also are quite anxious to get suggestions from us on a testing program for the column unit. I should think a visit from our office would be helpful to facilitate an exchange of information and to maintain 3M interest in the project.

3M is interested in a fatigue study of the damper unit to be done by an independent laboratory. The cost may be a few thousand dollars. Who assumes these costs must be clarified.
October 31, 1966

Mr. James White
Worthington, Skilling, Helle & Jackson
230 Park Avenue
New York, New York 10017

Dear Jim:

The paragraphs below contain our proposal for the qualification section of the specification, a revised Acceptance Testing and Sampling Plan and a section on the burning and melting of the visco-elastic material. In addition, confirming our telephone conversation of 10/4, we agree to loosen the location tolerance of the four corner holes in the T-Sections from ± 1/64" to ± 1/32". Our Engineering Department is producing revised drawings which will be sent to you when complete.

Substitute the following paragraphs for section three entitled "Qualification of Dampers" that was contained in the rough specification outline given you at the time of your visit:

"A damper may be qualified by presentation of data gathered from tests of at least one damping unit. The tests must be conducted according to the following procedure and meet the requirements listed in this specification. Report the values in sections 9, 10, 11 and 14"
QUALIFICATION TESTING PROCEDURE

1. Clamp an assembled full scale damper in the jaws of the Instron.

2. Bolt the micrometer head to one of the T-sections of the damper using previously drilled holes. Bolt the arm holding the extensometer to the bar. (See attached sketch)

3. Connect the output of the extensometer to the chart recorder.

4. Record the displacement and force in one side of the damper (the two sides are assumed identical) alternately in compression and tension for one complete cycle. The Instron is reversed at the pre-selected displacement of .020" both in compression and tension. A typical hysteresis loop is shown on the bottom of this page.

F= DAMPER STIFFNESS
LBS/0.020" EXTENSION

* A* = BOUNDED AREA OF Hysteresis Loop, in-

d = EXTENSION, IN.

t = THICKNESS VISCO-ELASTIC MAT'L, IN.

* A* = AREA VISCO-ELASTIC MAT'L, IN²

* V* = VOLUME VISCO-ELASTIC LAYERS, IN³

* ε* = *d* / *t*

* G* = STORAGE SHEAR MODULUS, PSI

* G* = LOSS SHEAR MODULUS, PSI

* G* = COMPLEX SHEAR MODULUS, PSI
5. Measure the bounded area of the loop. Calculate the strain, \(\varepsilon \)
and volume, \(V \), in the visco-elastic layers.

6. Calculate \(G'' \) from the equation \(G'' = \frac{A}{\pi \varepsilon^2} V \)

7. Calculate \(G' \) from the equation \(G' = \frac{F}{a} \)

\[= \frac{d}{t} \]

8. Calculate \(G' \) from the equation \((G')^2 = (G')^2 - (G'')^2 \)

9. Calculate loss tangent, \(\tan \delta \), from the equation.

\[\tan \delta = \frac{G''}{G'} \]

10. Record the value \(F \) taken from the chart recorder.

11. Run at least 100 successive cycles of the hysteresis loop test at
a displacement amplitude of 0.020". Calculate the loss modulus,
\(G'' \), as shown above, for the first and the last cycles. Calculate
the percent change of the last cycle from the first.

12. Place an assembled damper in the jaws of a Baldwin test machine
(of at least 60,000 pounds capacity in tension and/or compression)
with the bar end extending downward.

13. Record the force necessary to cause shear rupture of the visco-
elastic bonded area when a compressive load is applied axially
to the ends of the damper unit.

14. Calculate the ultimate shear strength of the unit by dividing the
total force exerted by the area of the visco-elastic material."
Appendix D

Substitute the following under the section entitled "Acceptance Testing and Sampling Plan".

ACCEPTANCE TESTING & SAMPLING PLAN:

"The plan assures that dampers having average loss tangent, stiffness, fatigue resistance and ultimate shear strength values less than the guaranteed minimums will not be accepted more than 5% of the time.

Lot: A lot shall consist of all dampers made from the same lot of visco-elastic material by the same process and to be submitted for acceptance testing at one time.

Sampling: Dampers shall be selected at random from each lot at the rate of one per day for loss factor, stiffness and ultimate shear strength determinations and at the rate of one per lot for fatigue resistance.

If the quality level of dampers is consistently high, the sampling rate may be reduced upon presentation of proof that such reduced rate offers at least the same quality assurance and upon approval of the engineer.

Acceptance: After the sample dampers have been tested in accordance with all procedures listed in the Qualification section and have passed the requirements listed in the Documentation of Performance section of the specification, the lot is deemed to have been accepted by the contractor.

If the acceptance test data differs from the qualification test data because of the relatively small number of tests used for qualification, the engineer may change the acceptance requirements or grant a waiver if in his judgment the dampers are still suitable for their intended purpose.

In the event a lot is rejected, the following procedure will be followed:

1. Take an additional sample from the lot composed of dampers chosen at random at the rate of one from each days production (one per lot for fatigue resistance).

2. If the cumulative average of the first and second samples are equal to or below the control limit for the combined sample, take a third sample from the lot composed of dampers chosen at random at the rate of one from each days production (one per lot for fatigue resistance).

3. If the cumulative average for samples one, two and three is equal to or below the control limit for the total combined sample, the entire lot is rejected."

We estimate that our production will be 80 dampers per day or 400 dampers per normal week, thus, the normal sample size will be five.

We are submitting the attached graph and explanatory remarks to illustrate the Acceptance Testing and Sampling Plan. Obviously a similar graph applies to stiffness, ultimate shear strength and fatigue resistance."
OPERATING CHARACTERISTIC CURVE
PROBABILITY OF ACCEPTING TAN $\theta = 0.70$ IS 0.05

AVERAGE TAN θ OF LOT INSPECTED

% BELOW TAN $\theta = 0.7$ IN A PRODUCTION LOT
1. The curve gives average values of lots that have been estimated from samples of five (chosen at random at a rate of one per day) per lot. We are using average values to describe the minimum quality you can receive in preference to values for single dampers because:

 a. The buildings respond to the average damping of all dampers acting in concert.

 b. The performance requirements to insure no single damper falling below, for example, a loss tangent of 0.7 are much greater. This point can easily be seen by referring to the abscissa showing that at an average loss tangent of the lot equal to 0.7 50% of that lot will be below 0.7. It would be necessary to have an average of approximately 1.1 to insure that essentially no individual dampers are below a loss tangent of 0.7.

2. It is impossible to conclude anything about the performance of individual dampers from these curves. This means that you must accept the chance that some dampers may be released with very low values, though the average of the sample will exceed the control limit of 0.81 and the probability of accepting a lot average of 0.7 is only 5%.

3. As an example, assume a lot of dampers whose true average loss tangent is 0.9. This means that 11% produced in that lot would have loss tangents below 0.7. This would be true on all production lots having the same estimated average loss tangent. It further means that approximately 91% of the time these lots will be accepted. You would receive 0.91 x 11% or 10 dampers under 0.7 loss tangent.

4. In a lot, the control limit for the sample of five is 0.81 based on laboratory experience to date. This can be seen from the 50% probability on the five damper sample curve occurring at a loss tangent of 0.81. A lot having this average control limit would be rejected.

5. We feel that the abscissa titled "Percent Below Loss Tangent of 0.7 in Production Lot" is a valuable addition to the graph. It reveals our quality variability (lab experience) to you. You can calculate variability from the operating characteristic curve according to the following method:

 a. Note that the "5% point" (the chosen statistical limit) occurs at loss tangent = 0.7.

 b. Note that the control limit equals 0.81.

 c. Then, .81 - .70 = .11 = 1.645 \sigma^5.

 d. From this \sigma^5 = .067

 e. \sigma = 0.0067 \cdot \sqrt{5} = .15

 f. For several values of loss tangent calculate loss tangent - .7. For example, when loss tangent = .8 we get .8 - .7 = .067/15

 g. Then from a table of normal probabilities, the percent below .7 is taken. For the above example, this percentage is 25.
6. The average loss tangent for experimental dampers tested to date is 1.1. It is obvious that we really have a high confidence of meeting the minimum loss tangent of 0.7. Using the five damper sample plan, the producer's risk point (95% probability of accepting, 5% chance of rejecting unknown to 99) occurs at a loss tangent of .92. The consumer's risk point occurs at a loss tangent of 0.7 (5% chance of accepting a lot whose true average is below 0.7).

Add section nine entitled "Burning, Melting and Toxicity", to the specification: "The heat of combustion of the visco-elastic material shall not exceed 8500 calories per gram. Combustion of the visco-elastic material shall not produce gaseous products worse than those from typical vinyl wire insulation. In the event the temperature in a fire is short of that required for combustion, the visco-elastic material shall not melt and/or drip causing a hazard to fire fighters."

I am not sure that we gave you the heat of combustion figure for Y-9274. Measured on two samples the average was 7,640 calories per gram. While we expect this to vary somewhat from lot to lot and test to test, the variation should be very small. The 8500 figure gives plenty of margin.

The products of combustion of Y-9274 are similar to those from burning wood. For example, there is no phosgene as from combustion of vinyl plastic. The enclosed piece of typical heavy duty wiring coated with vinyl insulation and the accompanying piece of our visco-elastic material wrapped around the bare wire gives graphic proof that Y-9274 will not cause a problem due to dripping. Both were exposed for fifteen minutes at 550°F. You can see that the vinyl coating dripped seriously whereas the Y-9274 showed not the slightest sign of dripping. I would expect that it will burn before it drips.

In discussing aging let us first separate aging into environmental aging and chemical stability. We are not concerned with environmental aging because of the absence of difficult factors in the buildings. Our experience with chemical stability of materials in the same polymer family would indicate an expected damper life of at least ten years and probably up to about twenty years in the absence of environmental factors. This includes all components of the damping unit. I would expect that over this period of time, the loss factor and stiffness would remain quite constant. If there is a change we would expect it to be in the direction of increased stiffness and lowered loss factor but where the product of loss factor and stiffness would increase. Polymers in the Y-9274 family can be compared in aging ability to silicone elastomers, but are slightly poorer than these rubbers.

I have decided to make these bald statements without hedging or qualification, but with the firm addition that they in no way constitute a guarantee and are simply estimates.

Very truly yours,

D. B. Caldwell
Project Engineer
Acoustic Products
Mr. John H. Kyle
Chief Engineer
Port of New York Authority
World Trade Center Planning
111 Eighth Avenue
New York, New York 10011

Reference: The World Trade Center
Damping Units

Dear Jack:

Enclosed is a program outlining a test series to be used for the damping units between floor and column elements of The World Trade Center.

We had hoped that a much more comprehensive program could be developed. However, test equipment specifications have proven to be a much higher hurdle than had been expected because of the difficulty in allowing for reasonable flexibility in selecting a laboratory and for contracting for the work. We have, therefore, deleted this facet of the program and have left the responsibility for outlining test equipment response and the like to the laboratory.

Looking back over the history of the development of these damping units, it is apparent that SHEC should have proposed the test series that you have requested. We are, then, grateful to you for anticipating this requirement and directing our thoughts toward this program.

Very truly yours,

SKILLING-HELLE-CHRISTIANSEN-ROBERTSON

Leslie E. Robertson

cc: Mr. Malcolm P. Levy

WAYNE A. BREWER
P. R. A. FOSTER
FRANK HOELZERHOFF
ROBERT E. LEVVEN
V. A. PRIBADREY
KENT R. ROGERS
CHARLES SANDUSKY
WILLIAM D. WARD
E. J. WHITE, JR.
LORENTZ L. WIDING
THE WORLD TRADE CENTER

Report No. DU-2

PROTOTYPE TEST PROGRAM

OF

VISCOELASTIC DAMPING UNITS

October 27, 1967
I. Introduction

Viscoelastic damping units have been developed for installation in the floor system of The World Trade Center towers. The need for and the theory of the damping units have been covered in a previous report, "Viscoelastic Damping Units" Report No. DU-1 by Skilling-Helle-Christiansen-Robertson. Also included in Report No. DU-1 are the results of the prototype testing conducted by Minnesota Mining and Manufacturing Company. Since this viscoelastic damping system is certainly one of the few applications ever made, if not the first, in the field of tall buildings, it is desirable to have more independent test data on the performance of the damping units. This report will cover the requirements of the proposed test program.

II. Damping Units

The damping unit consists of two viscoelastic slabs, 4" x 10" x 0.05", bonded alternately among three steel pieces, as shown in Figure 1. Steel for the tees shall conform to the requirements of ASTM A36, and steel for the center plate shall conform to the requirements of ASTM A36 or AISI C1020 (hot rolled). The surfaces of the tees to be bonded shall be machined flat within 0.005 TIR and the thickness of the flange after machining shall be 0.438" minimum. The viscoelastic slabs shall be of 3M Brand Vibration Damping Elastomer FY-9274, produced by Minnesota Mining and Manufacturing Company. Bonding agents between the steel surface and the viscoelastic slab shall be selected by Minnesota Mining and Manufacturing Company and

SKILLING-HELLE-CHRISTIANSEN-ROBERTSON
shall be identical to the bonding agents to be used in the final production of the damping units.

The ends of the structural tees shall be connected to the test jig by two ASTM A490 bolts, 1" diam., in double shear; the other end of the unit shall be connected to the test jig by two ASTM A490 bolts, 3/4" diam., in double shear. Two hardened washers shall be used with each A490 bolt. All bolts shall be tightened by the turn-of-nut method. The structural tees shall have four assembly bolts, 1/4" diam., conforming to the requirements of ASTM A307.

The damping unit and its fasteners will then be identical to the damping units to be installed in the buildings, supplied under Contracts WTC-219.00 and WTC-224.00. For the test specimens described herein, the steel pieces shall be fabricated by a contractor to be selected by the Port of New York Authority and fabrication of the damping units shall be done by Minnesota Mining and Manufacturing Company after negotiation carried out for this work. The testing shall be done by a laboratory selected by SHCR and approved by PNYA.

Forty test specimens of the damping units shall be fabricated. Each specimen shall be marked with the date of fabrication and with a number from one to forty assigned according to the order in the sequence of final assembly of the damping units. Thirty specimens shall be selected at random and shall be tested in the test program to be described in this report. The remaining ten specimens shall be stored by the Port of New York Authority at relative humidity of 40% ± 10% and at ambient temperatures of 75°F ± 3°F. These ten stored units will be used for the evaluation of the aging effects in a way similar to the guarantee testing of the final production units.

SKILLING-HELLE-CHRISTIANSEN-ROBERTSON
III. Monitoring of Fabrication and Testing Operation

All work shall be done under the surveillance of the S-H-C-R Resident Engineer who will be assigned to the production fabrication and field installation operations and should be witnessed by one or more representatives of the Port of New York Authority. A representative of Minnesota Mining and Manufacturing Company should be invited to witness the tests. The testing agency shall submit evidence to and receive approval of Skilling-Helle-ChristianSEN-RobERTson for the suitability and accuracy of the testing apparatus to be used in the performance of the tests and shall submit and certify laboratory data sheets. The S-H-C-R Resident Engineer shall prepare comprehensive report to describe and evaluate all phases of the test program for the Port of New York Authority.

IV. Test Parameters

For the purpose of evaluating the effectiveness of the damping units, the following parameters shall be measured:

1. Absolute dynamic stiffness of the damping units, defined as the force amplitude required to cause unit sinusoidal displacement amplitude of the ends of the damping unit.

2. Loss factor of the damping units, defined as the tangent of the phase angle by which the relative displacement of the ends of the damping unit lags behind the applied force in sinusoidal loading.

3. Ambient temperature and temperature of the viscoelastic slab.

4. Temperature changes in the viscoelastic slab vs. cycles of oscillation during four hundred cycles at constant amplitudes of displacement.

SKILLING-HELLE-CHRISTIANSEN-ROBERTSON
5. Maximum displacement and ultimate strength of the damping units in compression.

V. Tests for Dynamic Stiffness and Loss Factor

1. The ambient temperature and the temperature of the viscoelastic slabs at the beginning of each test shall be 75°F ± 3°F. The temperature of the viscoelastic material shall be measured by a thermocouple embedded in an edge of the slab.

2. The ambient relative humidity shall be 40% ± 5%.

3. Each specimen shall be subjected to sinusoidal variation of axial displacement between the two ends of the damping unit. The frequency of the sine function shall be 0.100 ± 0.005 cycles per second. There shall be no static force bias on the specimen. Twenty specimens shall be tested at amplitudes of 0.020 inch and another ten specimens shall be tested at amplitudes of 0.030 inch. All specimens shall be tested for one hundred and two cycles of displacement except two specimens as specified in Section V.6 below.

4. Force-displacement curves of each specimen shall be recorded by an on-line X-Y plotter for the 1st, 2nd, 10th, 20th, 50th, and the 100th cycles. At the end of the 100th cycle, testing shall be halted. Testing shall resume when the temperature of the viscoelastic slab returns to its initial temperature plus or minus 0.2°F. Force-displacement curves of each specimen shall be recorded for the 101st and 102nd cycles. The time elapsed between the 100th and the 101st cycles shall also be recorded.

5. The ambient temperature and the temperature of the viscoelastic slab...
shall be recorded for the 1st, 10th, 20th, 50th, 100th, and 110th cycles for each specimen.

6. One specimen shall be selected at random from the specimens to be tested at 0.020" amplitude and another specimen shall be selected at random from the specimens to be tested at 0.030" amplitude for extended testing as follows: Sinusoidal displacement shall continue to be applied beyond the 102nd cycle until the 500th cycle. Force-displacement curves as well as the ambient temperature and the temperature of the visco-elastic slab shall be recorded for the 200th, 300th, 500th, and 500th cycles.

VI. Tests of Maximum Displacement and Ultimate Strength

1. The ambient temperature and the temperature of the viscoelastic slabs at the beginning of each test of Section VI shall be 75°F ± 3°F.

2. After testing in accordance with Section V, each specimen shall be loaded to failure in axial compression at constant displacement rate of 0.48 inch per minute. The force-displacement curve shall be recorded by using an on-line X-Y plotter for each specimen.

3. The mode of failure of each specimen shall be noted, e.g., shear failure through bonding agent or shear failure of 3/4" diam. bolt. Where informative, the failed specimens shall be photographed.

VII. Evaluation of Test Result & Final Report

The prototype damping units shall be considered satisfactory if the results of the test specimens meet the following requirements:

1. The mean value of the loss factor of all specimens for the first cycle shall be at least seven-tenth (0.7).
2. The mean value of the absolute dynamic stiffness of all specimens for the first cycle shall be at least 400,000 pounds per inch but less than 800,000 pounds per inch.

3. The standard deviation of the absolute dynamic stiffness of all specimens for the first cycle shall not exceed:

 \[\frac{1}{3} \overline{K_d} - 60,000 \text{ pounds per inch} \]

 and \[400,000 - \frac{1}{3} \overline{K_d} \text{ pounds per inch} \]

 where \(\overline{K_d} \) is the mean value of absolute dynamic stiffness.

4. The limits set forth in (1), (2) and (3) above shall also be applied to the 101st cycle.

5. Ultimate strength of the damping units as measured in Section VI shall have a mean value not less than 48,000 pounds and a standard deviation not greater than \(\left\{ \frac{1}{3} \overline{F} - 12,000 \right\} \) pounds, where \(\overline{F} \) is the mean ultimate strength in pounds.

6. Maximum displacement at ultimate strength as measured in Section VI shall have a mean value not less than 0.16 inch and a standard deviation not greater than \(\left\{ \frac{1}{3} \overline{D} - 0.04 \right\} \) inch, where \(\overline{D} \) is the mean value of the maximum displacement in inch.
SKILLING, HELLE, CHRISTIANSEN, ROBERTSON
Consulting Structural and Civil Engineers • 250 Park Avenue, New York, N. Y. 10017 • Mu. 9-557-4
John B. Skilling • Helge J. Helle • John V. Christiansen • Leslie E. Robertson
Manager
Wayne A. Brewer
Consultants
Harald L. Worthington
Joseph F. Jackson

April 4, 1969

Port of New York Authority
World Trade Center Planning
111 Eighth Avenue
New York, New York 10011

Attention: Mr. M. P. Levy

Reference: The World Trade Center
Contract WTC-224.00, 3M
Viscoelastic Damping Units

Gentlemen:

We have reviewed the draft of Contract WTC-224.00, Viscoelastic Damping Units for North and South Towers, dated November 1, 1968. Our comments on this draft contract are the subject of this letter.

1. Draft page 3 COMPENSATION:
The number of damping units to be installed in North and South Towers is 19,423, exclusive of units required for Acceptance Tests and Guarantee Tests. The Guarantee Tests require 360 units. The number of units required for Acceptance Tests is variable and it depends on the quality of the submitted lots and on the number of days of production. Units which are not damaged in the Acceptance Tests will be returned to inventory. However, since it is expected that damping units will be damaged in the ultimate strength tests, all such specimens should be discarded.

In order to control the upper limit of the cost of Acceptance Tests we suggest that the contract include a clause such as, "Vendor shall not be paid the fees for acceptance tests performed on lots which are rejected as a result of the tests."

FRANK HELLSTERN
ROBERT L. LEVY
RALPH R. ROSS
CHARLES BARNSBY
WILLIAM D. WARD
LORRENTZ L. HODGSON

SEATTLE OFFICE: 1540 WASHINGTON BUILDING, SEATTLE, WASHINGTON SE3 1/2
2. Draft page 4 EXTRA MATERIALS AND DELETED MATERIALS:
The unit price schedule in Section B implies that the
total price of 19,999 units is $653,967.30 whereas the
total price of 20,000 units is $622,000.00. A schedule of
unit prices for the deleted units would remedy this situation.

3. Draft pages 9, 10, 11, 12:
The dates for the delivery of the components and for the
delivery of the damping units must be corrected.

4. Draft page 18 GUARANTEE BY THE VENDOR:
The number of units in Section C must be made consistent
with the number given in Draft page 3.

5. Draft page A-5 Items to be Excluded from this Contract:
Section 2 should read, "Field bolts in the webs of tees
and field bolts in the ends of 4" x 1/2" nominal bars."

6. Draft page A-9, Section 3.1.4:
Change S for Shear Stress to lower case s.

7. Draft page A-10:
a. Delete the equation for Fatigue Loss in accordance with
the proposed revisions of Section 4.0.
b. Change o for standard deviation to upper case C in order
to agree with Eq. 1.

8. Draft page A-11:
a. In the first equation for S, X should be X.

We would like to recommend the following revisions of Section 4.0, Requirements
and Section 5.0, Quality Assurance. The aims of these provisions are: (1) to
control the dispersion of the Stiffness and of the Ultimate Strength of the
damping units and (2) to include in the Fatigue Test those parameters which
are most pertinent to the system performance of the damping units in the
building.
Appendix D

SKILLING-HELLE-CHRISTIANSEN-ROBERTSON

Port of New York Authority
Attention: Mr. N. P. Levy

April 4, 1969

1. Draft page A-11:
 a. Two paragraphs following Eq. 2 shall read as follows:
 "The Manufacturing Control Limit for the Loss Factor of
 an Acceptance lot or of a Guarantee lot shall be calculated
 by substituting the value of S from Eq. 2 and the appropriate
 value of the t/n from Table I, in Eq. 1."

2. Draft page A-11:
 4.1.3 Fatigue Test: The requirements of Loss Factor and
 Stiffness in 4.1.1 and 4.1.2 shall also be met for the
 100th cycle.
 4.1.4 Ultimate Strength: The Ultimate Strength shall be at
 least 45,000 pounds at 75°F.

3. Draft page A-12:
 4.2.2 Stiffness: The average Stiffness at 75°F shall be
 greater than (6,000 + 2.05) but less than (20,000 - 2.05)
 pounds per 0.020" damper deflection, where S is the
 standard deviation of the sample calculated from Eq. 2.
 4.2.3 Fatigue Test: The requirements of Loss Factor and
 Stiffness in 4.2.1 and 4.2.2 shall also be met for
 the 100th cycle.
 4.2.4 Ultimate Strength: The average Ultimate Strength at
 75°F shall be at least (45,000 + 2.05) pounds, where
 S is the standard deviation of the sample calculated
 from Eq. 2.
 4.3.1 Loss Factor: The average Loss Factor shall be at least
 0.70.
 4.3.2 Stiffness: The average Stiffness at 75°F shall be greater
 than (6,000 + 2.05) but less than (20,000 - 2.05) pounds
 per 0.020" damper deflection, where S is the standard
 deviation of the sample calculated from Eq. 2.
 4.3.3 Fatigue Test: The requirements of Loss Factor and Stiffness
 in 4.3.1 and 4.3.2 shall also be met for the 100th cycle.
 4.3.4 Ultimate Strength: The average Ultimate Strength at 75°F
 shall be at least (45,000 + 2.05) pounds, where S is the
 standard deviation of the sample from Eq. 2.

5.2.1 General: After the sampled dampers have been tested in
 accordance with Section 5.4 and the requirements given in
 Section 4.2 have been met, the lot is deemed to have been
 accepted by the Engineer. When a lot has been accepted, the
 sampled dampers which are not damaged in the testing for
 Loss Factor, Stiffness or Fatigue shall be returned to
 regular inventory. Specimens which have been tested for
 Ultimate Strength shall be discarded.
4. Draft pages A-13 and A-14:
 5.2.3 (1) Change "Fatigue Loss" to "Fatigue".
 (3) Change "Manufacturing Control Limit for that
test" to "Acceptance Requirements in 4.2".
 (5) Change "Manufacturing Control Limit" to "Acceptance
Requirements".
 (6) Change "Manufacturing Control Limit" to "Acceptance
Requirements".
 (9) Change "Manufacturing Control Limit" to "Acceptance
Requirements".

5. Draft page A-15:
 5.3.1 Delete the sentence, "Lots of dampers having average
values of more than one time in twenty after
three samples." In the last paragraph of 5.3.1 change
"destroyed" to "damaged".

6. Draft pages A-16 and A-17:
 5.3.3 (1) Change "at the rate of three for each 160 dampers"
to "at the rate of one for each 50 dampers". Change
"Fatigue Loss" to "Fatigue".
 (3), (5), (8), (9) Change "Manufacturing Control Limit"
to "Guarantee Requirements".
 5.3.4 Change "prefix" to "suffix".

7. Draft page A-23:
 5.4.5.1 (11), (12): Change upper case S to lower case s.

8. Draft pages A-24 and A-25:
 5.4.5.2 Fatigue: Delete paragraphs (5) and (6). Add the
following: "(5) Calculate Loss Factor and Stiffness
for the 100th cycle by following the procedures
given in 5.4.5.1,"

9. Draft page A-25:
 5.4.5.3 Ultimate Strength: Revise paragraph (1) to read,
"Follow 5.4.2."

10. Draft page A-26:
 5.4.5.3 (7) Use these values in calculating the mean and
the standard deviation of the sample.

If you have any question concerning this review, we would be pleased to discuss
the specification with you.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

Leslie E. Robertson
w/t 4

NIST NCSTAR 1-1A, WTC Investigation 251
SPECIFICATION
FOR
VISCOELASTIC DAMPING UNITS

CHAPTER ONE
GENERAL CONDITIONS

0.01 GENERAL

This Specification relates generally to the detailing, furnishing and application of Viscoelastic materials, bonding adhesive, protective aprons and 1/4" bolts, shims, spring lock nuts, and washers required to assemble the Components, furnished by others and machined by the Contractor, into Damping Units for the North Tower (Tower A) and the South Tower (Tower B) of the World Trade Center being constructed by the Authority in the City of New York.

This Specification requires the doing of all things necessary or proper for or incidental to manufacture of said Damping Units, as shown on the Contract Drawings in their present form. In addition, all things shown on the Contract Drawings even though not expressly mentioned in this Specification and all things mentioned in this Specification even though not shown on the Contract Drawings are required.

In the event that any requirements of the Specification appear to conflict with the requirements of the Contract Drawings or Contractor's Shop Drawings, the requirements of the Specification shall prevail.

0.02 WORKMANSHIP AND MATERIALS

Materials and workmanship shall in every respect be in accordance with the best modern practice and whenever the Contract Drawings, Specification or directions of the Engineer admit of a doubt as to what is permissible or fail to note the quality of any construction, the interpretation which calls for the best quality construction is to be followed. Materials shall be new materials and may be purchased from any qualified source, domestic or foreign, provided they meet the Contract requirements.
In case of discrepancy between a description or requirement in the Contract Drawings and Specification for any material or equipment and a catalog number or other designation for the same material or equipment (even though stated to be acceptable), the description or requirement shall control.

The right to use all patented material, compositions of matter, manufactures, apparatus, appliances, processes of manufacture or types of construction required in connection with this Contract shall be obtained by the Contractor without separate or additional compensation whether the same is patented before, during, or after the performance of the Contract.

0.03 APPROVALS BY ENGINEER

Any approval by the Engineer of any materials, workmanship, plant equipment, drawings, program, methods of procedure, or of any other act or thing done or furnished or proposed by the Contractor to be done or furnished in or in connection with the performance of the Contract shall be construed merely to mean that at that time the Engineer knows of no good reason for objecting thereto; and no such approval shall release the Contractor from his full responsibility for the accurate and complete performance of the Contract in accordance with all the terms thereof.

0.04 ERRORS AND DISCREPANCIES

If, in the performance of the Contract, the Contractor discovers any errors or omissions in the Contract Drawings or Specification, or in the work undertaken and executed by him, he shall immediately notify the Engineer and the Engineer shall promptly verify the same. If with the knowledge of such error or omission and prior to the correction thereof, the Contractor proceeds with any work affected thereby, he shall do so at his own risk and the work so done shall not be considered as work done under and in performance of this Contract unless and until approved and accepted.

0.05 PATENTS

The right to use all patented materials, composition of matter, manufactures, apparatus, appliances, processes of manufacture, or types
of construction as part of the sale shall be obtained by the Vendor without separate or additional compensation whether the same is patented before, during, or after the performance of this Contract.

0.06 INSPECTIONS

Testing and storage operations in connection with this Contract shall be at all times and places subject to the inspection of the Engineer, acting personally or through his Inspectors.

The Contractor, at his own expense, shall furnish such reasonable facilities and give such assistance for inspection as the Engineer may direct. The Contractor shall secure for the Engineer and his Inspectors free access to those parts of factories, plants or warehouses in which such testing and storage operations are conducted and shall give at least ten days' notice to the Engineer of his intention to commence initial acceptance and five year testing and recommencement after any suspension of testing of more than a week.

0.07 NO CONFIDENTIAL DISCLOSURES — PROPERTY OF AUTHORITY

The Contractor agrees that all information of any nature whatsoever, regardless of the form of the communication, received from the Contractor (including its officers, agents or employees) by the Authority, its Commissioners, officers, agents, employees, or consultants, and notwithstanding any statement therein to the contrary, has not been given in confidence and may be used or disclosed by or on behalf of the Authority without liability of any kind except as may arise under letters patent of the Contractor, if any.

All drawings, data, and other papers of any type whatsoever, whether in the form of writing, figures or delineations, which are specifically prepared and required in the performance of this Contract and submitted to the Authority shall become the property of the Authority. The Authority shall have the non-exclusive right to use or permit the use of all such drawings, data and other papers and any ideas or methods represented thereby for any purpose shall be deemed to have been given in confidence. Any statement or legend to the contrary in connection with such drawings, data or other papers and in conflict with the provisions of this paragraph shall be void and of no effect.
0.08 **CONTRACT DRAWINGS**

The Contract Drawings which accompany and form part of this Specification are separately numbered and entitled as follows:

<table>
<thead>
<tr>
<th>DRAWING NUMBER</th>
<th>DRAWING TITLE</th>
<th>ORIGINAL DATE</th>
<th>REVISED DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA-1</td>
<td>Damping Unit - Structural Tees</td>
<td>9-16-66</td>
<td>8-29-69</td>
</tr>
<tr>
<td>DA-2</td>
<td>Damping Unit - Structural Bars</td>
<td>9-16-66</td>
<td>8-29-69</td>
</tr>
<tr>
<td>DA-3</td>
<td>Viscouslastic Damping</td>
<td>10-27-67</td>
<td>5-20-69</td>
</tr>
</tbody>
</table>

The Contract Drawings do not show all of the details of the Materials and are intended only to illustrate the character and extent of Materials. Accordingly, they may be supplemented during the performance of the Contract by the Engineer, or by the Contractor subject to the approval of the Engineer, to the extent necessary to further illustrate the Materials.

In the event that any requirements of the Contract Drawings conflict with the requirements of the Contractor's Shop Drawings, the requirements of the Shop Drawings shall prevail.

After the Contract has been executed, the Contractor will be furnished with one set of sepias of the Contract Drawings without charge.

0.09 **PORTION OF MATERIALS SHOWN ON CONTRACT DRAWINGS, TO BE DETAILED, FURNISHED, MACHINES, ASSEMBLED AND DELIVERED UNDER THIS CONTRACT**

A. **ITEMS TO BE INCLUDED IN THIS CONTRACT**

1. Machining of Components furnished by others consisting of structural tees and bars.
2. Application of protective aprons to the viscoelastic material, bonding adhesive and viscoelastic material to the tee flange face and both sides of the nominal 4\" x 1/2\" bar to the thickness and lengths specified under this Contract.

3. The assembly of two tees and one bar into Damping Units after application of the Viscoelastic material using shims and 1/4\" bolts, spring lock nuts, and washers to be furnished by the Vendor under this Contract.

4. The shipping and bundling of completed Damping Units on wood skids used for delivery of steel components segregated as to type of Damping Units. Each bundle to contain approximately 104 Type "A" or 104 Type "B" Damping Units and to be marked in accordance with detailed instructions from the Engineer.

5. Tests in accordance with the Contract.

B. ITEMS NOT TO BE FURNISHED OR PERFORMED BY VENDOR

1. Structural tees and bars.

2. Field bolts in web of tee and field bolts in end of 4\" x 1/2\" nominal bar.

3. Painting of Damping Units.

0.10 COMPONENTS FURNISHED BY OTHERS

A. The Components consisting of the structural tees and bars shown on the Contract Drawings will be fabricated by others from steel conforming to ASTM A 36 - 63T or ASTM A 572, Grade 42.

B. Fabrication tolerances on Components will conform to the requirements of the AISC Specification adopted April 17, 1963 entitled "Specifications for the Design, Fabrication, and Erection of Structural Steel for Buildings" as supplemented by the specific requirements contained in the Contract Drawings, Specification and paragraphs C, D, and E of this numbered clause.
C. **STRUCTURAL TEES - SPECIAL REQUIREMENTS**

(a) No deviation from absolute flatness in excess of 1/32 inch over the entire flange surface.

(b) No deviation from absolute flatness in excess of 1/32 inch over the 4 inch extended area of the web.

(c) No deviation from perpendicularity of the 4 inch extended area of the web to the area to be machined in excess of 1/32".

(d) No deviation from perpendicularity of the entire area of the web to the area to be machined in excess of 1/16 inch.

(e) The 4 inch extended area of the web shall be parallel within 1/16 inch to the two center lines of the 1/2 inch diameter holes extending in the lengthwise (12 inch) direction of the area to be machined.

(f) Holes for erection bolts and assembly bolts accurately located as shown in the Drawings.

(g) Each piece free of loose and unbroken bubbles of mill scale, loose rust, dirt, and other foreign material.

(h) No trade marks of any type whatsoever shall be used.

D. **STRUCTURAL BARS - SPECIAL REQUIREMENTS**

(a) No deviation from absolute flatness in excess of 1/32 inch over entire surface of each side.

(b) Holes for assembly bolts accurately located as shown in the Drawings.

(c) Each piece free from loose and unbroken bubbles of mill scale, loose rust, dirt, and other foreign material.

(d) No trade marks of any type whatsoever shall be used.

E. **CERTIFICATION**

On all components furnished by others, certification shall be provided to the contractor that all the requirements of this clause and the Contract Drawings & Specification have been met.
CHAPTER TWO
TECHNICAL REQUIREMENTS

1.0 GENERAL

The Contractor referred to in this Specification is the Minnesota Mining and Manufacturing Company.

The Engineer referred to in this Specification is defined under clause numbered 2 of the Contract entitled "Definitions".

2.0 MATERIALS

2.1 VISCOELASTIC MATERIAL

3M Brand Vibration Damping Elastomer, Y-9274, as produced by Minnesota Mining and Manufacturing Company, is approved for use in fabricating viscoelastic Damping Units. Other viscoelastic materials suitable for such fabrication may also be submitted for approval by the Engineer. The request for approval of other viscoelastic materials shall be accompanied by full technical data on the material, including documentation of performance characteristics of the actual viscoelastic Damping Units proposed for use in the work. In any case, however, and notwithstanding the above stated approval for said 3M brand or any Engineer's approval for any other material, whatever material is used shall be considered satisfactory under this Contract only if it meets all the requirements of this Contract in addition to the requirements of this paragraph.

2.2 STEEL

Viscoelastic Damping Units will be fabricated from tees and bars furnished by others using the Contract Drawings listed under clause numbered 0.08 entitled "Contract Drawings" and Contractor's Shop Drawings listed in Section 2.4 of this numbered clause.

2.3 1/4" DIAMETER ASSEMBLY BOLTS

All 1/4" diameter assembly bolts used in the work shall conform to ASTM A-307 "Standard Specification for Low-Carbon Steel Externally
and Internally Threaded Standard Fasteners”. ASTM A-307 bolts shall be tightened until the spring lock nuts are partially compressed. All washers shall be flat, smooth and conform to the dimensions and properties required in the Drawings and applicable Specifications.

2.4 CONTRACTOR'S SHOP DRAWINGS

The following Contractor's Shop Drawings are approved for fabrication of viscoelastic Damping Units:

<table>
<thead>
<tr>
<th>DRAWING NUMBER</th>
<th>DESCRIPTION</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-2435-0001-9</td>
<td>Damper Assembly Type A</td>
<td>September 3, 1969</td>
</tr>
<tr>
<td>12-2435-0002-7</td>
<td>Damper Assembly Type B</td>
<td>September 3, 1969</td>
</tr>
<tr>
<td>12-2435-0011-8</td>
<td>Structural Tee Mill Spec.</td>
<td>September 3, 1969</td>
</tr>
<tr>
<td>12-2435-0013-4</td>
<td>Structural Bar Type A Mill Spec.</td>
<td>September 3, 1969</td>
</tr>
<tr>
<td>12-2435-0013-9</td>
<td>Structural Bar Type B Mill Spec.</td>
<td>September 3, 1969</td>
</tr>
</tbody>
</table>

2.5 BONDING ADHESIVE

Scotchweld Brand Structural Adhesives EC 1614 and 3520 as produced by Minnesota Mining and Manufacturing Company are approved for bonding the viscoelastic material to the steel surfaces.

2.6 PROTECTIVE APRONS

Scotch Brand Pressure Sensitive Tape #465 as produced by Minnesota Mining and Manufacturing Company is approved for protective aprons at the ends of the viscoelastic material.

3.0 DEFINITION OF TERMS

3.1 DAMPER PERFORMANCE
3.1.1 FIXED CONDITIONS

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Nominal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>temperature</td>
<td>75° ± 3°F.</td>
</tr>
<tr>
<td>l</td>
<td>displacement amplitude</td>
<td>0.020"</td>
</tr>
<tr>
<td>T</td>
<td>thickness of each viscoelastic slab</td>
<td>0.050"</td>
</tr>
<tr>
<td>f</td>
<td>frequency</td>
<td>0.1 cycle per sec.</td>
</tr>
<tr>
<td>γ</td>
<td>maximum shear strain</td>
<td>0.4 inches/inch</td>
</tr>
<tr>
<td>W</td>
<td>width of each viscoelastic slab</td>
<td>4.0"</td>
</tr>
<tr>
<td>L</td>
<td>bonded length of each viscoelastic slab</td>
<td>10.0"</td>
</tr>
<tr>
<td>$A_{v,e}$</td>
<td>viscoelastic shear area</td>
<td>$2WL = 80$ sq. in.</td>
</tr>
<tr>
<td>V</td>
<td>volume of viscoelastic material</td>
<td>$2WLT = 4$ cu. in.</td>
</tr>
</tbody>
</table>

3.1.3 MEASURED PARAMETERS

F = stiffness = one-half of the double amplitude of the axial force in the damper subjected to a sinusoidal displacement with an amplitude of 0.020 inch at 0.1 Hz

$$F = \frac{1}{2} \text{lbs.} \div 0.020"$$

A_L = area of hysteresis loop, inches2

Ultimate Strength is the axial compressive force, expressed in pounds, on the ends of the damper necessary to cause shear failure of the viscoelastic bonded area when the force is applied at a rate of 0.5 inch per minute.

3.1.4 CALCULATED PARAMETERS

s = Shear Stress

$$s = \frac{F}{A_{v,e}}$$

G^* = Complex Shear Modulus

$$G^* = \frac{s}{\gamma}$$

G'' = Loss Shear Modulus

$$G'' = \frac{A_L C_1 C_2}{\pi \gamma V}$$

G' = Elastic Shear Modulus

$$G' = \left[(G^*)^2 - (G'')^2 \right]^{1/2}$$
\[D = \text{Loss Factor} = \frac{G''}{G'} \]

3.2 REQUIREMENT AVERAGE

The Requirement Average is the limiting average value of the specified parameter determined from a given sample as set forth in the equations given for each parameter.

The subscript \(i \) stands for an individual damper.

\(n \) = the number of dampers in the sample under consideration.

\(k \) = the number of accepted lots.

The symbol \(\sigma \) stands for the standard deviation accumulated over all test dampers.

The standard deviation \(\sigma_L \) is defined by the working equation:

\[
\sigma_L = \left(\frac{\left(\frac{M^n_i}{1} \right)^2 - \left(\frac{M^n}{1} \right)^2}{n} \right)^{1/2} \tag{EQUATION 1}
\]

Where the Requirement Average is the basis for Acceptance the standard deviation for the first lot shall be calculated from a special group of ten dampers that is made and tested exactly as the dampers comprising the first Acceptance lot.

The standard deviation for all subsequent Acceptance lots shall be continuously and cumulatively adjusted by pooling the standard deviations of the accepted lots by Equation 2.

\[
\sigma_{\text{pooled}} = \left(\frac{\sum_{i=1}^{k} \sigma_i^2 (n_i - 1)}{\sum_{i=1}^{k} (n_i - 1)} \right)^{1/2} \tag{EQUATION 2}
\]

The Requirement Average for the first 5 Year lot, for each applicable parameter, shall be calculated using the completely pooled standard deviation of all Acceptance lots.
The Requirement Average for all subsequent 5 Year lots shall be continuously and cumulatively adjusted by pooling the standard deviation of all Acceptance lots with the standard deviations of all accepted 5 Year lots by Equation 2.

4.0 REQUIREMENTS

4.1 ACCEPTANCE REQUIREMENTS

All requirements must be met

4.1.1 LOSS FACTOR

Requirement Average = 0.7 + 0.948σ when n = 5
Requirement Average = 0.7 + 0.670σ when n = 10
Requirement Average = 0.7 + 0.547σ when n = 15

4.1.2 STIFFNESS

6000 + 1.25σ ≤ Requirement Average ≤ 20,000 - 1.25σ when n = 5
6000 + 1.25σ ≤ Requirement Average ≤ 15,000 - 1.25σ when n = 10
6000 + 1.25σ ≤ Requirement Average ≤ 10,000 - 1.25σ when n = 15

4.1.3 ULTIMATE STRENGTH

Requirement: > 40,000 at 75°F. when n = 5
If 0 or 1 damper fails the lot is accepted
If 2 fail take a second sample of 5 dampers
All must pass.

4.1.4 FATIGUE TEST: The stiffness requirement shall become:

5400 + 1.25σ ≤ Requirement Average ≤ 22,000 - 1.25σ when n = 5
5400 + 1.25σ ≤ Requirement Average ≤ 15,000 - 1.25σ when n = 10
5400 + 1.25σ ≤ Requirement Average ≤ 10,000 - 1.25σ when n = 15

4.2 FIVE YEAR REQUIREMENTS

4.2.1 LOSS FACTOR

Requirement Ave. = 0.63 + 0.948σ when n = 10
Requirement Ave. = 0.63 + 0.670σ when n = 20
Requirement Ave. = 0.63 + 0.547σ when n = 30
4.2.2 **STIFFNESS**

\[
5400 + 1.25 \sigma \leq \text{Requirement Avg.} \leq 22,000 - 1.25 \sigma \quad \text{when } n = 10
\]

\[
5400 + 1.25 \sigma \leq \sigma_1 \leq \sigma_2 \quad \text{when } n = 20
\]

\[
5400 + 1.25 \sigma \leq \sigma_1 \leq \sigma_2 \quad \text{when } n = 30
\]

4.2.3 **ULTIMATE STRENGTH**

Requirement: \(\geq 36,000 \) at 75°F. when \(n = 13 \). If 0, 1, 2, or 3 dampers fail the lot is accepted. If 4 fail take a second sample of 13 dampers. All must pass.

5.0 **QUALITY ASSURANCE**

5.1 **ACCEPTANCE**

5.1.1 **GENERAL**

After the sample dampers have been tested in accordance with Section 5.3 and the requirements given in Section 4.1 have been met the Acceptance lot, as defined below, is deemed to have been accepted by the Engineer.

When a lot has been accepted, the sample dampers not damaged in testing shall be delivered to the Authority.

5.1.2 **LOT**

An Acceptance Lot shall consist of all dampers made in each calendar week from the same lot of viscoelastic material by the same process and to be submitted for Acceptance testing at one time.

5.1.3 **SELECTION OF SAMPLES**

5.1.3.1 **Loss Factor, Stiffness & Fatigue**

1. Dampers shall be selected from each Acceptance Lot at random at the rate of three per day until the lot is complete.

2. Test one-third of these dampers for Loss Factor, Stiffness, and Fatigue in accordance with Section 5.3.
(3) If the averages of the test results meet the Acceptance Requirements, the lot is accepted for these requirements.

(4) If the average of the test results for any of the tests does not meet the Acceptance Requirements in Section 4.1, take another third of the dampers selected under (1) and test them in accordance with Section 5.3 for the failed requirements.

(5) If the averages of the test results for the original group and second group of samples meet the Acceptance Requirements, the lot is accepted for these requirements.

(6) If the average of the test results for any of the tests of the original and second group of samples does not meet the Acceptance Requirements, take the last third of dampers selected under (1) and test them in accordance with Section 5.3 for the failed requirements.

(7) If the averages of the test results for the original, second and third groups of samples meet the Acceptance Requirements, the lot is accepted for these requirements.

(8) If the average of the test results for any of the tests of the original, second, and third group of samples does not meet the Acceptance Requirements, the lot is rejected.

5.1.3.2 ULTIMATE STRENGTH

(1) Dampers shall be selected from each Acceptance lot at random at the rate of two per day until the lot is complete.

(2) Test one-half of these dampers for Ultimate Strength in accordance with Section 5.3.

(3) If the individual test results meet the Acceptance Requirements the lot is accepted for this requirement.

(4) If the individual test results do not meet the Acceptance Requirements take the other half of the dampers selected under (1) and test them in accordance with Section 5.3.

(5) If the individual test results for the original and second groups of samples meet the Acceptance Requirements the lot is accepted for this requirement.
(6) If the individual test results of the original and second group of samples do not meet the Acceptance Requirements, the lot is rejected.

5.1.4 IDENTIFICATION

All dampers shall be permanently imprinted with an identification code of the type shown below:

<table>
<thead>
<tr>
<th>DAMPER TYPE</th>
<th>PDTN.</th>
<th>YEAR</th>
<th>DAY</th>
<th>SUFFIXED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>7</td>
<td>174</td>
<td>A</td>
</tr>
</tbody>
</table>

The letters and numerals shall be between 1/4" and 1/2" in height and shall be located in a uniform manner. The identification shall be imprinted once on the exposed surface of the web of each structural tee.

5.2 FIVE YEAR TESTING

5.2.1 GENERAL

Not less than 5 years nor more than 5 years and 3 months after all the dampers in a given 5 Year lot have been manufactured, the samples selected from that lot and stored by the Contractor shall be tested. Dampers for 5 Year tests shall be stored by the Contractor in conformance with conditions given in Section 5.3.

After the samples from a 5 Year lot have been tested in accordance with Section 5.3 and the requirements given in Section 4.2 have been met, the lot is deemed to have passed the 5 Year test.

When a 5 Year lot has been accepted, the sample dampers not damaged in testing shall be delivered to the Authority.

5.2.2 LOT

A 5 Year lot shall consist of one-fourth of the total number of accepted dampers in this Contract, there being four such lots and each being selected as the first, second, third, and last fourth, in sequence of manufacture.
5.2.3 **SELECTION OF SAMPLES**

5.2.3.1 **Loss Factor and Stiffness**

(1) Dampers shall be selected from each 5 Year lot at random at the rate of one for each 160 dampers produced until a total of 30 from each lot is reached. Test specimens shall be selected from Type A dampers only.

(2) Test one-third of these dampers for Loss Factor, Stiffness and Fatigue according to Section 5.3.

(3) If the averages of the test results meet the 5 Year Requirements, the lot is accepted for these requirements.

(4) If the average of the test results for any of the tests does not meet the 5 Year Requirements in Section 4.2 take another third of the dampers selected under (1) and test them in accordance with Section 5.3 for the failed requirements.

(5) If the averages of the test results for the original group and second group of samples meet the 5 Year Requirements, the lot is accepted for these requirements.

(6) If the average of the test results for any of the tests of the original and second group of samples does not meet the 5 Year Requirements, take the last third of dampers selected under (1) and test them in accordance with Section 5.3 for the failed requirements.

(7) If the average of the test results for the original, second and third groups of samples meet the 5 Year Requirements the lot is accepted for these requirements.

(8) If the average of the test results for any of the tests of the original, second and third group of samples does not meet the 5 Year Requirements, the lot is rejected.

5.2.3.2 **ULTIMATE STRENGTH**

(1) Dampers shall be selected from each 5 Year Lot at random at the rate of 1 for each 200 dampers produced until a total of 26 from each lot is reached. Test specimens shall be selected from Type A dampers only.
(2) Test one-half of these dampers for Ultimate Strength in accordance with Section 5.3.

(3) If the individual test results meet the 5 Year Requirements, the lot is accepted for this requirement.

(4) If the individual test results do not meet the 5 Year Requirements, take the other half of the dampers selected under (1) and test them in accordance with Section 5.3.

(5) If the individual test results for the original and second groups of samples meet the 5 Year Requirements, the lot is accepted for this requirement.

(6) If the individual test results of the original and second group of samples do not meet the 5 Year Requirements, the lot is rejected.

5.2.4 IDENTIFICATION

Guarantee test dampers shall be identified as in Section 5.1.4 except that the suffix "A" shall be replaced with a number, one through four, corresponding to the Guarantee Lot number and the capital letter "G".

5.3 TEST METHODS

5.3.1 STEEL FAILURE

If the steel components of a damper deflect during any of the tests that test may be declared no test and another test specimen substituted for it.

5.3.2 CONDITIONING

All test dampers shall be maintained at 30% relative humidity and 75°F ± 3°F. from the time of manufacture until the time of testing.

5.3.3 TESTING TEMPERATURE

All tests shall be conducted at a temperature of 75°F ± 3°F. as determined by a thermocouple inserted in an edge of the viscoelastic damping material. Record the test temperature. The dampers shall have been in a temperature of 75°F ± 3°F. for at least eight hours before testing.
5.3.4 REPORTING VISCOELASTIC WIDTH

The measured values of Stiffness, hysteresis loop area \((A_r) \) and Ultimate Strength shall be corrected for a common bonded viscoelastic width of eight inches by using the multiplying factors listed in Table I below:

TABLE I

<table>
<thead>
<tr>
<th>IF BONDED WIDTH OF VISCOELASTIC SLAB IS</th>
<th>MULTIPLY THE TEST RESULTS OF STIFFNESS (A_r) & ULTIMATE STRENGTH BY</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-6/16"</td>
<td>1.085</td>
</tr>
<tr>
<td>7-7/16"</td>
<td>1.076</td>
</tr>
<tr>
<td>7-8/16"</td>
<td>1.067</td>
</tr>
<tr>
<td>7-9/16"</td>
<td>1.058</td>
</tr>
<tr>
<td>7-10/16"</td>
<td>1.049</td>
</tr>
<tr>
<td>7-11/16"</td>
<td>1.040</td>
</tr>
<tr>
<td>7-12/16"</td>
<td>1.032</td>
</tr>
<tr>
<td>2-13/16"</td>
<td>1.024</td>
</tr>
<tr>
<td>7-14/16"</td>
<td>1.016</td>
</tr>
<tr>
<td>7-15/16"</td>
<td>1.008</td>
</tr>
<tr>
<td>6"</td>
<td>1.000</td>
</tr>
<tr>
<td>6-1/16"</td>
<td>.992</td>
</tr>
<tr>
<td>8-2/16"</td>
<td>.984</td>
</tr>
</tbody>
</table>

5.3.5 REPORTING TEMPERATURE FOR STIFFNESS

The corrected results of Stiffness determined in Section 5.3.4 shall be further corrected for a common temperature of 75°F. by adding the product of the temperature difference and the temperature coefficients listed in Table II below:

TABLE II

<table>
<thead>
<tr>
<th>IF TEST TEMPERATURE (°F) IS</th>
<th>USE TEMPERATURE COEFFICIENT (lbs./°F) OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>72.0</td>
<td>-865</td>
</tr>
<tr>
<td>72.5</td>
<td>-880</td>
</tr>
<tr>
<td>73.0</td>
<td>-900</td>
</tr>
<tr>
<td>73.5</td>
<td>-935</td>
</tr>
<tr>
<td>74.0</td>
<td>-1000</td>
</tr>
<tr>
<td>74.5</td>
<td>-1000</td>
</tr>
<tr>
<td>75.0</td>
<td>-1000</td>
</tr>
<tr>
<td>75.5</td>
<td>+1000</td>
</tr>
<tr>
<td>76.0</td>
<td>+1000</td>
</tr>
<tr>
<td>76.5</td>
<td>+1065</td>
</tr>
<tr>
<td>77.0</td>
<td>+1100</td>
</tr>
<tr>
<td>77.5</td>
<td>+1140</td>
</tr>
<tr>
<td>78.0</td>
<td>+1165</td>
</tr>
</tbody>
</table>
5.3.6 TEST PROCEDURES

Where more than one test is performed on the same damper, they shall be conducted in the order given in this section.

5.3.6.1 Loss Factor & Stiffness

(1) Bolt an assembled damper in the special jaws attached to the test machine. Use new high tensile steel bolts for each test specimen.

Use 1" diameter ASTM A490 bolts for attaching the tee end of the damper and 7/8" A-490 bolts (Type A units) or 1 1/4" A-490 bolts (Type B units) for the bar end. Tighten all nuts until all four jaws and the specimen are firmly together, then tighten each nut an extra one-half turn.

(2) Bolt the micrometer head to one of the T-sections or the damper using previously drilled holes. Bolt the arm holding the extensometer to the central bar of the damper. See Figure 1.

(3) Connect the output of the extensometer to the X-Y chart recorder.

(4) After calibrating the system and determining there is no static force bias on the damper, set the test machine on strain control and apply sinusoidal deformation to the viscoelastic layers by alternating tensile and compressive axial force on the ends of the damper with a period of 10 ± 0.5 seconds. The force on the ends of the damper shall be sufficient to produce a shear displacement amplitude of 0.020" in the viscoelastic damping layers. A typical hysteresis loop is shown in Figure II.
FIGURE I

General Sketch of Test Set up

F/2

F/2

V.E.

THERMOCOUPLE

MICROMETER HEAD

L.V.D.T. (Extensometer)

F
FIGURE 11

A TYPICAL Hysteresis Loop

p. 20
(5) Record the value of F from the X-Y chart recorder.

(6) Calculate results from Step (5) to a common viscoelastic width of 8" following the procedure given in 5.3.4 and record separately.

(7) Calculate results from Step (6) to a common temperature of 75°F, according to the procedure given in 5.3.5. Use these values in calculating the Requirement Average according to the procedure given in 3.2.

(8) Measure the bounded area of the hysteresis loop with a planimeter.

(9) Calculate the results from Step (8) for a common viscoelastic width of 8" following the procedure given in 5.3.4 and record separately.

(10) Calculate the Loss Shear Modulus, G'', from

$$G'' = \frac{A_L C_1 C_2}{\pi Y^2 V}$$

using the values of A_L from Step (9).

(11) Calculate the shear stress, s, from

$$s = \frac{F}{A_{v.e.}}$$

using the values of F from Step (6).

(12) Calculate the complex shear modulus, G^*, from

$$G^* = \frac{s}{B}$$

(13) Calculate the Elastic Shear Modulus, G', from

$$G' = \left[(G^*)^2 - (G'')^2 \right]^{1/2}$$

(14) Calculate Loss Factor, D, from

$$D = \frac{G''}{G'}$$

Use these values in calculating the Requirement Average according to the procedure given in 3.2.
5.3.6.2 **FATIGUE TEST**

(1) Measure and record the temperature of the viscoelastic material immediately before starting the Fatigue Loss measurements.

(2) Following the detailed procedures given in Section 5.3.6.1 run 99 successive cycles of the hysteresis loop (Loss Factor and Stiffness) test.

(3) Return the damper to the temperature measured under (1) ± 1°F.

(4) Run the 100th cycle as in (2).

(5) Following the procedures given in 5.3.6.1 calculate Stiffness for the 100th cycle.

5.3.6.3 **ULTIMATE STRENGTH**

(1) Follow 5.3.3.

(2) Bolt an assembled damper in the special jaws attached to the test machine. Use new high tensile steel bolts for each test. Use 1" diameter ASTM A 490 bolts for attaching the tee end of the damper and 7/8" diameter A-490 bolts (Type A units) or 1 1/4" diameter A 490 bolts (Type B units) for the bar end. Tighten all nuts until all four jaws and the specimen are firmly together, then tighten each nut an extra 1/2 turn.

Remove the four assembly packaging bolts. Do not remove shims.

(3) Set the test machine on lineal deformation control at a speed of 0.5"/min. and apply a compressive load axially to the ends of the damper until shear failure of the viscoelastic bonded area occurs.

(4) Use the X-Y chart recorder to make a continuous permanent record of the load-deflection relationship.

(5) Record the maximum load shown on the chart.

(6) Calculate results from Step (5) for a common viscoelastic width of 8" following the procedure given in 5.3.4. This is the Ultimate Strength.
This page intentionally left blank.
Appendix E
SUPPORTING DOCUMENTS FOR CHAPTER 6

This appendix contains the supporting documents that are referenced in Chapter 6 of this report. All of the documents contained in this appendix are reproduced with permission of The Port Authority of New York and New Jersey. Table E–1 contains a summary of supporting documents and their location within this appendix. The footnote numbers given in the table correspond to those in Chapter 6. Documents in the table without footnote numbers are referenced in the main body of Chapter 6.

Table E–1. Supporting documents for Chapter 6.

<table>
<thead>
<tr>
<th>Footnote Number</th>
<th>Document Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Section 6.3.1 – Floor Trusses</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>Fabrication and inspection requirements from the contract between the Port Authority and Laclede Steel Company for the floor trusses used in WTC 1 and WTC 2 (WTCI-71-I)</td>
<td>276</td>
</tr>
<tr>
<td></td>
<td>Section 6.3.2 – Box Core Columns and Built-up Beams</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>Fabrication and inspection requirements from the contract between the Port Authority and Stanray Pacific Corporation for the box core columns and built-up beams used in WTC 1 and WTC 2 (WTCI-244-L)</td>
<td>299</td>
</tr>
<tr>
<td>1</td>
<td>Letter dated June 5, 1967 from Leslie E. Robertson of SHCR to Malcolm P. Levy of PONYA (WTCI-491-L)</td>
<td>309</td>
</tr>
<tr>
<td>2</td>
<td>Draft contract between United States Testing Company and PONYA dated August 25, 1967 (WTCI-493-L; first page of the contract and Appendix I of this document)</td>
<td>319</td>
</tr>
<tr>
<td>3</td>
<td>Letter dated April 5, 1967 from Leslie E. Robertson of SHCR to Malcolm P. Levy of PONYA (WTCI-489-L)</td>
<td>325</td>
</tr>
<tr>
<td>5</td>
<td>Letter dated November 13, 1967 from R. M. Monti of PONYA to R. E. Morris of Stanray Pacific Corp. (WTCI-498-L)</td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>Section 6.3.3 – Exterior Wall from Elevation 363 ft to the 9th Floor Splice</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Letter dated October 21, 1966 from PDM to James R. Endler of Tishman Realty and Construction Company Inc. (part of WTCI-745-L; second page and enclosure appears to be missing)</td>
<td>335</td>
</tr>
<tr>
<td>–</td>
<td>Amendments made to initial quality control program submitted to PONYA by PDM (parts of WTCI-744-L)</td>
<td>336</td>
</tr>
<tr>
<td>7</td>
<td>PDM specifications for welding procedures (parts of WTCI-741-L)</td>
<td>347</td>
</tr>
<tr>
<td>8</td>
<td>Letter dated October 4, 1967 from R. M. Monti of PONYA to H. M. Fish of PDM (WTCI-745-L)</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td>Section 6.3.4 – Exterior Wall Above 9th Floor Splice</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>Fabrication and inspection requirements from the contract between the Port Authority and Pacific Car and Foundry Co. for the exterior walls used in WTC 1 and WTC 2 (WTCI-242-L)</td>
<td>366</td>
</tr>
<tr>
<td>9</td>
<td>Letter dated July 8, 1967 from R. C. Symes of Pacific Car and Foundry to R. M. Monti of PONYA (part of WTCI-748-L)</td>
<td>372</td>
</tr>
<tr>
<td>10</td>
<td>Letter dated July 13, 167 from James White of SHCR to R. M. Monti of PONYA (part of WTCI-748-L)</td>
<td>373</td>
</tr>
<tr>
<td></td>
<td>Section 6.3.5 – Rolled Columns and Beams</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>Fabrication and inspection requirements from the contract between the Port Authority and Montague-Betts Company, Inc. for the rolled columns and beams used in WTC 1 and WTC 2 (WTCI-243-L)</td>
<td>379</td>
</tr>
</tbody>
</table>
CHAPTER THREE

FABRICATION OF STRUCTURAL STEEL

\section{GENERAL}

301.100 Structural steel shall be fabricated complete as shown in the Drawings and in approved details shown in the shop drawings.

301.200 The steel furnished for each location shall have a minimum yield point equal to that scheduled in the Drawings, and shall be selected from the applicable steel specifications listed in Chapter Two, MATERIALS.

301.300 All steel shall be ASTM A36 for locations where a specific strength requirement is not stated in the Drawings.

\section{IDENTIFICATION}

302.100 The Contractor shall identify all steel which will be used in the work beginning at the mill and shall maintain identification at all times thereafter including during fabrication. The method used shall make both the grade and yield point of the steel readily identifiable. Identification shall be maintained after fabrication.

302.200 The Contractor shall identify each member or assembly with a system of marks. Each mark shall be clearly indicated in the shop drawings. The system of identification marks for fabricated structural steel shall be a permanent system such as stamping and be approved by the Engineer. In addition, the contractor shall paint erection marks on each piece.
SPECIFIC REQUIREMENTS

03.100 Flame cutting by hand shall not be performed without the Engineer's approval. Handcut surfaces shall be made smooth by chipping, planing or grinding.

303.200 Fabricated material containing sharp kinks or bends shall be rejected. Material straightened prior to fabrication shall be carefully examined for signs of distress or other defects before being placed in fabrication. Distressed or otherwise defective material shall not be used in the work.

303.300 Where required by the Contract Documents, surfaces shall be milled, or finished by other approved means. All finishing shall be clearly shown in the shop drawings.

303.400 Bolt holes and similar holes shall be punched, drilled, sub-punched or sub-drilled and reamed, and shall not be made or enlarged by gas cutting.

303.500 Holes required by the Erector, and shown on the Drawings prior to approval of Shop Drawings shall be furnished without cost.
4 FABRICATION TOLERANCES

304.100 Fabrication tolerances shall conform to the requirements of the AISC Specification and AWS D1.0, as supplemented by specific requirements contained in the Drawings and Specifications. In no case shall tolerances exceed those obtainable by the best modern shop practice.

SPECIAL REQUIREMENTS

Floor trusses shall be fabricated to fall within the tolerances listed below:

<table>
<thead>
<tr>
<th>Description</th>
<th>Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Camber at midspan</td>
<td>± 3/8 inch</td>
</tr>
<tr>
<td>2. Deviation from design depth</td>
<td>± 1/4 inch</td>
</tr>
<tr>
<td>3. Longitudinal deviation of panel point along chord</td>
<td>± 1/4 inch</td>
</tr>
<tr>
<td>4. Vertical deviation of panel point from longitudinal axis</td>
<td>± 1/4 inch</td>
</tr>
<tr>
<td>5. Deviation in over-all length</td>
<td>± 3/8 inch</td>
</tr>
<tr>
<td>6. Maximum sweep (in inches)</td>
<td>over-all length (in feet)</td>
</tr>
</tbody>
</table>
THE WORLD TRADE CENTER

05 QUALITY CONTROL AND INSPECTION:

105.100 Supervision and Inspection

All fabrication and welding of floor trusses shall be subject to continual visual inspection, surveillance and supervision by responsible, qualified Contractor's supervisory personnel. These personnel will check for dimensional conformance to applicable details, proper manufacturing procedures, correct settings of automated controls, and will ensure that required weld strengths and specified quality of all finished material fabricated under this Contract conforms to the Specifications and to this Quality Control Program.

105.101 Material Test Reports

With minor exceptions, all steel employed in the fabrication of trusses will be produced in the furnaces and mills of The Contractor. A copy of each applicable certified mill test report showing heat number, chemistry, and physical properties for all steel truss components will be transmitted to The Engineer and to S-H-C-R by the Contractor, regardless of the source of the material.

105.102 Resistance Welding

All interior truss panel points will be connected by electronically controlled resistance welding designed to provide a minimum of two times the strength of the connected members at full design load.

All angle chords will be cleaned by shot blasting to ensure that contact surfaces are scale-free prior to production line resistance welding.
THE WORLD TRADE CENTER

All production line panel point welds will undergo "on-line" non-destructive testing by hydraulic wedge action testers which apply pre-determined, accurately measured test forces. The force applied by the wedge action tester will subject the welds tested to a minimum force across the welds of 2.25 times the calculated design force carried by the highest loaded member at the subject joint. The wedge action testing device is arranged so that the test force is applied to the two welds on one side of each panel point, resulting in mechanical inspection of 50% of all production line welds.

In addition, production line panel point welds on completed trusses will be spot-checked by vertical double shear tests. These spot-check tests will include the first completed truss in each run of a given style and a minimum of one truss for each 200 trusses in a run of a given style. Panel point welds will be subjected to test loads equal to or exceeding two times the summation of the design forces in all members at the subject joint. In trusses selected for vertical double shear tests, each joint in the truss will be tested. All trusses passing vertical double shear tests will be returned into the production line and incorporated into the work.

All panel point welds failing either the wedge action test or the double shear test will be repaired by adding hand welded fillet welds at all four chord-web intersections at each applicable panel point. Repair arc welding will be under the supervision and surveillance of supervisory personnel who are certified welders in accordance with Appendix D, Part II Welder Qualification, of AWS D1.0-66. All repair welds will be subjected to the double shear test. Repair welds which fail to provide a minimum of two times the calculated design strength of the connected members will be rejected.
THE WORLD TRADE CENTER

Full scale load tests will be performed on completely fabricated truss components. A minimum of one load test will be made for each identified truss style designated on Design Data Sheets D105-T1 through D105-ET10, inclusive (see Pages 0-11 and 0-12). Test loads will be applied by hydraulic loading in a test frame designed for this purpose. Load will be measured by electric load cells and center span deflection will be checked by dial gages. Deflection and recovery data will be measured and recorded for each increment of load application or removal for at least one load test of each style referred to above. Deflection at design load and maximum applied load will be recorded for all load tests. One copy of the report of each load test, whether successful or unsuccessful, will be forwarded to The Authority.

105.103 Physical Tension Tests

Tension tests on truss components, chord angles, and webs will be performed at random on selected sample members included in the normal truss fabrication. Reports of these tests will be forwarded to the Engineer and to S-H-C-R.

105.104 Marking

All trusses will be subjected to final inspection by The Contractor's Quality Control personnel. Trusses which conform to the requirements of the foregoing Quality Control and Inspection program and to the Specifications will be marked by a painted erection mark for each type of truss. Identification tags will be affixed to each truss or each bundle of trusses of the same style and erection mark.

105.105 Access to Plant

Free access to the plant of the truss manufacturer and
THE WORLD TRADE CENTER

the available inspection and test facilities will be
offered the qualified inspectors representing the Authority
for observation of the test and inspection procedures
outlined herein.

105.106 **Additional or Extra Tests**

Any testing requested beyond that identified herein
shall be for the account of the Authority.
CHAPTER FOUR
WELDING OF STRUCTURAL STEEL

401 GENERAL REQUIREMENTS

401.100 Welding of structural steel shall conform to the requirements of the AISC Specification and AWS D1.0, except where the AISC Specification of AWS D1.0 is specifically modified or supplemented by information included in the Drawings or Specifications.

402 QUALIFICATION AND CERTIFICATION OF WELDERS

402.100 Welders and welding operators (except resistance welding machine operators) shall have passed the applicable AWS qualification tests prescribed in AWS D1.0, Appendix D, Parts II and III. AWS qualification tests shall be supervised and witnessed by an agency approved by the Engineer. The approved agency shall issue certified test reports which describe the tests performed and indicate the results of the tests. Certification papers issued by the approved agency shall clearly state the types of work the certified welder or welding operator is qualified to perform. Certification is to be achieved in the 12 months preceding the date the subject welder begins work under the Contract. AWS qualification tests and certification shall be paid for by the Authority and witnessed by the Engineer’s designated representative.

403 WELDING PROCEDURE SPECIFICATIONS AND JOINT QUALIFICATIONS

403.100 Joints conforming to the details specified in AWS D1.0, Articles 209, 210, 211, 212, 213 and 214 and welded in accordance with the
requirements of Sections 3 and 4 of AWS D1.0 are designated
prequalified with the following exceptions:

403.101 Partial penetration butt welds
403.102 Welds in steels with yield points exceeding 50 ksi.

403.200 The Contractor shall develop welding procedure specifications
for all welded joints. No joint shall be welded until the welding
procedure specification for that joint has been approved by the
Engineer.

403.300 For steels with specified yield points exceeding 50 ksi, welding
procedure specifications shall be qualified in accordance with
Article 502, AWS D1.0. No work containing a joint requiring
qualification shall be fabricated before welding procedure
specifications for that joint are qualified by the Contractor
and approved by the Engineer. Records of procedure tests shall
be maintained by the Contractor. Test reports shall be certified
by the Contractor and submitted to the Engineer for examination.

404 PREHEAT AND INTERPASS TEMPERATURES

404.100 Preheat and interpass temperatures shall be those specified in
the welding procedure specifications prepared by the Contractor
and approved by the Engineer.

405 WELDING ELECTRODES AND FLUX

405.100 Manual welding electrodes shall be those scheduled in the Drawings
and shall in all cases be those specified in the approved welding
procedure specifications.
405.200 Welding electrodes and flux for submerged arc welding shall conform to Section 202, MATERIALS.

405.300 Gas metal-arc welding materials, where approved for use in the work, shall conform to Section 202, MATERIALS, and to the requirements of the approved welding procedure specification.

405.400 Electronically controlled resistance welding of truss panel points shall be approved provided the submitted quality control provisions for weld strength and consistency are satisfied.

Resistance welds shall consist of four point scale free welds developed by pressure contact of beaded chord angles and round web sections. Where fillers and single web intersections occur, two point welds shall be developed by pressure contact.

Welding cycle, welding pressure and current applications shall be electronically controlled to assure uniform scale free resistance welds in all cases to develop the strength required in single or double shear.

Certification as to the weld strength as required by the submitted quality control program shall be made available to the Engineer.
CHAPTER THREE

FABRICATION OF STRUCTURAL STEEL

301 GENERAL

301.100 Structural steel shall be fabricated complete as shown in the Drawings and in approved details shown in the shop drawings.

301.200 The steel furnished for each location shall have a minimum yield point equal to that scheduled in the Drawings, and shall be selected from the applicable steel specifications listed in Chapter Two, MATERIALS.

301.300 All steel shall be ASTM A36 for locations where a specific strength requirement is not stated in the Drawings.

302 IDENTIFICATION

302.100 The Contractor shall identify all steel which will be used in the work beginning at the mill and shall maintain identification at all times thereafter including during fabrication. The method used shall make both the grade and yield point of the steel readily identifiable.

302.200 The Contractor shall identify each member or assembly with a system of marks. Each mark shall be clearly indicated in the shop drawings. The system of identification marks for fabricated structural steel shall be approved by the Engineer.
03 SPECIFIC REQUIREMENTS

303.100 Flame cutting by hand shall not be performed without the
Engineer's approval. Handcut surfaces shall be made smooth
by chipping, planing or grinding.

303.200 Fabricated material containing sharp kinks or bends shall be
rejected. Material straightened prior to fabrication shall
be carefully examined for signs of distress or other defects
before being placed in fabrication. Distressed or otherwise
defective material shall not be used in the work.

303.300 Where required by the Contract Documents, surfaces shall be
milled, or finished by other approved means. All finishing
shall be clearly shown in the shop drawings.

303.400 Bolt holes and similar holes shall be punched, drilled, sub-
punched or sub-drilled and reamed, and shall not be made or
enlarged by gas cutting.

303.500 Holes required by the Erector, and shown on the Drawings prior
to approval of Shop Drawings shall be furnished without cost.
303.600 The Contractor may substitute tees cut from rolled shapes in lieu of tees built up from plates at the beam and girder seat connections in the drawings. Tees cut from rolled shapes shall be of a thickness and grade equal to or greater than the thickness and grade of plates presently shown in the drawings.

303.700 Where box beams in this Contract connect to columns by means of a beam seat and top flange connection plate, the top flange connection plate may at the Contractor’s option be shipped loose with the box beam. No shims for “loose” top flange connection plates are required.

303.800 The Contractor may elect to shop splice box core columns at each floor, at a point 3' 0" above the floor line. The edge preparation and welding at these shop splices shall conform to the edge preparation and welding shown for field splices at box core columns in Drawing Book #3. Each individual section shall be milled, welded up, and then the completed column shaft shall be milled to final length.

303.900 The Contractor may substitute a type 300 column, using plates of the same grade, equivalent area and section modulus, for the type 400 box columns with a middle web. In this case, the Contractor shall provide any transitional section required to suit the type 400 or type 500 columns below the 9th story splice. All fillet welds shall be in accordance with Drawing Book #3.
304 FABRICATION TOLERANCES

304.100 Fabrication tolerances shall conform to the requirements of the AISC Specification and AWS D1.0, as supplemented by specific requirements contained in the Drawings and Specifications. In no case shall tolerances exceed those obtainable by the best modern shop practice.

305 SPECIAL REQUIREMENTS

305.100 Fabrication tolerances shall conform to the tolerances shown on Sheets 3-04 through 3-05 inclusive. Where specific tolerances are not shown on Sheets 3-04 through 3-05 tolerances shall conform to the requirements of the Specifications.

305.200 Cut edges of steel shall be free of burrs, overhangs, gross laminations, excessive slag inclusions and similar defects. Where necessary, cut edges shall be repaired by means described in the Contractor's quality control and testing program. Where required to maintain weld quality, corners of plates shall be eased and cut edges shall be ground. Work of this nature shall be outlined in the Contractor's quality control and testing program and shall be described in detail in the Contractor's welding procedure specifications.

305.201 Repairs at gas cut edges made as follows will be approved by the Engineer:

Where serrations are not deeper than 1/8", edge shall be hit with a grinder and sharp edges removed. Where serrations exceed 1/8", the serrations shall be filled in with weld metal uniform in appearance; however, grinding will not be required except in areas where beams frame to column faces.

305.300 In certain locations in the Drawings, slotted or oversize holes are specifically required. Where the Contractor elects to use slotted or oversize holes not shown in the Drawings, the use of slotted or oversize holes shall be subject to the Engineer's approval.

305.400 The Engineer will provide for the Contractor's use a table of correction factors which the Contractor shall use to determine the correct as-fabricated dimensions of structural steel members. The correction factor for columns will be the sum of the correction for temperature at time of fabrication and the correction due to shortening under load. Correction factors will be based on a standard temperature of 70 degrees Fahrenheit. The minimum increment of correction to be included in the table of correction factors will be 1/16", said tables to be mailed to the Contractor on June 30, 1967.
Appendix E

\[R \text{ thickness tolerance (A.S.T.M A-6)} \]

\[\begin{align*}
& t_1 + t_2 = \text{theoretical thickness.} \\
& \text{DETAILING DIMENSIONS} \\
& \pm \frac{3}{16}'' \\
& \begin{array}{c}
\text{EQ.} \\
\text{EQ.}
\end{array}
\]

Compression joints which depend upon contact bearing, when assembled in the shop, shall bear evenly with respect to the centroid of the contact area. At least 75 per cent of the entire contact area shall be in full bearing, and the separation of any remaining portion shall not exceed 0.01 inch except adjacent to toes of flanges where a localized separation not exceeding 0.025 inch is permissible.

\[\text{DEPTH, WIDTH AND OUT-OF-SQUARE TOLERANCES} \]

(CORE COLUMN TYPE 400 \& 500)
Compression joints which depend upon contact bearing, when assembled in the shop, shall bear evenly with respect to the centroid of the contact area. At least 75 per cent of the entire contact area shall be in full bearing and the separation of any remaining portion shall not exceed 0.01 inch except adjacent to toes of flanges where a localized separation not exceeding 0.025 inch is permissible.

DEPTH, WIDTH AND OUT-OF-SQUARE TOLERANCES

(CORE COLUMN TYPE 300)
CHAPTER FOUR
WELDING OF STRUCTURAL STEEL

401 GENERAL REQUIREMENTS

401.100 Welding of structural steel shall conform to the requirements of the AISC Specification and AWS D1.0, except where the AISC Specification or AWS D1.0 is specifically modified or supplemented by information included in the Drawings or Specifications.

402 QUALIFICATION AND CERTIFICATION OF WELDERS

402.100 Welders and welding operators shall have passed the applicable AWS qualification tests prescribed in AWS D1.0, Appendix D, Parts II and III. AWS qualification tests shall be supervised and witnessed by an agency approved by the Engineer. The approved agency shall issue certified test reports which describe the tests performed and indicate the results of the tests. Certification papers issued by the approved agency shall clearly state the types of work the certified welder or welding operator is qualified to perform. Certification shall have been achieved immediately preceding the date the subject welder begins work under the Contract. AWS qualification tests and certification shall be paid for by the Authority and witnessed by the Engineer's authorized representative.

403 WELDING PROCEDURE SPECIFICATIONS AND JOINT QUALIFICATIONS

403.100 Joints conforming to the details specified in AWS D1.0, Articles 209, 210, 211, 212, 213 and 214 and welded in accordance with the
requirements of Sections 3 and 4 of AWS D1.0 are designated as prequalified.

403.200 The Contractor shall develop welding procedure specifications for all types of welds such as: manual, semi-automatic and automatic procedures for fillet, butt and groove welds. No welding shall be done until the welding procedure specification for that type of weld has been approved by the Engineer.

404 PREHEAT AND INTERPASS TEMPERATURES

404.100 Preheat and interpass temperatures shall be those specified in the welding procedure specifications prepared by the Contractor and approved by the Engineer.

405 WELDING ELECTRODES AND FLUX

405.100 Manual welding electrodes shall be those scheduled in the Drawings and shall in all cases be those specified in the approved welding procedure specifications.

405.200 Welding electrodes and flux for submerged arc welding shall conform to Section 202, MATERIALS.

405.300 Gas metal-arc welding materials, where approved for use in the work, shall conform to Section 202, MATERIALS, and to the requirements of the approved welding procedure specification.
THE WORLD TRADE CENTER

105 INSPECTION, QUALITY CONTROL AND TESTS

105.100 Quality Control and Tests (see Contractor's letter of 6/2/67 attached hereto)

105.101 The Contractor shall comply with the quality control and testing program annexed hereto and forming a part hereof during the course of the work to assure that all work conforms to the Contract Documents.

105.102 Materials Control

All steel plates and shapes are subject to visual inspection on receipt into the material receiving yard.

Unsatisfactory material is identified at this point and referred to the Engineering Department for disposition.

Copies of mill test reports are received by the Quality Control Department. Heat numbers on all steel items are identified and compared to mill test reports to verify use of proper material.

Heat numbers are transferred to each main component by paint stick prior to cutting.

105.103 Material Preparation

All cutting, burning, punching, drilling operations, etc., are subject to continuous visual inspection by the Contractor.

105.104 Welding

Welders are to be qualified in accordance with Appendix "D" of American Welding Society Codes D1.0-66 and D2.0-66.
THE WORLD TRADE CENTER

If Authority requires welders to be re-certified, Authority will pay the cost of re-certification.

Each welding operator is assigned a steel stencil identification symbol. Each welding operator shall stamp for identification purposes each weld as it is completed.

Preheat temperatures shall be checked by appropriate "tempsticks" prior to performing welds.

105.105 Testing by Contractor

Non-destructive testing of welds shall be accomplished by either magnetic particle and/or dye penetrant methods. The method selected shall be at the discretion of the quality control supervisor of the Contractor.

Time of such testing and selection of welds to be tested shall be the responsibility of the quality control supervisor. However, these functions will be carried out in a manner so as to provide a minimum of delays to the production operation.

Non-destructive testing shall be performed on 100% of the members during initial operations and then adjusted so as to provide a maximum of 10% coverage of all shop welds. The Contractor shall furnish all testing machines, testing machine operators and testing materials required for the Contractor's quality control and testing program.

105.106 Welding Inspection

All preheat and welding operations shall be performed under the continuous visual supervision of welding supervisors and quality control inspectors.
105.107 Built-up Members

On completion of fit-up and prior to welding, inspect for material size, thickness and dimensional conformance with applicable shop drawings and tolerances in accordance with the specifications.

Inspect for layout of mill line for shop splice.
Inspect welding of built-up members per 105.106.
Perform non-destructive testing per 105.105.
Perform final inspection of built-up members for full compliance with Contract documents. Final acceptance to be signified on record shop drawing for each member inspected.

105.108 Building Components (Columns and Beams)

On completion of fitting of detail material to built-up members (105.107, inspect detail for material size, thickness, hole size, gauge, spacing, location and dimensional conformance with applicable shop drawings and tolerances in accordance with the specifications.

Inspect welding of detail material per 105.106.
Perform non-destructive testing per 105.105.
Inspect fit-up of shop splice (when applicable) for multi-piece members.
Inspect welding of shop splice per 105.106.
Perform non-destructive testing per 105.105.
Inspect layout of final mill lines per applicable shop drawings.
Perform final inspection of each building component for full compliance with Contract documents.
Final acceptance to be signified on record shop drawing for each member inspected.

105.109 The Contractor shall submit mill test reports to the Engineer for all material used in the work.

The Contractor shall report the location and quality of all corrective work.

The Authority's inspection will be provided at no cost to the Contractor and is intended to assure conformance of Contractor's fabricating operations and procedures with Contract documents.

The Authority to also provide mill inspection of materials to assure complete compliance with A.S.T.M. specifications as well as special requirements of Stanray Pacific Corporation regarding quality and tolerance.

105.201 Shop Inspection

The Authority will provide continuous visual inspection of all operations.

Inspection is to be progressive and concurrent with Contractor's quality control operation.

Non-destructive testing as performed by Contractor (see 105.105) will be observed and witnessed by Port Authority inspectors.

105.202 Final Inspection and Acceptance (Built-up Members)

On completion of fabrication, the Authority will perform final inspection of each built-up member for full compliance with Contract documents. Inspect for material size, thickness, weld size and workmanship. Final acceptance to be signified on record shop drawing each member inspected.
Building Components (Columns and Beams)

On completion of fabrication and prior to shipping, the Authority will perform final inspection of each building component for full compliance with Contract documents. Inspect shop splicing (when applicable); fit-up of clips, lugs, brackets, etc.; material sizes and thicknesses; hole size, gauge and spacing; location, dimensional conformance, welding and workmanship. Final acceptance to be signified on record shop drawing for each building component inspected.

106 DEFECTIVE WORK

106.100 Defective and unsuitable work and all work failing to conform to the Contract documents shall, where permitted by the Engineer, be made good at the Contractor's expense. Work may be rejected, regardless of previous approval in shop drawings, inspection or inclusion in a certificate of payment, provided that after final inspection and acceptance by the Authority as provided in 105.202, the Contractor shall have no responsibility or liability for any defect whatsoever, except latent defects which a reasonably prudent inspection would not disclose and any errors in the shop drawings furnished by Contractor.
June 2, 1967

Mr. Lester Feld
The Port of New York Authority
111 Eight Avenue at Fifteenth Street
New York, New York

Subject: World Trade Center
Contract No. WTC 217.00 - Revised Quality Control Program

Dear Lester:

Enclosed you will find two copies of the Welding Procedures to be incorporated into our Quality Control Program which is outlined in section 105 of Contract No. WTC 217.00. This constitutes our entire Quality Control and Testing Program.

The Inspection Requirements referred to as item 2 C in your letter of May 25, is now completed and will be mailed to you on Monday, June 5.

Yours very truly,

STANRAY PACIFIC CORPORATION

[Signature]

F. E. Allen
Controller

dh
Encl.
June 2, 1967

STANRAY PACIFIC CORPORATION
WELDING PROCEDURES

Manual Fillet Welds - Low Hydrogen Electrodes

Weld Type: MP-1

Material: A36
Electrodes: E7018
Weld Position: 1F, 2F, 3F
Electrode Size: 3/16" and 7/32"
Amperage: 3/16" - 200 to 275
7/32" - 260 to 340
Voltage: 3/16" - 21 to 25
7/32" - 22 to 26
Preheat: To 3/4" T - Nominal Temperature
Over 3/4" T - 100°F per inch thickness
to 250°F F Maximum
Current: D.C. reverse polarity, or A.C.

Weld Type: MP-2

Material: A36
Electrodes: E7028
Weld Position: 1F and 2F
Electrode Size: 3/16" and 1/4"
Amperage: 3/16" - 225 to 310
1/4" - 325 to 430
Voltage: 3/16" - 23 to 27
1/4" - 24 to 29
Preheat: To 3/4" T - Nominal Temperature
Over 3/4" T - 100°F per inch thickness
to 250°F F Maximum
Current: D.C. reverse polarity or A.C.

Manual Fillet Welds - Iron Powder Electrodes

Weld Type: MP-3

Material: A36
Electrodes: E7024
Weld Position: 1F and 2F
Electrode Size: 3/16" and 1/4"
Amperage: 3/16" - 230 to 310
1/4" - 325 to 430
Voltage: 3/16" - 23 to 28
1/4" - 24 to 30
Preheat: To 3/4" T - Nominal Temperature
Over 3/4" T - 100°F per inch thickness
to 250°F F Maximum
Current: A.C. or D.C.
WELDING PROCEDURES

Page - 2 -

Fillet Welds - Semiautomatic Innershield Wire

Weld Type: IS-1

Material: A36
Electrodes: NS-2M Flux Core
Weld Position: 1F and 2F
Electrode Size: 0.120"
Amperage: 425 to 550
Voltage: 28 to 36
Preheat: To 3/4" T - Nominal Temperature
Over 3/4" T - 100°F per inch thickness
to 250°F maximum
Current: D.C. reverse polarity

Fillet Welds - Tandem Wire Submerged Arc

Weld Type: SA-1

Material: A36
Electrodes & Flux: A.S.T.M. - A558
Weld Position: Flat
Electrode Size: 7/32" and 3/16"
Amperage: 7/32" - 750 to 950
3/16" - 700 to 850
Voltage: 7/32" - 35 to 40
3/16" - 35 to 40
Preheat: To 3/4" T - Nominal Temperature
Over 3/4" T - 100°F per inch thickness
to 250°F maximum
Current: 7/32" - D.C. straight polarity
3/16" - A.C.

Fillet Welds - Triple Wire Submerged Arc

Weld Type: SA-2

Material: A-36
Electrodes & Flux: A.S.T.M. - A558
Weld Position: Flat
Electrode Size: 3/16", 3/16" and 5/32"
Amperage: 3/16" Lead Wire, 1000 to 1200
3/16" No. 2 Wire, 850 to 1000
5/32" No. 3 Wire, 750 to 900
Voltage: 3/16" Lead Wire, 35 to 40
3/16" No. 2 Wire, 38 to 43
5/32" No. 3 Wire, 40 to 46
Preheat: To 3/4" T - Nominal Temperature
Over 3/4" T - 100°F per inch thickness
to 250°F maximum
Current: Lead Wire: D.C. straight polarity
No. 2 Wire: A.C.
No. 3 Wire: A.C.
WELDING PROCEDURES

Page - 3 -

Complete Penetration Welds, Manual Electrodes
Partial Penetration Welds, Manual Electrodes

Weld Type: NB-1

Joint Specification: A.W.S. D1.0, Appendix E2 and E4

Material: A36
Electrodes: E7018
Weld Position: 1G; 2G; 3G
Electrode Size: 5/32" and 3/16"
Amperage: 5/32" - 150 to 200
3/16" - 180 to 260
Voltage: 5/32" - 20 to 26
3/16" - 22 to 27
Preheat: To 3/4" T - Nominal Temperature
Over 3/4" T - 100°F per inch thickness
to 250°F Maximum
Current: D.C. reverse polarity or A.C.

Complete Penetration Welds, Semi Automatic Innershield
Partial Penetration Welds, Semi Automatic Innershield

Weld Type: IS-2

Joint Specification: A.W.S. D1.0, Appendix E2 and E4

Material: A36
Electrodes: NS-3M
Weld Position: 1G and 2G
Electrode Size: 0.120"
Amperage: 425 to 500
Voltage: 26 to 30
Preheat: To 3/4" T - 70°F
Over 3/4" T - 100°F per inch thickness
to 250°F maximum
Current: D.C. reverse polarity
WELDING PROCEDURES

Complete Penetration Welds, Manual and Semi Automatic
Partial Penetration Welds, Manual and Semi Automatic

Weld Type: GB-1

Joint Specification: A.W.S. D1.0, Appendix E2 and E4

Material: A36
Electrodes: Manual - E7018 root passes
Semi Automatic - NS3M Innershield
Weld Position: 1G and 2G
Electrode Size: E7018 - 5/32" NS3M - 0.120"
Amperage: 5/32" E7018 - 150 to 220 NS3M - 475 to 500
Voltage: E7018 - 22 to 25 NS3M - 28 to 32
Preheat: To 3/4" T - 70°F Over 3/4" T - 100°F per inch thickness to 250°F maximum
Current: D.C. reverse polarity

Manual Fillet Welds - Low Hydrogen Electrodes

Weld Type: MF-S1

Material: A572, Grade 50
Electrodes: E7018
Weld Position 1F, 2F, 3F
Electrode Size: 5/32" and 3/16" Amperage: 5/32" - 150 to 200 3/16" - 200 to 250
Voltage: 5/32" - 20 to 24 3/16" - 21 to 25
Current: D.C. reverse polarity or A.C.
Preheat: To 3/4" T - 70°F Over 3/4" T - 100°F per inch thickness to 250°F maximum interpass temperature

Temperature Control: "Tempil-Stik" Crayons or equal
WELDING PROCEDURES

Weld Type: MF-S2

Material: A572, Grade 50
Electrodes: E7028
Weld Position: 1F and 2F
Electrode Size: 3/16" and 7/32"
Amperage: 3/16" - 220 to 300
7/32" - 250 to 350
Voltage: 3/16" - 23 to 27
7/32" - 23 to 28
Current: D.C. reverse polarity or A.C.
Preheat: To 3/4" T - 70°F
Over 3/4" T - 100°F per inch thickness to 250°F maximum. 300°F maximum interpass temperature.
Temperature Control: "Tempil-Stik" Crayons or equal

Semi Automatic Fillet Welds - Innershield Electrodes

Weld Type: IF-SI

Material: A572, Grade 50
Electrodes: NS3M Flux Core
Weld Position: 1F and 2F
Electrode Size: 0.120"
Amperage: 425 to 500
Voltage: 28 to 36
Preheat: To 3/4" T - 70°F
Over 3/4" T - 100°F per inch thickness to 250°F maximum. 300°F maximum interpass temperature.
Temperature Control: "Tempil-Stik" Crayons or equal

Submerged Arc Fillet Welds - Dual Tandem Wire

Weld Type: SA-SI

Material: A572, Grade 50
Electrodes & Flux: A.S.T.M. - A558
Weld Position: Flat
Electrode Size: 7/32" and 3/16"
Amperage: 7/32" - 850 to 950
3/16" - 800 to 900
Voltage: 7/32" - 35 to 40
3/16" - 35 to 40
Current: 7/32" - D.C. straight polarity
3/16" A.C.
Travel Speed: 30 to 36 inches per minute
Preheat: To 3/4" T - 70°F
Over 3/4" T - 100°F per inch thickness to 250°F maximum. 300°F maximum interpass temperature.
Temperature Control: "Tempil-Stik" Crayons or equal
WELDING PROCEDURES

Page - 6 -

Submerged Arc Fillet Welds - Triple Tandem Wire

Weld Type: SA-2S

Material: A-572, Grade 50
Electrodes & Flux: A.S.T.M. - A558
Weld Position: Flat
Electrode Size: 3/16", 3/16" and 5/32"
Amperage:
3/16" lead wire - 1100 to 1200
3/16" No. 2 wire - 900 to 1000
5/32" No. 3 wire - 850 to 900
Voltage:
3/16" lead wire - 40
3/16" No. 2 wire - 43
5/32" No. 3 wire - 46
Current:
Lead wire - D.C. straight polarity
No. 2 wire - A.C.
No. 3 wire - A.C.
Travel Speed: 45" per minute
Preheat: To 3/4" T - 70°F
Over 3/4" T - 100°F per inch thickness to 250°F maximum. 300°F maximum interpass temperature
Temperature Control: "Tempil-Stik" Crayons or equal

Complete Penetration Welds - Manual, Low Hydrogen Electrodes
Partial Penetration Welds - Manual, Low Hydrogen Electrodes

Weld Type: MG-SI

Material: A572, Grade 50
Electrodes: E7018
Weld Position: 1G, 2G, 3G
Electrode Size: 5/32" and 3/16"
Amperage:
5/32" - 150 to 200
3/16" - 175 to 260.
Voltage:
5/32" - 20 to 26
3/16" - 22 to 27
Current:
D.C. reverse polarity, or A.C.
Preheat: To 3/4" T - 70°F
Over 3/4" T - 100°F per inch thickness to 250°F maximum. 300°F maximum interpass temperature
Temperature Control: "Tempil-Stik" Crayons or equal
WELDING PROCEDURES

Page - 7 -

Complete Penetration Welds - Semi Automatic Innershield
Partial Penetration Welds - Semi Automatic Innershield

Weld Type: IB-E2

Material: A572, Grade 50
Electrodes: NS3M Flux Core
Weld Position: 1G and 2G
Electrode Size: 0.120"
Amperage: 425 to 500
Voltage: 30 to 34
Current: D.C. reverse polarity
Preheat: To 3/4" T - 70° F
Over 3/4" T - 100° F per inch thickness to 250° F maximum. 300° F maximum interpass temperature

Temperature Control: "Tempil-Stik" Crayons or equal

Complete Penetration Welds - Manual Electrode and Semi Automatic
Partial Penetration Welds - Manual Electrode and Semi Automatic

Weld Type: CB-E2

Material: A572, Grade 50
Electrodes: Manual - E7018
Semi Automatic - NS3M Flux Core
Weld Position: 1G and 2G
Electrode Size: E7018 - 5/32"
NS3M - 0.120"
Amperage: 5/32" E7018 - 150 to 220
NS3M - 420 to 500
Voltage: 5/32" E7018 - 22 to 26
NS3M - 28 to 32
Current: D.C. reverse polarity
Preheat: To 3/4" T - 70° F
Over 3/4" T - 100° F per inch thickness to 250° F maximum. 300° F maximum interpass temperature

Temperature Control: "Tempil-Stik" Crayons or equal
WELDING PROCEDURES

CRITERIA FOR ADJUSTING PERCENTAGE OF NON-DESTRUCTIVE TESTING

Non-destructive testing of welds will be performed using either the dye penetrant and/or the magnetic particle process. Welds will be checked for performance with applicable ASTM specification. Non-destructive testing of welds will be performed on 10% of all members.

100% of the linear footage of each weld will be checked on the first 10 columns and on the first 10 beams fabricated. Provided that all welds checked are found to be acceptable, then 100% of the linear footage of each weld on 5 columns and on 5 beams out of the next 10 fabricated will be checked. Providing at this point that all welds checked have been found to be satisfactory, then 10% of the linear footage of each weld on one member out of each 4 fabricated will be inspected for the balance of the contract.

Each unacceptable weld will be examined, using the previously described non-destructive methods, for its complete length. For each weld found to be unsatisfactory an additional like weld will be examined on an additional member.
The Port of New York Authority
111 Eighth Avenue
New York, New York 10011

The World Trade Center

FABRICATED STEEL

Contract WTC-217.00

June 6, 1967

ADDENDUM #2

This addendum should be physically annexed to the Form of Proposal, but the Form of Proposal will in any case be construed as though this addendum had been so physically annexed and all addenda issued will be considered incorporated in the Form of Proposal.

In Drawing Book 43, Page 56, dated 9/12/66, revise the last two items in the table to read as follows:

<table>
<thead>
<tr>
<th>t</th>
<th>Weld #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-7/8" through 3-7/8"</td>
<td>1/2" **</td>
</tr>
<tr>
<td>4" through 8"</td>
<td>5/8" **</td>
</tr>
</tbody>
</table>

* For Weld #2, t is the thickness of the thicker plate, connected by the weld.

** Indicates "deep penetration" fillet welds using Standard Pacific Corporation procedures as documented in letter of May 23, 1967 from H. F. Kjerulf to L. S. Feld are acceptable.

Guy F. Tozzoli
Director
World Trade Department
SKILLING-HELLE-CHRISTIANSEN-ROBERTSON
Consulting Structural and Civil Engineers • 230 Park Avenue, New York, N. Y. 10017 • Mu. 9-8574

John B. Skilling Helge J. Helle John V. Christiansen Leslie E. Robertson
Consultants
Harold L. Worthington Joseph F. Jackson

June 5, 1967

Mr. Malcolm P. Levy
Port of New York Authority
World Trade Center Planning
111 Eighth Avenue
New York, New York 10011

Reference: The World Trade Center
Contract WTC-217.00, Stanray Pacific
Inspection, Testing, Coordination and Supervision at Fabricating Plant

Gentlemen:

Contract WTC-217.00 contains provisions stipulating that irrevocable title to "built-up members" and to "building components" pass to PNYA after the completion of detailed inspection and acceptance by PNYA. The contract also states that PNYA assumes all risk for loss or damage of fabricated units after they are placed in the hands of the shipper. These contract provisions, coupled with the major use of steel produced in Japan and England, make it necessary for PNYA to implement a comprehensive program of supervision, coordination, inspection and testing of the work performed by Stanray Pacific Corporation. The coordination function assumes particular importance because of the large quantities of steel to be supplied from abroad. Stanray Pacific must receive delivery of this steel in time to meet the approved progress schedule which, in turn, forms an integral part of the overall progress schedule for the World Trade Center.

Accompanying this letter is a comprehensive program for supervision, coordination, inspection and testing based on the use of the personnel and facilities of a local independent testing agency supervised by a Resident Engineer. We propose that PNYA implement the program outlined herein under the supervision of professional engineers in the employ of SHCR.
SKILLING-HELE-CHRISTIANSEN-ROBERTSON

- 2 -

The Resident Engineer will be in a position to work closely with the mill, the detailer, the fabricator and the shipper. His responsibility will be limited to that of reviewing and reporting on the work and to directing the activities of the testing and inspection agency. He will establish full-time residence at the fabricating plant, beginning approximately 5 weeks prior to the beginning of fabrication and will remain in residence until such time as PNYA and SEER determine that weekly visits are sufficient.

The program proposed herein will provide PNYA with all the necessary documentation required to assure that the work conforms to the Contract Documents, and at the same time, will give PNYA early notice of potential delays in the work, thereby providing PNYA maximum opportunity to preclude these delays.

For convenience, we have attached Xerox copies of previous correspondence concerning Contract WTC-217.00.

Very truly yours,

SKILLING-HELE-CHRISTIANSEN-ROBERTSON

Leslie E. Robertson

cc: Mr. A. Schroeder, NYS
 Mr. J. Solomon, ERS
 Mr. L. Feld, PNYA
 Mr. J. Endler, Tishman
 Mr. W. Costinika

1. 6/5 - M. Lem - Deep Penetration Test
2. 5/31 - M. Lem - Inspection
3. 5/19 - PNYA Inspection
4. 5/19 - M. Lem - Inspection
5. 5/19 - M. Lem - Mill Log No. grip test
COORDINATION, SUPERVISION, INSPECTION AND TESTING
OF FABRICATED STRUCTURAL STEEL

Stanray Pacific, Contract WTC-217.00

A. Scope
1. Supervision, coordination, inspection and testing activities must be performed during the course of the work in order to ensure proper interpretation of the technical provisions of the contract, to provide PNYA assurance through adequate documentation that fabricated steel conforms to the Contract Documents, and to assure on-time delivery of fabricated steel to PNYA by identifying potential sources of delay at the earliest possible moment.
2. Detailed inspection by check list and by non-destructive testing must be performed prior to final acceptance of:
 a) each "built-up member" and
 b) each "building component"
to enable PNYA and SHCR to identify unacceptable fabricated items prior to final acceptance, such acceptance being irrevocable under the terms of the contract.

B. Personnel
1. Supervision, coordination, inspection and testing activities shall be managed by a Resident Engineer (a professional engineer employed full time by SHCR).
2. Inspection and testing activities shall be performed by qualified and experienced technicians in the full time employ of an independent testing agency retained and paid by PNYA. The testing agency shall submit to PNYA and SHCR detailed resumes of the qualifications and experience of each man proposed for assignment to the work.

C. Records and Drawings
1. The fabricator shall provide the Resident Engineer with one copy of each of the following:
 a) Each advance bill for mill order
 b) Each bill of lading for shipment of steel plate
c) Each certified mill test report

d) Each typical detail sheet

e) Each approved erection plan

f) Each approved steel detail drawing as corrected to reflect any and all approval notations.

"g) Each shop bill of material

h) Each fastener and welding material list

i) Each shipping bill or bill of lading or both for completely fabricated and accepted components

j) The fabricator's Quality Control Program for the work.

k) Test documents certifying qualification in accordance with the provisions of AWS D1.0-66 for each
(1) welder,
(2) welding machine operator, and
(3) welding procedure specification applicable to the work.

2. PNYA and SHCR will provide the Resident Engineer with the following:
 a) A complete set of contract documents including all revisions to the contract documents

 b) One print of each approved or corrected shop drawing

 c) One copy of the current approved fabrication schedule

 d) One copy of each mill inspection report

3. The Resident Engineer will:
 a) Prepare a daily report of his activities, and will submit these reports weekly, or more often where special conditions warrant

 b) Maintain a complete up-to-date file of all welding certification documents

 c) Maintain a complete file of test and inspection reports prepared by the independent testing agency.

 d) Maintain complete and orderly files of all other data provided to the Resident Engineer by the fabricator, PNYA and SHCR.

4. The independent testing agency will prepare test and inspection reports on a daily basis. Test reports shall record the results of each test or related group of tests and shall clearly identify each member or component tested, type of test made, and results of each test. Individual inspection reports shall be made for each inspector's work and will specifically note each member or component inspected, specific items included in the inspection, and results of the inspection.

SKILLING-MELLE-CHRISTIANSEN-ROBERTSON

312

NIST NCSTAR 1-1A, WTC Investigation
D. Supervision

1. Supervision shall be performed by the Resident Engineer.

2. Supervision shall include:

 a) A complete study of the fabricator's quality control procedures, proposed fabrication procedures, provisions for storage of incoming material, for completed "built-up members" and for "building components," and provisions for loading and shipping of completed "building components." This study will be made by the Resident Engineer prior to the beginning of fabrication. The Resident Engineer will submit a complete report and analysis of his findings to SHCR and PNYA prior to the beginning of fabrication.

 b) Liaison between PNYA and SHCR on the one hand, and Dovell Engineering Company on the other, regarding the preparation and approval of shop drawings.

 c) Ensure proper interpretation of the Drawings and Specifications by assistance to the fabricator. Where the Resident Engineer determines that a ruling from the Engineer is in order, he will expedite receipt of the Engineer's ruling by immediately reporting all pertinent data to SHCR and PNYA.

 d) Direction of the work performed by the independent testing agency and its inspectors. The scope of inspection and testing is defined in Part 8 of this outline. Should conditions occur during the course of the work which, in the judgment of the Resident Engineer, warrant additional inspection or tests, the Resident Engineer shall have the authority to order such additional inspection or tests as he deems necessary. The Resident Engineer shall report to SHCR and PNYA immediately all such instances.

 c) Continual surveillance of the quality of the work including

 1) Checking material as received and stored in the receiving and storage yard for

 a) Grade, heat number and marking

 b) Condition

 c) Dimensions

 d) Method of storage

 2) Cross-checking of certified mill test reports against material received at the receiving and storage yard. Items (a) and (b)
shall be performed immediately upon receipt of material at the receiving and storage yard.

(3) Random checking during fabrication of width, length and thickness of plate, layout work, edge preparation, jigs and templates, welding of main members, preparation of detail material, welding of detail material, distortion control, milling of columns, and other items as required.

(4) Surveillance of the fabricator's quality control program as actually implemented by the fabricator, including review of any reports prepared by the fabricator for submission to SHCR and PNYA.

(5) Continual direction of inspection and testing work performed to ensure adherence to the amounts of inspection and testing outlined in Parts 6.5 and 6.6 herein.

E. Coordination

1. Coordination shall be performed by the Resident Engineer with the assistance of inspectors from the independent testing agency.

2. Coordination shall include

a) Continual scrutiny of the approved progress schedule.

b) Organization of advance bills of material into groups based on dates material must be delivered to conform to progress schedule.

c) Review of bills of lading for shipment of material against advance bills of material and approved progress schedule.

d) Check of material actually on hand in receiving and storage yard against a), b), and c) above. The Resident Engineer shall notify the fabricator, SHCR and PNYA immediately upon discovery of any discrepancy or omission.

e) Check of each unit from the beginning of fabrication until loaded for shipment. The date and time shall be clearly recorded on the Resident Engineer's copy of the applicable shop drawing and erection drawing for:

 (1) beginning of fabrication
 (2) final acceptance of "built-up member"
 (3) final acceptance of "building component"
 (4) completion of loading for shipment.

The Resident Engineer shall notify the fabricator, SHCR and PNYA immediately should any unit fall behind schedule, and shall notify...
SHCR and PNYA promptly of the date fabricated components actually leave the fabricator's yard.

F. Inspection

1. Inspection shall be performed by qualified and experienced structural steel inspectors in the full time employ of the independent testing agency.

2. Only inspectors approved by PNYA and SHCR shall be assigned to the work. Approval will be based on review of detailed résumés of each inspector's qualifications, experience and ability to perform the required work.

3. Generally, one full time inspector shall be assigned to each work shift. The Resident Engineer shall have the authority to increase the number of inspectors working in a given shift in accordance with amount of inspection work to be performed, or to reduce or increase the hours worked by any inspector as work load varies.

4. Duties of inspectors will be as follows:
 a) Assisting the Resident Engineer as required in analyzing and cross-checking advance bills of material, bills of lading for material, and certified mill test reports
 b) Checking each plate upon arrival at the receiving and storage yard for
 (1) Heat number and specification conformance
 (2) Condition
 (a) Edge defects (laminations, slag inclusions)
 (b) Surface defects
 (c) Damage (bends, kinks)
 c) Checking of "built-up members" during fabrication
 (1) Plates
 (a) Heat number and yield point
 (b) Length, width and thickness
 (c) Tolerance conformance
 (d) Edge and surface defects
 (2) Jigs, templates and positioners
 (a) Suitability
 (b) Dimensional accuracy
 (c) Alignment
 (3) Welding
 (a) Edge preparation
 (b) "Fit-up" (proper use of tack welds, disohragm plates, jigs)
Appendix E

(c) Position for welding
(d) Flux, electrode, preheat, type of welding equipment, voltage, and amperage for conformance to welding procedure specification
(e) Visual check of 100% of completed welds
(f) Select lengths of weld for non-destructive testing to be performed after member cools

(4) Fully welded members shall be checked after cooling for conformance to the required tolerances (camber, sweep, out-of-square)

(5) Finishing
(a) Theoretical centerline
(b) Milling of first end for perpendicularly to theoretical centerline
(c) Check layout of length for milling second end including corrections to theoretical length for temperature and shortening under load
(d) Check of perpendicularity to theoretical centerline of second end
(e) Final check of actual length after milling is complete

(d) Checking of "building components" during fabrication
(1) Heat number and yield point of detail material
(2) Proper size and weight of steel sections or thickness of plate
(3) Layout of detail material for proper location of holes, stops, and cuts

(4) Fit-up of detail material
(a) Proper fit-up for welding
(b) Proper location of theoretical column centerline

(5) Visual check of 100% of detail welding
(6) Select lengths of detail welds for non-destructive testing

(e) Final check
(1) Check main material for dimensions
(a) Length
(b) Width
(c) Thickness

(2) Check main material for conformance to steel spec. A36, etc.
(3) Check basic dimensions
 (a) Overall length
 (b) Sweep, camber, out-of-square
 (c) Theoretical centerline
 (d) Finished surfaces for 90° angle to centerline
(4) Check detail material
 (a) Length, width, thickness, copes
 (b) Hole patterns, edge preparation, etc.
 (c) Conformance to steel specifications
 (d) Location in relation to theoretical centerline
 (e) Location longitudinally
 (f) Freedom of edges from burr, lamination, slag inclusion, etc.
 (g) Cleaning of steel
 (h) Protection of milled surfaces
 (i) Accurate and clear marking

Checking will be against structural drawings wherever possible. Results of inspection will be recorded on the Resident Engineer's record set of shop drawings.

Testing
1. Testing activities will be performed by personnel in the full time employ of the testing laboratory. Non-destructive testing will be performed by persons fully qualified, experienced and capable in the non-destructive testing technique used.

2. Testing activities fall into two categories:
 a) Non-destructive testing performed at the material receiving and stor
 yard and in the fabricating works
 b) Testing performed at the testing laboratory

3. Non-destructive testing may be divided into five categories
 a) Visual inspection (including measurements)
 b) Dye penetrant inspection
 c) Magnetic particle inspection
 d) Ultrasonic inspection
 e) Radiographic inspection

4. Visual inspection will ascertain the locations where other types of testing will be employed.
5. Dye penetrant inspection will be used as a random spot check of welds where such inspection is judged desirable by either the inspector or the Resident Engineer.

6. Magnetic particle inspection will be used to inspect a minimum of 5 percent of all member and detail welds.

7. Ultrasonic inspection will be used where the Resident Engineer determines special conditions warrant this type of inspection.

8. Radiographic inspection will not be required for the subject work.

9. Testing performed at the testing laboratory falls into three categories:
 a) Testing of specimens for welder and welding machine operator qualification tests
 b) Mechanical tests of steel plate or weld metal
 c) Chemical (check) analysis of steel plate or weld metal

It is anticipated that only a) above will be required. However, should special conditions warrant, the Resident Engineer shall have the authority to call for tests listed under b) and c) in the number judged necessary by the Resident Engineer.
United States Testing Company
1514 Park Avenue
Hoboken, New Jersey

Gentlemen:

The undersigned, The Port of New York Authority, hereinafter referred to as the "Authority", hereby offers to retain The United States Testing Company, hereinafter referred to as "U. S. Testing" to furnish to the Authority for such periods of time as the Construction Manager or Assistant Construction Manager of the World Trade Center of the Authority, hereinafter called the "Manager" may require, the services of such number of experienced and qualified steel inspectors and field and laboratory technicians who are qualified to perform the services listed in Appendix I attached hereto and forming a part hereof in connection with such quantities of steel to be incorporated in the World Trade Center being constructed by the Authority in the City of New York as may be fabricated by the Stanray Pacific Corporation at their facilities located in Los Angeles, California and at the direction of the Manager to perform physical and chemical tests on foreign steel samples which will be forwarded to the U. S. Testing Laboratories in Hoboken, New Jersey. U. S. Testing shall not, without its further consent, either express or implied, be obligated to furnish such services after December 31, 1970.

The Authority will obtain entrance for U. S. Testing to fabrication shops where U. S. Testing is required to perform its services and will furnish to U. S. Testing necessary technical specifications, drawings, shipment dates, and other information required for it to perform its services hereunder.
APPENDIX NO. I

SCOPE OF DUTIES

F. Inspection

1. Inspection shall be performed by qualified and experienced structural steel inspectors in the full time employ of the independent testing agency.

2. Only inspectors approved by NZTA shall be assigned to the work. Approval will be based on review of detailed resumes of each inspector's qualifications, experience and ability to perform the required work.

3. Generally, one full time inspector shall be assigned to each work shift. The Supervising Engineer to be supplied by the Authority shall have the authority to increase the number of inspectors working in a given shift in accordance with amount of inspection work to be performed, or to reduce or increase the hours worked by any inspector as work load varies.

4. Duties of inspectors will be as follows:

 a) Assisting the Supervising Engineer as required in analyzing and cross-checking advance bills of material, bills of lading for material and certified mill test reports

 b) Checking each plate upon arrival at the receiving and storage yard for

 1. Heat number and specification conformance

 2. Condition

 a) Edge defects (laminations, slag inclusions)

 b) Surface defects

 c) Damage (bends, kinks)

 c) Checking of "built-up members" during fabrication

 1. Plates

 a) Heat number and yield point

 b) Length, width and thickness

 c) Tolerance conformance

 d) Edge and surface defects
(2) Jigs, templates and positioners
 (a) Suitability
 (b) Dimensional accuracy
 (c) Alignment

(3) Welding
 (a) Edge preparation
 (b) Fit-up (proper use of tack welds, diaphragm plates, jigs)
 (c) Position for welding
 (d) Flux, electrode, preheat, type of welding equipment, voltage and amperage for conformance to welding procedure specification
 (e) Visual check of 100% of completed welds
 (f) Select lengths of weld for non-destructive testing to be performed after member cools

(4) Fully welded members shall be checked after cooling for conformance to the required tolerances (camber, sweep, out-of-square)

(5) Finishing
 (a) Theoretical centerline
 (b) Milling of first end for perpendicularity to theoretical centerline
 (c) Check layout of length for milling second end including corrections to theoretical length for temperature and shortening under load
 (d) Check of perpendicularity to theoretical centerline of second end
 (e) Final check of actual length after milling is complete

d) Checking of "building components" during fabrication
 (1) Heat number and yield point of detail material
 (2) Proper size and weight of steel sections or thickness of plate
 (3) Layout of detail material for proper location of holes, cops and cuts
 (4) Fit-up of detail material
(5) Visual check of 100% of detail welding
(6) Select lengths of detail welds for non-destructive testing
c) Final check

(1) Check main material for dimensions
 (a) Length
 (b) Width
 (c) Thickness

(2) Check main material for conformance to steel spec. A36, etc.

(3) Check basic dimensions
 (a) Overall length
 (b) Sweep, camber, out-of-space
 (c) Theoretical centerline
 (d) Finishes surfaces for 90\(^\circ\) angle to centerline

(4) Check detail material
 (a) Length, width, thickness, copes
 (b) Hole patterns, edge preparation, etc.
 (c) Conformance to steel specifications
 (d) Location in relation to theoretical centerline
 (e) Location longitudinally
 (f) Freedom of edges from burr, lamination, slag inclusion, etc.
 (g) Cleaning of steel
 (h) Protection of milled surfaces
 (i) Accurate and clear marking

(5) Checking will be against structural drawings wherever possible.
Results of inspection will be recorded on the Supervising Engineer's
record set of shop drawings.
f) Witness and certify qualification of Welders

g) Check Contractor's invoices for quantities of acceptable material

G. Testing

1. Testing activities will be performed by personnel in the full time employ of the testing laboratory. Non-destructive testing will be performed by persons fully qualified, experienced and capable in the non-destructive testing technique used.

2. Testing activities fall into two categories:
 a) Non-destructive testing performed at the material receiving and storage yard and in the fabricating works
 b) Testing performed at the testing laboratory

3. Non-destructive testing may be divided into five categories
 a) Visual inspection (including measurements)
 b) Dye penetrant inspection
 c) Magnetic particle inspection
 d) Ultrasonic inspection
 e) Radiographic inspection

4. Visual inspection will ascertain the locations where other types of testing will be employed.

5. Dye penetrant inspection will be used as a random spot check of welds where such inspection is judged desirable by either the inspector or the Supervising Engineer.

6. Magnetic particle inspection will be used to inspect a minimum of 5 percent of all member and detail welds.

7. Ultrasonic inspection will be used where the Resident Engineer determines special conditions warrant this type of inspection.
8. Radiographic inspection will not be required for the subject work.

9. Testing performed at the testing laboratory falls into three categories:
 a) Testing of specimens for welder and welding machine operator qualification tests
 b) Mechanical tests of steel plate or weld metal
 c) Chemical (check) analysis of steel plate or weld metal

It is anticipated that only a) above will be required. However, should special conditions warrant, the Supervising Engineer shall have the authority to call for tests listed under b) and c) in the number judged necessary by the Supervising Engineer.
Port of New York Authority
World Trade Center Planning
111 Eighth Avenue
New York 11, New York

Attention: Mr. Malcolm P. Levy

Reference: The World Trade Center
Mill Inspection of Japanese Steel

Gentlemen:

Verification that structural steel produced in Japan conforms to the
Specifications for The World Trade Center falls into four broad categories
as follows:

1. testing and inspection performed by the mill,
2. work which will be performed by SHCR,
3. work which may be performed by an independent testing
laboratory under contract to NYA, and
4. work which is in the specific responsibility of the
fabricator.

First, following standard ASTM procedures, the mill is required to perform
chemical and physical testing to assure itself and document to the purchaser
that the requirements of the applicable material specification have been
met. Each heat is analyzed for chemical composition by Indus analysis and
physical tests are made in accordance with the requirements of the applicable
material specification. For instance, ASTM A302 requires tension and bend
testing of each plate as rolled, while ASTM A36 requires tension and bend
testing of each heat. The results of these tests are recorded on a mill test
report bearing a statement certifying the correctness of the data reported.
SKILLING-HELLE-CHRISTIANSEN-ROBERTSON

- 2 -

under which the signature of the Chief Metallurgist or other authorized
agent of the mill appears. The correctness of the mill test report may be
further attested by the signature of a notary public. The purchaser may
have finished material representing each heat checked for chemical composition
by check analysis. While this is rarely done in commercial building construc-
tion, it is occasionally required in bridge and governmental work. Check
analysis is normally performed at the mill, at additional cost, and is
sometimes witnessed by an independent testing laboratory. ASTM specification
requirements are broader for check analysis than for ladle analysis.

Second, S/CR must, as structural engineers for The World Trade Center, review
the documentation of all certified mill test reports to assure that steel
conforms to the requirements of the Specifications. The procedure is not
involved, consisting of a careful cross-check of all documentation to assure
that all material used in the work has been tested and that the results of
the tests confrom to the requirements of the Specifications.

Third, an independent testing laboratory may be retained to verify, to the
extent deemed necessary by the Chief of the Planning and Construction Division
of The World Trade Center, the accuracy of the certified mill test reports by
witnessing tests made at the manufacturing mill. All work performed by the
independent testing laboratory should be accomplished on a random sampling
basis. In the event that, through the sampling techniques, instances of
nonconforming material are discovered, the number of tests witnessed should
be increased, as should the number of check analysis tests requested.

Conversely, if, as is to be expected, the sampling technique proves the mill
test reports satisfactorily represent the material and conform to the
Specifications, the percentage of tests witnessed may be reduced. The number
of tests witnessed should not, in any case, be reduced below 5 percent.
Witnessing of tests should be performed on the basis outlined below, first
for Stanray Pacific material, and then for Pacific Car and Foundry material.

Stanray Pacific
Contract WTC-217.00
(includes ASTM A36 and Fy = 42 ksi steel)

1. Chemistry

 a. Witness 5 percent of the ladle analysis tests performed by
the mill to assure conformance with ASTM A6 and the chemical
requirements of the steel specification.
b. Witness 25 percent of the check analysis tests performed by the mill to assure conformance with ASTM A6 and the requirements of the steel specification. Steel to be subjected to check analysis shall be selected by the independent testing laboratory and should represent about one out of each six heats from which steel is supplied for use in the work.

2. Physical Properties

a. Witness 10 percent of tensile tests performed by the mill to assure conformance to the requirements of the steel specification, ASTM A6, and the applicable portions of ASTM A370.

b. Witness 10 percent of bend tests performed by the mill to assure conformance to the requirements of the steel specification, ASTM A6, and the applicable portions of ASTM A370.

3. Conditioning

a. Should the manufacturer elect to repair plates in accordance with ASTM A6, the testing laboratory should witness 100 percent of the conditioning work to assure conformance to ASTM A6.

4. Marking

a. The testing laboratory should check the marking of steel plates for conformance with ASTM A6 and the Specifications, and for proper representation on a certified mill test report.

Pacific Car and Foundry
Contract WTC-214.00

1. Chemistry

a. Witness 10 percent of the ladle analysis tests performed by the mill to assure conformance with ASTM A6 or ASTM A20, as applicable, and the chemical requirements of the steel specification.

b. Witness 25 percent of the check analysis tests performed by the mill to assure conformance with ASTM A6 or ASTM A20, as applicable, and the requirements of the steel specification. Steel to be subjected to check analysis should be selected by the independent testing laboratory and should represent about one out of each four heats from which steel will be supplied for use in the work.
2. Physical Properties

a. Witness 15 percent of the tensile tests performed by the mill to assure conformance to the steel specification, ASTM A6 or ASTM A20, as applicable, and to the applicable portions of ASTM A370.

b. Witness 15 percent of the bend tests performed by the mill to assure conformance to the steel specification, ASTM A6 or ASTM A20, as applicable, and to the applicable portions of ASTM A370.

c. Witness 20 percent of the Charpy impact tests performed by the mill, where required by the steel specification.

d. Witness 10 percent of the Brinell hardness tests, where required by the steel specification.

e. Witness 10 percent of the grain size tests, where required by the steel specification.

f. Witness all retests, where allowed by the steel specification.

3. Conditioning

a. Should the manufacturer elect to repair plates in accordance with ASTM A6 or ASTM A20, as applicable, and the provisions of the steel specification, the testing laboratory should witness all conditioning work to assure conformance to the applicable specification requirements.

4. Marking

a. The testing laboratory should check the marking of steel plates for conformance to ASTM A6 or ASTM A20 and the specifications, and for proper representation on a certified mill test report.

5. Distribution of Sampling

a. The percentages of sampling outlined above refer to the total amount of steel required for Contract WTC-214.00. Proportionately, more of the sampling should be applied to the higher yield point materials, with the greatest density of sampling applied to the quenched and tempered steels.
SKILLING-HELLE-CHRISTIANSEN-ROBERTSON

-5-

Last, but of prime importance, the structural steel fabricator must assure himself that all steel conforms to the requirements of the Specifications. The fabricator should do this through the review of mill test reports, checking of material against the mill test reports, and the performance of additional tests where the fabricator deems necessary. In addition, the fabricator must check all plate for correct dimensions, satisfactory finish and freedom from unacceptable laminations.

Very truly yours,

SKILLING-HELLE-CHRISTIANSEN-ROBERTSON

Leslie E. Robertson

LER:6
September 21, 1967

Stanrey Pacific Corporation
11633 South Alameda Street
Los Angeles, California 90002

Attention: Mr. R. E. Morris

Re: The World Trade Center - Contract WTC-217.00 -
For Kent Geneintendence Co.

Gentlemen:

In reply to your letter of September 12, 1967, the international inspection agency, Superintendence, Inc., of New York City, through their affiliate firms in Japan and Great Britain, have been retained to provide the foreign mill inspection. This inspection, in addition to providing the normal review of mill test reports and visual inspection of material prior to shipment, includes: a detailed check for dimensional tolerances performed on a random basis on a minimum of 10% of the plates and 20% of the shapes; the witnessing of a minimum of 10% of the chemical tests and between 10% and 20% of the physical tests performed by the mill as required by the specifications; independent check analysis on samples from 10% of the heats; and witnessing 10% of the loading of material aboard the carrying vessel to assure proper storage.

For information, and in the hope of being of some assistance to you, Superintendence has been instructed to furnish you with copies of all inspections and reports made on materials furnished under your contract. As you can see from the above, they do not perform 100% inspection and thus, in most cases, would not be in a position to inform you of material shortages.

Our mill inspection does not relieve you of your obligations.
Stanray Pacific Corporation

September 21, 1967

Attention: Mr. R. R. Morris

under the subject contract, however, we will continue as above to
offer any assistance we can.

Sincerely,

R. M. Monti
Construction Manager
The World Trade Center

Copy to: Messrs. J. R. Endler (TRCC)
R. Van Stolk (Superintendence Co.)
L. E. Robertson (SECR)
Appendix E

THE PORT OF NEW YORK AUTHORITY

World Trade Department
Guy F. Ingalls, Director

Malcolm P. Levy, Chief, Planning & Construction Division
R. M. Monti, Construction Manager Telephone (212) 365-2750 Office of the Construction Manager 2 Church St., New York, N.Y. 10021

November 13, 1967

Stanray Pacific Corp.
11633 South Alameda Street
Los Angeles, California 90002

Attention: Mr. R.E. Morris

Subject: WORLD TRADE CENTER - CONTRACT WTC 217.00 - MILL INSPECTION

Gentlemen:

As you know, the Port Authority as part of its overall quality control program on fabricated steel for the World Trade Center, has established a policy of providing mill inspection at all sources, whether foreign or domestic. The scope of this inspection includes independent checking of chemical and physical properties on a random basis. In order to implement this program, each fabricator has been requested to have their suppliers make available to our inspection agency, extra samples. Our inspectors will collect a representative percentage of these samples for independent testing. Some of the testing will be performed by the agency inspecting at the mill, and in the case of foreign sources, some of the samples will be forwarded to the United States for testing.

The independent testing portion of the mill inspection program will be performed as follows:

A. Domestic Sources

1. Steel with yield points less than 50,000 psi - One tension test and one check analysis on samples selected at random from 1 out of 10 heats.

2. Steel with yield points of 50,000 psi and higher - One tensile, one bend test and a check analysis on samples selected at random from 1 out of 10 heats.
B. Foreign Sources

1. Steel with yield points less than 50,000 psi - One tension test and one check analysis on samples selected at random from 1 out of 10 heats to be performed abroad. In addition, one sample suitable for a tension test from 1 out of 4 heats will be shipped by the Authority's Inspection Agency to a laboratory in the United States for tensile test and check analysis.

2. Steel with yield points of 50,000 psi and higher - One tensile test, one bend test and a check analysis on samples selected at random from 1 out of 10 heats to be performed abroad.

In addition one set of samples suitable for machining into a tensile specimen and a bending specimen will be selected at random from 1 out of 4 heats and will be shipped by the Authority's Inspection Agency to a laboratory in the United States for further testing.

It can be seen from the above, that basically the samples fall into two categories:

1. Steel with yield points below 50,000 psi in which case only a sample suitable for machining into a tensile test specimen will be required. (Check analysis specimen can be obtained from the tensile sample.)

2. Steel with yield points of 50,000 psi and above, in which case a set of samples suitable for machining into a tensile and a bend specimen will be required. (Again check analysis can be made on the tensile sample.)

The only difference between foreign and domestic sources is that on foreign steel a larger percentage of the total number of heats will be tested. Kindly reinspect your supplier and request that they confirm their concurrence to supply the required samples. Since the unmachined samples for independent testing can be obtained by the mill at the same time that they take their samples for testing as required by the applicable specification, no additional handling will be required and no additional costs should be incurred. If you think it advisable, I have no objection to your forwarding a copy of this letter to your suppliers.
Stanray Pacific Corp. November 13, 1967

Kindly implement the above procedure immediately on all present and future mill orders and please keep the undersigned advised on any problems that you may experience.

Very truly yours,

[Signature]

R.H. Monti
Construction Manager
The World Trade Center

CC: J. Endler (TRCC), L. Robertson (SCHR), M. Levy
October 21, 1966

Tishman Realty and Construction Co., Inc.,
665 Fifth Avenue
N.Y. York, New York 10019

At: Mr. James R. Ensembler,
Assistant Vice President

Reference: The World Trade Center
Quality Control and Testing Program
Structural Steel - Packages I, III & IV

Gentlemen:

We are pleased to transmit herewith our proposed Quality Control and Testing Program for Packages I, III and IV of the Project. We will appreciate early review and comment on this Program so that any adjustments which may be desired can be incorporated into our proposals.

We have had to make important assumptions as to the amount of radiographic or ultrasonic testing of welds which will be required to maintain acceptable quality throughout the work. Therefore, the amount of such testing specified in the enclosed Program is not an expression of judgment on our part as to whether said amount of testing will guarantee a quality level consistent with the service required. Responsibility for this judgment rests with the Owner.

Generally, our weld quality control program is based on the "spot-examination" principle. The quality of welding produced to meet spot-examination requirements will approach that which would be produced for 100 percent inspection. However, spot examination will not insure work of predetermined quality level throughout, and work accepted under spot-examination requirements may still contain defects which might be disclosed under further examination. If all unacceptable weld defects which would be revealed by radiographic or ultrasonic inspection must be eliminated from the structure or specific portions thereof, then 100 percent inspection must be employed, and must be included as a factor in the cost of production.

HAMMOND PRODUCTS
November 28, 1966

Tishman Realty and Construction Company, Inc.
666 Fifth Avenue
New York, New York 10019

Attention: Mr. James R. Endler, Ass't. Vice President

Reference: The World Trade Center
Quality Control and Testing Program
Structural Steel - Packages I, III & IV
Amendment No. 1, dated November 25, 1966

Gentlemen:

Enclosed is Amendment No. 1 to our proposed
Quality Control and Testing Program for Packages I, III & IV of the Project. This Amendment is submitted in response to the Worthington, Skilling, Helle and Jackson letter dated October 27, 1966. With reference to the comments listed in that letter, our action in each case has been as follows:

1. Information contained in the first comment has been incorporated into our program by revision of paragraph SP-5.03, Supplemental Provisions.

2. An organization chart for the PDM Quality Control Department has been added as Appendix A to the program.

3. Qualification standards for testing personnel have been outlined in added paragraph SP-1.05.

4. Paragraph SP-5.11 has been added to cover ultrasonic testing procedure.

5. ASTM and AWS standards have been referenced by revision of paragraph SP-5.04, and addition of paragraphs SP-5.12 and SP-5.13.

HAMMOND PRODUCTS
6. Description of production methods, jigs, templates and other means of dimension control have been added as Appendixes B, C and D, and paragraph SP-6.03 has been added referring to these appendixes.

7. Paragraph SP-4.02 has been revised to provide for material delivery in accordance with ASTM A6 and A20 both.

8. A statement regarding life of the proposed painting system has been added as paragraph SP-8.03.

9. Procedures for cutting, de-burring and edge preparations for welding have been outlined by revision of paragraph SP-4.05 and addition of paragraph SP-4.06.

10. Paragraph SP-5.10 has been added to describe the use of welding procedure specifications and joint welding procedure qualification tests in quality control work.

This Amendment No. 1 also incorporates a revised section on radiographic inspection into the body of the PDM Quality Control Program. This revision was completed shortly after our original submittal of the Program.

We hope this Amendment will be considered satisfactory response to the comments on our Program, and that the Program may therefore have final approval. We will be pleased to discuss the matter further; however, and will make any additional changes which may be deemed necessary.

Yours very truly,

PITTSBURGH-DES MOINES STEEL COMPANY

[Signature]

James C. Dods,
Special Products Department

JCD/k
Atts.
Appendix E

Tishman Realty & Construction Company, Inc.
666 Fifth Avenue
New York, New York 10019

Attention: Mr. James R. Endler

Reference: The World Trade Center
Quality Control and Testing Program
Amendment No. 2

Gentlemen:

We acknowledge receipt of the Horrington, Skill-ing, Helle & Jackson letter dated December 20, 1966 re-garding our Quality Control Program for the World Trade Center. In accordance with the statement therein that the text of the Program "should be changed", and in com-pliance with your request by letter dated December 21, 1966, we submit herewith Amendment No. 2, revising our Program to incorporate the items called for by the Engi-neers, and we will proceed to evaluate our earlier pro-posals to determine what influence this change may have on them.

Yours very truly,

PITTSBURGH-DES MOINES STEEL CO.

James C. Dods
Special Products Dept.

JCD/k/lsb
Atts.

HAMMOND PRODUCTS
PITTSBURGH-DES MOINES STEEL COMPANY
QUALITY CONTROL AND TESTING PROGRAM
THE WORLD TRADE CENTER

AMENDMENT NO. 2

December 23, 1966

The Pittsburgh-Des Moines Steel Company Quality Control and Testing Program for the World Trade Center, dated October 19, 1966 with Amendment No. 1, dated November 25, 1966 is revised as described hereinafter in response to letter dated December 20, 1966 from Worthington, Skilling, Helle & Jackson to Tishman Realty and Construction Company. This Amendment also includes correction of a typographical error in the original Program.

1. Under Section SP-5 WELDING, delete paragraph SP-5.05 on page 5-5, and substitute therefor the following:
 SP-5.05 Fillet welds will be inspected as follows:
 a. At least fifty percent (50%) of all fillet welds on quenched and tempered steels will be subjected to magnetic particle inspection 48 hours or more after welding.
 b. At least ten percent (10%) of all fillet welds in steels other than quenched and tempered steels will be subjected to magnetic particle inspection.

2. In Amendment No. 1, Paragraph SP-5.04, change the first sentence to read as follows: “Inspection of welding by FDI Quality Control Personnel will conform to the requirements of Section 6, AWS D1.0-66”.

3. Under Section SP-5, WELDING, in Paragraph SP-5.07b, ninth line, change “twenty percent (20%)” to “ten percent (10%)”.

NIST NCSTAR 1-1A, WTC Investigation 339
June 2, 1967

Thinhman Realty and Construction Co., Inc.
656 Fifth Avenue
New York, New York 10017

Attention: Mr. Horbert Weinstein

Reference: The World Trade Center
Contract WTC-213.00
Quality Control and Testing Program

Gentlemen:

In response to the letter dated May 16, 1961, from Mr. James White of Skilling-Hollo-Christiansen-Robertson, we submit herewith Amendment No. 3 to the PDM Quality Control and Testing Program.

Some explanatory comment is in order concerning the dimensional control and checking procedures and the revision to Paragraph SP-6.03 in this Amendment No. 3. Mr. White and myself discussed this matter by telephone on May 16, 1967 and due to that conversation it is my understanding now that the information desired here should describe PDM Quality Control Department inspection procedures rather than actual work procedures as covered by Appendix C. Therefore, we have omitted reference to the Appendix and have revised Paragraph 6.03 so that it now concerns inspection procedures. Since approved shop drawings are used for developing these procedures, they cannot be described at this time.

We hope you will find this submittal satisfactory, and that our Quality Control and Testing Program may now be considered an acceptable reference for use with the executed Contract and Technical Specifications.

Yours very truly,

PITTSBURGH-DES MOINES STEEL COMPANY

J. C. Dods,
Special Products Department

Atta.

cc: Mr. James White
Skilling-Hollo-Christiansen-Robertson

HAMMOND PRODUCTS

1. In Paragraph SP-5.03 on page 5 of Amendment No. 1, delete the entire last sentence: "The complete penetration butt welds... bridge quality welds." and substitute therefore: "The complete penetration butt welds at the tops of the ninth story spandrels will conform to AWS D2.0-66, Article 408."

2. In Paragraph SP-5.11 on page 6 of Amendment No. 1, delete the entire first sentence: "Ultrasonic inspection ... of weldments." and substitute therefore: "Ultrasonic inspection of weldments will be governed by ASTM Standard E164-65, Standard Method for Ultrasonic Contact Inspection of Weldments, and by the PDM Quality Control Manual Section entitled Ultrasonic Inspection. Where there are conflicting requirements, the provisions of ASTM Standard E164-65 will govern". Also in paragraph SP-5.11, delete the entire last sentence: "(The PDM Quality Control..... added when complete)".
3. In Amendment No. 1, page 7, delete Paragraph SP-6.03 entirely and substitute therefor:

 SP-6.03 PDM Quality Control Personnel will perform such inspections and dimensional checks as they consider necessary to maintain proper control of dimensions and to insure production of column panels which comply with the Specifications and meet the tolerances described therein. Procedures governing control and inspection will be developed to meet the requirements of this Contract, based on approved shop drawings.

4. In Paragraph SP-1.03 on page S-1 of the original Program, delete the entire sentence: "This Program.... of the Project". and substitute therefor: "This Program will govern Structural Steel Fabrication for Contract WTC-213.00, Fabricated Steel, Exterior Wall from Elevation 363 to the ninth story splice, North and South Towers".

5. In Paragraph SP-4.06 on page 4 of Amendment No. 1, in the eleventh and twelfth lines, delete the words ".... to the satisfaction of PDM Quality Control Personnel".

6. Attached is PDM Quality Control Manual Section entitled Ultrasonic Inspection dated 12-15-26, which is hereby made a part of this Quality Control and Testing Program.
PITTSBURGH-DES MOINES STEEL COMPANY

QUALITY CONTROL MANUAL

NON-DESTRUCTIVE TESTING

ULTRASONIC INSPECTION

U - 1 GENERAL

U.1.1 - This is a procedure for ultrasonically testing and inspecting welds for internal discontinuities by the reflection method using pulsed waves introduced by direct contact of a search unit with the weldment.

U - 2 METHODS

U.2.1 - Shear Wave Testing

Shear wave inspection shall be performed to a 3% notch sensitivity. The test is conducted using angle projection transducers 65° to 85°; the selection of the angle being dependent on either or both the thickness and the geometry of the weldment.

U.2.2 - Longitudinal Wave Testing

Longitudinal wave inspection can be performed to a near 100% sensitivity with a 9μ micro-inch surface finish and at 24 mc, otherwise satisfactory results depend to a large extent upon the condition of the test surface.

U - 3 EQUIPMENT

U.3.1 - Electronic apparatus capable of producing, receiving and displaying high frequency electrical pulses at frequencies of 1 to 2.25 mc is normally satisfactory for most welds.

U.3.2 - The search units shall be capable of reversibly transforming electrical vibrations to sound vibrations within themselves as well as transmitting and receiving vibrations in the material being tested.

U.3.3 - The couplant between the transducer and the test surface shall have good wetting properties and shall be selected, if conditions permit, from the following list:

- Oil
- Glycerin
- Silicones
- Water
- Grease
- White Lead

U.3.4 - Reference plates will be provided for determining and checking instrument sensitivity, for instrument calibration and for comparison with defect indication. Each plate shall have artificial defects and all defects permanently marked.
ULTRASONIC INSPECTION

U - 4 SURFACE PREPARATION

U.4.1 - Hot rolled surfaces require removal of any loose adherent scale or other foreign matter. Conditioning of the surface can be accomplished by sandblasting, grinding or bolt sanding to provide at least a 250 RMS surface finish.

U.4.2 - The base material surfaces to be used for inspection shall also be cleaned of weld spatter and roughness on each side of the weld for a minimum distance of six (6) inches. Weld surface irregularities which are beyond the normal patterns, shall be removed from both the inside and outside surfaces. The deposited weld metal shall merge smoothly into the base metal without undercut, sharp ridges, or valleys.

U - 5 ULTRASONIC INDICATIONS OF WELD DISCONTINUITIES

U.5.1 - The maximum magnitude of a signal indicating a weld discontinuity shall be recorded as a percentage of the height of the signal from the hole in the reference weldment. The height of the signal is some indication of the size of the discontinuity. This method of estimating the size of the discontinuity shall be used when flaw dimension is smaller than one-half of the dimension of the crystal.

U.5.2 - A reflection that is always visible with movement of the transducer transversely to the discontinuity indicates depth which may be measured. Likewise a reflection that is always visible with movement of the transducer longitudinally to the discontinuity indicates length which can also be measured. This method of estimating the size of the flaw shall be used when the discontinuity dimension is larger than one-half of the dimension of the crystal.

U.5.3 - Locations of the flaw with respect to the surface of the plate are determined by the position of the signal on the tube and the location of the transducer with respect to the weld.

U.5.4 - Flaws in base metal are possible sources of misinterpreted indications. These areas will be searched with normal incident longitudinal wave test methods to determine the presence of such imperfections.

U.5.5 - Small reflections from the weld area are generally apparent to indicate that the sound is penetrating the weld.

U - 6 PROCEDURE FOR CHECKING BUTTWELD DISCONTINUITIES

U.6.1 - Discontinuities longitudinal to the weld, move the transducer slowly to and from the weld with mainly a transverse (with respect to weld) movement and at such a rate that the operator can clearly see and identify the signals. The transducer should be rotated slightly in the plane of the metal surface in both directions to obtain maximum signals.
ULTRASONIC INSPECTION

Use just enough longitudinal movement to advance the transducer parallel to the weld no more than one transducer width per transverse cycle. The total minimum transverse movement should be sufficient to fully cover the entire cross-section of the weld. Normally check both sides of the weld from one surface only, but in special cases a more complete investigation from both surfaces is required.

U.6.2 - Discontinuities Transverse to the Weld

If the weld is smooth, and satisfactory contact can be made, move transducer slowly along top of weld with the ultrasonic beam parallel to the weld. If satisfactory contact cannot be made on the weld, place the transducer on the base metal surface at the edge of the weld, and angle the transducer slightly to obtain the same effect, move the transducer at such a rate that the operator can clearly see and identify the reflection.

U - 7 PROCEDURE FOR CHECKING MISCELLANEOUS WELDS

U.7.1 - Branch or nozzle, flange to shell, corner and other full penetration welds can be inspected with an angle beam using procedure in U.6.1 or U.6.2 above, when the methods are adaptable to the geometry of the weldment.

U.7.2 - Inspection of fillet welds, attachment welds, and other welds not requiring full penetration can be generally inspected with an angle beam by procedures in U.6.1 or U.6.2. The signal must be carefully distinguished to avoid interpreting reflections from the geometry of the part as being indications of discontinuities. In all scanning, if a defect indication is obtained approaching in amplitude that of the reference plate, the adjacent area shall be scanned sufficiently to establish the size and location of the discontinuity.

U - 8 STANDARDS FOR ULTRASONIC INSPECTION

U.8.1 - Any crack, lack of fusion, incomplete penetration, inclusion, or cavity which is indicated by a reflection equal to or greater than 80 per cent of the applicable reference hole and which has a linear dimension as indicated by the transducer movement exceeding:

1/4 inch for thickness up to 3/4 inch.
1/3 of the thickness for plate 3/4 inch to 2-1/4 inch.
3/4 inch for thicknesses over 2-1/4 inch.

is unacceptable.

U - 9 REPORTS OF INSPECTION

U.9.1 - The report of ultrasonic inspection shall be made after re-inspection of any areas requiring weld removal or weld repairs. The reports contain the following information:
ULTRASONIC INSPECTION

1. Inspection data.
2. Instrument settings.
3. Height of general signals from parent metal and deposited metal.
4. Purchaser's order number and drawing number.
5. Sketch containing physical outline of weldment with location of repaired areas.
6. A table of the inspection results coordinated with a sketch estimating size, length, depth and location of flaws.
March 11, 1968

Pittsburgh-Des Moines Steel Company
Neville Island
Pittsburgh, Pennsylvania 15225

Attention: Mr. H. H. Fish

Re: The World Trade Center - Contract WTC 213.00
Welding Procedure Specifications

Gentlemen:

R. M. Monti
Construction Manager
The World Trade Center

cc: J. Graner (RWH)
 J. White (SHCR)
Pittsburgh-Des Moines Steel Company

February 15, 1968

Mr. R. M. Monti
Construction Manager
Room 1119
The Port of New York Authority
30 Church Street
New York, New York 10007

Re: The World Trade Center
Contract WTC-213.00
PDM Contract 17078 & 17138

Gentlemen:

Enclosed herewith please find two (2) copies of Welding Procedure Specification DB119-172, WPSL revised in accordance with Mr. James White's comments in his letter of December 19, 1967 to Mr. R. M. Monti; and our Mr. A. C. Logan's telephone conversation with Mr. Jostein Nes on February 12, 1968.

In response to comment No. 13 of Mr. White's letter, joint N4 is noted to weld in the flat position and is prequalified according to AWS D1.0 and D2.0. We assume that the reference was intended for joint N5. Based on this assumption joint N5 has been voided.

Also enclosed are additional welding procedures and qualifications for your consideration. Procedure SA3 is a combination manual-submerged arc joint, approval of which was given by Mr. Nes. Joint qualifications 56-30, 50-35, 50-42, 60-35, 62-2 and 62-80 are all previously qualified joints which we feel have the prerequisites for use on this contract.
Pittsburgh-Des Moines Steel Company

Mr. R. M. Monti
The World Trade Center

February 15, 1968

Welding on this phase will start shortly so your early consideration of the above items will be appreciated.

Very truly yours,

PIZZTIGH-DES MOINES STEEL COMPANY

H. M. Fish, Project Manager

RW

cc: Mr. H. A. Tessler

Mr. Al Guttentag
w/one copy of Bull9-172

Skiiling-Helle-Christiansen-Robertson

Attn: Mr. James White
w/one copy of DS119-172
Appendix E

SKILLING - HELLE - CHRISTIANSEN - ROBERTSON
Consulting Structural and Civil Engineers · 230 Park Avenue, New York, N.Y. 10017 · Mx: 9 AS-74
John B. Skillin · Helge J. Helle · John V. Christiansen · Leslie E. Robertson

February 28, 1968

Port of New York Authority
Office of the Construction
Manager - Room 1119
30 Church Street
New York, New York 10007

Attention: Mr. R. M. Monti, Construction Manager

Reference: The World Trade Center
Contract WTC-215-00, Pittsburgh-Des Moines
Welding Procedure Specification DB 119-172 (WPS-1)
and Joint Qualifications

Gentlemen:

We understand that PDM is not going to employ either joint N4 or N5 described in the joint welding procedure sheets included with their previous submittal of welding procedures and joint qualifications.

Very truly yours,

SKILLING-HELLE-CHRISTIANSEN-ROBERTSON

James White

cc: Mr. B. D. Fish, PDM
Mr. L. E. Feld, PITA

MAYHEW DROHER
E. R. P. FISHER
FRANK HOFFMANN
ROBERT E. LEVY
V. A. FREIBERGER
R. E. RODGERS
CHARLES SANDERS
WILLIAM D. WARD
R. E. WHITE, JR.
LORENTZ WIERING

SEATTLE OFFICE: 1900 WASHINGTON BUILDING, SEATTLE, WASHINGTON 98101

NIST NCSTAR 1-1A, WTC Investigation
March 6, 1968

Mr. H. M. Ponti
Construction Manager
Room - 1119
The Port of New York Authority
30 Church Street
New York, New York 10007

Re: The World Trade Center
Contract W30-219-68
P1H Contract W73S-7-7715

Gentlemen:

We are sending you two (2) copies of our weld procedure for joints K4 and K5 revised March 6, 1968. These joints should be made a part of our Welding Procedure Specification 36119-172 submitted to you with our letter of February 15, 1968.

Please let us have your approval of joints K4 and K5 as soon as possible.

Very truly yours,

PITTSBURGH-DES MOINES STEEL COMPANY

[Signature]

H. M. Ponti, Project Manager

Cc: Mr. M. A. Tessler
Manager, Project Planning
The Port of N.Y. Authority
Room 560
111 Eighth Avenue
New York, New York 10011

Mr. Ali-Guttenberg
Tishman Realty & Construction Co.
11th Floor, 30 Church Street
New York, New York 10007

u/c (1) copy of K4 & K5
Appendix E

WELDING PROCEDURE - BUTT WELDS

PROCEDURE SPECIFICATION

- **Material Specification:** A36, A441
- **Welding Process:** Shielded Metal-Arc
- **Joint No.:** M-4
- **AWS TYPE:** E-U2
- **Position of Welding:** Flat
- **Filler Metal Specification:** ASTM A323
- **Filler Metal Classification:** E7018 or E7024
- **Submerged Arc Weld Metal Code:** ---
- **Gas for Gas Shielded Arc:** ---
- **Single or Multiple Pass:** Multiple
- **Single or Multiple Arc:** Single
- **Welding Current:** AC or DC+
- **Heat Treatment:** None
- **Preheat Temperature:** As Required by Material
- **Postheat Temperature:** None

Welding Procedure

<table>
<thead>
<tr>
<th>PASS NO.</th>
<th>ELECTRODE SIZE</th>
<th>WELDING CURRENT</th>
<th>SPEED OF TRAVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>5/32</td>
<td>150-230</td>
<td>22-26</td>
</tr>
<tr>
<td>3-4</td>
<td>3/16</td>
<td>250-325</td>
<td>24-28</td>
</tr>
<tr>
<td>5-8</td>
<td>7/32</td>
<td>250-200</td>
<td>26-30</td>
</tr>
<tr>
<td>9-52</td>
<td>1/4</td>
<td>275-475</td>
<td>28-30</td>
</tr>
</tbody>
</table>

This procedure may be used for American Welding Society building code or bridge specification.
PITTSBURGH-DES MOINES STEEL COMPANY

August 23, 1968

Mr. R. M. Ponti
Construction Manager
Room 1119
The Port of New York Authority
30 Church Street
New York, New York 10007

Re: The World Trade Center
Contract NTC-213-00
PDM Contract 17078 & 17156

Gentlemen:

We are submitting for your approval two (2) copies of
our welding procedure qualification for joints 67-57, 67-60
and 67-70. Upon approval these joints will become part of
our welding procedure specification 88119-172.

Please return one (1) copy stamped with the engineer's
approval or notify us by letter of your acceptance.

Very truly yours,

PITTSBURGH-DES MOINES STEEL COMPANY

M. M. Fish, Project Manager

cc: Skilling-Halle-Christiansen-Robertson
250 Park Avenue
New York, New York 10007
Attn: Mr. James White w/one (1) copy of joints

Mr. Al Guttentag
Tishman Realty & Construction Company
11th Floor, 30 Church Street
New York, New York 10007
Appendix E

SKILLING - HELLE - CHRISTIANSEN - ROBERTSON
Consulting Structural and Civil Engineers • 210 Park Avenue, New York, N.Y. 10017 • Tel. 985-61
John B. Skilling • Helge J. Helle • John V. Christiansen • Leslie F. Robertson

September 23, 1968

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, N.Y.

Attention: Mr. R. M. Monti, Construction Manager

Reference: The World Trade Center
Contract WTC-213-00, Pittsburgh-Des Moines
Welding Procedure Specification, DB119-172
Sections WPS-1, WPS-2, WPS-3

Gentlemen:

We have reviewed PDM Welding Procedure Specification DB119-172, Sections WPS-2 and WPS-3 as transmitted with the PDM letter dated May 22, 1968, as well as revised pages 5 and 6 of Section WPS-1, also transmitted with the May 22, 1968 PDM letter. Pursuant to our review, we wish to comment as follows:

I. Welding Procedure Specification DB119-172, WPS-3

1. Page 1, paragraph 4.0 FILLER METAL AND FLUX. The second sentence should be revised to read, "Materials for welding ASTM A514 steels to steels with lower yield strength shall conform to the applicable provisions of DB119-172, WPS-1 or WPS-2, whichever specification includes the lower yield strength material".

2. Page 1, paragraph 4.1.1, third sub-paragraph should be revised to read, "A welder shall have in his possession at any time only that quantity of electrodes which can be used within thirty minutes after removal from the storage oven, and in no event shall electrodes be used for welding A514 steels when the time of exposure to the air exceeds 60 minutes". This is consistent with the recommendations found in the USS publication ADUS01-1205 titled "USS" 7-1 Constructional Alloy Steels", item 6 found on page 59 under Care of Covered Electrodes.

WAYNE A. BREWER
F. L. A. FELSO
FRANK HOEFTSTOFF
ROBERT E. LEVY
V. P. PIAKIN
KENT H. ROGERS
CHARLES RUDWEY
WILLIAM O. WARD
E. J. WHITI, JR.
LORENZ L. WILLING

SEATTLE OFFICE: 1840 WASHINGTON BUILDING, SEATTLE, WASHINGTON 98101

354

NIST NCSTAR 1-1A, WTC Investigation
SKILLING-HELLE-CHRISTIANSEN-ROBERTSON

- 2 -

3. Page 1, paragraph 4.1.1, fourth sub-paragraph should have an additional sentence added stating, "Electrodes which come in contact with water, grease or dirt shall be scrapped".

4. Page 2, paragraph 4.2, Submerged Arc Process, should have a second sentence added stating, "Flux for submerged arc welding shall be kept dry and if exposed to water, grease or dirt shall be discarded".

5. Page 2, paragraph 6.1 Procedure Qualifications, second sentence should be revised to read, "Procedure qualification tests will be conducted, supervised, reported and certified by PDX and may be witnessed by an independent testing agency approved by the Engineer".

6. Page 2, paragraph 7.1, second sentence should be revised to read, "Performance qualification tests shall be conducted, supervised, reported and certified by PDX and may be witnessed by an independent testing agency approved by the Engineer".

7. Page 2, paragraph 7.2, Welder's Certificate should be revised to read, "PDX will provide for each welder or welding operator a certificate or certificates which indicate the results of performance tests and state the process and type of welding for which the welder is qualified. Certification approved by the Authority for each welder shall have been achieved within a three month period preceding the date the welder begins work on Contract WTC-213.00".

8. Page 7, paragraph 7.2.1, should have an additional sentence added stating, "When a welder has not performed welding utilizing a given process for a period of 60 days, PDX or SHCR may require that the welder be requalified for the process and welding positions in question".

9. Page 2, paragraph 9.1, second line should be revised to read, "with approved shop drawings, specifications and welding procedure".

10. Page 4; PREHEAT AND INTERPASS TABLE should be modified as shown on the following page.
SKILLING - HELLE - CHRISTIANSEN - ROBERTSON

Page 3

September 23, 1968

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Manual Shielded Metal-Arc & MIG</th>
<th>Submerged Arc Carbon Steel Wire & Alloy Flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>To 1/2" Incl.</td>
<td>500 °F. Min.</td>
<td>500 °F. Min.</td>
</tr>
<tr>
<td>Over 1/2" to 1" Inc.</td>
<td>500 °F. Min.</td>
<td>200 °F. Min.</td>
</tr>
<tr>
<td>Over 1" to 2" Incl.</td>
<td>150 °F. Min.</td>
<td>300 °F. Min.</td>
</tr>
<tr>
<td>Over 2"</td>
<td>200 °F. Min.</td>
<td>400 °F. Min.</td>
</tr>
</tbody>
</table>

Maximum Preheat and Interpass Temperature 425°F.

*Thickness of thickest part at point of weld.

**Welding at plate temperature below 100°F. requires assurance that moisture is not present in vicinity of joint.

11. Page 5, paragraph 13.4.1, should be revised to read, "Bead size and arrangement will be as shown in the Welding Procedure Specification sheets for the applicable weld joint, within the limits of permissible variations allowed by AWS D1.0-66 or AWS D2.0-66, whichever is applicable.

12. Page 5, paragraph 13.4.2, first sentence shall be revised to read, "Weld reinforcement as deposited will not be less than flush nor more than 1/8 inch, except that where applicable, the provisions of Appendices E-1, E-2 and E-3, AWS D1.0-66 shall apply".

13. Page 5, paragraph 13.6, Defects: fourth line should be revised to read, "prescribed by the applicable provisions of the Specifications, approved PDM Quality Control Program and this welding procedure specification. These defects discovered through non-destructive testing should be retested by the same non-destructive testing technique after the defective weld metal has been removed and replaced".

14. Page 6, paragraph 14.1, second line should be revised to read, "in the approved shop drawings, by symbol RT or UT, a minimum of 100% of the first 10%.

356

NIST NCSTAR 1-1A, WTC Investigation
15. Page 6, paragraph 14.1, second sub-paragraph should be revised to read, "Where the extent of defects so indicates, the Authority's representative may require that spot examination of the affected welds be increased, even to one hundred percent (100%) if necessary, until satisfactory quality is achieved. Upon establishment of satisfactory quality, the rate of PT or UT inspection, may be reduced again to the specified percentage".

16. Page 6, paragraph 14.1.1, fourth line should read "Inspection". Where there are conflicting requirements, the provisions of AWS D2.0-66 will govern".

17. Page 6, paragraph 14.1.2, should be revised to read, "Ultrasonic Inspection will be governed by PDM Quality Control Manual, Section 1-U-c (revised 3-11-68) entitled "Ultrasonic Inspection, as based on "Appendix U, Ultrasonic Examination of Welds (UT)", pages 14-20 inclusive, of the "Winter 1967 Addenda, ASME Boiler and Pressure Vessel Code, Section VIII, Unfired Pressure Vessels". The requirements of Section UA-903 of the ASME Addenda shall apply to the work.

18. Page 6, paragraph 14.2, third line should be revised to read, "NT inspected forty-eight (48) hours or more after welding".

II Welding Procedure Specification DB19-172, WPS-2

1. Page 1, paragraph 4.0 FILLER METAL AND FLUX. Starting in the fourth line, add a new sentence stating "Allowable moisture content and exposure times stated in DB19-172, WPS-3 will control whenever material under this specification is joined to ASTM A514 steel".

2. Top of page 2, second line after the word "above" add a new sentence stating, "Electrodes which come in contact with water, grease or dirt shall be scrapped".

3. Page 2, paragraph 6.1, second sentence should be revised to read, "Procedure qualification tests will be conducted, supervised, reported and certified by PDM and may be witnessed by an independent testing agency approved by the Engineer".

4. Page 3, paragraph 7.1, second sentence should be revised to read, "Performance qualification tests shall be conducted, supervised, reported and certified by PDM and may be witnessed by an independent testing agency approved by the Engineer".
5. Page 3, paragraph 7.2, Welder Certificate shall be revised to state in the first line, "PDM will provide".

6. Page 3, paragraph 7.2.1, shall have an additional sentence added stating, "When a welder has not performed welding using a given process for 90 days, FNFA or SHCR may require the welder to be requalified for the process and welding positions in question".

7. Page 3, paragraph 9.1, second line should be revised to read, "With approved shop drawings, Specifications and welding procedure".

8. Page 6, paragraph 10.3, should read, "period of high wind unless welders and work are suitably protected".

9. Page 5, paragraph 12.4.2, first sentence, shall be revised to read, "Weld reinforcement as deposited will not be less than flush nor more than 1/8 inch, except that where applicable, the provisions of Appendices E-1, E-2 and E-3, AWS D1.0-66 shall apply".

10. Page 5, paragraph 12.6, starting in the third line should read, "Arcair gouging or grinding, and repaired and re-examined as prescribed by the applicable provisions of the Specifications, approved PDM Quality Control Program and this welding procedure specification (DB19-172, WPS-2). These defects discovered through non-destructive testing technique after the defective weld metal has been removed and replaced".

11. Page 5, paragraph 13.1 starting in the second line after " Ultrasound" should read, "a minimum of 100% of the first 10%".

12. Page 6, paragraph 13.1.2, should read, "Ultrasonic Inspection will be governed by PDM Quality Control Manual, Section 1-De, (revised 3-11-68) entitled "Ultrasonic Inspection, based on Appendix U, Ultrasonic Examination of Welds (UI)’, pages 14-20 inclusive, of the “Winter 1967 Addenda, ASME Boiler and Pressure Vessel Codes, Section VIII, Unfired Pressure Vessels”. The requirements of Section UA-903 of the ASME Addenda shall apply to the work".
III Welding Procedure Specification, DB119-172, WPS-1

Through our review of procedures WPS-3 and WPS-2, we have the following additional comments on Procedure WPS-1 approved by SHCR letter of February 28, 1968, as well as PDM's revisions to page 5 and page 6 dated 5-21-68 and superseding their previous revision to page 5 dated 5-10-68:

1. Page 2, paragraph 4.1.1, fourth sub-paragraph (third from top of page 2) should have a second sentence added stating, "Electrodes which come in contact with water, grease or dirt shall be scrapped".

2. Page 3, paragraph 9.1, second line should read, "with approved shop drawings, Specifications and welding procedure".

3. Page 4, paragraph 10.3, second line should read, "Periods of high-wind unless both welders and work are suitably protected".

4. Page 5, paragraph 12.4, should remain as stated in the February, 1968 addition of WPS-1, with the following modifications:
 a) paragraph 12.4.2 should read, "The depth and width of weld deposit for each bead shall conform to Sections 405 and 406 and other specific provisions of AWS D1.0-66 or AWS D2.0-66, whichever is applicable".
 b) it would be permissible to replace paragraph 12.4.3 in the original document with paragraph 12.4.2 of the 5-21-68 revision, inasmuch as the initial submission by PDM represents a quality of work in excess of the requirements of either AWS D2.0-66 or AWS D1.0-66. Such permission should not be misconstrued to mean a relaxation in the requirements for good workmanship, but rather a correction of specific rules to conform to the welding codes included in the Specifications. The first sentence of paragraph 12.4.2 in the 5-21-68 Revision should read, "Weld reinforcement as deposited will not be less than flush nor more than 1/8 inch, except that where applicable, the provisions of Appendix B-1, E-2 and E-3, AWS D1.0-66 shall apply".

5. Page 5, paragraph 12.6, starting in the fourth line should read, "prescribed by the applicable provisions of the Specifications, the approved PDM Quality Control Program and this welding procedure specification (DB119-172, WPS-1). Defects discovered through non-destructive testing should be retested by the same non-destructive testing technique after removal and replacement of the defective weld metal".
SKILLING - HELLE - CHRISTIANSEN - ROBERTSON

Page 7

September 23, 1968

6. Page 5, paragraph 13.1, 5-21-68 revision, starting after "UT" in the second line should read, "a minimum of 100% of the first 10%".

Page 6, paragraph 13.1.2 should read, "Ultrasonic Inspection will be governed by PDM Quality Control Manual, Section 1-D-c, entitled "Ultrasonic Inspection" based on "Appendix U, Ultrasonic Examination of Welds (UT)" pages 14-20 inclusive, of the "Winter 1967 Addenda, ASME Boiler and Pressure Vessel Code, Section VIII, Unfired Pressure Vessels". The requirements of Section UA-903 of the ASME Addenda shall apply to the work".

Contingent upon incorporation of all the above comments into PDM Welding Procedure Specifications DB119-172, WPS-1, WPS-2 and WPS-3, SMCR approval the text of these welding procedure specifications. It should be noted that many of the comments have been made to achieve clarity or conformity to the contract documents and reflect the provisions of ANS specifications, manufacturer's recommended practice, information contained in the project specifications and similar related information, and are not intended as a change in the quality of work required under the contract.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White
JWelm

cc: Mr. Lester Feld, PNYA
Mr. H. N. Fish, PDM

P.S. Page 1, paragraph 4.0 Filler Metal and Flux. The following text should be added to paragraph 4.0: "The following welding materials shall be used for welding steels listed under Section 2.0, either together or in combination and for welding these steels to higher strength steels included in DB119-172, WPS-2 or WPS-3. Allowable moisture content and exposure times stated in DB119-172, WPS-3 will control whenever material included in this specification is joined to ASTM A514 steel."
June 2, 1967

Mr. Lester Feld
The Port of New York Authority
111 Eighth Avenue at Fifteenth Street
New York, New York

Subject: World Trade Center
Contract No. WTC 217.00 - Revised Quality Control Program

Dear Lester:

Enclosed you will find two copies of the Welding Procedures to be incorporated into our Quality Control Program which is outlined in section 105 of Contract No. WTC 217.00. This constitutes our entire Quality Control and Testing Program.

The Inspection Requirements referred to as item 2 C in your letter of May 25, is now completed and will be mailed to you on Monday, June 5.

Yours very truly,

STANRAY PACIFIC CORPORATION

[Signature]
F. E. Allen
Controller

dh
Encl.
SKILLING - HELLE - CHRISTIANSEN - ROBERTSON
Consulting Structural and Civil Engineers • 210 Park Avenue, New York, N. Y. 10017 • Mu. 98874
John B. Skilling • Helge J. Helle • John V. Christiansen • Leslie E. Robertson

Consultants
Harold L. Worthington
Joseph F. Jackson

September 13, 1968

Port of New York Authority
Office of the Construction Manager - Room 1119
30 Church Street
New York, New York 10007

Attention: Mr. R. M. Monti

Reference: The World Trade Center
Contract WTC-213-00, Pittsburgh Des-Woines
Approval of Welding Procedure Specification Sheets and Procedure Qualification Tests

Gentlemen:

Attached hereto, please find a listing of all PDH Welding Procedure Sheets and Welding Procedure Qualification Records submitted to SHCR for approval, to date.

The date of approval by SHCR of each procedure description or qualification test is noted, as well as the description of the PDH correspondence to which each approved procedure sheet was attached.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

JW:ja

att.

cc: Messrs. L. S. Feld, PNYA
 H. M. Fish, PDN
 W. Thomas, PTL

bcc: R. Cink, PNYA

bcc: L. E. Littlefield, SHCR
SUMMARY OF PDM

WELDING PROCEDURE SPECIFICATION SHEETS

<table>
<thead>
<tr>
<th>PDM Joint Designation</th>
<th>SHCR Approval</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-M3, M6-M8; SA1, SA2, SA3; F1-F7; 59-32, 60-11; 56-30; 58-36, 58-42; 60-35, 62-80; 62-86</td>
<td>2/28/68</td>
<td>Accompany WPS-1 and WPS-1 Revised February 1968.</td>
</tr>
<tr>
<td>M4, M5</td>
<td>3/13/68</td>
<td></td>
</tr>
<tr>
<td>62-80 (Rev)</td>
<td>4/9/68</td>
<td></td>
</tr>
<tr>
<td>F60, S55A, S55B</td>
<td>4/25/68</td>
<td></td>
</tr>
<tr>
<td>M60, S60</td>
<td>9/13/68</td>
<td>Accompany PDM letter of 5/22/66. WPS-1 Rev. 5-21-68 (p. 5 & 6) & WPS-3, May 1968</td>
</tr>
<tr>
<td>67-44, 67-48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-T1, T-T1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>67-70A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
October 4, 1967

Pittsburgh-Des Moines Steel Company
Neville Island
Pittsburgh, Pennsylvania 15225

Attention: N.M. Fish

Reference: WORLD TRADE CENTER - WTC 211.00 - Inspection and Scheduling

Gentlemen:

This will confirm my telegram of October 4th wherein you were advised that the Pittsburgh Testing Laboratory of Pittsburgh, Pennsylvania will be performing inspection for the Port Authority on the above referenced contract. The inspection will include mill inspection at your suppliers plants as well as fabrication inspection at your shop.

Reference is made to your September 26, 1967 letter regarding mill inspection procedures and your proposed form for conveying information on scheduling.

Pittsburgh Testing Laboratory will be advised to notify you immediately if any defective material is discovered in the course of their mill inspection, so as to enable you to take the necessary action with your suppliers.

The instructions you propose to issue to your suppliers appear to cover our inspection requirements except that if the mill will furnish additional test samples for physical tests it will not be necessary to require half a broken tensile specimen. P.T.L. can obtain their own sample from the physical sample.
Your proposed form for conveying will order and fabrication information as requested by Mr. Endler of the Tischman Realty and Construction Company appears to contain all of the information requested by Mr. Endler. However, we would suggest that it might be more reasonable to list more than one column on each sheet so as to reduce the total number of sheets. Such a format would serve as preliminary information for the Authority prior to your submission of a Contract Progress Schedule as provided for in Page 0-03, Clause 0.008 of the Contract Specifications.

Very truly yours,

P.H. Majtai
Construction Manager
The World Trade Center

CC: J. Endler (SNCC), H. Levy, C. Frahm (T.R.L.
 Bechtel-Brown, Casinale, Feld, Robertson (SNCR), Smith

RGG:ki
CHAPTER THREE

FABRICATION OF STRUCTURAL STEEL

301 GENERAL

301.100 Structural steel shall be fabricated complete as shown in the Drawings and in approved details shown in the shop drawings.

301.200 The steel furnished for each location shall have a minimum yield point equal to that scheduled in the Drawings, and shall be selected from the applicable steel specifications listed in Chapter Two, MATERIALS.

301.300 All steel shall be ASTM A36 for locations where a specific strength requirement is not stated in the Drawings.

302 IDENTIFICATION

302.100 The Contractor shall identify all steel which will be used in the work beginning at the mill and shall maintain identification at all times thereafter including during fabrication. The method used shall make both the grade and yield point of the steel readily identifiable. Identification shall be maintained after fabrication.

302.200 The Contractor shall identify each member or assembly with a system of marks. Each mark shall be clearly indicated in the shop drawings. The system of identification marks for fabricated structural steel shall be approved by the Engineer.
303 SPECIFIC REQUIREMENTS

303.100 Flame cutting by hand shall not be performed without the Engineer's approval. Handcut surfaces shall be made smooth by chipping, planing or grinding.

303.200 Fabricated material containing sharp kinks or bends shall be rejected. Material straightened prior to fabrication shall be carefully examined for signs of distress or other defects before being placed in fabrication. Distressed or otherwise defective material shall not be used in the work.

303.300 Where required by the Contract Documents, surfaces shall be milled, or finished by other approved means. All finishing shall be clearly shown in the shop drawings.

303.400 Bolt holes and similar holes shall be punched, drilled, sub-punched or sub-drilled and reamed, and shall not be made or enlarged by gas cutting.

303.500 Holes required by the Erector, and shown on the Drawings prior to approval of Shop Drawings shall be furnished without cost.
304 FABRICATION TOLERANCES

304.100 Fabrication tolerances shall conform to the requirements of the AISC Specification and AWS D1.0, as supplemented by specific requirements contained in the Drawings and Specifications. In no case shall tolerances exceed those obtainable by the best modern shop practices.

305 SPECIAL REQUIREMENTS

305.100 Fabrication tolerances shall conform to the tolerances shown on Sheets 3-04 through 3-17 inclusive. Where specific tolerances are not shown on Sheets 3-04 through 3-17 tolerances shall conform to the requirements of the Specifications.

305.200 Cut edges of steel shall be free of burrs, overhangs, gross laminations, excessive slag inclusions and similar defects. Where necessary, cut edges shall be repaired by means described in the Contractor's quality control and testing program. Where required to maintain weld quality, corners of plates shall be eased and cut edges shall be ground. Work of this nature shall be outlined in the Contractor's quality control and testing program and shall be described in detail in the Contractor's welding procedure specifications.

305.300 In certain locations in the Drawings, slotted or oversize holes are specifically required. Where the Contractor elects to use slotted or oversize holes not shown in the Drawings, the use of slotted or oversize holes shall be subject to the Engineer's approval.

305.400 The Engineer will provide for the Contractor's use a table of correction factors which the Contractor shall use to determine the correct as-fabricated dimensions of structural steel members. The correction factor for columns will be the sum of the correction for temperature at time of fabrication and the correction due to shortening under load. Correction factors will be based on a standard temperature of 70 degrees Fahrenheit.
INSPECTION, QUALITY CONTROL AND TESTS

105.100 Quality Control and Tests

105.101 The Contractor shall comply with the quality control and testing program annexed hereto and forming a part hereof during the course of the work to assure that all work conforms to the Contract Documents.

105.102 The Contractor shall continually review his quality control and testing program against experience gained during the course of the work. Where the Contractor desires revisions to his quality control and testing program, he shall submit the proposed revisions to the Engineer for approval. The Contractor shall not make changes in the approved quality control and testing program without the Engineer's approval. The Contractor may, at his option, perform quality control and testing in addition to that required by the approved quality control and testing program.

105.103 The Contractor shall maintain complete records of all quality control and testing performed by the Contractor. Records shall be kept in report form, and shall include the results of all visual control of the work, the results of all tests and
measurements, and certification that equipment, materials and methods conform to the Specifications or to procedure specifications approved by the Engineer. The Contractor shall state in writing his certification regarding the completeness and authenticity of each quality control and testing document. The Contractor's certification shall be attested by the full written legible signature of the party in responsible charge of the work for the Contractor and the technician actually performing the work.

105.104 The Contractor shall submit mill test reports to the Engineer for all material used in the work.

105.105 The Contractor shall report the location and quality of all corrective work.

105.106 The Contractor shall furnish all testing machines, testing machine operators and testing materials required for the Contractor's quality control and testing program.

105.200 Inspection

105.201 Inspection is intended to assure that the Contractor's quality control and testing program maintains conformance to the Contract Documents.

105.202 Inspection will consist of a random sampling of the work and will, to the degree possible, follow immediately the performance of the work. Inspection is intended, for the most
part, to consist of surveillance and evaluation of the Contractor's quality control and testing program.

105.203 The Contractor shall furnish the Engineer free access to the work. The Contractor shall cooperate with the Engineer to allow Inspection.

105.204 The Contractor shall furnish, free of charge, all electrical power, turning or moving of members, hoisting, staging and other facilities required for Inspection. The Authority will provide testing machines, testing machine operators and testing materials used for Inspection.

105.205 The Contractor shall notify the Engineer a minimum of six (6) working days in advance of the beginning of work subject to Inspection. This requirement applies to each location at which work is performed, and to each resumption of work after any interruption or suspension of work. The Contractor shall pay the actual cost of salaries and travel expenses, in reasonable amounts, incurred because work is not ready for Inspection at the time stated by the Contractor.

105.206 The Contractor shall not in any manner construe Inspection to relieve the Contractor of any of his responsibilities under the Contract.
THE PORT OF NEW YORK AUTHORITY
Room 300
111 Eighth Avenue
New York, New York

Attention: Mr. R. M. Monti
Construction Manager

Reference: World Trade Center
Contract WTC-214.00
Project D-666

Gentlemen:

Please find enclosed two (2) copies of each of the following documents:

These procedures have been revised to suit your comments and those of Messrs. Skilling, Helle, Christiansen, Robertson. In the welding procedure we have also included Appendix B, Welder Certification form, as requested in your letter of June 14, 1967. In the quality control procedure we have added a section (part II, page five) which more fully defines the extent and methods of inspection which we propose for this contract.

We now request your formal approval of these documents. A copy of this letter and procedures has been forwarded directly to Mr. L. Robertson of Skilling, Helle, Christiansen, Robertson.

Yours very truly,

PACIFIC CAR AND FOUNDRY COMPANY

R. C. Symes, Project Engineer
Structural Steel Division.

RCS/ap
encl.
cc: L. Robertson (SHCR)
J. Endler (Tishman)
J. Pigott
A. Phillipy
D. Erickson
SKILLING - HELLE - CHRISTIANSEN - ROBERTSON
Consulting Structural and Civil Engineers - 250 Park Avenue, New York, N. Y. 10017 - Mu. 9-8874
John B. Skillin Helge J. Helle John V. Christiansen Leslie E. Robertson
Consultants
Harold L. Washington
Joseph F. Jackson

July 13, 1967

Port of New York Authority
World Trade Center Planning
111 Eighth Avenue
New York, New York 10011

Attention: Mr. R. M. Monti, Construction

Reference: The World Trade Center
Contract WTC-214.00, Pacific Car & Foundry
Quality Control and Testing Program

Gentlemen:

We have reviewed the documents: 1) Quality Control Procedures, Revision 1, July 7, 1967, and 2) Welding Procedures, Revision 1, July 7, 1967, forwarded with the PCF letter of July 8, 1967.

Based upon our review, we approve the PCF Quality Control and Testing Program contingent upon the incorporation into the program of the attached charts prepared by SBCR titled "Weld Inspection Rates" and subject to the specific conditions listed hereafter:

1. The weld numbers and designations used in the charts "Weld Inspection Rates" (Sheets No. 1-4 inclusive attached hereto) are those numbers and designations existing in Drawing No. 1 in its current form as of July 13, 1967.

2. The first three full penetration spandrel butt welds (Weld #10) performed by each new welding machine operator or weldor will be subjected to ultrasonic testing.

3. Where a spandrel butt weld is rejected, all welds made by the same welder or welding machine in the subject panel, the panel produced immediately previous to the subject panel, and the panel produced immediately after the subject panel, will be tested by the ultrasonic testing technique.

WAYNE A. BREWER
P. K. A. FOSTER
FRANK HOELZERKOFF
ROBERT E. LEVICH
V. A. PRAGAERT
KENT H. ROGERS
CHARLES SANDERS
WILLIAM O. MANG
S. J. WHITE, JR.
LORENTZ L. WISEN

SEATTLE OFFICE: 1840 WASHINGTON BUILDING, SEATTLE, WASHINGTON 98101

NIST NCSTAR 1-1A, WTC Investigation 373
SKILLING-HELLE-CHRISTIANSEN-ROBERTSON

- 2 -

4. Approval of the PCF Quality Control and Testing Program does not include approval of any welding process or procedure subject to AWS qualification tests (see Sheet WS-11A), and does not include approval of Drawings WS-11B and WS-11C.

5. Visual inspection shall be carried out by certified PCF inspection personnel on 100% of all types of welds included in the work.

Very truly yours,

SKILLING-HELLE-CHRISTIANSEN-ROBERTSON

James White

cc: Mr. N. Levy
 Mr. L. Feld
 Mr. W. Conimike
 Mr. M. Springer
Supporting Documents for Chapter 6

When rate of rejection falls below 2%, rate of inspection may be reduced to 12 joints per 3 story panel or 66 2/3%.

When rejection rate at inspection rate of 66 2/3% equals or exceeds 3%, inspection rate shall be increased to 100% until rejection rate for 5-8 hour shifts falls below 2%, at which time inspection rate may again be reduced to 66 2/3%.

Reduction in inspection rates similar to that described above.

Increases in inspection rates similar to that described above.

Running Percentage of Rejected Welds for Preceeding 5-8 Hour Work Shifts Based on Number of Welds Tested

Note: Weld #10 shall conform to the provisions of AWS D1.0-66.
Appendix E

NIST NCSTAR 1-1A, WTC Investigation
Supporting Documents for Chapter 6

NIST NCSTAR 1-1A, WTC Investigation

Running Percentage of Rejected Welds in Proceeding 5 - 8 Hour Work Shifts Based on Actual Welds Tested

Note: Welds #1, #2, #3, #4 shall be inspected for 150" length beginning at column ends.
Applies to: Welds #1, 2, 3, 4. $F_y < 60$ ksi.
Weld #11 (fillet weld only).
Fillet welds not specifically identified elsewhere.

Increase and decrease of inspection rates similar to Sheet No. 1.

Begin at 66 2/3\% inspection rate.

Minimum inspection rate = 5\%.

Running percentage of rejected welds in preceding 5 - 8 hour work shifts based on number of welds tested.

Note: Welds #1, 2, 3, 4 shall be inspected for 1'-0" length beginning at column ends.
CHAPTER THREE
FABRICATION OF STRUCTURAL STEEL

301 GENERAL

301.100 Structural steel shall be fabricated complete as shown in the Drawings and in approved details shown in the shop drawings.

301.200 The steel furnished for each location shall have a minimum yield point equal to that scheduled in the Drawings, and shall be selected from the applicable steel specifications listed in Chapter Two, MATERIALS.

301.300 All steel shall be ASTM A36 for locations where a specific strength requirement is not stated in the Drawings.

302 IDENTIFICATION

302.100 The Contractor shall identify all steel, other than A.S.T.M. A36, which will be used in the work beginning at the mill and shall maintain identification at all times thereafter including during fabrication. The method used shall make both the grade and yield point of the steel readily identifiable. Identification shall be maintained after fabrication.

302.200 The Contractor shall identify each member or assembly with a system of marks. Each mark shall be clearly indicated in the shop drawings. The system of identification marks for fabricated structural steel shall be a permanent system approved by the Engineer. In addition, the Contractor shall paint erection
304 FABRICATION TOLERANCES

304.100 Fabrication tolerances shall conform to the requirements of the AISC Specification and AWS D1.0, as supplemented by specific requirements contained in the Drawings and Specifications. In no case shall tolerances exceed those obtainable by the best modern shop practice.

305 SPECIAL REQUIREMENTS

305.100 Cut edges of steel shall be free of burrs, overhangs, gross laminations, excessive slag inclusions and similar defects. Where necessary, cut edges shall be repaired by means described in the Contractor's quality control and testing program. Where required to maintain weld quality, corners of plates shall be eased and cut edges shall be ground. Work of this nature shall be outlined in the Contractor's quality control and testing program and shall be described in detail in the Contractor's welding procedure specifications.

305.200 In certain locations in the Drawings, slotted or oversize holes are specifically required. Where the Contractor elects to use slotted or oversize holes not shown in the Drawings, the use of slotted or oversize holes shall be subject to the Engineer's approval.

305.300 The Engineer will provide for the Detailer's use a table of correction factors which the Detailer will use to determine the correct as-fabricated dimensions of columns. This correction factor for column shortening under load is to be included in the dimensions shown on the Shop Drawings. A separate correction for temperature at time of fabrication is to be made by the Contractor based on a standard temperature of 70 degrees Fahrenheit for steel members.
CHAPTER FOUR

WELDING OF STRUCTURAL STEEL

401 GENERAL REQUIREMENTS

401.100 Welding of structural steel shall conform to the requirement
of the AISC Specification and AWS D1.0, except where the AISC
Specification or AWS D1.0 is specifically modified or supplemented
by information included in the Drawings or Specifications.

402 QUALIFICATION AND CERTIFICATION OF WELDERS

402.100 Welders and welding operators shall have passed the applicable A
qualification tests prescribed in AWS D1.0, Appendix D, Parts II
and III. AWS qualification tests shall be supervised and witnessed
by an agency approved by the Engineer. The approved agency shall
issue certified test reports which describe the tests performed
and indicate the results of the tests. Certification papers
issued by the approved agency shall clearly state the types of
work the welder or welding operator is qualified to perform.
Certification shall be achieved immediately preceding the date
the subject welder begins work under the Contract. AWS
qualification tests and certification shall be paid for by
The Authority and witnessed by the Engineer's Representative.

403 WELDING PROCEDURE SPECIFICATIONS AND JOINT QUALIFICATIONS

403.100 Joints conforming to the details specified in AWS D1.0, Article
209, 210, 211, 212, 213 and 214 and welded in accordance with the
405.200 Welding electrodes and flux for submerged arc welding shall conform to Section 202, MATERIALS.

405.300 Gas metal-arc welding materials, where approved for use in the work, shall conform to Section 202, MATERIALS, and to the requirements of the approved welding procedure specification.
105.100 Quality Control and Tests

105.101 The Contractor shall comply with the quality control and testing program of Montague-Betts Company, Inc., dated June 9, 1967, as such program is revised in the respects indicated in the letter from Skilling-Helle-Christiansen-Robertson dated June 23, 1967, to the extent necessary to obtain the approval of the Engineer. The aforesaid program and letter are annexed hereto and form a part hereof.

105.102 The Contractor shall continually review his quality control and testing program against experience gained during the course of the work. Where the Contractor desires revisions to his quality control and testing program, he shall submit the proposed revisions to the Engineer for approval. The Contractor shall not make changes in the approved quality control and testing program without the Engineer's approval. The Contractor may, at his option, perform quality control and testing in addition to that required by the approved quality control and testing program.

105.103 The Contractor shall maintain complete records of all quality control and testing performed by the Contractor. Records shall be kept in report form, and shall include the results of all visual control of the work, the results of all tests and
part, to consist of surveillance and evaluation of the Contractor's quality control and testing program.

105.203 The Contractor shall furnish the Engineer free access to the work. The Contractor shall cooperate with the Engineer to allow Inspection.

105.204 The Contractor shall furnish, free of charge, all electrical power, turning or moving of members, hoisting, staging and other facilities required for Inspection. The Authority will provide testing machines, testing machine operators and testing materials used for Inspection.

105.205 The Contractor shall notify the Engineer a minimum of six (6) working days in advance of the beginning of work subject to Inspection. This requirement applies to each location at which work is performed, and to each resumption of work after any interruption or suspension of work. The Contractor shall pay the actual cost of salaries and travel expenses, in reasonable amounts, incurred because work is not ready for Inspection at the time stated by the Contractor.

105.206 The Contractor shall not in any manner construe Inspection to relieve the Contractor of any of his responsibilities under the Contract.
QUALITY CONTROL PROGRAM

THE WORLD TRADE CENTER
CONTRACT WTC-226.00
FABRICATED STEEL
ROLLED CORE COLUMNS, INTERIOR COLUMNS
LOUVER WALL STRUTS AND ROLLED BEAMS
NORTH & SOUTH TOWERS

THE PORT OF NEW YORK AUTHORITY
NEW YORK, NEW YORK

SUBMITTED BY
MONTAGUE-BETTS COMPANY, INC.
JUNE 9, 1967
RECEIVING (under the direct supervision of Yard Foreman)

a. Materials will be checked as unloaded for conformance with mill order and shipping papers.

b. Materials will be stacked on blocks off the ground in predetermined storage areas.

c. Bay numbers will be recorded for future reference in locating materials as needed.

d. Remarking size, length and grade will be done as necessary.

e. Each piece or bundle will be marked with the letters PONYA.

f. Discrepancies in quantity, length or grade will be reported immediately for replacement.

PREPARATION (under the direct supervision of Yard Foreman)

a. Cutting to size will be by sawing, shearing or machine flame burning.

New pieces will be marked to maintain proper identity.

c. Lumber ends will be milled as required and protected against normal weathering with a mixture of one part white lead, one part linseed oil and two parts lard.

FABRICATION (under the direct supervision of Shop Foreman)

a. Layout and fitting will be performed by Fitters working with necessary Helper(s).

b. Detail parts will be tack welded for location.

c. Holes will be punched, drilled or subpunched and reamed.

d. Copes, blocks, notches, etc., will be accomplished by hand burning and grinding smooth.

e. Overhangs, gross laminations, excessive slag inclusions and similar defects will be corrected by grinding or Arcair gouging and built up as necessary with weld metal.

f. Material will be cleaned of oil, grease, dirt and foreign matter only.

g. Pieces will be marked as shown on shop drawings using DuPont #65—3010 white metal primer on a background of Theneck #99 red metal primer; marks will be between 3" to 4" high and background 4" larger than complete mark.
Mr. Lester S. Feld
Port of New York Authority
World Trade Center Planning
111 Eighth Avenue
New York, New York 10011

Reference: The World Trade Center
Contract WTC-226.00, Montague-Betts
Quality Control Program

Dear Lester:

We have reviewed the Quality Control Program submitted by Montague-Betts
and have the following comments:

1. Receiving

Material received should be checked against the certified mill
test reports for size, grade, heat number and color code.
One copy of each certified mill test report should be submitted
to PNGA and to SHCR. Where applicable, mill test reports should
be marked to indicate non-conforming material and the disposition
of same. Where possible, off heat material should be described,
in writing, prior to receipt of certified mill reports.

2. Fabrication

Overhangs, gross laminations, excessive slag inclusions and
similar defects should be defined and repair procedures for these
defects should be outlined. The location and quality of all
repairs should be reported.

3. Welding

Certification papers for each welder and welding machine operator
should be submitted to PNGA and to SHCR. These papers should
include all positions and processes to which each welder will be
assigned.
Welding procedure specifications must be prepared and qualification tests performed by the fabricator, where applicable. One copy of each welding procedure specification and report of qualification tests should be forwarded to PNHA and to SHCR for approval.

Preheat and interpass temperatures must conform to the welding procedure specification where specific preheat and interpass temperature requirements are included in the welding procedure specification.

All welds should receive 100 percent visual inspection.

Non-destructive testing of welds has not been described, and may be divided into three classes:

1. Fillet welds
2. Partial penetration welds
3. Full penetration welds

The quality control program should describe the amount of welding to be tested, and the techniques to be used, such as dye penetrant, magnetic particle or ultrasonic. All testing of welds should be documented in inspection reports, one copy of each report to be forwarded to PNHA and to SHCR.

4. Inspection

The amount of periodic inspection of work in progress and the persons performing this inspection should be described.

The inspection of finished work should be documented in reports, with one copy of each report to be submitted to PNHA and to SHCR.

Very truly yours,

SKILLING-HELLE-CHRISTIANSEN-ROBERTSON

James White

JW:cc Mr. H. Weinstein
Mr. W. Casinuke
Appendix F

SUPPORTING DOCUMENTS FOR CHAPTER 7

This appendix contains the supporting documents that are referenced in Chapter 7 of this report. All of the documents contained in this report are reproduced with permission of The Port Authority of New York and New Jersey. Table F–1 contains a summary of supporting documents and their location within this appendix. The footnote numbers given in the table correspond to those in Chapter 7.

Table F–1. Supporting documents for Chapter 7.

<table>
<thead>
<tr>
<th>Footnote Number</th>
<th>Document Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General instructions from Malcolm P. Levy of PONYA to prime contractors for WTC contracts (WTCI-239-P)</td>
<td>390</td>
</tr>
<tr>
<td>2</td>
<td>General instructions on erection marks and marking system for structural steel from the Port Authority to steel fabricators/suppliers for WTC 1 and WTC 2 (WTCI-495-L)</td>
<td>395</td>
</tr>
<tr>
<td>3</td>
<td>Memo dated July 26, 1968 from David L. Brown of PONYA to James White of SHCR (WTCI-515-L)</td>
<td>400</td>
</tr>
</tbody>
</table>
GENERAL INSTRUCTIONS TO CONTRACTOR
FOR WORLD TRADE CENTER CONTRACTS

To Prime Contractors

The following information is directed to your attention in order that you may
acquaint yourself with the procedure the Port Authority desires to follow upon
execution of the contract.

After execution of the contract, you are requested to direct communications
as follows:

<table>
<thead>
<tr>
<th>Subject Matter</th>
<th>Address</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>All correspondence pertaining to administration of contract other than that specifically required below to be directed elsewhere. This includes correspondence on contract changes, matters pertaining to field problems, including changes stemming from field conditions, job progress and schedule.</td>
<td>To: Mr. J. Endler, Assistant Vice-Pres., Tishman Realty & Construction Co., Inc. 11th Floor, 30 Church Street, New York, N.Y. 10007</td>
<td>Submit original and one copy to Mr. Endler and two copies to Mr. Monti</td>
</tr>
<tr>
<td>All correspondence pertaining to administration of contract which involves additional expenditures or credits, requests for approval of subcontractors, and notification for off-site inspection of materials and equipment, etc.</td>
<td>To: Mr. R.M. Monti, Construction Manager, Room 1119, The Port of New York Authority, 30 Church Street, New York, N.Y. 10007</td>
<td>Submit original and two copies to Mr. Monti and one copy to Mr. Endler</td>
</tr>
</tbody>
</table>
Supporting Documents for Chapter 7

--The Port of New York Authority--

Subject Matter

Shop drawings and catalog cuts.

Address

To: Mr. Marvin Altman,
Architectural Coor.,
Tishman Realty & Construction Co., Inc.
11th Floor, 30 Church Street, New York,
N.Y., 10007

Copies

For information on number of copies of shop drawings, size required, etc., see Contract Specification clause entitled "Working Drawings and Catalog Cuts." Submit original drawings to Mr. Altman, one copy of each transmittal letter to Mr. Monti, and one copy to Mr. N. A. Tessler,
Manager, Project Planning.
Room 300, The Port of New York Authority, Ill Eighth Avenue, New York,
N.Y., 10011.

Approval of equipment and material including samples, purchase orders, lists of materials and equipment proposed to be furnished under the contract and proposals for substitutions for specified material or equipment.

To: Mr. Monti

Direct original copy of all correspondence to Mr. Monti, one copy to Mr. Tessler, and one copy to Mr. Endler. For further instructions on inspection of materials see clauses of specifications entitled "Inspections and Rejections" and "Workmanship and Materials".

Insurance Matters

To: Mr. Charles F. Levinson, Insurance Manager, Room 1005
The Port of New York Authority, Ill Eighth Avenue, New York, N.Y.
10011

Direct original to Mr. Levinson, with copies to Mr. Monti, and Mr. Endler.

A report of all accidents arising in connection with the work must be made to the Port Authority.

To: Mr. W. F. Gillespie,
Claims Attorney, Room
1163, The Port of New York Authority, Ill Eighth Avenue, New York,
N.Y., 10011

Direct original to Mr. Gillespie with copies to Mr. Monti and Mr. Endler.
Please note the following requirements:

1. Under the clause of the contract entitled "Inspections and Rejections", you are required to furnish lists of material and equipment furnished under the contract. Such lists of material and equipment to be installed under the contract must bear the vendor's name, manufacturer's name, trade name, style designation, catalog number and any other information necessary to completely identify the item.

All lists of materials and equipment must be submitted within ninety days from receipt of letter of acceptance of contract.

Requests for changes in materials and equipment from those specifically mentioned in the contract specifications must be submitted within a minimum of forty-five days of the approved date the contractor's schedule specifies as the time for implementation for the particular item.

4. All correspondence, shop drawings, purchase orders, samples, catalog cuts, etc., must bear the Port Authority contract number and be referenced to specification section.

5. All correspondence must come to the Port Authority or Tishman Realty & Construction Co., Inc., through you as the prime contractor. Correspondence submitted directly to the Port Authority or Tishman by subcontractors or materialmen will be given no consideration.

6. Request for approval of material and equipment will not be honored and no inspection made until the subcontractor placing orders for such material or equipment has been approved.

7. You are requested to prepare a list of the shop drawings, catalog cuts and samples which will be submitted for approval as required by the specifications. This list should be sent by you to Mr. Altman, with copies to Mr. Monti and Mr. Tessler with dates indicating when you will submit the items for approval. The dates which you establish on this list should be those which you feel necessary in order to meet the required completion date for all work under the contract. It is requested that this list be submitted within forty-five days of receipt of this letter.

Also a list of items which will be inspected at source will be developed jointly within ninety days of the date of this letter.

8. In order that work under the contract may proceed expeditiously, it is urgent that you submit the names of your subcontractors for approval without delay. Forms requesting approval of subcontractors must include the following information:

 A. Name and address of subcontractor.

 B. The amount of the subcontract, including the analysis of the subcontractor's bid on forms furnished by the Port Authority. No approval of the subcontractor will be issued without the analysis of subcontractor's bid.
C. An accurate description of the work involved.

D. Three references on work of similar nature previously performed by subcontractor.

Malcolm F. Levy, Chief
Planning & Construction Division
The World Trade Center
November 7, 1967

Mr. Herman Wineman
Erector Structural Steel Co., Inc.
32-50 Vernon Blvd.
Long Island City, New York 11106

Re: The World Trade Center - Contract WTC-211.00 - Shop Drawing Procedures and Marking Systems

Dear Mr. Wineman:

Enclosed for your information and use are letters and procedures previously sent to other fabricators on the WTC Towers. These procedures were developed jointly with Nassau Bridge Detailers starting in April 1967.

Sincerely,

Lester S. Feld
Planning Engineer

Enclosures:
1. Erection marks and marking system for structural steel in the WTC Towers - Pages 1 - 10 inclusive dated 10/1/67
2. Letter of June 16, 1967 on Erector's Derrick Division
3. Drawings 5-1A-1600 and 9-1A-1000 dated 5/25/67
4. Index to Marks System - dated 10/15/67 (2 pages)

cc: Messrs. J. Endler (TRCC), J. White (BNCR) - w/encld. fl

LSF:JW
1. Each mark shall be painted in accordance with the Specifications in the same position on each piece, as the mark appears on the erection drawing. All marks shall be followed by the Erector's Derrick Division. See Item 20 below.

2. **Exterior Wall Columns (Below the 1st Story Splice)**

 Use the column number shown on the design drawing suffixed with the column tier number. Examples:

 (a) 301 (S5-S1) - Indicates - Col. 301 from Tier S5 (El. 242') to splice above Tier S1 (El. 254').

 (b) 330 (S1-1) - Indicates - Col. 330 (On center-line of Tower) from splice in Tier S1 to splice above first floor.

 Tier marks are in accordance with Architect's designation wherein:

 S = Service Level - El. 296'
 S1 = Sub-Level 1 - El. 264'
 S2 = Sub-Level 2 - El. 274'
 S3 = Sub-Level 3 - El. 264'
 S4 = Sub-Level 4 - El. 253'
 S5 = Sub-Level 5 - El. 242'

3. **Exterior Wall Columns - (Above 1st Story Splice)**

 Use the column number shown on the design drawing suffixed with the column tier. Examples:

 (a) 330 (1-6) - Indicates - Column 330 (On center-line of Tower) from the 1st Story Splice to the splice above the 4th floor, that is, from El. 318' to El. 363'.

 (b) 330 (4-9) - Indicates - Panel 330 (On center-line of Tower) from the 4th Story Splice (El. 418') to the 9th Story Splice (El. 463'). Note this is a "Column Trea Panel" to be fabricated by P.D.M. Steel Co., and the panel mark used is the middle column number of the three columns comprising the column tree.
Appendix F

4. Core Columns

Use the column number shown on the design drawing suffixed with the column tier number. Examples:

(a) 501 (SS-2) - Indicates - Corner core column 501 from Tier SS (El. 242) up to the splice above tier S2 (El. 274').

(b) 605 (S2-1) - Indicates - Core column 605 from splice in Tier S2 (El. 274') up to splice in 1st story.

(c) 605 (1-3) - Indicates - Core column 605 from 1st story splice to 3rd story splice.

5. Interior Columns (Below the 1st floor - El. 310')

Use the column number shown on the design drawing suffixed with the column tier number.

(a) 1200 (SS-3) - Indicates - Column 1200 from Tier SS (El. 242) up to splice in Tier S3 (El. 264).

6. Lower Wall Struts

Use the letter S followed by the column line number for the exterior wall column suffixed with the floor number. Example:

(a) S302 (7-9) - Indicates - Strut on column line 302 extending from the 7th floor to the 9th floor.

7. Vertical Bracing of Exterior Walls

Use the letters XB followed by numerals 1, 2, etc.

Example:

(a) XB1 - Indicates - Exterior Wall Brace 1

(b) XB2 - Indicates - Exterior Wall Brace 2
8. **Vertical Bracing at Core Columns**

 Use the letters CB followed by numerals 1, 2, etc.

 Example:

 (a) CB1 - Indicates - Core Brace #1

 (b) CB10 - Indicates - Core Brace #10

 Please note that no tier marks are used as a suffix here. Marks shall appear on elevations or erection drawings only, not in plans.

9. **Interior Pipe Posts, Ranges, Etc.**

 Use the letter P followed by numeral 1, 2, 3 etc., and suffix with the tier mark. **Example:**

 (a) P1 (7-9) - Indicates - Post number 1 extending from the 7th floor to the 9th floor.

 (b) P1 (41-42) - Indicates - Post number 1 extending from the 41st to the 42nd floor.

10. **Floor Beams**

 Use a numeral suffixed with the floor number. All beams within the core shall be consistently marked all the way up the tower. That is a beam framing between core columns 501 and 502 might be marked "1" on each floor of the tower, such as:

 (a) \[\text{(3)}\] - Indicates - Beam 1 - At floor 3

 (b) \[\text{(10)}\] - Indicates - Beam 1 - At floor 10

 (c) \[\text{(21-20)}\] - Indicates - Beam 1 exactly alike from 11 through 20 floors. This will aid the erector to locate a beam which may be used on floors 11 through 20 at assumed location between columns 501 and 502. All beams outside the core which are of a repetitious nature such as framing at the 7 and 9, 41 and 43, 75 and 77 and 108 and 116 shall also be consistently marked in numerical sequence.
11. **Horizontal Bracing at Exterior Wall - At Beam Framed Floors**

All diagonals and struts within the 10'-3" panel area adjacent to the exterior column reference line shall be prefixed with the letter H followed by a numeral and suffixed with the floor designation. Example:

H1 (7), H1 (9), H10 (41), H10 (42) would all be horizontal braces in Tower 1 occurring at the 7, 9, 41 and 42nd floors.

12. **Prefabricated Floor Units**

All prefabricated panels shall be prefixed "P" followed by a numeral and suffixed with the floor designation. All panels to be numbered clockwise starting with "1" at the panel between core columns 501 and 502. Example:

(a) P1 (10), P2 (10), etc. - Indicates floor unit at 10th floor.
(b) P1 (15), P2 (15), etc. - Indicates floor unit at 15th floor.

With regard to components comprising prefabricated units, the following ground rules shall prevail:

A. All trusses, bridging, bracing and beams for prefabricated floor units supplied by Laclede to the assembler (Koch) shall be marked as agreed between the parties. Laclede shall furnish an assembly diagram to Koch showing components in each "P" panel.

B. All steel deck and power/telephone cells for prefabricated floor units supplied by Granco to the assembler (Koch) shall be marked as agreed between the parties. Granco shall furnish an assembly diagram to Koch showing components of deck and P/T cells in each "P" panel.

C. The assembler (Koch) shall furnish a combined assembly diagram showing all components comprising each "P" panel.

13. **Loose Deck and Loose Power/Telephone Cells for Beam-Framed Areas and Core Areas**

All loose deck shall be prefixed SD followed by a numeral and floor designation such as:

SD1 (7), SD2 (7), etc.

Similarly all power/telephone cells shall be prefixed PT followed by a numeral and floor designation such as:

PT1 (9), PT2 (9), etc.
14. **Anchor Bars and Anchor Plates** (see drawing SAB-195)

 Use prefix **WK** at exterior walls.
 Use prefix **WC** at perimeter of core.

 Examples: **WK1, WK2**, etc. - Indicate - Anchors at exterior wall
 WC1, WC2, etc. - Indicate - Anchors at core perimeter.

 Note: No tier designations are required. All anchors will be shown and located on erection plans and field welding sketches.

15. **Shear Studs**

 Prefix "**R**" - followed by 3 digit numeral indicating diameter in eighths, length in inches and eighths such as:
 R741 - Stud - 7/8" diameter x 42" long, shall be pointed on all legs or containers.

16. **Doweling Units**

 Use Prefix "**D**" -
 Example: **D1, D2, D3**, etc.

 NOTE: No tier designations are required

16A. **Grillages, Base Plates and Anchor Bolts**

 Use the following prefix letters:
 G - Assembled Grillages
 BP - Loose Base Plates
 AB - Anchor Bolts

 All the above prefix letters are to be preceded by the Tower letter thus:
 A-G1, A-G2, etc. (Tower A Grillages)
 B-G1, B-G2, etc. (Tower B Grillages)
 A-BP-1, A-BP-2, etc. (Tower A Base Plates)
 B-AB-1, L-AB-2, etc. (Tower B Anchor Bolts)
MEMORANDUM

TO: James White - Skilling-Helle-ChristianSEN-Robertson
FROM: David L. Brown
DATE: July 20, 1988
SUBJECT: THE WORLD TRADE CENTER - CONTRACT NKC-230.00 - QUALITY CONTROL & SAFETY
REFERENCE: PROGRAM
COPY TO: L.S. Feld (d/Att), R.M. Monti, F.H. Werneke, A. Gottentag (TRCC)

Please review the attached Koch Quality Control Program as soon as possible and let me have your comments on same.

[Signature]

David L. Brown
Supervising Engineer
The World Trade Center

D/LB&DND
Att.
April 25, 1968

Outline of Items to be Included in Quality Control Program by Karl Kuch Erecting Company

A. Survey Control
 1. Methods and Equipment
 2. Qualification of survey personnel
 3. Establishment of monuments and reference lines

B. Control of Construction and Erection Loads
 1. Loads on work platforms and finished structure
 a. Weight of equipment
 b. Weight of stored materials
 c. Posting of load limitations
 d. Provision of planking where required
 2. Cranes and derricks
 a. Boom angle vs. weight of pick
 3. Bracing and erection sequences
 a. Column bracing in Plaza area
 b. Bracing of core columns for tower cranes
 (1) Sequence of jumping bracing
 (2) Sequence of jumping crane
 (3) General erection sequences

C. Field Welding
 1. Control of field weld details vs. Fy of material
 2. Qualification and certification of welders
 3. Qualification and certification of welding procedure specifications
 for joints not pre-qualified by AWS
4. Preparation of welding procedure specifications for welds and joint designs designated pre-qualified by AWS.
5. Control of preheat and interpass temperatures.
6. Control of welding electrodes, welding fluxes, welding shielding gases, and the like.
7. Storage of welding materials such as heating ovens for low hydrogen electrode.

D. Bolting of Structural Steel
1. Control of type of bolts and washers used
2. Installation methods and procedures for bolted connections
3. Quality control and assurance that high tensile bolts are properly tightened.
4. Control of ASTM A307 bolts
5. Control of set-up of bolted joints
6. Cleaning of faying surfaces for bolted joints

E. Control of Stud Welding Operations

G. Erection procedures
1. Plumbing
2. Fit-up
3. Guying and bracing
4. Elimination of water from box columns and similar members.
5. Allowance for temperature changes and related movements and deflections of structure.
H. Control of Workmanship
 1. Flame-cutting
 2. Reaming of holes
 3. Drifting

I. Control of Erection Tolerances
 1. Refer to tolerance diagrams included in the Specifications.
 2. Surveying and other controls.

J. As-Built Drawings
 1. Preparation of as-built drawings, procedures for.
 2. Control and maintenance of as-built drawings and related procedures.

K. Safety Programs
 1. Hoisting equipment
 2. Guying materials
 3. Wind conditions
 4. Provisions for bad weather

Note: K&K should relate their quality control program carefully to the
provisions and requirements of the Specifications and Drawings.
Possibly in some areas of the K&K quality control program,
explanatory sketches should be prepared and included in the document.
This page intentionally left blank.
Appendix G
SUPPORTING DOCUMENTS FOR CHAPTER 8

This appendix contains the supporting documents that are referenced in Chapter 8 of this report. All of the documents contained in this appendix are reproduced with permission of The Port Authority of New York and New Jersey. Table G–1 contains a summary of supporting documents and their location within this appendix. The footnote numbers given in the table correspond to those in Chapter 8.

Table G–1. Supporting documents for Chapter 8.

<table>
<thead>
<tr>
<th>Footnote Number</th>
<th>Document Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Letter dated December 22, 1967 from James White of SHCR to R. Monti of PONYA (WTCI-499-L)</td>
<td>412</td>
</tr>
<tr>
<td>3</td>
<td>Letter dated June 20, 1969 from James White of SHCR to R. Bay from Laclede Steel Company (WTCI-506-L)</td>
<td>415</td>
</tr>
<tr>
<td>4</td>
<td>Letter dated November 17, 1969 from James McGuiness of SHCR to R. Monti of PONYA (WTCI-506-L)</td>
<td>418</td>
</tr>
<tr>
<td>5</td>
<td>Letter dated October 16, 1969 from James White of SHCR to R. Monti of PONYA (WTCI-506-L)</td>
<td>424</td>
</tr>
<tr>
<td>6</td>
<td>Letter dated October 20, 1969 from James White of SHCR to R. Monti of PONYA (WTCI-506-L)</td>
<td>426</td>
</tr>
<tr>
<td>8</td>
<td>Letter dated June 20, 1969 from James White of SHCR to R. Monti of PONYA (WTCI-506-L)</td>
<td>434</td>
</tr>
<tr>
<td>9</td>
<td>Letter dated December 15, 1969 from James White of SHCR to R. Monti of PONYA (WTCI-506-L)</td>
<td>437</td>
</tr>
<tr>
<td>10</td>
<td>Letter dated July 7, 1969 from James White of SHCR to R. Monti of PONYA (WTCI-506-L)</td>
<td>440</td>
</tr>
<tr>
<td>11</td>
<td>Letter dated July 3, 1969 from James White of SHCR to R. Monti of PONYA (WTCI-506-L)</td>
<td>442</td>
</tr>
<tr>
<td>12</td>
<td>Letter dated March 31, 1969 from James White of SHCR to R. Monti of PONYA (WTCI-506-L)</td>
<td>445</td>
</tr>
<tr>
<td>13</td>
<td>Letter dated June 6, 1969 from James White of SHCR to R. Monti of PONYA (WTCI-736-L)</td>
<td>449</td>
</tr>
<tr>
<td>14</td>
<td>Letter dated May 19, 1969 from James White of SHCR to R. Monti of PONYA (WTCI-736-L)</td>
<td>458</td>
</tr>
<tr>
<td>15</td>
<td>Letter dated May 5, 1969 from R. Monti of PONYA to H. Fish of PDM (WTCI-735-L)</td>
<td>462</td>
</tr>
<tr>
<td>Footnote Number</td>
<td>Document Title</td>
<td>Page(s)</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>16</td>
<td>Letter dated March 20, 1969 from James White of SHCR to R. Monti of PONYA</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>(WTCI-738-L)</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Letter dated June 6, 1969 from James White of SHCR to R. Monti of PONYA</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>(WTCI-736-L)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Letter dated May 16, 1969 from James White of SHCR to R. Monti of PONYA</td>
<td>469</td>
</tr>
<tr>
<td></td>
<td>(WTCI-735-L)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Letter dated June 9, 1969 from James White of SHCR to R. Monti of PONYA</td>
<td>474</td>
</tr>
<tr>
<td></td>
<td>(WTCI-736-L)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Letter dated May 16, 1969 from James White of SHCR to R. Monti of PONYA</td>
<td>477</td>
</tr>
<tr>
<td></td>
<td>(WTCI-735-L)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Letter dated May 16, 1969 from James White of SHCR to R. Monti of PONYA</td>
<td>478</td>
</tr>
<tr>
<td></td>
<td>(WTCI-735-L)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Letter dated July 15, 1971 from James White of SHCR to R. Monti of PONYA</td>
<td>481</td>
</tr>
<tr>
<td></td>
<td>(WTCI-736-L)</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Letter dated August 21, 1968 from James White of SHCR to R. Monti of PONYA</td>
<td>484</td>
</tr>
<tr>
<td></td>
<td>(WTCI-740-L)</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Letter dated October 7, 1968 from James White of SHCR to R. Monti of PONYA</td>
<td>485</td>
</tr>
<tr>
<td></td>
<td>(WTCI-738-L)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Letter dated October 18, 1968 from James White of SHCR to R. Monti of PONYA</td>
<td>489</td>
</tr>
<tr>
<td></td>
<td>(WTCI-739-L)</td>
<td></td>
</tr>
</tbody>
</table>

Section 8.4 – Variances Relating to Alternate Fabrication/Erection Procedures

<table>
<thead>
<tr>
<th>Footnote Number</th>
<th>Document Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Letter dated September 21, 1969 from R. Monti of PONYA to W. Gibson of Stanray</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>Pacific Corporation (WTCI-490-L)</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Letter dated October 16, 1969 from R. Monti of PONYA to Robert Bay of Laclede</td>
<td>493</td>
</tr>
<tr>
<td></td>
<td>Steel Company (WTCI-506-L)</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Letter dated December 15, 1967 from James White of SHCR to R. Monti of PONYA</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>(WTCI-748-L)</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Letter dated May 26, 1969 from James White of SHCR to R. Monti of PONYA</td>
<td>498</td>
</tr>
<tr>
<td></td>
<td>(WTCI-756-L)</td>
<td></td>
</tr>
</tbody>
</table>

Section 8.5 – Variances Relating to Product Substitutions

<table>
<thead>
<tr>
<th>Footnote Number</th>
<th>Document Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Letter dated May 2, 1969 from James White of SHCR to R. Monti of PONYA</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>(WTCI-756-L)</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Letter dated June 11, 1968 from James White of SHCR to R. Monti of PONYA</td>
<td>504</td>
</tr>
<tr>
<td></td>
<td>(WTCI-739-L)</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Letter dated December 18, 1967 from R. Monti of PONYA to H. Fish of PDM</td>
<td>505</td>
</tr>
<tr>
<td></td>
<td>(WTCI-745-L)</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Letter dated December 18, 1967 from R. Monti of PONYA to H. Fish of PDM</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>(WTCI-745-L)</td>
<td></td>
</tr>
</tbody>
</table>

Section 8.6 – Variances Relating to Inspection Practice

<table>
<thead>
<tr>
<th>Footnote Number</th>
<th>Document Title</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>Letter dated May 3, 1968 from James White of SHCR to R. Monti of PONYA</td>
<td>515</td>
</tr>
<tr>
<td></td>
<td>(WTCI-742-L)</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Letter dated April 18, 1968 from James White of SHCR to R. Monti of PONYA</td>
<td>517</td>
</tr>
<tr>
<td></td>
<td>(WTCI-483-L)</td>
<td></td>
</tr>
</tbody>
</table>
PROJECT MEMORANDUM

FROM: SKILLING-HELLE-CHRISTIANSSEN-ROBERTSON
1840 Washington Building
Seattle, Washington 98101

DATE: December 27, 1967

TO: United States Testing Company
5521 Telegraph Road
Los Angeles, California 90022

ATT'N: Robert Dempsey

SUBJECT: The World Trade Center—New York
Contract WTC 217.00 Stanray Pacific Steel Inspection

RE:

Transmitted to you on 12-21-67 was a copy of a telegram from James White, SHOR- New York concerning dimensional tolerances on the box columns. Included with this telegram was Stanray's interoffice memorandum showing their interpretations of this telegram. The following comments are to be added to these sketches.

1. This applies only to clip angles on the flange and web plates.

2. These minimum edge distances apply only away from the end of the column. Tolerances at the end shall be 1/8 inch ± 5/32 inch.

3. Minimum AISC weld shall be increased by the gap dimension.

In addition to the above, other items were transmitted verbally.

1. The detail of welding certain clip angles call for fillet welds on three sides leaving the heel of the angle free for beam clearance. The AISC code requires a return of the fillet weld on this side. This is not required...

2. Variance of the end tolerance on column 604-9 has been approved by the supervising engineer. This permits one flange to be offset 3/16 inch in place of 1/32 inch as specified on Page 3-24 of the contract document.
PROJECT MEMORANDUM

FROM: SKILLING-HELLE-CHRISTIANSEN-ROBERTSON
1840 Washington Building
Seattle, Washington 98101

DATE: December 27, 1967

TO:

ATT'N:

SUBJECT:

RE:

3. All hold dimensions on the detail drawings shall be ± 1/16 inch except as modified by the enclosed telegram.

4. Slotted holes shall not be hard flame cut.

5. The tolerance on the dimension between flanges of the column shall be plus 1/8 inch and minus 1/4 inch.

Very truly yours,

SKILLING-HELLE-CHRISTIANSEN-ROBERTSON

Richard W. Chauner

cc: SHCHA-New York Jim White
1127 A PST DEC 20 67 LA 102
SSD 169 L NA092 RX PO BOX NEW YORK NY 20 145P EST
J N TARKAN, STANRAY PACIFIC CORP.
11533 SOUTH ALAMEDA ST LOSA

These rules apply to box columns fabricated under contract UTC-217-00. Item one refer to drawing 6-AB1-41 6-AB7-2. Angle iron clips these and equivalent details may have elongated holes. Long dimension perpendicular to column face shall be bolt diameter plus 1/4 inch, short dimension standard 1/16 inch oversize. This provides 1/8 inch plus or minus tolerance from keep dimension tolerance for round holes shall be 1/16 inch plus or minus keep dimension. Item two no web plate in completed member shall measure less than one inch from face of web to inside corner of flange plate. This allows web plate to run straight end to end of column and accommodated maximum allowed sweep of 3/8 inch in the flange plate. Item three for

WEATHER UNION TELEGRAM

L NA092/2

Columns fabricated on or before December 16 1967 when inspected at milled ends. 1/16 inch gap at root of longitudinal fillet weld plus 1/32 inch for out of square cut will be allowed when measured at inside plate. Any gap exceeding this allowance shall receive also minimum fillet welds beginning one inch from the milled column end and provide full throat minimum of nine inches in length.

JAMES WHITE.

UTC 217 00 6-AB1-41 6-AB7-2 1/4 1/16 1/8 3/8 16 1967 1/8 1/32

Lost detail plate on web be 1/4 inch and

used hold 1/8
STANRAY PACIFIC CORPORATION
INTER-OFFICE MEMORANDUM

To: GENE WALTON
From: JOE TARKAN
Date: 12-21-1967
Subject: WORLD TRADE CENTER

ALL "COLUMNS" FABRICATED ON OR BEFORE DECEMBER 16th SHALL BE COMPLETED WITHIN THE LIMITS OF FOLLOWING TOLERANCES

1. BOLT DIAMETER + 1/16
 HOLD DIMENSION ± 1/16
 ROUND HOLE

OR

BOLT DIAMETER + 1/8
SLOTTED HOLE
HOLD DIM. ± 1/8

ALSO CLIP ANGLE ON FACE OF WEB.
STANRAY PACIFIC CORPORATION

INTER-OFFICE MEMORANDUM

Subject:

1. **EDGE DIST.**
 - 1" MIN.

2. **12" + 3/8 AT END**
 - AWAY FROM EDGE

3. **THE GAP AT MIDDLE OF COLUMN SHALL NOT**
 - BE MORE THAN 3/16"

 WELD SIZE AT GAP SHALL BE INCREASED ACCORDINGLY

 GAPS OF 1/16" OR LESS
 - SHALL BE IGNORED

GAPS AT THE END OF COLS

SHALL BE 3/32 MAX. AS SHOWN

IF GAP IS MORE THAN THESE LIMITS

PUT 9" LONG FILLER WELD AT INSIDE OF COLUMN STARTING 1" BEYOND MILLED END ACCORDING AISC MIN. WELD SCHEDULE
Appendix G

SKILLING - HELLE - CHRISTIANSEN - ROBERTSON
Consulting Structural and Civil Engineers • 230 Park Avenue, New York, N.Y. 10017 • Mfr. 9-8574
John B. Skilling • Helge J. Helle • John V. Christiansen • Leslie E. Robertson

December 22, 1967

Port of New York Authority
Office of the Construction
Manager - Room 1119
30 Church Street
New York, New York 10007

Attention: Mr. B. H. Most, Construction Manager

Reference: The World Trade Center
Contract WTC-215-00, Mosh
tolerances for box beams

Gentlemen:

Enclosed please find a copy of a letter received by SHGR from Moshar Steel
Company dated December 14, 1967 requesting approval of tolerances shown on
the 9-1/2" x 11" sketch prepared by Moshar and attached to their letter.

We approve the tolerances as shown on the Moshar sketch. All tolerances
figures shown are 1/16 or 1/8 inch (see sketch).

We approve a maximum twist in box column as fabricated of 1/4 inch when
measured at the end in relationship to the other end.

Very truly yours,

SKILLING - HELLE - CHRISTIANSEN - ROBERTSON

James White

cc: Mr. W. C. Bradford, Moshar
Mr. L. Feld, FNKA
Mr. R. Fench, SIS
Mr. J. Cluley, SHGR-SE

Enclosures

WAYNE D. BUCKLEY
JOSEPH HOLLIER
ROBERT BINGHAM
V. A. FRAZIER
JAMES R. RUSSELL
WILLIAM M. WARD
E. H. WHITE, JR.
ADAMS & WILKINS

SEATTLE OFFICES 3600 WASHINGTON BUILDING, SEATTLE, WASHINGTON 98101

NIST NCSTAR 1-1A, WTC Investigation
Mr. James White

Reference: The World Trade Center
Contract No. C-215.00 Mosher
S. O. 31060 & 31061

Gentlemen:

Fabrication tolerances as set forth in Specifications 304.100 and 305.110 are clear as far as built-up columns are concerned, however they are not clear as far as built-up box beams are concerned. We do not feel that it was ever intended for the box beams, which are considerably lighter than the box columns, to be fabricated according to tolerances shown on sheet 3-04 which pertains to box columns.

Therefore, we are submitting for approval our sketch which indicates the fabrication tolerances which we recommend in the fabrication of box beams. We have already started burning the flange and web plates for the box beams and would appreciate your giving this matter your earliest possible consideration.

Also, we have not received as yet written confirmation for a maximum one quarter of an inch (1/4") twist in the fabrication of the box columns.

Yours very truly,

NOSHER STEEL COMPANY

W. S. Bradford
Works Manager

M/33

cc: NRT
cc: KRU
cc: WEP
cc: VNR
cc: ORS

PLANTS AND SALES OFFICES: HOUSTON - DALLAS - TYLER - LUSKOK - SHAPCROFT - CORPUS CHRISTI - SAN ANTONIO
SALES OFFICES: NEW YORK - LOS ANGELES
DETAILING DIMENSIONS

- Thickness Tolerance: \(\pm \frac{1}{6} \) in.

- \(t_1 \pm \frac{1}{6} \) - \(t_2 \) theoretical thickness

- \(\pm \frac{1}{16} \) at ends
- \(\pm \frac{1}{32} \) at other location

- 90°
- \(\pm \frac{1}{16} \) at ends

- Flatness: \(\frac{1}{2} \) in. x length in feet / 10

- Finished length of built-up members: \(\pm \frac{1}{16} \) in.

- Twist: \(\frac{1}{8} \) in. max.

DEPTH, WIDTH AND OUT-OF-SQUARE TOLERANCES (BEAMS)
SKILLING, HELLE, CHRISTIANSEN, ROBERTSON
Consulting Structural and Civil Engineers - 200 Park Avenue, New York, N. Y. 10017 - Tel. 9-8374
John P. Skilling Helge J. Helle John V. Christiansen Leslie E. Robertson
Manager
Wayne A. Brewer
Consultants
Harold L. Walthington Joseph P. Jackson

June 20, 1969

Laclede Steel Company
Arcade Building
St. Louis, Missouri 63101

Attention: Mr. R. Bay

Reference: The World Trade Center
Contract WTC-221.00, Laclede
Approval of C32T33, C32T34 and C32T35 Trusses

Gentlemen:

In confirmation of our telephone conversation today, Mr. Jackson of PTL has been instructed that he can waive the 4½" Hold Exact dimension on

8 - C32T33
8 - C32T34
4 - C32T35

provided the dimension is in no case less than 4 inches (Laclede Drawings ST233, ST234 and ST235). Mr. Jackson has also been requested to inform the writer immediately by telephone of any recurrence of the above problem on new production of the three affected truss designations.

This approval is granted on the basis of SCEA review of clearances at truss seats and your discussion with KEK in which KEK agreed to accept the subject twenty (20) trusses from Laclede for fabrication, provided Laclede would rectify all difficulties, if any, experienced by KEK due to Laclede's deviation from the approved "Hold Exact" dimension.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

cc: Horace R. Monti, PNWA
L. S. Feld, PNWA
R. Piasecki, KEK
A. Cullevogt, TRCC

BEAUFORT OFFICE: 25 WASHINGTON BUILDING, BEAUFORT, WASHINGTON 98520
Laclede Steel Company

"head" offices in the building

"In" Trem. Harman 6-1111 March 13, 1969

Mr. Wayne Brewer
Skilling-Helle-Christiansen - Robertson
230 Park Avenue
New York, New York

Dear Wayne:

Request for Acceptance of
32" Trusses not Fabricated
According to Approved Drawing

The purpose of this letter is to formally request approval
of the twenty (20) trusses listed below that were verbally
approved by Mr. Gene Chorny at our Madison Plant on March
11, 1969.

4 - C32T35
8 - C32T34
8 - C32T33

These trusses were fabricated with the "hold exact" dimen-
sion at the core end as being 4" instead of 4-1/2" as shown
on the approved drawings.

Gene and I feel that this may cause a tight fit when the panel
is placed in the building but the panel is adjustable
enough to accommodate this variance.

Yours very truly,

LACLEDE STEEL COMPANY

Thomas M. Chura, P. E.
Research Engineer
Construction Products

1p
Appendix G

SKILLING, HOFFE, CHRISTIANSEN, ROBERTSON
Consulting Structural and Civil Engineers - 250 Park Avenue, New York, N. Y. 10017 - Tel. 212-887-4

John B. Skilling - Helge H. Helle - John V. Christiansen - Leslie F. Robertson

Manager

November 17, 1969
File WTC-221C-WTC-223C

Port of New York Authority
Office of the Construction Manager
30 Church Street, 16th Floor
New York, New York 1007

Attention: Mr. R. R. Honti

Reference: The World Trade Center
Contract WTC-221.00, Leclède
Contract WTC-223.00, EKE (Carteret)
Tolerances and Repair Procedures
Letter of November 7, 1969, EKE to TRCC

Gentlemen:

We have reviewed the EKE letter of November 7, 1969, regarding tolerances and repair procedures on C3276 trusses. Our comments follow.

Attached please find SCHB sheet no. 1 showing the required tolerances for the members in question. We approve of Tolerance Schedule B on EKE DOG. TEB (attached to EKE’s November 7, 1969 letter) as the maximum allowable tolerances required to fit-up and weld details 13C and 15C as shown on Leclède shop drawings CD409 and CD 705.

Repair details 13C and 15C on EKE DOGs. TEB and TEC, respectively, are approved, as noted (see attachments). This repair work is to be done at no cost to PNYA in all cases where the tolerances shown on SCHB sheet no. 1 are exceeded.

Very truly yours,

SKILLING, HOFFE, CHRISTIANSEN, ROBERTSON

James T. McGuinness

cc: Honti, W. C. Hogen, PNTA (w/attachments)

Leclède

P. Passek, EKE

A. Cottentag, TRCC

NIST NCSTAR 1-1A, WTC Investigation
Tolerances for Longitudinal Deviation of Panel Point Along Chord

1. Reference end shall be either end of truss but not both ends.

2. The sketch illustrates the required tolerances for the placement of the vertical web members of Truss C3376.

Notes:

1. Reference end shall be either end of truss but not both ends.

2. The sketch illustrates the required tolerances for the placement of the vertical web members of Truss C3376.
Appendix G

NIST NCSTAR 1-1A, WTC Investigation
Supporting Documents for Chapter 8

NIST NCSTAR 1-1A, WTC Investigation
November 7, 1969

Tischman Realty and Construction Co., Inc.
30 Church Street
New York, New York

Attention: Mr. Al Guttenberg
Project Manager

Re: Letters from R. Piascik to A. Guttenberg
dated April 11, 1969 and July 8, 1969

Dear Sirs:

As stated in the above referenced letters the assembly of truss seat details 13C and 15G on "G" type panels is still unresolved and a cause of irritation for all parties concerned. Laclede is continuing to fabricate C5226 trusses at tolerances that disallow placement of the above truss seats in a plumb position and accurate location. As a result many "G" panels on floors 10 through 51, Tower A, have skewed, favored, and misaligned truss seats despite our efforts. These discrepancies cause numerous field problems as well as criticism from inspection personnel.

Kindly refer to the enclosed sketches; drawing T6A shows the tolerances we use in the placement of truss seats. Drawing T6B shows three tolerance schedules that may be used in locating vertical struts on the C5226 truss. Tolerance schedule A now used by Laclede obviously allows large deviations in the plumbness and location of the two vertical struts. We find that in many cases truss seats 15G and 13C simply cannot be placed at the proper longitudinal spacing due to physical interference with the struts. Where they do not interfere, the struts are usually out of plumb necessitating extra weld and material to take up the gap between the truss seat and the strut.

Tolerance schedule B is the required tolerance to set truss seats exactly as shown on Laclede drawings C5226 and C9209 without incurring any extra work. In addition the truss seats could automatically be in their proper locations when fit up flush against the vertical struts.

Tolerance schedule C could be used by Laclede to insure that no
strut interferes with the placement of truss seats; however the consistent use of a previously approved repair detail, referenced on the drawing, would be necessary. Of the three tolerance schedules this nearest closest realistic for achieving accurate placement of truss seats. We suggest that trusses be fabricated to these tolerances and the approved repair detail be made a scheduled detail, included in shop drawings, wherever gaps between the strut and the truss seat exceed 3/16 inch. All extra costs must be for the account of "others."

Presently we have 64 = 128TC trusses in yard storage all of which exceed tolerance schedule C. The assembly of "C" panels has been halted starting with the 52nd floor. Of the 64 trusses Lacade has agreed that 38 trusses require removal of the vertical strut on the exterior column end and 32 require removal of the strut on the core end according to their own criteria. We are therefore submitting for approval, repair details 13C and 13C on drawings 10C and 10D for those cases. Lacade has agreed to pay for the repair of only those trusses exceeding their own tolerances.

In order to resume assembly of "C" panels we urge a clarification of all tolerances and their consequences for WTC 221.00 and 223.00 as well as an approval for the enclosed repair details.

Yours truly,

KARL KOCH ERECTING CO., INC.

Richard Plassek
Project Engineer

cc: R. Hentz, PWA
L. Feld, PWA
D. Neptune, Lacade
J. McGuinness, SICA

encl.

RP: hs
Appendix G

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON
Consulting Structural and Civil Engineers, 230 Park Avenue, New York, N.Y. 10017
John B. Skilling - Helge J. Helle - John V. Christiansen - Leslie E. Robertson
Manager Wayne A. Breier
Consultants Harold L. Worthington - Joseph F. Jackson

October 16, 1969
File: WTC-221C

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York 10007

Attention: Mr. R. M. Monti

Reference: The World Trade Center
 Contract WTC-221.00, Laclede
 Fabrication Tolerance

Gentlemen:

Please refer to Laclede's letter to SRCK dated September 18, 1969. A xerox copy of the Laclede letter is attached hereto for your convenience.

We approve a tolerance for height above top chord of end stiffeners V3 and V4 of 3" (+1/8", -3/8").

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

cc: Mr. L. Feld, PNHA
Mr. W. Borland, PNHA
Mr. B. Bay, Laclede
Mr. B. B. Jackson, PTL-St. Louis
LRK HAB JTH LGJ

attachment

JW: 1
Mr. Wayne Brewer
Skilling-Helle-Christianensen-Robertaen
230 Park Avenue
New York, New York 10017

Dear Mr. Brewer:

This letter is written to request a change in the tolerance for the height above the top chord of the end stiffeners (V3 and V4) that are fabricated in the ends of the trusses supplied to the World Trade Center Project.

This dimension is not critical and our fabrication process would be greatly augmented if it were changed from 3" ±1/8" to 3" +1/8" -3/8".

Yours very truly,

LACLEDE STEEL COMPANY

Robert D. Bay
Director of
Technical Services
Project Coordinator

1p
SKILLING, HELLE, CHRISTIANSEN, ROBERTSON
Consulting Structural and Civil Engineers · 210 Park Avenue, New York, N. Y. 10017 · Mu. 9-8874
John B. Skilling · Helge J. Helle · John V. Christiansen · Leslie E. Robertson

October 20, 1969
File: WTC-221.00

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York

Attention: Mr. R. M. Monti

Reference: The World Trade Center
Contract WTC-221.00, Laclede
Fabrication tolerances

Gentlemen:

Please refer to the Laclede Steel Company to SSCR dated October 6, 1969.
A copy of the subject letter is attached to this letter for your reference.

We approve the tolerance of ±3/8" for the 2-7/8" or 1-3/4" dimension at
the top chord intersection of the inclined strut (mark 2 in the shop drawings)
as requested in the Laclede letter. Please note that this tolerance applies
to inclined end struts on 24T trusses only. This relaxation of tolerance
cannot be allowed to extend to other cases. One example is the vertical strut
member 5T (members 2 and 5) for truss C3276 on Laclede sheet number ST206. It
is essential that these members be installed as accurately as possible in all
cases.

Very truly yours,
SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

cc: Messrs. L. Feld, PNTA
W. Borland, PNTA
R. Bay, Laclede
B. Jackson, PTL @ St. Louis

JW:1

Seattle Office: 1400 Washington Building, Seattle, Washington 98101
Mr. Wayne Brewer
Skilling-Helle-Christiansen-Robertson
230 Park Avenue
New York, New York 10017

Dear Wayne,

This letter is written to request a tolerance of ± 3/8" for the dimension of 2.7/8" or 1.2/8" that locates the upper end of the Inclined Strut (Mark P) which is fabricated in one or both ends of the following 24" trusses:

24T9 24T11
24T9A 24T11A
24T10 24T11B
24T10A 24T11C
24T10B 24T12
24T10C 24T13
24T10D 24T13A
24T10E 24T13C
24T10F 24T13D
24T10H 2T16A
24T10J 2T16B
24T11K 2T16C
24T12L

Because of the large number of these trusses that we plan to fabricate in the very near future, a prompt reply would be greatly appreciated.

Yours very truly,

[Signature]

LACLEDE STEEL COMPANY

Robert D. Bay
Director of Technical Services
Project Coordinator

KJJ
June 15, 1969

Laclede Steel Company
Arcade Building
St. Louis, Missouri 63101

Attention: Mr. A. Carl Weber

Re: The World Trade Center - Contract WTC-221.00 -
Field Welded Connections for Bridging Trusses
and Bridging Angles at Panel Joints

Gentlemen:

A. After observing actual on-site difficulties encountered
in Tower "A" (due to misalignment and accumulation of fabrication
tolerances) in field welding the referenced connections, we directed
the Erector to proceed as follows in order to expedite the work:

1. Use single butt plate, field welded option,
 shown on Drawings 7C/1, 8C/1, 9C/1, 10C/1 and
 11C/1 which occur a total of 36 times on a typical
 floor. Butt plate thickness was determined by
 NKK from field measurement of actual gaps at
 the ends of bridging trusses in "as erected"
 position.

2. At connection 2C (which occurs 12C times on a
 typical floor) and connection 19C (which occurs
 4 times on a typical floor) all field welds
 were eliminated by adding 4 extra #5 bars parallel
to each row of bridging angles. Extra steel for
 a typical quadrant is shown on Drawing PP-1
 (Revised 6-9-69).

3. At connections 7C thru 11C two extra #5 bars are
 added at all bridging trusses panel joints to
 compensate for horizontal weld across top of top
 chord angles which was eliminated because of tight
 welding clearances.

4. Allowing 10% for loss, 7.5 tons of extra reinforcing
 is presently being added for floors 10-20+ per floor.
Appendix G

5. Connections 13C thru 17C remain as originally designed with no change in field welding details occurring a total of 20 times on a typical floor.

B. To mitigate costs, Lacelle is directed to proceed as follows on all future deliveries:

1. At connection 3C - delete connection plate, mark F-1, as shown on Lacelle Drawing CD-201.

2. At connection 3C - delete connection plates, mark F-2 and F-3, and delete connection bar, mark CB-1, all shown on Lacelle Drawing CD-201.

3. At connection 8C - delete connection plate, mark F-4, delete connection bars, mark CB-1, and delete two connection bars, mark CB-4, all shown on Lacelle Drawing CD-202.

4. At connection 9C - delete connection plates, mark F-2 and F-7, and delete connection bar, mark CB-1, all shown on Lacelle Drawing CD-203.

5. At connection 10C - delete two connection bars, mark CB-2, shown on Lacelle Drawing Cp-202.

6. At connection 11C - delete connection plate, mark F-2 and delete connection bar, mark CB-1, all shown on Lacelle Drawing CD-204.

7. At connections 13C thru 17C - No change

8. At connection 19C - delete connection plate, mark F-6, shown on Lacelle Drawing CD-204.

9. Hold clear distance of 1" minimum from center of panel joint to edge of web plate at both chords so as to permit the use of either field welded option in Item 8 or field bolted option proposed in Item C below.

C. Lacelle is to submit separate unit price quotations on each of the following bolted alternates on a per floor basis:

1. Connection 1C - furnish, fabricate and ship 3/4" thick plates (Py-50) and shim stock (Py-36) shown on Drawing 2-C/2 - revised 6-13-69. Note X - all 3/4" plates to be shop welded to bridging angles by Lacelle. This connection occurs 120 times per typical floor.
2. **Connection 2C** - furnish, fabricate and ship 3/4" thick plates ($F_y=50$) and shim stock ($F_y=36$) shown on Drawing 7-C/2 - revised 6-13-69. **Note Y** - all 3/4" plates to be shop welded to bridging true chord angles by Laclede. This connection occurs 52 times per typical floor.

3. **Connection 8C** - furnish, fabricate and ship 3/4" thick plates ($F_y=50$) and shim stock ($F_y=36$) shown on Drawing 8-C/2 - revised 6-13-69. **See Note Y above.** This connection occurs 12 times per typical floor.

4. **Connection 9C** - furnish, fabricate and ship 3/4" thick plates ($F_y=50$) and shim stock ($F_y=36$) shown on Drawing 9-C/2 - revised 6-13-69. **See Note Y above.** This connection occurs 8 times per typical floor.

5. **Connection 10C** - furnish, fabricate and ship 3/4" thick plates ($F_y=50$) and shim stock ($F_y=36$) shown on Drawing 10-C/2 - revised 6-13-69. **See Note Y above.** This connection occurs 12 times per typical floor.

6. **Connection 11C** - furnish, fabricate and ship 3/4" thick plates ($F_y=50$) and shim stock ($F_y=36$) shown on Drawing 11-C/2 - revised 6-13-69. **See Note Y above.** This connection occurs 12 times per typical floor.

7. **Connections 13C thru 17C** - No change

8. **Connection 19C** - Furnish, fabricate and ship 3/4" thick plates ($F_y=50$) and shim stock ($F_y=36$) shown on Drawing 2-C/2 - revised 6-13-69. **See Note I above.** This connection occurs 4 times per typical floor.

9. **Tolerances** for quotations C1 thru C6 and C8, out to out dimension over 3/4" bolt plates (example: 19'-11-3/4" for 20'-0" panel) is to be held to a tolerance of (+ 1/8") or (- 1/4") including ASTM A6 allowance for overrun on plate thickness. Vertically, the tolerance on keep dimension of 1'-8-3/4" (Connection 7C) or 1'-8-1/4" (Connections 8C and 9C) is ± 1/16".

10. All shim stock to be shipped in kegs by thickness. Furnish 2/3 of all shim sets consisting of 2-1/8" plates. Furnish remaining 1/3 of shim sets to consist of one 3/16" plate.
11. Bolts, nuts and washers will be furnished by others. LaClad does not furnish bolt lists.

12. Furnish alternate quote for 3/4" thick plates in Py=36 in lieu of Py=50 in items C1 thru C6 and C8. Your comments on availability and effect on delivery dates for Py=36 vs. Py=50 material are solicited.

13. In view of the fabrication greater effort required for these minimal weight butt plates we feel the formulas in the Contract Booklet on "Extra Materials" are not equitable for these items. We have therefore requested your separate quotations for these items.

14. Should the Authority accept your quotation on items C1 and C9 and/or items C1 thru C7 please advise us the lead time required from notification to complete fabrication line to these bolted alternate details.

D. With respect to deleted material in item 8, please advise us as to effective floor number for deletion, tonnage deleted and credit due to the Authority as per Contract formula.

E. Time is of the essence and your prompt reply is solicited to enable us to balance extra reinforcing bar costs against bolted and welded options.

Sincerely,

Malcolm P. Levy

Attachment: As per Transmittal List 355X

cc: Messrs. R. Abrahams, W. Brewer (BICR), M. Gertman (TCC), W/met.
Field Welded Option at Panel Joints

<table>
<thead>
<tr>
<th></th>
<th>Rev. Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>FT-1 - Floors 10 - 20</td>
<td>6-2-69</td>
</tr>
<tr>
<td>* 2-C/1 Connection 2C</td>
<td>5-29-69</td>
</tr>
<tr>
<td>7-C/1 Connection 7C</td>
<td>5-13-69</td>
</tr>
<tr>
<td>8-C/1 Connection 8C</td>
<td>5-14-69</td>
</tr>
<tr>
<td>9-C/1 Connection 9C</td>
<td>5-20-69</td>
</tr>
<tr>
<td>* 10-C/1 Connection 10C</td>
<td>5-14-69</td>
</tr>
<tr>
<td>11-C/1 Connection 11C</td>
<td>5-14-69</td>
</tr>
</tbody>
</table>

Field Bolted Alternate at Panel Joints

<table>
<thead>
<tr>
<th></th>
<th>Rev. Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>* 2-C/2 Connection 2C</td>
<td>6-13-69</td>
</tr>
<tr>
<td>7-C/2 Connection 7C</td>
<td>6-13-69</td>
</tr>
<tr>
<td>8-C/2 Connection 8C</td>
<td>6-13-69</td>
</tr>
<tr>
<td>9-C/2 Connection 9C</td>
<td>6-13-69</td>
</tr>
<tr>
<td>* 10-C/2 Connection 10C</td>
<td>6-13-59</td>
</tr>
<tr>
<td>11-C/2 Connection 11C</td>
<td>6-13-69</td>
</tr>
</tbody>
</table>

Note:
- Connection 19C similar to Connection 2C
- At top chord only - bottom chord and web plate remain same as basic detail
June 20, 1969
File: WTC-221C

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York 10007

Attention: Mr. K. M. Woelfi

Reference: The World Trade Center
 Contract WTC-221.00, Lacieo
 Plate F91, Truss Connector 13-0, Lacieo Drawing ST274

Gentlemen:

We approve the use of 22 plates F91 as fabricated by J. S. Alberici and
described in the Lacieo letter dated June 5, 1969 and shown in the attached
Lacieo sketch JS-13-91.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

cc: Messrs. L. S. Feld, PFEA
 R. Day, Lacieo
 A. Gotthelf, TRCC
 B. D. Jackson, PTL, St. Louis

WJ/AL
DEE STEEL COMPANY

DRAWING NO. J5-13-91

ACTUAL LENGTH VS. SPECIFIED LENGTH OF TOP
DIMENSIONS OF PLATE P91 OF TRUSS CONNECTOR 13-C

- According to Lacied. Dwg. ST.374 dated 6-13-68.
- According to actual measurement of pcs. in J.S. Alberici's Fabricating Shop

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>SPECIFIED LENGTH</th>
<th>ACTUAL LENGTH</th>
<th>DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13"</td>
<td>12 3/4"</td>
<td>- 1/4"</td>
</tr>
<tr>
<td>B</td>
<td>1 15/16"</td>
<td>1 15/16"</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>2"</td>
<td>2"</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>5 1/8"</td>
<td>5 1/2"</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>2"</td>
<td>1 11/16"</td>
<td>- 1/4"</td>
</tr>
<tr>
<td>F</td>
<td>1 15/16"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Laclede Steel Company

June 5, 1964

Mr. Wayne Brewer
Skilling-Helle-Christiansen-Robertson
230 Park Avenue
New York, New York 10017

Dear Mr. Brewer:

Re: World Trade Center
Contract WTC 221.00
Material Supplied J. S. Alberici Co.

Presently the J. S. Alberici Construction Company which fabricates the truss connectors we supply for the World Trade Center has 22 pieces of our material which is 1/8" under the required width. These pieces are 12-3/4" x .500" x 2'-1-3/4"; they should be 13" x .500" x 2'-1-3/4". Alberici has already cut this material and notched it as shown in the accompanying drawing (JS-13-91). These pieces which are to be used for truss connector mark 13-C have dimensions which correspond to those shown on Laclede Drawing ST-274 dated 6-13-68 with the exception of dimensions "A" and "F" which are 1/4" shorter than the corresponding dimensions shown in ST-274.

The only problem involved with using this short material would be that the length of weld between truss connector 13-C and the horizontal bridging angle at their connection point (see attached SCH drawing 7-A24-13) would be reduced by 1/4" top and bottom. As far as fitting the truss connector there will be no problem since all critical dimensions have been held.

The writer requests your approval of Alberici using the above mentioned 22 pieces in truss connector 13-C. If you do not approve of using these pieces we will have to supply new material to Alberici which they will have to cut and notch. This will require a considerable amount of extra work on their part.

Yours very truly,

LACLEDE STEEL COMPANY

David B. Neptune
Product Development Engineer
Construction Products

CC: Mr. Lester Feld, Planning Engineer
The Port of New York Authority
111 Eighth Avenue
New York, New York 10011

Mr. Al Guttenberg, Project Engineer
Tishman Realty & Construction Co., Inc.
30 Church Street - 11th Floor
New York, New York 10007
C. Skilling, Helle, Christiansen, Robertson
Consulting Structural and Civil Engineers - 750 Park Avenue, New York, N.Y. 10021 - Mr. 9 A3 4
John B. Skilling - Helle J. Helle - John V. Christiansen - Leslie F. Robertson

December 13, 1969
File: WTC-2210

Fort of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York 10007

Attention: Mr. R. H. Norti

Reference: The World Trade Center
Contract WTC-221.00, Laclede
Out-of-Tolerance Fillers

Gentlemen:

Attached to this letter please find a xerox copy of the Laclede letter to SHCR dated December 8, 1969. We approve on a one time basis only the deviations in filler positions described by Laclede for 160-C32T11 trusses. Mr. Bay was advised by the writer by telephone on Thursday afternoon, December 11, 1969 of the above approval.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

Cc: William L. Fohl, PNYA
 W. Putland, PNYA
 R. Bay, Laclede
 S. Jackson, PTL
 LEB, WAD, JH

JW/1s
Wayne Brewer
Skilling-Helle-Christiansen-Robertson
230 Park Avenue
New York, New York 10017

Dear Wayne,

160-CST:1 trusses were fabricated this week as shown on the attached print. Note that the three fillers on the core end were located approximately 1' more to the center of the truss than is shown on our drawings. Three trusses have the third filler 2' more than shown on the drawing. All these trusses were inspected and accepted by PTL with the provision that we obtain approval from you for the location of the fillers.

We therefore, request that these trusses be accepted as fabricated. Please answer by letter or telephone by Tuesday, December 9, 1969, so that we may continue with our present production schedule.

Yours very truly,

LACLEDE STEEL COMPANY

Robert D. Bay
Director Technical Services
Project Coordinator

KJJ
SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

July 7, 1969
Title: WTC-221C

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York 10007

Attention: Mr. R. Y. Monti

Reference: The World Trade Center
Contract WTC-221-C, Leclade
Repair Procedure for Vertical Struts

Gentlemen,

Please refer to the Leclade letter to SHCR dated June 9, 1969 transmitting the Leclade document titled "Repair Procedure for Vertical Struts on SI" Tension" dated June 5, 1969. We approve the above repair procedure and the attached Leclade drawing 4-35-1 dated June 3, 1969. We attach hereto one xerox copy each of the Leclade procedure and drawing stamped "approved" by SHCR and initialed by the writer.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James Whites

cc: "MARK: S. Fied, PNA
 "say, Leclade
 R. B. Jackson, PTL"

JW/s1
Mr. James White
Skilling-Helle-Christiansen Robertson
230 Park Avenue
New York, New York 10017

Dear Mr. White:

Please find attached "Repair Procedure for Vertical Struts on 32" Trusses" and drawing W-VS-1 dated 3 June 1969. With the submission of this procedure, formal request is made for approval to repair as necessary the vertical struts on trusses furnished under WTC-221.00.

If there are any questions, please contact me at once as we are anxious to obtain formal approval for this work.

Yours very truly,

LACLEDE STEEL COMPANY.

[Signature]
Robert E. Bay
Director of Technical Services

cc: Mr. Lester Feld, PONYA
 Mr. R. M. Mott, PONYA
 Mr. Al Gutentag
Appendix G

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON
Consulting Structural and Civil Engineers - 350 Park Avenue, New York, N.Y. 10022
John R. Skilling - Helle J. Helbo - John V. Christiansen - Ehrle F. Robertson

July 3, 1969
File: WTC 1036

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York 10007

Attention: Mr. R. N. Monti

Reference: The World Trade Center
Contract 221.00, Laclede
Repair Procedure, Truss Bearing Ends

Gentlemen:

Please refer to the Laclede letter to SHCR dated June 3, 1969, transmitting
the Laclede document titled "Repair Procedure, Truss Bearing Ends" dated June 3,
1969. We approve the above repair procedure and the attached Laclede drawings
W-81-1 dated June 2, 1969. We attach hereto one xerox copy each of the above
procedure and drawing stamped "approved" by SHCR and initialed by the writer.

This approval does not apply to double diagonals, which must be welded all
around as shown in the attached SHCR sketch dated July 7, 1969.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

cc: Messrs. L. S. Feld, PMYA
R. Bay, Laclede
S. B. Jackson, PIL

JW/s}
June 3, 1969

REPAIR PROCEDURE
TRUSS BEARING NUTS

The following procedure is written to cover the repair of bearing ends on trusses provided for the World Trade Center Project under Contract WTC-221.00. Such repairs that may be necessary from time to time will normally be made at the Madison Plant of Lackawanna Steel Company and may involve one or more of the lettered welds on drawing W-BC-1 dated June 2, 1969 which is attached and a part of this procedure. Primarily the repair welds will be made to adjust the bearing depth of the seats which have a tolerance of ±1/8".

Under the supervision of the Certified Arc Welder Foreman, a Certified Arc welder will perform the necessary repairs. The lettered joint to be repaired will be burned apart with a torch. All weld splatter from the previous resistance weld will be removed from the surface to be re-welded so that there is a clean surface of base metal. (If the weld is already separated, burning will not be required but removal of the weld splatter material must be accomplished.)

With reference to the drawing W-BC-1 of the particular lettered joint to be welded, the members will be accurately positioned and the welding of the joint will be completed in accordance with the existing procedures for arc welding which have been previously approved. The dimensions of the welds which are full-length shall be in accordance with the table on drawing ST290 dated February 26, 1968.

The repaired truss and welds will be inspected and tested following the quality control procedures which are stated in Section 10 of Quality Control and Inspection, World Trade Center 221.00.
Appendix G

Column End

Section X-X

Hole center dist. (H.C.D.)
To be maintained and
held in accordance
with the drawing. That
applies to the particular
truss repaired.

Core End

Notes:
1. All arc welds to be made with low hydrogen
 rod in the E-70 series or equal.
2. All arc welds full length each side as shown.
3. All arc weld sizes to be in accordance with note 1
 of Laclede drawing ST 290, dated Feb 24, 1969

LACLEDE STEEL COMPANY
ST LOUIS, MISSOURI

WELDING PROCEDURE FOR REPAIR OF BEARING ENDS.

ENGINEERING DEPARTMENT, D.R.J. APPROVED.

SKILLING, HEILE
CHRISTIANSEN--ROBERTSON
Structural & Civil Engineers

APPROVED
APPROVED AS NOTED
RESUBMIT
REJECTED

Date 7-3-69 by JW

NIST NCSTAR 1-1A, WTC Investigation
March 31, 1969

Port of New York Authority
Office of the Construction Manager
30 Church Street, Room 1030
New York, New York 10007

Attention: Mr. R. M. Monti

Reference: The World Trade Center
Contract WTC-221.00, Laclede
Rework of C32T1A Trusses

Gentlemen:

Please refer to the Laclede letter dated March 18, 1969, requesting approval for the repair of twenty-four C32T1A trusses. We approve repair of the subject trusses by double-strutting with an additional 0.75" x 6 bar as shown in the Laclede repair drawing dated March 17, 1969, a copy of which was attached to the Laclede letter. One copy each of the Laclede letter and the attached sketch are included with this letter for your ready reference.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

JW:G

Enclosure

cc: Masters, R. Bay, Laclede
 L. Feld, FNYA
 L. Thilmeier, PTL
May 2, 1969

Leclate Steel Company
Arcade Building
St. Louis, Missouri 63101

Attention: Mr. Robert G. Ray

RE: The World Trade Center
Contract WTC-221.3
Lmt.1650
Rework of C32TIA Trusses

Gentlemen:

We approve the repair of twenty four (24) C 32 TIA Trusses by doubling strutting with an additional 0.75" bar as shown on your sketch dated March 17, 1969 accompanying your request letter dated March 17, 1969.

Very truly yours,

W. S. Harland
Engineer of Materials
The World Trade Center

CC: Messrs.: R.H. Manti
 J. W. H. (SRS)
Mr. Wayne Brewer
Skilling-Helle-Christiansen-Robertson
230 Park Avenue
New York, New York 10011

Dear Wayne:

Request for Approval of
Reworked C32T1A Trusses

The 24 C32T1A Trusses have been fabricated at our Madison Plant with the V3 and diagonal strut on the column end with 1.09" web stock instead of 1.14" as shown on the approved drawing.

We request that the trusses be approved after repairing them by double strutting the diagonal strut with a .75 bar as shown on the attached drawing.

Yours very truly,

LACLEDE STEEL COMPANY

[Signature]
Robert D. Bay
Director of
Technical Service
Weld Detail for Repair of C32T1A's with 1.09" Diagonal Strut.
June 6, 1969

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York 10007

Attention: Mr. R. H. Konti

Reference: The World Trade Center
Contract WTC-213 (W1), PW1
Repair of Plate "Id", Panel 2308

Gentlemen:

Please refer to the PW1 letter to PHA dated May 23, 1969, HDT report sheets
1 and 4 complete our records on the referenced repair. We, therefore, approve
Panel 2308 as repaired.

Very truly yours,

SKILLING, KELLY, CHRISTIANSEN, ROBERTSON

James White

cc: Messrs. L. Feld, PHA
H. Fish, PW1
D. Caffery, SIB-Houston

JW/1o
May 16, 1969

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York

Attention: Mr. A. H. Nolte

Reference: The World Trade Center
Contract WTC-213-08, Ph: 8
Repair of Plate’d, Panel 2208

Gentlemen:

Please refer to the PNC letter to PNYA dated May 1, 1969. We approve the repairs described contingent upon receipt from PNYA of confirming PNA reports.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

cc: Mr. L. Feld, PNYA
Mr. W. Vlah, PNYA
Mr. J. Caffery, Sib (Houston)
PITTSBURGH-DES MOINES STEEL COMPANY

May 1, 1969

The Port of New York Authority
30 Church Street
New York New York 10007

Attention: Mr. R. W. Monti

Reference: The World Trade Center
Contract WTC-213.00
PDM Contract 17078 & 17133

Gentlemen:

We are sending you for your record and approval one (1)
copy of our repair procedure sheets No. 1 and 2 showing the re-
pairs of laminations we found in Plate "d" Panel 2308.

These repairs were made in accordance with the "Investigation
and Repair of Lamination and Other Discontinuities" dated March
19, 1969. They were witnessed by your inspector Mr. Dave Coffey
of Southern Inspection

Please send us a letter of approval for our record.

Very truly yours

PITTSBURGH DES MOINES STEEL COMPANY

H. M. Fish
Project Manager

NIST NCSTAR 1-1A, WTC Investigation
May 33, 1969

The Port of New York Authority
30 Church Street
New York, New York 10007

Attention: Mr. A. M. Monti

Reference: The World Trade Center
Contract No-219-32
PDM Contract 17078 & 17138
Repair of Plate "d", Panel-2303.

Gentlemen:

Reference to NHCA letter of May 16, 1969, to Mr. A.
M. Monti approving our repair procedure to plate "d" Panel
2303 contingent upon receipt of our NHT reports.

We are enclosing for your records one (1) copy of our
NHT reports Sheets No. 3 and No. 4.

Unless we hear from you we will assume that this subject
matter is finalized.

Very truly yours,

PITTSBURGH DES MOINES STEEL COMPANY

H. H. Fink
Project Manager

CC: Skilling-Holbe-Christiansen-Robertson Tishman Realty & Constr.
230 Park Avenue
New York, New York 10007

Att: Mr. James White
Plus one copy

ATTENTION: Mr. H. Gershon

ANNIVERSARY
Supporting Documents for Chapter 8

NIST NCSTAR 1-1A, WTC Investigation

Egg crate fabricated too wide on one corner; in fitting 5/16" to egg crate, on bottom side was held flush, leaving 1/8" between top of egg crate and top of E48. Request permission to use back up bar, to fill void, 1/8" between top and cover plate d.

R. Swends, P.C.
May 1, 1969

To the Port of New York Authority

Attention: Mr. R. M. Monti

Reference: The World Trade Center
Contract WTC-213.00
PDM Contract 17078 & 17138

Gentlemen:

We are sending you for your record and approval one (1) copy of our repair procedure sheet No. 1 and 2 showing the repairs of laminations as found in Plate "a" Panel 2309.

These repairs were made in accordance with the "Investigation and Repair of Lamination and Other Discontinuities" dated March 19, 1969. They were witnessed by your inspector Mr. Dave Caffrey of Southern Inspection.

Please send us a letter of approval for our record.

Very truly yours,

PITTSBURGH-DES MOINES STEEL COMPANY

[Signature]

Project Manager

230 Park Avenue
New York, New York 10001

Attention: Mr. James White

[Signature]

75th Anniversary
Pittsburgh-Des Moines Steel Company
ULTRASONIC REPORT FORM

CONTRACT 17138
MATERIAL 230B
THICKNESS 13/32
DRAWING MP775
SURFACE FINISH SMOOTH
PIECE MARK D
ULTRASONIC PROCEDURE USED ASYM-600
METHOD USED CONTACT
TECHNIQUE USED PLEASE FILL
PERSONNEL QUALIFICATIONS

EQUIPMENT USK 7M
SEARCH UNIT STRAIGHT BEAM
FREQUENCY SIZE 2,35KHz, 1" R
CALIBRATION BLOCK SOUND Block 0.522
COUPLANT 5H260F
BASIC SENSITIVITY B.B.

WITNESSED BY : D. R. Coeffey
OPERATOR : C. Vigne
DATE : 6-30-69

[Sketch of ultrasonic indications and visual indications]

Area gouged exceeded above visual indications
Gouged to 1 5/8" depth
Repair Instructions:

Prepare R25° - ARCAH GROOVE OUT DESIGNATED AREA.

Weld and test check groove cut area to insure proper
of design (one pass, H-flame, X 1/8" Hp. not retained). Prepare
R25°, weld one pass of NBG, using NBG electrode. Disc
grind and test check to insure sound metal. Finish mismatch
grind using NBG electrode. Melt fill each hole by using
slow speed - grind and test check - also U.T. check required
area.

R.S. 01110 01 RAS
Dear Mr. H. Moni,

Reference: The World Trade Center
Contract WTC-213.00, P76
Repair of Plate "b", Panel 300B

Gentlemen:

Please refer to the PDM Letter dated May 8, 1969 transmitting 8½ x 11 sheets 1 through 8 inclusive describing repair procedures and including reports of non-destructive test results for repair work on plate "b", Panel 300B.

The repair of plate "b" is approved as well as the final repaired weld, plate "au" to "b", as documented by UT test on May 8, 1969.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

cc: rerurn. L. S. Feld, FINTA
 R. M. Pliner, FRM
 G. Caffery, S.I.S. (Houston)

JW/1d
The Port of New York Authority
30 Church Street
New York, New York 10007

Attention: Mr. R. M. Monti
Reference: The World Trade Center
Contract: WTC-213.00
PDM Contract 17078 & 17138

Gentlemen:

We are sending you for your record and approval one (1) copy of sheets 1 to 8 inclusive covering the repair procedure for repairing a crack that developed in Plate "b" Panel-3008.

This repair was made in accordance with the Investigation and Repair of Laminations and other Discontinuities dated on March 19, 1969. The repairs were witnessed by your inspector Mr. Dave Caffery.

Please send us a letter of approval for our records.

Very truly yours,

PITTSBURGH DES MOINES STEEL COMPANY

H. M. Fish
Project Manager

Enclosure

[Signature]

Skilling-Hella-Christiansen-Robertson Tishman Realty and Const. Co.

Attention: Mr. James White
Attention: Mr. H. Gerstein

ANNIVERSARY Plus one (1) Copy
PROCEDURE

1. PREHEAT BOTTOM SURFACE TO 175°F MIN.
2. GOUGE AND DISCHARGE DEFECTIVE AREA.
3. MT TO MAKE SURE DEFECT IS REMOVED.
4. WELD THE GOUGED OUT AREA USING E6018 M ⅞" ELECTRODE.
5. AFTER WELDING COVER AND LET SLOW COOL.
6. CHECK COMPLETED WELD WITH UT INSPECTION.
7. PREHEAT TO 175°F.
8. FIT AND WELD R.A.H.
9. ALL OPERATIONS TO BE VERIFIED AND TO BE DOCUMENTED.
ULTRASONIC REPORT FORM U-9

WORLD TRADE CENTER

PITTSBURGH-DAS HOHNSIS STEEL COMPANY

Contract No.: 76-17130
Material Fy: 42 - T1
Thickness: 7/32"
Joint Design: C7-50-4
Drawing: HP 812

Equipment: USKSF
Transducer Angle: 70°
Frequency: 2.25 MHz
Calibration Block: Basic + IIW
Couplant: Cellulose - C

Date: 5-1-69
Inspector: C.V.
Witnessed By: D. Caffery

<table>
<thead>
<tr>
<th>Pc. No.</th>
<th>Transducer Angle</th>
<th>DB Rating</th>
<th>Length</th>
<th>Angular Distance</th>
<th>Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ah-b</td>
<td>70°</td>
<td>4</td>
<td>7'-6"</td>
<td>2.2"</td>
<td>3/4"</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL LENGTH OF WELD

VISUAL AT SURFACE
May 1, 1969

Pittsburgh-Bea Molten Steel Company
Neville Island
Pittsburgh, Pennsylvania 15225

Attention: Mr. W. M. Fish

Re: The World Trade Center - Contract 77-359 - P-31

Gentlemen:

Further to your letter dated February 6, 1969, the sub-assembly for Column 1, Panel 2008, is acceptable as fabricated and may be incorporated into Panel 2008.

Please note that approval is given only for this particular sub-assembly. In the event of any similar instance, approval will be given, if warranted, on a unit by unit basis, after submission of complete data for such individual cases.

Very truly yours,

J.R.C. Wynne

Construction Manager
The World Trade Center

cc: W. Bealland, J. White (SMCR)
SKILLING, HELLE, CHRISTIANSSEN, ROBERTSON
Consulting Structural and Civil Engineers - 230 Park Avenue, New York, N.Y. 10017 - Mr. 2594
John B. Skillings - Helle J. Helle - John N. Christianssen - Leslie F. Robertson

March 20, 1969

Port of New York Authority
Office of the Construction Manager
30 Church Street, Room 1020
New York, New York 10007

Attention: Mr. R. M. Monti

Reference: The World Trade Center
Contract WTC-213-60, PDM
Repair of Plate No. 48, Panel 3397

Gentlemen:

Please refer to the PDM letter dated March 12, 1969. Requesting approval of plate No. 48 for panel 3397. Based upon our telephone review of this matter with Mr. L. C. Nelson of PDM, we approve the subject plate as repaired contingent upon PDM furnishing PHRA and SPCR with revised copies of the PDM test report. Specifically stating the date, location and purpose of each test.

Very truly yours,

SKILLING, HELLE, CHRISTIANSSEN, ROBERTSON

James White
cc: Mr. N. A. Hiscock, PDM
Mr. L. C. Nelson, PDM

NIST NCSTAR 1-1A, WTC Investigation
SKILLING, HELLE, CHRISTIANSEN, ROBERTSON
Consulting Structural and Civil Engineers - 23rd Park Avenue, New York, N.Y. 10017 - Mr. P. H. E. C.

John R. Skilling - Billings, Montana

June 6, 1969

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York

Attention: Mr. R. N. Monti

Reference: The World Trade Center
Contract WC-213.00, PDM
Repair of Missfits, Panels 227B and 230B

Couplement:

Please refer to the PDM letter to PTHA dated May 23, 1969 and attaching revised repair sketches. We approve repairs to Panels 227B and 230B as shown in the PDM sketches dated 4-11-69 and revised 4-16-69 to show complete repair details.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

cc: Mr. L. Feld, PTHA
Mr. H. Fish, PDM
Mr. R. Caffery, EIS Houston

P.D.M.
May 16, 1969

Port of New York Authority
Office of the Construction Manager
3 Spruce Street
New York, New York

Attention: Mr. R. K. Menti

Reference: The World Trade Center
Contract W912W5-68-H-00090
Manager of Utilities, Panels 227A and 230A

Gentlemen:

Please refer to the PUB letter to MTA dated April 13, 1969. While we are confident that the repairs described in the two (2) attached PUB report procedure sheets (one dated and one dated 4-11-69) are completely satisfactory, we will require dates of the actual work shown and all other pertinent data before we can issue formal approval of the subject repairs.

Very truly yours,

SKILLING, HELLE, CHRISTIENSEN, ROBERTSON

Jesse White

cc: Mr. A. Field, PUB
 Mr. R. Fish, PUB
 Mr. A. Caffery, AEC (Homestake)

NIST NCSTAR 1-1A, WTC Investigation
April 15, 1969

Pittsburgh-Des Moines Steel Company

Mr. R. M. Monti
Construction Manager
Room 1119
The Port of New York Authority
30 Church Street
New York, New York 10007

Re: The World Trade Center
Contract WTC-213.00
PDM Contract 17078 & 17136

Gentlemen:

We are sending you for your record and approval one (1) copy of our repair procedures for misfits on panels 2279 and 2303.

Both of these repairs required the addition of 2 x 1/4 bar up bars and additional welding as explained in detail on the attached sketches.

Please favor us with your written approval of these repair procedures.

Very truly yours,

PITTSBURGH-DES MOINES STEEL COMPANY

H. M. Fish
Project Manager

Nist: glb
Encl.

Sussling-Heller-Christianen Roberts
230 Park Avenue
New York, New York 10007
Attn: Mr. James White

Tishman Realty & Constr. Company
11th Floor, 30 Church Street
New York, New York 10007
Attn: Mr. M. Gerstman

HAMMOND PRODUCTS
Verbal approval received from Mr. H. Fish, 4/10/69, to make up difference in width of plates a 4 ft. by using 2x4 back-up bars, tacked to f plate. Written approval to follow.

R. Swank P.E.
Egg crate fabricated 8" too wide on one corner.

Fillings (f) 12" to egg crate, 1/2" bottom side was field flush, leaving 8" between top of egg crate and top of 12" f.

Request permission to use back up bar, to fill void, 8" between 12" and cover plate A.

R. Swanson Q.C.
May 16, 1969

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York

Attention: Mr. J. X. Fentz

Reference: The World Trade Center
Contract WTC-213.60, PMA
Repair to Plate "V", Panel 224B

Gentlemen:

Please refer to the PM letter to PMA dated April 30, 1969. We approve the repair of plate "V", Panel 224B, as described and documented in sheets 1 through 5 inclusive attached to the PM letter.

Very truly yours,
SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

cc: Mr. H. Veld, PMA
Mr. H. Field, PMA
Mr. W. Caffery, Old (Houston)

JN: 1c
April 30, 1969

The Port of New York Authority
30 Church Street
New York, New York 10007

Attention: Mr. R. M. Nonti

Subject: The World Trade Center
Contract FTC-313, 00
PDM Contract 17073 & 17150
Repairs to Plate VTH Panel 224B

Gentlemen:

We are sending you for your record and approval one
(1) copy of sheets 1 to 6 inclusive covering the repair
procedure for repairing a crack that developed in Plate
VTH Panel 224B.

This repair was made in accordance with the "Investigation
and Repair of Laminations and Other Discontinuities"
dated March 19, 1969. They were witnessed by your inspector
Mr. Dave Caifery.

Please send us a letter of approval for our records.

Very truly yours,

PITTSBURGH-DESA MOINES STEEL COMPANY

H. M. Fish
Project Manager

Attention: Mr. James White
ATTN: Mr. H. Gerstman

ANNIVERSARY

17138
Col. 2213

\[\text{Rev. V R} \]

Cont. E 3.94-79.12.241

Drain

\[\text{Rev. } 27 \times 2\frac{3}{4} \times 27\frac{3}{8} \]

\[\text{Rev. Sept. 15, 1998} \]
Appendix G

Sheet 2

Cont 17138 Cor 224-B Sketch X1

April 25, 1969

P.V.R

Chart EV50-H1 No. 74-D6017
Procedure to Repair Crack on P₁, V₁, FY 50 Corten B NT #74D047

1. Remove P₁ "by" (either by burning or arc air gouge) grind any remaining weld from this area.

2. Preheat area at least 6" on either side of crack to 200°F. Check with tempil stick.

3. Gouge Area "A" to 1 1/4" depth, MT sides to make certain that there are no defects.

4. Weld approx. 1" of area "A" using E8016-C1 (67-49) or Arcos 72 (67-48)

5. Turn section over and gouge area "B", MT to make certain no defects are present.

6. Complete welding in area "B".

7. Turn section and complete Area "A".

8. Cover with asbestos and let slow cool

9. Check completed weld with ultrasonic inspection.

10. Fit new P₂ replacement for "by"

11. Reweld P₁ "by" as previously welded except as shown on Section B.B.

IMPORTANT

1. Maintain preheat and interpass.

2. H. T. every 1/4" layer of weld in areas "A" and "B".

3. All operations to be witnessed by Southern Inspector Agency Inspector and to be documented.
June 9, 1969

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York 10007

Attention: Mr. E. H. Monti

Reference: The World Trade Center
Contract WTC-013-00, PDM
Repair of Plate C1, Panel 130B; V1 Panel 139B

Gentlemen:

Please refer to the PDM letter to PNTA dated May 23, 1969. The UT reports
attached to the PDM letter are sufficient to allow us to approve the referenced
repairs.

Very truly yours,

SKILLING, HELLE, CHRISTIANSSEN, ROBERTSON

James White

cc: Messrs. L. Fald, PNTA
 U. Piel, PDM
 D. Caffery, C/G-Rayson

JW/s1
May 22, 1969

The Port of New York Authority
30 Church Street
New York, New York 10007

Attention: Mr. R. N. Honti

Reference: The World Trade Center
Contract WTC-213.00
PDM Contract 17078 & 17138
Repair of Plate V" Panel - 1308
Repair of Plate V" Panel - 1333

Gentlemen:

Reference to SHCR letter of May 10, 1969 to Mr. A. H. Honti approving our repair procedure to plates V", Panel 1308 and Plate V" Panel - 1333 contingent upon receipt of our NDT reports.

We are enclosing for your record one (1) copy of our NDT reports sheets Nos. T-1 and T-2.

Unless we hear from you we will assume that this subject matter is finalized.

Very truly yours,

PITTSBURGH DES MOINES STEEL COMPANY

H. H. Fish
Project Manager

Enc.

c/o: Mr. James White/plus one (1) copy

Mr. H. Goetzen

75TH ANNIVERSARY
Pittsburgh-Des Moines Steel Company

ULTRASONIC REPORT FORM

CONTRACT 17138 130G

MATERIAL 45

THICKNESS 5/8

DRAWING 1616

SURFACE FINISH 256

PIECE MARK 112

ULTRASONIC PROCEDURE USED AS TO A. J.

METHOD USED CONTACT

TECHNIQUE USED PULSE ECHO

PERSONNEL QUALIFICATIONS 85-7010

EQUIPMENT USS-5001

SEARCH UNIT "CANTERBURY"

FREQUENCY - SIZE 2.5 250

CALIBRATION BLOCK 1/2 "C"

COUPLANT 0.1 "ALUMINA"

BASIC SENSITIVITY 1.0 "P"A

WITNESSED BY J. CAREY

OPERATOR 85-70020

DATE 1-7-69

DATE 1-2-35

AREA ABOVE INSPECTED AND ACCEPTED UNDER LINE

SKETCH
May 16, 1969

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York

Attention: Mr. B. M. Monti

Reference: The World Trade Center
Contract WTC-213-04, PMI
repair of Plate "AF", Panel 4128

Gentlemen,

We approve the repair of plate "AF" as documented by the PMI procedure sheets dated 3-28-69 and UT test report dated 3-28-69, both attached to the 12W letter to PMI dated March 31, 1969. While no UT report is furnished to document the UT check mentioned in the PMI repair procedure, none is required for laminations not exceeding 1/2 inches in depth, per the PMI approved procedure "Investigations and Repair of Laminations and other Discontinuities" dated March 19, 1969.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James Whit

cc. Mr. B. Monti, PMI
Mr. B. Fish, PMI
Mr. B. Caffery, SIC (Houston)

JW:le
May 16, 1965

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York

Attention: Mr. R. H. Koutil

Reference: The World Trade Center
Contract WTC-113-CO, PM 2
Repair of Plate 6, Panel 1970

Gentlemen:

Please refer to the PWC letter to PWA dated April 21, 1965. The PMR UT report
revised 3-19-65 reporting results of UT tests on repairs to plate "e", Panel 1970,
is sufficient to allow us to approve the repairs to the subject plate.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

cc: Mr. L. Field, PWA
Mr. H. Fish, PMR
Mr. N. Caffery, SIS(Houston)

JWile
The Port of New York Authority
30 Church Street
New York, New York 10007

Attention: Mr. R. M. Monti

Subject: The World Trade Center
Contract WTC-213.00
PDM Contract 17078 & 17138
Repair of Plate "U" Panel-339B

Gentlemen:

In compliance with your request, in your letter of
March 20, 1969, that we submit revised copies of NDT re-
ports we are sending you for your record and approval
one (1) copy of Sketch-SK-4 Sheet 5 revised March 19, 1969.

The purpose of this report was to show that areas in
question were satisfactorily U.T. inspected after repairs
were made and witnessed by your inspector Dave Caffery.

Please advise us by letter of your approval.

Very truly yours,

H. M. Fish
Project Manager

Skilling-Helle-Christiansen-Robertson Tishman Realty & Constr. Co.
230 Park Avenue
New York, New York 10007

Attn: Mr. James White

Skilling-Helle-Christiansen-Robertson Tishman Realty & Constr. Co.
11th Floor, 30 Church ST.
New York, New York 10007

Attn: Mr. M. Gerstman
b'Plates N.S. & F.S. U.T. Inspected as noted on sketch SK-4 shown below.

No indications seen on the machine at above procedure level.

Remarks: Ultrasonic test made on all sides of repaired areas shown below.

[Sketch diagram with annotations and measurements]
SKILLING, HELLE, CHRISTIANSEN, ROBERTSON
Consulting Structural and Civil Engineers • 210 Park Avenue, New York, N.Y. 10017 • Mu. 9-8874

July 15, 1971
File: WTC-213C

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York 10007

Attention: Mr. R. M. Monti, Construction Manager

Reference: The World Trade Center
Contract WTC-230.00, KKE
Contract WTC-213.00, PDM
Repair of Column 327B
Reference No. 1, SHCR Drawing ZAB2-15, Detail 26
Reference No. 2, PDM Shop Drawings MP610, MP611

Gentlemen:

Please refer to SHCR’s May 21 and July 15, 1971 letters to PNYA transmitting repair procedure information for Column 327B. UT evaluation of the repair work required in the SHCR document “Repair Procedure, Column 327B, Elev. 372'-6’(+)” is reported in G&H UT report sheets 1 through 6 of 6 dated 7/6/71. G&H report is enclosed with this letter. G&H sheets 1 and 2 show that the 6’ (+) length of repair weld between plates “a” and “d” is acceptable. Sheets 3 and 4 show the extent of a crack which could not be completely removed at Elevation 372'-6’(+) during the repair to the edge of plate “d” and the fractured partial penetration weld. Sheets 5 and 6 show the extent (1/4 inches long; 2 to 2k inches deep) of a defect found in the horizontal repair weld to plate “d” at Elevation 378'-6’(+)

Subsequent to the above UT testing, the south 2/3 width of the CP weld between plates “d” and “b” (E2 to F2) was repaired as follows:

1. Provide preheat temperature of 200-250°F by use of radiant heaters at repair line.
2. Arcair gauge defective metal within central 1/3 width of column. (Discussion with workmen revealed that surface to one inch deep was sound, that one inch deep to backup bar was extremely porous with cracks running from defective weld metal into the base metal vertically for various short lengths).

ROBERT K. LAFERNE
RICHARD W. COLEMAN
LORENTZ L. WEIDMANN
FRANK HOLSTENOFF
ROBERT T. LIU
MICHAEL B. KAISER
WILLIAM D. WARD
"A" WHITE, JR.

SEATTLE OFFICE: 1640 WASHINGTON BUILDING, SEATTLE, WASHINGTON 98101

NIST NCSTAR 1-1A, WTC Investigation
SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

Port of New York Authority
Attn: Mr. R. M. Monti

July 15, 1971

3. Allow column to cool at end of work day using asbestos blanket wrapping for slow cool.

4. Elevate temperature at beginning of work day.

5. Perform central 1/3 column width repair weld using E7018 electrodes.

6. Slow cool column at end of work day.

7. Upon completion of work at central 1/3 width, repeat repair sequence of steps 1 through 6 above for south 1/3 length.

8. Upon completion of repair of entire 23 inches of defective weld, Elevation 372'-6"(z), UT entire width of plate "b" and "d" in repair area.

It should be noted that the repair excavation was of the order of two (2) inches wide at the root, extending above the shop backup bar and roughly 1/2 inch maximum into the 1-3/4 inch diaphragm plate CP weld. The workmen reported minimum fusion to the backup bar, very spongy weld metal, and numerous cracks in the base metal running vertical in the plate (normal to the axis of the horizontal CP weld). The shop weld was made in accord with PDM procedure 67-48, a xerox copy of which is attached to this letter.

Also attached to this letter, please find the G&H UT report (one sheet) dated 7/15/71. This report shows that the defect reported at Elevation 378'-6"(z) in the G&H 7/6/71 report (Repair 1 in the 7/15/71 report) has been removed and the repair weld is UT acceptable. The 7/15/71 G&H report also shows that the repair to the defective shop weld at Elevation 372'-6"(z) is acceptable as welded.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

cc: Messrs. M. P. Levy, PNYA
 L. S. Feld, PNYA

Attachment #1 G&H UT report dated 7/6/71, pages 1-6
Attachment #2 PDM Weld Procedure 67-48 dated April 6, 1968
Attachment #3 G&H UT report dated 7/15/71

EJM/is

LER
Appendix G

SKILLING - HELLE - CHRISTIANSEN - ROBERTSON
Consulting Structural and Civil Engineers · 250 Park Avenue, New York, N. Y. 10017 · Min. 9-557-4
John B. Skilling · Helge J. Helle · John V. Christiansen · Leslie E. Robertson
Consultants
Harold L. Worthington
Joseph F. Jackson

August 21, 1968

Port of New York Authority
Office of the Construction Manager
25 Church Street · Room 1135
New York, New York 10007

Attention: Mr. V. H. Bought

Reference: The World Trade Center
Contract #TC-213.00
Laminated plate "H" Drawing #1208

Gentlemen:

Please refer to the FHA letter dated June 11, 1968 referring to laminated plate "H" shown on shop drawing #1208. The repair procedure stated in the attachment to the letter and shown in the FHA drawing dated June 10, 1968 is amended. These laminations were discovered after the plates were welded into a complete column panel assembly.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

Forty-Seven

Per

cc: Charles R. Field · FHA
 D. H. Max · FHA

NIST NCSTAR 1-1A, WTC Investigation
October 7, 1968

Port of New York Authority
Office of the Construction Manager
30 Church Street - Room 1119
New York, New York 10007

Attention: Mr. R. M. Monti

Reference: The World Trade Center
Contract WTC-213.00, Pittsburgh-Des Moines
Repair of Plate for Panel 209A

Gentlemen:

Please refer to the PDM letter dated September 30, 1968, referring to
the weld repair procedure for plate VL for panel 209A. We have reviewed this
procedure by telephone with Mr. H. M. Pish of PDM, and approve the PDM
repair procedure.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

cc: Messrs. L. S. Peld, PNYA
 H. M. Pish, PDM
October 4, 1968

Skilling-Helle-Christiansen-Robertson
230 Park Avenue
New York, New York 10007

Attention: Mr. James White

Reference: The World Trade Center
Contract WTC-213.00
PDM Contract 17070 & 17138

Dear Mr. White:

Enclosed is one (1) copy of the Weld Procedure that
was inadvertently not sent to you.

Please notify us by letter of your approval of this
repair procedure.

Very truly yours,

PITTSBURGH-DES MOINES STEEL COMPANY

[Signature]

H. M. Fish
Project Manager

NIST NCSTAR 1-1A, WTC Investigation
Supporting Documents for Chapter 8

Welding Procedure

1st - 2 [3/8" i.d. x 13/8" o.d.] .065 W.L. - (1st side
W/3.5 to 7 inclusive .045 W.L.)

(1st face) .045 W.L. across .045 W.L. root

2nd - .065 W.L. across .065 W.L. root

3rd - .065 W.L. across .065 W.L. root

4th - .065 W.L. across .065 W.L. root

5th - .065 W.L. across .065 W.L. root

6th - .065 W.L. across .065 W.L. root

Above plate was burned on wrong line in shop. After error was discovered, the plate part that was burned off was prepared, and welded back on to main plate, using above procedure. Plate was then x-rayed to insure sound weld. X-rayed after re-burning to correct length.
September 30, 1968

Mr. R. M. Monti
Construction Manager
Room 1119
The Port of New York Authority
30 Church Street
New York, New York 10007

Re: The World Trade Center
Contract WTC-21200
PDM Contract 17978 & 17136

Gentlemen:

We are submitting for approval two (2) copies of our weld procedure for repulling plate V on panel 205A which was inadvertently cut 6 inches short. This panel is detailed on drawings WP642 and WP643.

Please have the engineer notify us by letter of his approval of this repair procedure.

Very truly yours,

PITTSBURGH-DES MOINES STEEL COMPANY

R. J. Fish
Project Manager

HEF:fish
Enclosure

c: Skilling-Hindle-Christiansen-Robertson
Fishman Realty and Construction Company
October 16, 1968

Port of New York Authority
Office of the Construction Manager
Room 1119, 30 Church Street
New York, New York 10007

Attention: Mr. R. H. Monti

Reference: The World Trade Center
Contract WTC-213, Pittsburgh-Des Moines Steel Company
Welding of Corner Panels 100A, 200A, 300A

Gentlemen:

We have reviewed the FDM letter dated October 15, 2968, to which is attached an outline of repairs FDM proposes to perform, and stating the actual weld metal placed in corner panels 100A, 200A, 300A, and 400A for Tower "A". These are outlined in four (4) three-page letters, one for each corner panel. The letters are dated October 10, 1968, signed by Mr. Weissman, FDM Chief of Quality Control, and are addressed to Mr. Fish, FDM Project Manager. Butt welds in eighteen separate locations require repair, and amount to a total length of weld slightly in excess of 22 feet.

Also attached to the FDM letter is a FDM procedural drawing showing step by step, all details of the required repair work.

S&CR approves in entirety the proposed methods and specific locations of welds as indicated in the FDM letter.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERSON

James White

cc: Lawyer, H. P. Levy, FNYA
 E. C. Moreland, FNYA
 L. S. Feld, FNYA
 H. M. Fish, FDM
 Holton & Caffrey, SIS

NIST NCSTAR 1-1A, WTC Investigation
The Port of New York Authority
30 Church Street
New York, New York 10007

Attention: Mr. M. Manti

Reference: The World Trade Center
Contract WTC-213,00
PLI Contract 17675 & 17138

Gentlemen:

We are sending you for approval two (2) copies of certified weld report pertaining to Panels 100A, 200A, 300A and 400A. All of these panels with the exception of 300A had some of the welds made using the wrong electrode which will require repairing.

We have reviewed these sheets with Mr. James White in our office October 14, 1968 and have noted on the left hand side of the sheets the repair action which will be required.

We are also including two (2) reproducible copies of Page 1 showing the weld procedure for repairing these panels.

Please advise us by letter of your acceptance of this repair procedure.

Very truly yours,

PITTSBURGH-DES MOINES STEEL COMPANY

M. K. Fish
Project Manager

Enclosure

Attention: Mr. James White

plus one copy of weld report and Page 1
September 21, 1967

Stearay Pacific Corporation
11533 South Artesia Street
Los Angeles, California 90052

Attention: Mr. M. N. Gibson

Re: THE WORLD TRADE CENTER - Contract WTC-217.00 - Inspection Requirements for Steel in Scotland

Gentlemen:

Reference is made to your letter to Mr. M. P. Levy, dated September 5, 1967 regarding subject steel requirements.

Your statement that Stearay 'did not and will not except as a general rule length multiples other than ordered', appears to be a matter between you and your steel supplier, Stearay Corporation, Inc., in their inspection will, of course, advise us of any variations, not only from your order, but from the required specifications. I believe the maximum number of shop splices, that is, at every floor three (3) feet above the floor line, is covered by Clause No. 303.000 of the spec. Your previous request to splice every eighteen (18) feet was approved contingent on your submission of details on handling and fabrication and connection detail materials.

Your letter states on edge conditions, that blowouts exceeding 1/8" in depth above established in your purchase orders, will be repaired by welding and grinding and that all other plate blowouts exceeding 1/8" in depth, will be repaired by welding and grinding. Please be advised as follows:

1. I have no definite knowledge of your purpose or ground rules used in establishing these asterisked items in your purchase orders.

2. Clause No. 303.201 of spec requires all blowouts exceeding 1/8" to be repaired by welding and grinding.

3. Therefore, it appears that you are increasing the allowable tolerance required by the specifications, which I cannot permit without further detailed explanation from you.
Pending receipt of further information from you,
Cargo Superintendents, Inc., will continue to be governed by
present contract specifications.

Sincerely,

R. M. Monti
Construction Manager
The World Trade Center

c: Massa, J. Radler (MRGC), M. Cosimba, J. White (SHGC)
w/att. w/att.
October 16, 1969

Laclede Steel Company
Arcade Building
St. Louis, Missouri 63101

Attention: Mr. Robert D. Bay

Re: The World Trade Center - Contract
WTC-221.00 - Laclede Automatic
CO2 Welding

Gentlemen:

Please refer to the Laclede letter to SHCR, dated September 8, 1969, and the SHCR letter to PONYA, dated October 6, 1969, on which you were copied.

Your request to use the Hobart automatic CO2 welding equipment and welding procedure submitted in your letter of September 8, 1969, is granted provided that production welding on Contract WTC-221.00 performed by use of this equipment meets the requirements of the contract documents and there will be no additional cost to the Authority.

If at any time welding performed by this equipment should fail to satisfy the contract requirements, this permission will be withdrawn and the cost of any repair work will be to Laclede's account.

Very truly yours,

R. M. Hosti
Construction Manager
The World Trade Center

J. W. White (SHCR) w/Att.

Copy to: Messrs. W.C. Norland

NIST NCSTAR 1-1A, WTC Investigation
SKILLING, HELLE, CHRISTIANSEN, ROBERTSON
Consulting Structural and Civil Engineers · 210 Park Avenue, New York, N.Y. 10017 · Mu. 9-8874
John B. Skillling · Helly J. Helle · John V. Christiansen · Leslie E. Robertson

October 6, 1969
File: WTC-221C

Port of New York Authority
Office of Construction Manager
30 Church Street
New York, New York

Attention: Mr. R. M. Monti

Reference: The World Trade Center
Contract WTC-221.00, Laclede
Automatic CO2 welding

Gentlemen:

Please refer to the Laclede letter to SHCR dated September 8, 1969. We recommend PNYA approve the use of this automatic equipment. While the tests were not standard AMS tests, and the test samples were run at Troy, Ohio by Robert Bros. instead of by Laclede, the test values clearly exceed 2/3 of the minimum specified tensile strength of the base metal for longitudinal shear and 7/8 of the minimum specified tensile strength of the base metal for transverse shear.

On Friday, September 26, 1969, Laclede was in the process of performing test runs and final adjustment to the equipment. Upon completion of trial operations by Laclede, SHCR and PTI will maintain continual day to day surveillance of the quality of production welds performed by use of the Robert automatic CO2 welding equipment.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

cc: Mr. L. S. Feld
R. Bay, Laclede

3721 First Ave., Seattle, Wash. 98107

206-622-2600

Seattle Office · 1900 Washington Building · Seattle · Washington 98101

NIST NCSTAR 1-1A, WTC Investigation
Mr. James White
Skilling-Helio-Christiansen-Robertson
230 Park Avenue
New York, New York 10017

Dear Mr. White:

Approval - Automatic Arc Welding

In accordance with Paragraph 405.300, World Trade Center Contract WTC 881.00, formal request is herewith made for the use of CO2 Automatic Gas Metal Wire Feed - Arc Welding Equipment for use in making continuous 3/16 inch and larger fillet welds on chord plates. The chord plates are on the bottom chord of trusses and on the top and bottom chords of bridging trusses required for the project. The equipment uses Hobart 50RC-750, 750 Amp Constant Voltage, 100 For Cent Duty Cycle Power Source with Hobart 540-23 Automatic Panels having a Wire Feed Motor, Head and 5377225 Guns. Hobart 5CMS-9A Electronic Seam Trackers will be used and Hobart 5377450 Nozzles.

Attached herewith is Welding Procedure numbered C-4713-A prepared by the Hobart Brothers Company and dated 8/26/69 pertaining to the equipment. Also attached are proof tests on samples of the Laclede material which was sent to Hobart and welded with the equipment at Troy, Ohio. The material was returned to Laclede Steel Company and tests were made at the St. Louis Testing Laboratory, St. Louis, Missouri. The test samples are available for inspection at the St. Louis office. Personnel which will use this equipment have already been certified for Automatic Gas Metal, Wire Feed - Arc Welding.

Since the new equipment is to be installed this next week, we respectfully request an early approval so that we may proceed
with the plan to utilize this new equipment to reduce the large backlog of arc welding which is now at our shop. If there are any questions, please contact the writer.

Yours very truly,

LACLEDE STEEL COMPANY

Robert D. Bay
Director of Technical Services
Project Coordinator

CC: Mr. Wayne C. Brewer, SHCR
 Mr. Lester Feld, PONYA
 Mr. Al Gutentag, Tishman
SKILLING - HELLE - CHRISTIANSEN - ROBERTSON
Consulting Structural and Civil Engineers · 250 Park Avenue, New York, N.Y. 10017 · Mu. 9523-4
John B. Skilling · Helge J. Helle · John V. Christiansen · Leslie E. Robertson

December 15, 1967

Fort of New York Authority
Office of the Construction
Manager - Room 1119
30 Church Street
New York, New York 10007

Attention: Mr. R. M. Monti, Construction Manager

Reference: The World Trade Center
Contract WTC-214.00, Pacific Car & Foundry
Diaphragm Plates, Welds #5 and #7

Cordially,

Pacific Car & Foundry has requested, and SHCR has approved, the elimination of the clipped corners on stiffener plates as shown in Sections b-b and c-c, Sheet 4-A22-32, Drawing Book 4, and equivalent conditions. PCF intends to install these plates in the "ladder" assembly prior to assembly with the "bed sheet." Where weld #5 is interrupted by a stiffener plate, it shall be thoroughly fused into both sides of the subject stiffener plate. Should weld #7 be interrupted by a stiffener plate, the same requirement applies. Where the Drawings show a 3/8 inch fillet weld between the stiffener plate and spandrel plate #6, this weld shall be 7 inches long as shown in the Drawings. Where a full penetration weld is required in the Drawings, or where PCF elects to use a full penetration weld, the plate shall be beveled and the weld shall extend full length along the spandrel between the two tie plates.

All the above changes shall be clearly illustrated in the shop drawings. Since the above procedures have been approved at PCF's request, it is understood that the adoption of these procedures will not result in additional cost to PNYA.

Very truly yours,

SKILLING - HELLE - CHRISTIANSEN - ROBERTSON

James White

JW:

cc: Mr. L. Feld, PNYA
Mr. R. Symes, PCF
Mr. A. Barkohire, SHCR-SE
May 26, 1969

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York

Attention: Mr. R. H. Yonti

Reference: The World Trade Center
Contract WTC-214-00, PCF
Material Substitutions - Beam Cast Angles

Gentlemen:

Please refer to PCF letter 56-14 dated May 19, 1969. We approve the use of 8%6x1 inch angles in lieu of 8%6x7/8 inch angles for beam cast types 7440 through 7494. PCF must verify that no additional bolt length will be required, or provide revised bolt lists if necessary, at no cost to PWTA.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White
cc: Mr. L. Folt, PWYA
 Mr. R. Sykes, PCF

bcc: Mr. A. Barkalow-SEIC-SEATTLE

NIST NCSTAR 1-1A, WTC Investigation
May 19, 1969 D-666 PCF 85-14

Skilling Helle Christiaansen Robertson
Consulting Structural and Civil Engineers.
230 Park Avenue
New York, New York 10017

Attention: Mr. James White

Reference: World Trade Center
Contract WTC 214.00
PCF Project D-666

Subject: Material Substitutions

Gentlemen:

On beam seat types 7440 through 7494, the 8" x 6" x 7/8" angles specified on design drawings are not immediately available. We are therefore, using 8" x 6" x 1" angles for these beam seat types on tier 40-43 A and B, 43-50 A, 74-77 A and B, and 77-80 A. No other dimensions or engineering details are being changed.

Please give us your approval to this substitution.

Yours very truly,

R. C. Smith
Project Manager

cc: R. Monti (PONYA)
M. Gerstman (TRCC)
A. Barkshire (SHCR)
J. Davis (PCF)
SKILLING, HELLE, CHRISTIANSEN, ROBERTSON
Consulting Structural and Civil Engineers - 230 Park Avenue, New York, N.Y. 10017 - Mm. 914-574

May 2, 1969

Fort of New York Authority
Office of the Construction Manager
20 Church Street
New York, New York

Attention: Mr. R. X. Monti

Reference: The World Trade Center
Contract WTC-214-00, PCF
Material Substitution

Gentlemen:

Please refer to PCF letter FP-102 dated April 4, 1969 attaching sheets 1 and 2 of 2 titled "Material Substitutions".

All material substitutions shown on the two (2) sheets prepared by PCF are approved by SDCP.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

cc: Mr. L. Feld, PUTA
Mr. E. Symes, PCF

JWile

bcc: Mr. A. Barkahire
The Port of New York Authority
111 Eighth Avenue - Room 300
New York, New York 10011

Attention: Mr. R. H. Mouti

Reference: World Trade Center
Contract WTC 211.00
PCP Project D-6

Subject: Material Substitutions

Gentlemen:

We have so far received only the point in fabrication of the materials on hand.

In placing the original cut, we had to make allowances for cutting, attempting to hold these materials to the precision and insufficiency in the yield and/or thickness. In the event we are holding these problems which could be arrived at to suit the requirements, we had to make revision of the sheet metal and substitute materials, drawings, and control sheets.

The attached list shows that we are proceeding immediately on this basis. The only exceptions are mechanical floor unit 811, which we downgraded 5 k.s.i. The mill test report for this material, heat #L8799 (copy attached) gives physical properties above design requirements.

If you have any comments, please advise us as soon as possible.

Yours very truly,

R.C. Symes, Project Manager

RCS: ca
Attachments
cc: J. White (SHCR)
M. Gorstman (TRCC)
Appendix G

PACIFIC CAR AND FOUNDRY COMPANY

Attachment to letter PCF #F-202

Sheet 1 of 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sides</td>
<td></td>
<td></td>
<td>PL 2 Col 1 and 2</td>
<td>FV 100 x 1/4"</td>
<td>FY</td>
</tr>
<tr>
<td>1156</td>
<td>A 407-53-50</td>
<td></td>
<td>PL 2 Col 1, 2 and 3</td>
<td>FV 100 x 1/4"</td>
<td>FY</td>
</tr>
<tr>
<td>1157</td>
<td>A 407-52-49</td>
<td></td>
<td>PL 2 Col 1</td>
<td>FV 100 x 1/4"</td>
<td>FY</td>
</tr>
<tr>
<td>1172</td>
<td>A 212-36-53</td>
<td></td>
<td>PL 2 Col 1</td>
<td>FV 100 x 1/4"</td>
<td>FY</td>
</tr>
<tr>
<td>1125</td>
<td>A 333-34-51</td>
<td></td>
<td>PL 1 Col 1</td>
<td>FV 55 x 2 1/8"</td>
<td>FY</td>
</tr>
<tr>
<td>1437</td>
<td>B 357-13-10</td>
<td></td>
<td>PL 1 Col 1</td>
<td>FV 55 x 2 1/8"</td>
<td>FY</td>
</tr>
<tr>
<td>1441</td>
<td>B 303-12-10</td>
<td></td>
<td>PL 1 Col 3</td>
<td>FV 55 x 2 1/8"</td>
<td>FY</td>
</tr>
<tr>
<td>1471</td>
<td>B 157-12-13</td>
<td></td>
<td>PL 1 Col 1</td>
<td>FT 50 x 2 1/16"</td>
<td>FY</td>
</tr>
<tr>
<td>1472</td>
<td>B 103-16-13</td>
<td></td>
<td>PL 1 Col 3</td>
<td>FT 50 x 2 1/16"</td>
<td>FY</td>
</tr>
<tr>
<td>1513</td>
<td>B 259-13-10</td>
<td></td>
<td>PL 1 Col 1 and 2</td>
<td>FT 50 x 2 1/16"</td>
<td>FY</td>
</tr>
<tr>
<td>1539</td>
<td>B 127-17-14</td>
<td></td>
<td>PL 1 Col 1</td>
<td>FT 50 x 2 1/16"</td>
<td>FY</td>
</tr>
<tr>
<td>1590</td>
<td>B 109-14-11</td>
<td></td>
<td>PL 1 Col 1</td>
<td>FT 50 x 2 1/16"</td>
<td>FY</td>
</tr>
<tr>
<td>1611</td>
<td>B 318-17-14</td>
<td></td>
<td>PL 1 Col 1</td>
<td>FT 45 x 2 1/16"</td>
<td>FY</td>
</tr>
<tr>
<td>1617</td>
<td>B 188-17-14</td>
<td></td>
<td>PL 1 Col 1</td>
<td>FT 45 x 2 1/16"</td>
<td>FY</td>
</tr>
<tr>
<td>1617</td>
<td>B 321-13-10</td>
<td></td>
<td>PL 1 Col 2</td>
<td>FT 42 x 1 7/8"</td>
<td>FY</td>
</tr>
<tr>
<td>1625</td>
<td>B 409-11-9</td>
<td></td>
<td>PL 1 Col 3</td>
<td>FT 65 x 1 7/16 x 24'1</td>
<td>FY</td>
</tr>
<tr>
<td>92</td>
<td>A 100-50-52</td>
<td></td>
<td>PL 1 Col 2</td>
<td>FT 100 x 1 1/8"</td>
<td>FY</td>
</tr>
<tr>
<td>95</td>
<td>A 300-58-60</td>
<td></td>
<td>PL 1 Col 1</td>
<td>FT 60 x 13/16"</td>
<td>FY</td>
</tr>
</tbody>
</table>
Material Substitutions

Attachment to PCF Letter PP-202

Sheet 2 of 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>corner</td>
<td>A 300-50-52</td>
<td>PL 1 Col 2</td>
<td>FY 60 x 1 1/8"</td>
<td>r</td>
</tr>
<tr>
<td>116</td>
<td>B 200-18-16</td>
<td>PL 1 Col 1</td>
<td>FY 65 x 2 1/16"</td>
<td>r</td>
</tr>
<tr>
<td>120</td>
<td>B 100-23-21</td>
<td>PL 1 Col 1</td>
<td>FY 60 x 1 5/8"</td>
<td>F</td>
</tr>
<tr>
<td>121</td>
<td>A 100-21-19</td>
<td>PL 1 Col 1</td>
<td>FY 60 x 1 11/16"</td>
<td>F</td>
</tr>
<tr>
<td>tech.</td>
<td>A 406-43-40</td>
<td>PL 2 Col 2</td>
<td>FY 80 16 3/8 x 3/8"</td>
<td>F</td>
</tr>
<tr>
<td>21</td>
<td>A 248-43-40</td>
<td>PL 1 Col 1</td>
<td>FY 65 x 1 5/16"</td>
<td>F</td>
</tr>
</tbody>
</table>
Appendix G

SKILLING - HELLE - CHRISTIANSEN - ROBERTSON
Consulting Structural and Civil Engineers • 230 Park Avenue, New York, N. Y. 10017 • Mf. 9-5877

John B. Skilling • Helge J. Helle • John V. Christiansen • Leslie E. Robertson

June 11, 1968

Port of New York Authority
Office of the Construction Manager
30 Church Street • Room 1119
New York, New York 10007

Att: Mr. R. M. Monti

Reference: The World Trade Center
Contract WTC-213.00, Pittsburgh-Des Moines
Panels 1546, 15/B, Plate TD7

Gentlemen:

Mr. Fish of FDM has contacted SHCR by telephone May 26, 1968 requesting permission to use Plates TD7 of 3/4 inch thickness in lieu of 5/8 and 1/2 inch plates presently shown in the Drawings. This request is approved by SHCR. Plates TD7, occur at the top of spandrels at reference level D (7th Floor level).

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

cc: Lester Feld — PNYA
H. M. Fish — FDM
William Thomas — PTL
December 18, 1967

Pittsburgh-Des Moines Steel Company
Neville Island
Pittsburgh, Pennsylvania 15225

Attention: Mr. H.M. Fish

Subject: The World Trade Center – Contract WTC 213.00 – Approval of Thickness Substitutions on E-1 Plates

Gentlemen:

My letter of September 29, 1967 granted approval to increase the thickness of certain E-1 plates in accordance with the Pittsburgh-Des Moines sketch No. QT-1 subject to the clarification of several items. Your disposition of these items as outlined in the Pittsburgh-Des Moines letter of October 17, 1967 has been reviewed and found to be satisfactory.

This will confirm that this change is approved subject to the understanding that there will be no additional cost to the Authority from Pittsburgh-Des Moines and that the Authority will not backcharge Pittsburgh-Des Moines for the additional design costs incurred in reviewing this request.

Very truly yours,

[Signature]

K.M. Monti
Construction Manager
The World Trade Center

CC: J. Endler (TRCC), L. Robertson (SGHR), H. Yessler
October 26, 1967

Mr. R. H. Hunt, Sr.
Construction Manager
The World Trade Center

Attached is an October 17, 1967 letter from the fabricator in which he comments on the conditions for approval of substitution of materials contained in my letter dated September 29, 1967. Kindly review these comments and advise the undersigned as to what information or action is now required from the fabricator in order that final approval can be given to this request for substitution. Also, advise as to the time and cost of design for this change.

Very truly yours,

THE PORT OF NEW YORK AUTHORITY

[Signature]

R.C.

CC: Brown, Endler (TRAC), Feld, Tessler

R.O.C.
Mr. R. M. Monti
Construction Manager
Room 1119
The Port of New York Authority
30 Church Street
New York, New York 10007

Re: The World Trade Center
Contract WTC-213.00
PDM Contract 17078 & 17138

Gentlemen:

We wish to thank you for reviewing our letter of August 30, 1967 and granting us permission to increase the thickness of plates E1 as outlined on attached sheet, No. QT-1, for eleven specified columns. We understand that this permission is contingent upon our compliance with certain provisions as outlined in your letter of September 29, 1967, and submit the following comments:

1. Material Specifications:
 Proposed plates E1 will have the same thickness and yield strength as the adjacent plates F-1, now called for, and therefore will comply with the same material specifications now included in section 203 of the specification.

2. Welding Procedure:
 Welds for proposed plates E1 will be made under the same conditions as welds now called for on plates F-1 and welding procedures with provision for preheat and interpass temperatures will be submitted for both E1 and F-1 plates at an early date.
Appendix G

Pittsburgh-Des Moines Steel Company

-2-

Mr. R. M. Monti
BDM Contract 17078 & 17130

October 17, 1967

We recognize that this proposed change in El plates for eleven columns is at our request and no additional cost to the Authority will be made by Pittsburgh-Des Moines Steel Company for this change. We also recognize that this proposed change in plates El will require redesign work by Skilling-Helle-Christiansen-Robertson structural engineers and revision of design drawings effected by the change. If there will be charge to us or appreciable delays due to this redesign work, we request that we be advised prior to final approval of this change.

Very truly yours,

PITTSBURGH-DES MOINES STEEL COMPANY

H. M. Fish, Project Manager

cc: Mr. H. A. Tessler
Manager, Project Planning
The Port of N.Y. Authority
Room 300
111 Eighth Avenue
New York, New York 10011
w/one copy of QT-1

Mr. J. Endler, Asst. V.P.
Tishman Realty & Construction Co.
11th Floor, 30 Church Street
New York, New York 10007
w/one copy of QT-1
PROPOSED CHANGE: PLATES E1 - DECREASE YIELD STRENGTH (FY) AND INCREASE THICKNESS (t) SO THAT PLATES E1 ARE THE SAME AS PLATES E4, IN THE FOLLOWING CASES:

<table>
<thead>
<tr>
<th>Panels No.</th>
<th>Present Design FY</th>
<th>t</th>
<th>Proposed Design FY</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>1428, 1458</td>
<td>50</td>
<td>5</td>
<td>42</td>
<td>6</td>
</tr>
<tr>
<td>2303, 2338</td>
<td>55</td>
<td>5/8</td>
<td>42</td>
<td>3/4</td>
</tr>
<tr>
<td>2458</td>
<td>60</td>
<td>3/4</td>
<td>45</td>
<td>4/4</td>
</tr>
<tr>
<td>2518</td>
<td>65</td>
<td>2/3</td>
<td>45</td>
<td>3/5</td>
</tr>
<tr>
<td>315B, 318B</td>
<td>50</td>
<td>5</td>
<td>42</td>
<td>6</td>
</tr>
<tr>
<td>409B</td>
<td>55</td>
<td>2/3</td>
<td>42</td>
<td>3/5</td>
</tr>
<tr>
<td>4278, 430B</td>
<td>60</td>
<td>3/8</td>
<td>45</td>
<td>4/4</td>
</tr>
</tbody>
</table>

* NOTE: IN PANEL 2458, YIELD AND THICKNESS OF PROPOSED PLATE E1 GIVE SLIGHTLY LESS TOTAL STRENGTH THAN YIELD AND THICKNESS OF PRESENT DESIGN. IF THE DIFFERENCE CANNOT BE ABSORBED BY DESIGN SAFETY MARGIN, FURTHER CONSIDERATION MAY BE REQUIRED IN THIS PANEL.
December 13, 1967

Pittsburgh-Deer Hoiness Steel Company
Neville Island
Pittsburgh, Pennsylvania 15225

Attention: Mr. H.M. Fish

Subject: The World Trade Center - Contract 213.00 - Approval of Lukens' ASTM-AA41-Modified

Gentlemen:

Your November 24, 1967 letter which transmitted a Lukens Steel Company letter dated November 20th with accompanying Lukens specification for ASTM-AA41-Modified Steel revised November 16, 1967, has been reviewed and approval of this steel is hereby granted provided it does not result in additional costs to the Authority.

Sincerely,

R.M. Harri
Construction Manager
The World Trade Center

CC: Messrs. L. Robertson (SHGR), W.R. Pressler (PTL) - with attach.
Mr. R. M. Monti
Construction Manager
Room 1119
The Port of New York Authority
30 Church Street
New York, New York 10007

Re: The World Trade Center
 Contract WTC-213.00
 PDM Contract 17078 & 17138

Gentlemen:

As requested in your letter of October 27, 1967 we are enclosing one (1) copy of Lukens Steel Company's specification for ASTM-A441-Modified.

With the receipt of this specification we trust you will give us final approval for the thirty-six E2 plates requested in our letter of August 31, 1967. If possible we will appreciate a phone call so we can release Lukens Steel Company and your formal letter to follow.

Very truly yours,

PITTSBURGH-DES MOINES STEEL COMPANY

[Signature]

H. M. Fish, Project Manager

cc: Mr. H. A. Tessler

Mr. Al Guttentag

HAMMOND PRODUCTS
October 27, 1967

Pittsburgh-Des Moines Steel Co.
Neville Island
Pittsburgh, Pennsylvania 15225

Attention: Mr. H. M. Fish

Re: The World Trade Center - Contract WTC-213.00 - Approval of Lukens A-441 Steel

Gentlemen:

Approval for the use of the Lukens Steel Company's specification for A441-66 steel was granted in my letter of October 13th, subject to conformance with six items. Please be advised that Item No. 5 - Table II - Tensile requirements of AS2M A441-66 shall be deleted and restated as follows:

<table>
<thead>
<tr>
<th>Table II - Tensile Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Place only</td>
</tr>
<tr>
<td>Up to 1/4" inclusive</td>
</tr>
<tr>
<td>Over 1/4" to 3" max</td>
</tr>
<tr>
<td>Tensile strength, min, ksi</td>
</tr>
<tr>
<td>Yield point, min, ksi</td>
</tr>
<tr>
<td>Elongation in 2", min, percent</td>
</tr>
<tr>
<td>Elongation in 2", min, percent</td>
</tr>
<tr>
<td>(a) Refer to paragraph 5(a)</td>
</tr>
<tr>
<td>(b) Refer to paragraph 5(b)</td>
</tr>
</tbody>
</table>

This change is a result of direct discussions between the Authority's Consultant, Skilling-Belle-Christensen-Robertson, and the Lukens Steel Co. Kindly obtain from the Lukens Steel Company, a specification for this material which incorporates all of the modifications and forward it to the underigned for the purpose of confirming these modifications.

Sincerely,

E. M. Monti
Construction Manager
The World Trade Center

Copy to: Mosers, J. R. Endler (TRCC)
October 27, 1967

Port of New York Authority
Office of the Construction Manager
30 Church Street
New York, New York

Attention: Mr. R. Ventri

Reference: The World Trade Center
Contract: WTC-213-05, PDM
Steel Plate Substitutions (ASTM A441 Mod.)

Gentlemen:

Please refer to our letter of October 11, 1967, discussing the above captioned subject. Item 5, Table II, shown on page 2 of our letter shall be replaced with the following:

5. Table II - Tensile Requirements of ASTM A441-66 shall be replaced as follows:

<table>
<thead>
<tr>
<th>Table II - TENSILE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate only</td>
</tr>
<tr>
<td>Up to 1/2" inclusive, Over 1/2" to 2" max.</td>
</tr>
</tbody>
</table>

- Tensile strength, min. ksi: 75
- Yield point, min. ksi: 60
- Elongation in 2", min. per cent: 18(a)
- "Elongation in 2", min. per cent: 24.5(b)

(a) Refer to paragraph 5(a)
(b) Refer to paragraph 5(b)
SKILLING-HELLE-CHRISTIANSEN-ROBERTSON

E. Hart - 2 - October 17, 1967

This revision is in accordance with final data received from Lukens Steel Company by telephone on Monday, October 16, 1967.

PDH should ask Lukens to furnish a final copy of Lukens' specification of this material confirming the data in this letter and our letter of October 11, 1967.

Very truly yours,

SKILLING-HELLE-CHRISTIANSEN-ROBERTSON

James White

Mike

Get Mr. L. Feld, TWA

Mr. W. Fish, TWA

Get KE
SKILLING—HELLE—CHRISTIANSEN—ROBERTSON
Consulting Structural and Civil Engineers • 210 Park Avenue, New York, N.Y. 10017 • Mx. 9.5374
John B. Skilling • Holge J. Helle • John V. Christiansen • Leslie E. Robertson
Consultants
HAROLD L. WORTHINGTON
JACOB F. WETZ
May 3, 1968

Port of New York Authority
Office of the Construction
Manager • Room 1119
30 Church Street
New York, New York 10007
Attention: Mr. R. N. Monti

Reference: The World Trade Center
Contract WTC-213.00, Pittsburgh-Des Moines
Radiographic Inspection

Gentlemen:

Mr. Fish of PDM has asked permission to revise the radiographic inspection
provisions presently included in the PDM quality control program as they
relate to the full-penetration butt weld joining spandrel plate D4 (shown
on the shop drawings as plate "c") and plate E3 (shown on the shop draw-
ings as plate "k"). SHCR has reviewed this request, and suggest that the
following program be followed.

1. The first 16 column trees in Tower A shall have one radiograph
taken at each end of the subject full-penetration weld.

2. Should no defective weld be found, one radiograph at one end of
the subject weld will be required for each remaining column tree.

3. For each defective length of weld found, one additional column
tree shall be subjected to one radiograph at each end of the sub-
ject weld.
4. Where a radiograph shows a length of defective weld, the adjacent length of weld (approximately 16”) shall be radiographed. If no additional defects are indicated, the subject weld will require no additional length to be radiographed.

5. All defects found by radiography shall be repaired and shall be subjected to re-inspection by radiography.

This program will concentrate radiographic testing performed by PDM on the ends of the full-penetration weld along Reference Line No. 2 (approximately 96-3/4” long), thereby concentrating on the most critical lengths of the subject weld. The additional benefit of the above program is that the amount of radiography required for a given panel is greatly reduced in comparison to the 100 percent requirement stated in the PDM quality control program. The overall percentage of weld inspected in the program outlined above is comparable to that originally required in the PDM quality control program. We suggest that 16 radiographic tests be allocated by PDM to random assignment by the PTL inspector at locations selected by the PTL inspector after the start of fabrication of column-tree panels for Tower 3.

In order to make absolutely sure that there is no confusion in identifying the weld referred to in this letter, the weld under discussion is the full-penetration weld shown in detail 19, sheet 2-AB2-11, Drawing Book 2.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

cc: Mr. L. S. Feld, FNIA
 Mr. H. M. Fish, PDM
SKILLING - HELLE - CHRISTIANSEN - ROBERTSON
Consulting Structural and Civil Engineers - 210 Park Avenue, New York, N.Y. 10017 - M. 9-AS-74
John B. Skilling - Helge J. Helle - John V. Christiansen - Leslie E. Robertson

April 18, 1968

Port of New York Authority
Office of the Construction
Manager - Room 1119
30 Church Street
New York, New York 10007

Attention: Mr. R.M. Monti, Construction Manager

Reference: The World Trade Center
Contract WTC 217-00, Stanray
Magnetic particle testing

Gentlemen:

We have reviewed the Stanray letter dated March 26, 1968, requesting permission to inspect a minimum of ten percent of the linear footage of welds on one flange of one member out of each two fabricated members at such times that the rejection rate of welds allows the minimum inspection rate. We approve this change to the Stanray Pacific quality control program.

Very truly yours,

SKILLING, HELLE, CHRISTIANSEN, ROBERTSON

James White

Subject

cc: Mr. Lester Fuld, P.N.A.
 Mr. Robert Morris, STANRAY

bcc: Mr. Richard Spaun, SHCR, SE.