Analytical Modeling of Device–Circuit Interactions for the Power Insulated Gate Bipolar Transistor (IGBT)

ALLEN R. HEFNER, JR., MEMBER, IEEE

Abstract—The device–circuit interactions of the power insulated gate bipolar transistor (IGBT) for a series resistor–inductor load, both with and without a snubber, are simulated. An analytical model for the transient operation of the IGBT, previously developed, is used in conjunction with the load circuit state equations for the simulations. The simulated results are compared with experimental results for all conditions. Devices with a variety of base lifetimes are studied. For the fastest devices studied (base lifetime = 0.3 μs), the voltage overshoot of the series resistor–inductor load circuit approaches the device voltage (500 V) for load inductances greater than 1 μH. For slower devices, though, the voltage overshoot is much less, and a larger inductance can therefore be switched without a snubber circuit (e.g., 80 μH for a 7.1-μs device).

The simulations are used to determine the conditions for which the different devices can be switched safely without a snubber protection circuit. Simulations are also used to determine the required values and ratings for protection circuit components when protection circuits are necessary.

NOMENCLATURE

A Device active area (cm²).

Iₜ, Iₚ Electron, hole current (A).

I_B, I_C Base, collector current (A).

I_T = I_B + I_C, anode current (A).

I_MAX = MOSFET channel current (A).

I_L Inductor current (A).

I_E = Emitter current (A).

n, p Electron, hole carrier concentration (cm⁻³).

δp Excess carrier concentration (cm⁻³).

P₀, δp at x = 0 (cm⁻³).

n_i Intrinsic carrier concentration (cm⁻³).

n_eff Effective base carrier concentration (cm⁻³).

Q Total excess carrier base charge (C).

ε_s Dielectric constant of silicon (F/cm).

q Electronic charge (1.6 × 10⁻¹⁹ C).

μ_n, μ_p Electron, hole mobility (cm²/V s).

D_n, D_p Electron, hole diffusivity (cm²/s).

τ_HL Base high-level lifetime (s).

b = μ_n/μ_p, ambipolar mobility ratio.

D = 2D_nD_p/(D_n + D_p), ambipolar diffusivity (cm²/s).

L = D_T_HL, ambipolar diffusion length (cm).

x Distance in base from emitter (cm).

W_B Metallurgical base width (cm).

W Quasi-neutral base width (cm).

W_D Collector–base depletion width (cm).

C_D = Aε_n/W_D, collector–base depletion capacitance (F).

N_D Base doping concentration (cm⁻³).

K_P MOSFET channel transconductance (A/V²).

V_T Gate-source voltage (V).

V_T MOSFET channel threshold voltage (V).

V_B Built-in junction potential (V).

V_C Applied collector–base voltage (V).

V_E Applied emitter–base voltage (V).

V_A Device anode voltage (V).

V_AN Anode supply voltage (V).

V_S Snubber voltage (V).

V_SS Snubber supply voltage (V).

C_S Snubber capacitance (F).

L_L Series load inductance (H).

R Series load resistance (Ω).

R_B Snubber bleeder resistance (Ω).

R_D Diode resistance (Ω).

I. INTRODUCTION

RECENTLY, a new power device structure has been introduced that is designed to overcome the high on-state loss of the power MOSFET while maintaining the simple gate drive requirements of that device [1], [2]. The devices are controlled at the input by a voltage, such as for a MOSFET, but the output current is characteristic of that of a bipolar transistor, hence the name insulated gate bipolar transistor (IGBT). A schematic diagram of the structure of two of the several thousand cells of an n-channel IGBT is shown in Fig. 1.

The IGBT functions as a bipolar transistor that is supplied base current by a MOSFET [3]. This basic equivalent circuit of the IGBT is shown in Fig. 2 and the regions of each of these components are labeled on the right half of Fig. 1. The bipolar transistor of the IGBT consists of a low-doped wide base, with the base virtual contact near the collector end of the base. This transistor has a low gain and is in the high-level injection condition for the practical current density
range of the IGBT. To model the low-gain high-level injection characteristics of the bipolar transistor of the IGBT, ambipolar transport must be used to describe the transport of electrons and holes in the base, and the quasi-static approximation cannot be used to describe the transient operation [4]-[7].

An analytical model has been developed [4], [5] that accurately simulates the on-state current–voltage characteristics and the transient current and voltage waveforms of the IGBT for general loading conditions. In this paper, the analytical device model is used in conjunction with the load circuit state equations to simulate the current and voltage switching transient waveforms for a series resistor–inductor load with a snubber protection circuit added. For a 30-Ω load resistor, it is shown that a protection circuit is needed to prevent excessive voltage overshoot when the series load inductance is larger than 1 μH for a 0.3-μs device, 40 μH for a 2.4-μs device, and 80 μH for a 7.1-μs device. The model is then used to select the appropriate protection circuit components. The simulated current and voltage waveforms are compared with measurements for all of the conditions studied.

II. ANALYTICAL IGBT MODEL

In this section, the previously developed analytical model that describes the steady-state and transient operation of the IGBT is presented [4], [5]. This model is based on the equivalent circuit of Fig. 2. The model was derived using ambipolar transport to describe the transport of electrons and holes in the low-doped epitaxial layer. The model differs substantially from the quasi-static approach for transient conditions. The description given in this paper is for an n-channel device.

A. IGBT Device Physics

Because of the IGBT structure, the bipolar transistor base current (electrons) supplied by the MOSFET is injected at the collector end of the base. In the model, the region of the device at the epitaxial layer edge of the reverse-biased epitaxial layer–body junction, where the excess carrier concentration is zero, is designated as the contact between the bipolar transistor base and the MOSFET drain. The electron current that enters this region is equal to the MOSFET current, and the hole current there is the collector current of the bipolar transistor. A schematic of the flow of carriers in the base of the bipolar transistor of the IGBT is shown in Fig. 3.

Because the base of the bipolar transistor of the IGBT is in the high-level injection condition for the practical current density range of the device \(n = p \) and the transport of electrons and holes in the base are described by the ambipolar transport equations [8]

\[
I_n = \frac{b}{1 + b} I_T + q A D \frac{\partial p}{\partial x} \quad (1)
\]

\[
I_p = \frac{1}{1 + b} I_T - q A D \frac{\partial p}{\partial x} \quad (2)
\]

Notice that both of these expressions depend on the total current so that the transports of electrons and holes are coupled by \(I_T \) and cannot be treated independently. The time-dependent ambipolar diffusion equation is given by

\[
\frac{\partial^2 \rho}{\partial x^2} = \frac{\partial \rho}{\partial t} = \frac{1}{D} \frac{\partial \rho}{\partial t} \quad (3)
\]

This equation is valid only for devices in which \(I_T \) is independent of position, which is satisfied for the bipolar
transistor of the IGBT because the base contact is at the collector end of the base.

B. Steady State

In this subsection, a system of parametric equations is presented for the steady-state collector and base currents, the excess carrier concentration, and the emitter-base voltage of the bipolar transistor of the IGBT. The bipolar transistor equations are then combined with a simple model for the MOSFET portion of the device to describe the on-state current voltage characteristics of the IGBT. The bipolar transistor analysis is performed using the coordinate system defined in Fig. 4.

1) Excess Carrier Concentration: The collector-base junction of the bipolar transistor of the IGBT is reverse-biased for forward conduction, and the collector-base junction depletion width is given by

\[w_{bcj} = \frac{d^2}{v_{bi} + \frac{v_{bc}}{s_{NB}}} \] (4a)

where \(v_{bi} = 0.7 \) V. The width of the quasi-neutral base is then given by

\[W = W_B - W_{bcj}. \] (4b)

The excess carrier concentration at \((x = W) \) is zero, and the solution to the steady-state ambipolar diffusion equation ((3) with \(\partial n / \partial t = 0 \) in the base is

\[\delta p(x) = \frac{P_0}{n_i} \sinh \left(\frac{(W - x)/L}{\sinh(W/L)} \right) \] (5)

where the carrier concentration at the base edge of the emitter-base junction \(P_0 \) is used as a parameter for the development of the model. The total excess carrier charge in the base is found by integrating this carrier distribution through the base

\[Q = qP_0 A L \tanh(W/2L). \] (6)

This parameter is used as an initial condition for the transient analysis.

2) Collector and Base Currents: Using the quasi-equilibrium approximation and assuming high-level injection in the base, the electron current injected into the emitter is given by

\[I_e(x = 0) = I_{sat}(P_0^2/n_i^2) \] (7)

where \(I_{sat} \) is the emitter electron saturation current and takes the emitter parameters into account. The base and collector currents are then obtained from (1), (2), (5), and (7):

\[I_B = \frac{P_0^2 I_{sat}}{n_i^2} + \frac{qP_0 A D}{L} \left(\coth \left(\frac{W}{L} \right) - \frac{1}{\sinh(W/L)} \right) \] (8)

\[I_C = \frac{P_0^2 I_{sat}}{bn_i^2} + \frac{qP_0 A D}{L} \left(\coth \left(\frac{W}{L} \right) - \frac{1}{b \sinh(W/L)} \right) \] (9)

where the base current is \(I_e(x = W) \) and the collector current is \(I_r(x = W) \) (see Figs. 2 and 3). The total IGBT anode current is given by \(I_T = I_B + I_C \) and is used as an initial condition for the transient analysis.

3) Anode Voltage: Because the base contact has been defined to be at the collector edge of the quasi-neutral base, the emitter-base voltage of the bipolar transistor includes the potential drop across the conductivity modulated base. The emitter-base voltage drop is given in terms of the parameter \(P_0 \) by [4]–[7]

\[V_{eb} = \frac{kT}{q} \ln \left(\frac{P_0^2}{n_i^2} \right) + \frac{I_T W}{\mu_n A n_{eff} q} - \frac{D}{\mu_n} \ln \left(\frac{P_0 + N_B}{N_B} \right) \] (10)

where

\[n_{eff} = \frac{(W/2L) \sqrt{N_b^2 + P_0^2 \sinh^2(W/L)}}{\arctanh \left(\frac{\sqrt{N_b^2 + P_0^2 \cosh^2(W/L)} \tan(W/2L)}{[N_b + P_0 \cosh(W/L) \tan(W/2L)]} \right)} \] (11)

The first term on the right side of (10) can be identified as the emitter-base junction high-level injection potential drop, the second term can be identified as the resistive drop across the conductivity modulated base where \(n_{eff} \) is the effective carrier concentration that depends on \(P_0 \), and the last term can be identified as the high-level injection diffusion potential due to the difference in carrier concentration across the base.

The on-state anode-cathode voltage drop of the IGBT is given by the sum of the emitter-base voltage and the collector-base voltage (Fig. 2),

\[V_A = V_{eb} + V_{bc} \] (12)

where the small series resistance due to bonding wires [4]–[6] is neglected in this paper for simplicity. It can be seen from Fig. 2 that \(I_{max} = I_B \) and that the collector-base voltage is equal to the drain-source voltage of the MOSFET. Because the MOSFET is in its linear region when the IGBT is in the
on-state,

\[V_{bc} = \frac{I_p}{K_p(V_p - V_T)} \] (13)

where the parameter \(K_p \) is equal to the product of the oxide capacitance, the surface electron mobility, and the effective width-to-length ratio of the MOSFET cells. The anode voltage is given in terms of \(P_0 \) using (8)–(13), which is obtained in terms of \(I_T \) from (8) and (9). Therefore, the IGBT on-state anode–cathode voltage drop is given explicitly in terms of anode current and gate voltage, assuming \(V_{bc} \approx 0 \) in (4). \(V_A \) is used as an initial condition for the transient analysis.

C. Switching Transient

In this section, an analytical model is presented that describes the switching transient behavior of the IGBT. The basic model consists of two state equations that describe the state of the anode voltage \(V_A \) and the charge \(Q' \) of the IGBT. These equations are integrated simultaneously with the state equations of the load circuit using the initial conditions from the steady-state device analysis to obtain the current and voltage versus time. Parameters that change with time are distinguished with a prime for the transient analysis.

To turn off the IGBT, the gate voltage is switched below threshold, which rapidly removes the MOSFET channel current and eliminates the base current to the bipolar transistor. The bipolar transistor collector current falls more slowly though, since the stored excess carriers in the now open-base bipolar transistor must decay. For simplicity, the effects of the driving circuit are not considered in this work, but the analysis presented in this paper is extended to include the driving circuit in [9]. The simulations and measurements of this work are made for rapid gate voltage transitions, so the MOSFET portion of the device is turned off rapidly, and the bipolar base current is zero during the transient.

Because the boundary conditions on the electron and hole currents are different between the steady-state and transient conditions, the shape of the excess carrier distribution and the relationship between the current and the total excess carrier charge in the base are different during the transient than during steady state. This means that the commonly used quasi-static approximation is not valid for the IGBT. The quasi-static approximation assumes that the relationship between the total base charge and the current is the same during the transient as it is for similar steady-state conditions [10]. The difference exists for two reasons: 1) the electron and hole transport equations are coupled for ambipolar transport so the collected hole current is changed with the removal of the MOSFET electron current which is large for the IGBT because of the low current gain, and 2) during anode voltage transitions, the collector–base depletion width changes faster than the base-transit time for excess carriers so a significant component of current is required to redistribute the carriers into the changing base width.

1) Excess Carrier Concentration: During anode voltage transitions, the collector–base depletion width changes with time and is given in terms of the collector–base voltage by (4a). Thus the quasi-neutral base width, given by (4b), also changes with time. Because the base width changes with changing voltage, the excess carrier charge \(Q' \) is swept into a narrower neutral base as the voltage is increased. This is illustrated in Fig. 5 where the change in the local excess carrier concentration \(\Delta p \) due to the change in the base width \(\Delta W \) is indicated. A divergence in the electron and hole currents and a corresponding curvature in the carrier distribution is required to bring about this changing local carrier concentration.

A first-order solution to (3) for the conditions of a moving collector–base depletion edge is given by [4, 5]

\[
\frac{dp'(x)}{dt} = \frac{1}{\overline{W'}} \left[x - \frac{x^3}{W'} \right] - \frac{P_0}{W' D} \left[\frac{x^2}{2} - \frac{W' x}{6} - \frac{x^3}{3W'} \right] \frac{dW'}{dt} \tag{14}
\]

where the collector–base depletion edge velocity \(dW'/dt \) is due to the expanding collector–base depletion region during voltage transitions according to (4). This carrier distribution is shown in Fig. 6 and has the curvature necessary to change the carrier distribution as indicated in Fig. 5 for a given collector–base depletion edge velocity. For a constant anode voltage, only the first term on the right side of (14) remains. This term differs from the steady-state carrier distribution because the electrons and holes that recombine in the base are no longer supplied by the divergence of their current densities as they are in steady state but are only supplied by (and thus reduce) the local excess carrier concentration.

During the transient, the excess carrier base charge decays by recombination in the base and by electron injection into the emitter,

\[
\frac{dQ'}{dt} = - \frac{Q'}{\tau_{HL}} - I_n(x = 0). \tag{15}
\]
By integrating (14) through the base, the carrier concentration at the emitter edge of the base for the transient condition is given in terms of the total base charge by $P_0 = 2Q'/(qAW^2)$. Using (7) and (15), the rate of decay of the total excess base charge due to recombination and injection into the emitter is given by

$$\frac{dQ'}{dt} = -\frac{Q'}{r_{HL}} - \frac{4Q'^2I_{rec}}{W'^2A^2q^2n_i^2}$$

where W' is given in terms of voltage by (4).

2) Electron and Hole Currents: For the case in which the MOSFET current is zero during the transient, the electron current at the collector edge of the quasi-neutral base is equal to the displacement current of the collector-base junction depletion capacitance. Equating the displacement current to (1) evaluated at $x = W'$ gives

$$C_{bc} \frac{dV_n'}{dt} = \frac{b}{1 + b} I'_r + qAD \frac{\partial p'}{\partial x} \bigg|_{x=W'}.$$ \hspace{1cm} (17)

The last term on the right side of (17) is due to the collected hole current and is evaluated using the carrier distribution of (14):

$$-qAD \frac{\partial p'}{\partial x} \bigg|_{x=W'} = \frac{2D}{W'^2} Q' - \frac{Q'}{3W'} \frac{dW'}{dt}.$$ \hspace{1cm} (18)

The first term on the right side of this expression is a charge control term because this component of current is directly related to the charge that remains in the base and to the applied collector-base voltage (using (4)). The second term on the right side of this expression is the moving boundary redistribution component of current which depends on the rate of change of the collector-base depletion width as well as the charge and applied collector-base voltage.

3) Anode Voltage: The collector-base voltage is given in terms of anode voltage by (12), where the emitter-base voltage is held constant at its steady-state value for the transient analysis because the anode voltage is much larger than the emitter-base voltage during the transient. Therefore, $dV_n'/dt = dV_A'/dt$ and the rate of change of the base width W' is given in terms of the rate of change of anode voltage using (4). The voltage rate of rise is then obtained from (17) and (18):

$$\frac{dV_A'}{dt} = \frac{I'_r - (4D_p/W'^2)Q'}{C_{bc}[1 + (1/5)][1 + (Q'/3qAN_B/W')]}.$$ \hspace{1cm} (19)

in terms of the current I'_r, charge Q', and voltage V_A' using (4) and (12). The last term in brackets in the denominator is a result of the moving boundary redistribution effect on the collected current and is equal to one-third times the ratio of the total excess carrier charge Q' to the background mobile carrier charge of the undepleted base (qAN_BW'). This term appears as a multiplicative factor because the redistribution current is proportional to dV_A'/dt just as is the displacement current. Because most of the base is in the high-level injection condition, this term is large compared to 1 and the redistribution current has a dominant effect on the voltage rate of rise.

For large voltages, the effect of mobile carriers in the depletion region has a significant effect on W'. The space charge concentration in the depletion region is given by

$$N_B = N_B' + \left[I'_r(x = W')/qAV_{bus} \right].$$ \hspace{1cm} (20)

This effect is accounted for by calculating the space charge concentration given by (20) at each evaluation of (19) using an iterative procedure.

III. LOAD CIRCUIT STATE EQUATIONS

The state variables required to describe the IGBT during the transient operation are V_A' and Q'. The state equations of the IGBT are given by (16) and (19), which are functions of the excess carrier base charge Q', the anode voltage V_A', and the anode current I'_A. The current I'_A is determined by the state equations of the load circuit, where, in general, the load circuit contributes a state equation for each reactive element in the load. The switching current and voltage waveforms are then obtained for a given circuit by simultaneously integrating the state equations of the IGBT ((16) and (19)) with those for the load circuit using the initial values of the current, voltage, and charge from the steady-state device analysis. The simultaneous integration of the state variables is performed using a readily available subroutine called RKF45 (an automatic Runge-Kutta-Fehlberg method) [11].

As an example, the state equation contributed by the series resistor-inductor load circuit shown in Fig. 7 is

$$\frac{dI'_L}{dt} = \frac{1}{LL} \left(V_{AA} - R'I'_L - V_A' \right)$$ \hspace{1cm} (21)

where $I'_r = I'_L$. In this case, the state variables are I'_L, V_A', and Q'. Equations (16), (19), and (21) can also be reduced to describe clamped infinite inductive load switching or constant anode supply voltage switching, which results in a reduction of the number of state variables. To include the protection...
In this section, measurements of the switching transient characteristics of the IGBT for several loading conditions are compared with the simulations. Simplified loading conditions are first used to verify independently both of the device state equations ((16) and (19)). Equations (16), (19), and (21) are then used to simulate the current and voltage waveforms of the IGBT for the series resistor-inductor load and to determine the conditions for which the IGBT can be switched safely. Finally, for those conditions in which the IGBT cannot be switched safely with the series resistor-inductor load, (16), (19), and (21)–(23) are used to simulate the current and voltage waveforms of the series resistor-inductor load including the protection circuit of Fig. 8. The experimental verification and device simulations are performed for devices with different values of base lifetime and the physical parameters listed in Table I except that $W_b = 110 \mu m$ is used for the 0.3-μs device.

A. Device Model Verification

Verification of the steady-state IGBT model has been presented elsewhere [4]–[6] and will not be repeated here. To verify the IGBT transient model, both constant voltage and constant current conditions are examined, and results are compared for different voltages, currents, and device lifetimes. In doing this, both (16) and (19) are independently verified. The constant current condition is obtained by using a clamped inductive load with a large (~1 mH) inductance. Before the clamp voltage is reached, the large inductance requires the anode current to remain constant at the initial value determined by the steady-state conditions. The constant anode voltage condition is obtained for two different load circuits: 1) for clamped inductive load switching with a large clamp capacitor, the voltage remains constant after the clamp voltage is reached, and 2) for constant anode supply voltage switching ($R = 0$ and $L = 0$), the anode voltage is held constant with a large-valued low-inductance capacitor connected to the anode and the current is determined by varying the steady-state gate voltage.

First consider the current waveform for constant anode supply voltage switching, which is shown in Fig. 9. The current waveform consists of an initial rapid fall due to (but not equal to) the removal of the MOSFET current, followed by a slowly decaying phase due to remaining slowly decaying excess carriers in the base. After the MOSFET portion of the current is removed, the current waveform is described by (16) and (19). For the constant voltage condition, (19) reduces to an algebraic equation for the current in terms of charge

$$I_f = (4D_p / W_2^2) Q'$$

DEVICE MODEL PARAMETERS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_i</td>
<td>1.45×10^{16} cm$^{-3}$</td>
</tr>
<tr>
<td>μ_n</td>
<td>1500 cm2/V s</td>
</tr>
<tr>
<td>μ_p</td>
<td>450 cm2/V s</td>
</tr>
<tr>
<td>τ_n</td>
<td>1.05×10^{-12} s</td>
</tr>
<tr>
<td>τ_p</td>
<td>10^3 cm/s</td>
</tr>
<tr>
<td>N_{B0}</td>
<td>2×10^{13} cm$^{-3}$</td>
</tr>
<tr>
<td>A</td>
<td>0.1 cm2</td>
</tr>
<tr>
<td>W_b</td>
<td>93 μm</td>
</tr>
<tr>
<td>I_{dd}</td>
<td>6.0×10^{-14} A</td>
</tr>
<tr>
<td>K_p</td>
<td>0.36 A/V2</td>
</tr>
</tbody>
</table>
where W' is constant for constant anode voltages which are much larger than the emitter–base voltage, neglecting the effect of mobile carriers on the depletion region space charge concentration. The current versus time is then obtained by integrating (16). Because the current is equal to a constant times the charge, (16) indicates that the current decays exponentially with a time constant of t_{H} at low currents and that at high currents the rate is increased due to injection of electrons into the emitter.

Fig. 10 shows the measured slowly decaying portion of the current decay waveform over several decades on a semi-log scale. Notice that the current decay rate is nearly constant in the intermediate current range and that it increases at both low and high currents. The decay rate increases at low currents (below 20 mA) because the base leaves the high-level injection condition and the low-level lifetime is smaller than the high-level lifetime. All subsequent measured and simulated results are for currents above 20 mA where the assumption of high-level injection is valid. This is a practical current range for the IGBT's studied in this work. The increased decay rate at high currents is due to injection of electrons into the emitter as discussed in the last paragraph. In the intermediate current range, the base is in high-level injection and the injection of electrons into the emitter is negligible. Therefore, the decay rate in the intermediate current range is used to extract the high-level base lifetimes [4–6].

Next, consider the clamped inductive load with a large inductor (~ 1 mH) and a large clamp capacitor. Before the clamp voltage is reached, the large inductance requires the anode current to remain constant at the initial value determined by the steady-state conditions. Measured and simulated large inductor voltage waveforms are compared in Fig. 11 for devices with different base lifetimes at a current of 10 A. The simulated voltage waveforms were obtained by simultaneous integration of (16) and (19) with I_T equal to the steady-state current. Notice that the voltage rate of rise varies significantly with device base lifetime. This is caused by the effective increase in the collector–base capacitance due to the moving boundary redistribution current. After the clamp voltage is reached, the anode voltage remains equal to the clamp voltage, and the current decays similarly to that of the constant anode supply voltage switching shown in Fig. 9. The initial rapid fall in current is due to the removal of the moving boundary redistribution current and the collector–base junction depletion capacitance displacement current. Because the anode voltage is constant, the current decay is determined using (24) and (16) with the initial condition of the charge that remains at the time the clamp voltage is reached.

The ratio of the initial value of the slowly decaying portion of the current decay waveform to the magnitude of the initial rapid fall in current is defined as

$$\beta_u = \frac{I_T(0^+)}{I_T(0^-) - I_T(0^-)}$$

where $I_T(0^-)$ is the steady-state anode current given by the sum of (8) and (9), and $I_T(0^+)$ is the initial value of the slowly decaying portion (see Fig. 9). Fig. 12 compares the measured and calculated values of β_u for constant anode supply voltage switching ($\beta_{u,v}$) and β_u for large inductor load switching ($\beta_{u,L}$) versus current both at two different...
Fig. 12. Comparison of theoretical (solid curves) and measured (○ ● △ ▲) values of \(\beta_{tr} \) versus current for both constant anode supply voltage switching and clamped inductive load switching at 50 V and 150 V for 7.1-μs device. Dashed curves are the calculated values of \(\beta_{tr,L} \) neglecting decay of charge during voltage transition.

Fig. 13. Series 31-Ω resistor, 5.5-μH inductor load current and voltage waveforms for devices with different lifetimes. (a) Measured. (b) Simulated.

voltages. The values of \(\beta_{tr,L} \) differ from the values of \(\beta_{tr,V} \) because the excess carrier base charge is swept into a narrower base (narrower than for steady state) during the voltage rise and because some of the charge decays during the voltage rise. The dashed curves in Fig. 12 show the effects of neglecting this decay by using the steady-state charge in (24) to calculate \(I_p(0^+) \). The agreement between the model and the experiment for \(\beta_{tr,V} \) indicates that the value of steady-state charge used by the model is adequate for an initial condition of the transient. The agreement between the theory and experiment for \(\beta_{tr,L} \) at different voltages indicates that the charge decay is properly accounted for during anode voltage transitions. Therefore, both the charge and the voltage (see Fig. 11) state equations are verified.

B. Device–Circuit Interactions

Fig. 13(a) shows the measured current and voltage switching waveforms for a series resistor-inductor load with \(R = 31 \) Ω, \(LL = 5.5 \) μH, and \(V_{AA} = 150 \) V. Fig. 13(b) shows the simulated results for the same conditions as the measurements of Fig. 13(a). The simulations were made by simultaneously integrating (16), (19), and (21) with the initial conditions determined from the steady-state analysis. The theoretical and experimental waveforms are in good quantitative
agreement with the exception that the ringing is damped more in the experiment. Notice in Fig. 13(a) and (b) that the voltage overshoots more and that the current approaches zero faster for the lower lifetime devices. The overshoot results from the stored energy in the inductor which is transferred to the effective device capacitance. It can be seen from Fig. 11 that the effective capacitance of the IGBT varies significantly with lifetime and that it is well described by the model.

The combinations of values of \(R, LL, V_{AA}, \) and \(r_{th} \) that are suitable for unprotected series resistor–inductor load switching with a fast gate voltage transition are limited. For example, Figs. 14–16 show the simulated and measured series resistor–inductor load current and voltage switching waveforms for values of inductance that can be safely switched. Each figure is for a different device lifetime. For inductances larger than 40 µH, the peak overshoot voltage for the 2.4-µs device (Fig. 15) approaches the \(BV_{CEO} \) of the IGBT (500 V) and the voltage will be clamped by the avalanche current. This is potentially destructive, so a protection circuit must be added to the 2.4-µs device for load inductances larger than 40 µH. For otherwise identical conditions, the 7.1-µs device can switch 80 µH (Fig. 14), and the 0.3-µs device can switch 1 µH (Fig. 16) without exceeding 400 V. It has been shown that current snubbing can also increase the dynamic latchup current of the IGBT [15], [16].

The simulated and measured series resistor–inductor load current and voltage waveforms including the protection circuit of Fig. 8 are shown in Figs. 17–19 for inductances that are too large to be switched without a protection circuit. Each figure is for a different device lifetime and load inductance. Figs. 17 and 18 include two different values of \(C_c \). For lower values of \(C_c \) or larger \(LL \), the overshoot will approach the device voltage rating. These figures demonstrate that the IGBT model can be used to determine the values of the protection circuit components needed for a given load circuit inductance. The simulations can also be used to examine other quantities of importance in the design of a snubber circuit, such as the switching energy of the device and the efficiency of the circuit.

V. CONCLUSION

A model has been developed for the IGBT which describes the steady-state condition and the switching transient current
Fig. 17. Simulated and measured snubbed series resistor–inductor load current and voltage waveforms for 7.1-μs device, 200-μH inductance, and two different snubber capacitances.

Fig. 18. Simulated and measured snubbed series resistor–inductor load current and voltage waveforms for 2.4-μs device, 100-μH inductance, and two different snubber capacitances.

Fig. 19. Simulated and measured snubbed series resistor–inductor load current and voltage waveforms for 0.3-μs device and 10-μH inductance.

and voltage waveforms for general loading conditions. The interaction of the IGBT with the load circuit can be described using the device model and the state equations of the load circuit. The voltage rate of rise at turn-off for inductive loads varies significantly for IGBT's with different base lifetimes, and this rate of rise is important in determining the voltage overshoot for a given series resistor–inductor load circuit. Excessive voltage overshoot is potentially destructive, so a snubber protection circuit may be required. The protection circuit requirements are unique for the IGBT and can be examined using the model. Simulations of the device–circuit interactions have been experimentally verified for devices with different lifetimes.

ACKNOWLEDGMENT

The author would like to acknowledge D. L. Blackburn.
and D. W. Berning for their helpful discussions on the material of this paper. I would also like to thank E. J. Walters for preparing this manuscript for publication.

REFERENCES

