Bayesian alternative to the ISO-GUM’s use of the Welch–Satterthwaite formula

Raghu N Kacker

National Institute of Standards and Technology, Gaithersburg, MD 20899-8910, USA
E-mail: raghu.kacker@nist.gov

Received 2 September 2005
Published 18 November 2005
Online at stacks.iop.org/Met/43/1

Abstract
In certain disciplines, uncertainty is traditionally expressed as an interval about an estimate for the value of the measurand. Development of such uncertainty intervals with a stated coverage probability based on the International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) requires a description of the probability distribution for the value of the measurand. The ISO-GUM propagates the estimates and their associated standard uncertainties for various input quantities through a linear approximation of the measurement equation to determine an estimate and its associated standard uncertainty for the value of the measurand. This procedure does not yield a probability distribution for the value of the measurand. The ISO-GUM suggests that under certain conditions motivated by the central limit theorem the distribution for the value of the measurand may be approximated by a scaled-and-shifted \(t \)-distribution with effective degrees of freedom obtained from the Welch–Satterthwaite (W–S) formula. The approximate \(t \)-distribution may then be used to develop an uncertainty interval with a stated coverage probability for the value of the measurand. We propose an approximate normal distribution based on a Bayesian uncertainty as an alternative to the \(t \)-distribution based on the W–S formula. A benefit of the approximate normal distribution based on a Bayesian uncertainty is that it greatly simplifies the expression of uncertainty by eliminating altogether the need for calculating effective degrees of freedom from the \(W–S \) formula. In the special case where the measurand is the difference between two means, each evaluated from statistical analyses of independent normally distributed measurements with unknown and possibly unequal variances, the probability distribution for the value of the measurand is known to be a Behrens–Fisher distribution. We compare the performance of the approximate normal distribution based on a Bayesian uncertainty and the approximate \(t \)-distribution based on the \(W–S \) formula with respect to the Behrens–Fisher distribution. The approximate normal distribution is simpler and better in this case. A thorough investigation of the relative performance of the two approximate distributions would require comparison for a range of measurement equations by numerical methods.

1. Introduction

The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) is being increasingly regarded as a de facto international standard for evaluating and expressing uncertainty in measurement. The ISO-GUM is intended for a broad spectrum of measurements including those for quality control, enforcing laws and regulations, research and development, calibrations, traceability and developing and maintaining international and national physical reference standards for measurement [1, section 0.4]. It is, therefore, reasonable for a user to expect
that the ISO-GUM has a single, unambiguous and consistent technical interpretation. Is it so or is it not so?

In my opinion the ISO-GUM is consistent; but certain sections, mostly in its annex G, are ambiguous. In the ISO-GUM, all Type A evaluations are estimates determined from sampling theory (frequentist statistics). However, the ISO-GUM (sections 4.1.6 and 6.2.2) interprets the Type A estimates determined from sampling theory as parameters of state-of-knowledge probability distributions. The Type B evaluations are, by definition, parameters of state-of-knowledge probability distributions. Thus both Type A and Type B evaluations have a common probabilistic and statistical interpretation in the ISO-GUM. This common interpretation makes the ISO-GUM consistent. The ISO-GUM’s prescription that the sampling theory estimates be interpreted as parameters of state-of-knowledge probability distributions has no justification. It has previously been shown that the ISO-GUM’s interpretation is justified when the Type A evaluations are either determined from Bayesian statistics or are regarded as approximations to Bayesian estimates determined from sampling theory [2]. In this paper, we propose a simpler Bayesian alternative to the ISO-GUM’s approximate t-distribution with effective degrees of freedom obtained from the Welch–Satterthwaite (W–S) formula.

In section 2, we present a review of the ISO-GUM. The ISO-GUM propagates (through a linear approximation of the measurement equation) the estimates and their associated standard uncertainties for the input quantities rather than their probability distributions. This procedure does not yield a probability distribution for the value of the measurand. In certain disciplines, uncertainty is traditionally expressed as an interval about an estimate for the value of the measurand. Expression of uncertainty as an interval with a stated (supposed) coverage probability [1, section 6.2.2], requires a description of the probability distribution for the value of the measurand. The ISO-GUM suggests that when the measurement equation is a linear combination of independently distributed input variables and certain conditions, motivated by the central limit theorem, are met, the probability distribution for the value of the measurand may be approximated by a scaled-and-shifted t-distribution with effective degrees of freedom obtained from the W–S formula. In section 3, we describe the ISO-GUM’s approximate t-distribution based on the W–S formula. The ISO-GUM does not state completely and explicitly the conditions required for approximating the probability distribution for the value of the measurand by a t-distribution. The ISO-GUM does not discuss the accuracy of uncertainty intervals so obtained. In section 4, we propose an approximate normal distribution based on a Bayesian uncertainty as an alternative to the approximate t-distribution based on the W–S formula. In section 5, we discuss the benefits of a Bayesian uncertainty and the approximate normal distribution. In particular, an approximate normal distribution based on a Bayesian uncertainty greatly simplifies the expression of uncertainty by eliminating altogether the need for calculating effective degrees of freedom from the W–S formula.

A probability distribution for the value of the measurand is not analytically tractable in most metrology applications even when the measurement equation is a linear combination of independent input variables. In the following non-trivial metrology application, a probability distribution for the value of the measurand is analytically tractable. The measurand is the difference between two means, each evaluated from statistical analyses of independent normally distributed measurements with unknown and possibly unequal variances. In this special application the probability distribution for the measurand is known to be a Behrens–Fisher distribution. In section 6, we compare the performance of the proposed approximate normal distribution based on a Bayesian uncertainty and the approximate t-distribution based on the W–S formula with respect to the Behrens–Fisher distribution. It is shown that the approximate normal distribution is not only simpler but also better generally. This illustration suggests that perhaps the simpler approximate normal distribution may be preferable to the approximate t-distribution for other measurement equations as well. A thorough investigation would require comparison for a range of measurement equations by numerical methods. In section 7, we discuss the parameters for comparing the two approximate distributions by numerical methods. The conclusion appears in section 8.

2. Review of the ISO-GUM

A measurand, denoted by Y, is a quantity subject to measurement or prediction. An estimate for Y, denoted by \(\hat{y} \), is a central value of the distribution of values that could reasonably be attributed to Y. The uncertainty is a parameter associated with the estimate \(\hat{y} \) which characterizes the dispersion of the values that could be attributed to \(\hat{y} \) based upon all available information. The standard uncertainty is uncertainty expressed as a standard deviation, denoted by \(u(y) \).

The ISO-GUM is based on the concept of a measurement equation

\[
Y = f(X_1, \ldots, X_N)
\]

that mathematically represents the process (ingredients and recipe) for determining the estimate \(\hat{y} \) and its associated standard uncertainty \(u(y) \) from the estimates and their associated standard uncertainties for various input quantities \(X_1, \ldots, X_N \). The measurement equation (1) should include an input quantity for every significant source of uncertainty in determining \(\hat{y} \) and \(u(y) \); otherwise, \(u(y) \) would be a poor evaluation. Each input and output quantity of a measurement equation is regarded as a variable with a state-of-knowledge probability distribution having an expected value and a finite standard deviation. The measurement equation (1) could represent a system of equations where each input variable \(X_i \) may have its own measurement equation.

The expected values, standard deviations and correlation coefficients of the input variables may be evaluated from statistical methods or determined by other means. The input quantities evaluated from statistical analyses of the current data are referred to as Type A and the input quantities evaluated by other means, generally scientific judgement, are referred to as Type B [1, sections 2.3.2 and 2.3.3]. An input variable is Type A or Type B depending on whether its probability distribution or its parameters are specified by statistical methods or by other means.

A common Type A evaluation of an input quantity \(X_i \) is the arithmetic mean of a series \(\{x_{1i}, x_{2i}, \ldots\} \) of \(m_i \) measurements.
that may reasonably be regarded as independent realizations from the same sampling distribution and that this distribution is normal with expected value \(X \) and some unknown standard deviation \(\sigma \). Suppose the arithmetic mean, the experimental (estimated) standard deviation and the estimated standard deviation of the mean of the \(m_i \) measurements are \(\bar{x} = \sum x_i/m_i \), \(s = \sqrt{\sum (x_i - \bar{x})^2/(m_i - 1)} \) and \(s(x_i) = s_i/\sqrt{m_i} \), respectively. Then \(x_i \) is an estimate of its expected value \(X \) and the standard uncertainty associated with \(x_i \) is \(u_A(x_i) = s(x_i) \) [1, section 4.2]. The subscript \(A \) in \(u_A(x_i) \) indicates that it is a Type A standard uncertainty. The estimate \(x_i \) and the uncertainty \(u_A(x_i) \) are determined from sampling theory (frequentist statistics). However, the ISO-GUM regards \(x_i \) and \(u_A(x_i) \) as the expected value and approximate standard deviation of a state-of-knowledge distribution for \(X_i \), i.e. \(E(X_i) = x_i \) and \(S(X_i) \approx u_A(x_i) = s(x_i) \) [1, section 4.1.6], [2]. Depending on the number \(m_i \) of independent measurements, the Type A standard uncertainty \(u_A(x_i) \) is uncertain because of the statistical reason of limited sampling [1, section E.4.3]. The uncertainty concerning \(u_A(x_i) \) arising from a limited number of measurements is a statistical-uncertainty. Following the ISO-GUM [1, section E.4.3], the statistical-uncertainty concerning \(u_A(x_i) \) is quantified by degrees of freedom. The degrees of freedom associated with \(u_A(x_i) \) are \(\nu_i = m_i - 1 \).

A Type B evaluation of an input quantity \(X_j \) is commonly obtained by assigning a state-of-knowledge probability distribution for \(X_j \). Then the estimate \(\bar{x}_j \) is the expected value \(E(X_j) \) and the standard uncertainty \(u_B(x_j) \) is the standard deviation \(S(X_j) \) of the assigned distribution [1, section 4.3]. The subscript \(B \) in \(u_B(x_j) \) indicates that it is a Type B standard uncertainty. For example, if a rectangular distribution on the interval \((a, b)\) is assigned to \(X_j \), then \(E(X_j) = x_j = 0 \) and \(S(X_j) = u_B(x_j) = a/\sqrt{3} \). The ISO-GUM [1, section G.4.2] suggests that subjective degrees of freedom \(\nu_j \) may be assigned to a Type B uncertainty \(u_B(x_j) \) to quantify uncertainty concerning the uncertainty \(u_B(x_j) \) itself. When there is no uncertainty concerning the Type B uncertainty \(u_B(x_j) \), it is assigned infinite degrees of freedom.

The estimate \(y \) is determined by substituting the estimates \(x_1, \ldots, x_N \) for the input variables in the measurement equation \(Y = f(X_1, \ldots, X_N) \). That is,

\[
y = f(x_1, \ldots, x_N). \tag{2}
\]

The standard uncertainties \(u(x_1), \ldots, u(x_N) \) associated with the estimates \(x_1, \ldots, x_N \) are components of uncertainty in determining the combined estimate \(y \). The measurement equation (1) is approximated about \(y \) by a Taylor series as

\[
Y \approx Y_{\text{linear}} = y + \sum c_i(x_i - x_i), \tag{3}
\]

where \(c_1, \ldots, c_N \) are partial derivatives of \(Y \) with respect to \(X_1, \ldots, X_N \) evaluated at \(x_1, \ldots, x_N \), respectively. The partial derivatives \(c_1, \ldots, c_N \) are referred to as sensitivity coefficients. If we regard \(x_i \) and \(u(x_i) \) as the expected value and standard deviation of a state-of-knowledge distribution for \(X_i \), then the variance of \(Y_{\text{linear}} \) gives the following expression for propagating the uncertainties associated with the input values:

\[
u^2(y) = \sum_i c_i^2 u^2(x_i) + 2 \sum_{i<j} c_i c_j u(x_i) r(x_i, x_j), \tag{4}
\]

where \(r(x_i, x_j) \) is the correlation coefficient between \(X_i \) and \(X_j \) for \(i, j = 1, \ldots, N \) and \(i \neq j \). The correlation coefficients are Type A or Type B depending on whether they are determined from statistical analyses or by other means. When \(x_i \) and \(u(x_i) \) are the expected value and standard deviation of \(X_i \), for \(i = 1, \ldots, N \), the estimate \(y \) and the standard uncertainty \(u(y) \) are the expected value and the standard deviation of \(Y_{\text{linear}} \). The ISO-GUM regards \(y \) and \(u(y) \) as approximate expected value and standard deviation of a state-of-knowledge probability distribution for \(X \). The estimate \(y \) and uncertainty \(u(y) \) so determined differ from the unknown expected value \(E(Y) \) and standard deviation \(S(Y) \) to the extent that the distribution for \(Y \) differs from the distribution for \(Y_{\text{linear}} \).

When it is necessary to express the uncertainty as an interval, multiply the standard uncertainty \(u(y) \) by a coverage factor \(k \) to obtain the expanded uncertainty \(U = ku(y) \) and the uncertainty interval \([y \pm U]\) = \([y \pm ku(y)]\). The coverage probability of an uncertainty interval \([y \pm ku(y)]\) is the fraction of a state-of-knowledge distribution for \(Y \) that is encompassed by this interval [1, sections 2.3 and 6.2.2]. The conventional value of \(k \) is two [3]. To the extent that a state-of-knowledge probability distribution for \(Y \) represented by \(y \) and \(u(y) \) is not determined, the coverage probability of \([y \pm ku(y)]\) cannot be stated.

The ISO-GUM [1, section 8, step 7] suggests selecting—when possible—the coverage factor \(k_p \) on the basis of the coverage probability \(p \) required of the interval \([y \pm k_p u(y)]\). In metrology, the required coverage probability \(p \) is generally set as 95%; coverage probabilities other than 95% are rarely used in metrology. The ISO-GUM [1, section 6.3.2] is very clear that the estimate \(y \) and standard uncertainty \(u(y) \) are themselves insufficient for determining the coverage factor \(k_p \) for a required coverage probability \(p \). An uncertainty interval \([y \pm k_p u(y)]\) with a stated (supposed) coverage probability \(p \) can be formed in very special conditions only.

The ISO-GUM’s statement of the conditions in which \(k_p \) may be determined from a normal distribution. Suppose the following conditions are approximately met.

(i) The measurement equation is linear \(Y = \sum c_i X_i \).
(ii) The state-of-knowledge distributions for \(X_1, \ldots, X_N \) are mutually independent; therefore, \(y = \sum c_i x_i \) and \(u(y) = \sqrt{\sum c_i^2 u^2(x_i)} \), where \(u^2(x_i) \) is regarded as the variance of \(X_i \) to a reasonable approximation.

The NIST policy on expression of uncertainty [3] states the following. ‘To be consistent with current international practice, the value \(k \) to be used at NIST for calculating \(U \) is by convention \(k = 2 \). Values of \(k \) other than 2 are only to be used for specific applications dictated by established and documented requirements’.

Metrologia, 43 (2006) 1–11

3
(iii) The variance \(u^2(y) \) is much larger than any single component \(c^2_i u^2(x_i) \) from a non-normally distributed \(X_i \).
(iv) The uncertainty \(u(y) \) is not dominated by a standard uncertainty component obtained from a Type A evaluation based on just a few observations, or by a standard uncertainty component obtained from a Type B evaluation based on an assumed rectangular distribution.

Under conditions (i) through (iv), the ISO-GUM \([1\text{, section G.2.3}]\) suggests that a reasonable first approximation to calculating an expanded uncertainty \(U = k\mu(y) \) that provides an interval \([y \pm U] = [y \pm k\mu(y)]\) with coverage probability \(p \) to is use for \(k\mu \) a value from the normal distribution. In support of this suggestion, the ISO-GUM refers to the central limit theorem and the calculations of tail probabilities for sums of various rectangular distributions and sums of rectangular and normal distributions as reported in \([5\text{, table 4.68}]\).

For normal distribution, the value of \(k\mu \) for the coverage probability \(p \) of 95% reduces to \([y \pm 2\mu(y)]\).

Comment 1: There is no single correct answer for the coverage probability associated with an uncertainty interval \([y \pm k\mu(y)]\), where \(y \) and \(u(y) \) are determined according to the ISO-GUM. The coverage probability of \([y \pm k\mu(y)]\) is defined with respect to a specific probability distribution for \(Y = f(X_1, \ldots, X_N) \) which in turn is a consequence of the joint probability distribution for \(X_1, \ldots, X_N \). The estimate \(y \) and uncertainty \(u(y) \) are identical for all those joint probability distributions for \(X_1, \ldots, X_N \) that have the expected values \(x_1, \ldots, x_N \), standard deviations \(u(x_1), \ldots, u(x_N) \) and correlation coefficients \(r(x_i, x_j) \), for \(i, j = 1, \ldots, N \) and \(i \neq j \). But the coverage probability of \([y \pm k\mu(y)]\) may be different for different such distributions for \(X_1, \ldots, X_N \).

Comment 2: The central limit theorem requires that (i) \(Y = \sum_{i=1}^{N} c_i X_i \), (ii) the probability distributions for \(X_1, \ldots, X_N \) should be mutually independent, (iii) \(c_i u(x_1), \ldots, c_N u(x_N) \) should be the exact standard deviations of the probability distributions for \(c_1 X_1, \ldots, c_N X_N \) and (iv) the number \(N \) of summands in \(Y = \sum_{i=1}^{N} c_i X_i \) should be sufficiently large for the given standard deviations \(c_i u(x_1), \ldots, c_N u(x_N) \) \([4]\).

When \(c_i u(x_1), \ldots, c_N u(x_N) \) are unequal, which is often the case, the number \(N \) of summands required for an approximate normal distribution for \(Y = \sum_{i=1}^{n} c_i X_i \) may be fairly large.

The central limit theorem does not apply when \(N \) is not sufficiently large for the given standard deviations \(c_i u(x_1), \ldots, c_N u(x_N) \) or when \(c_1 u(x_1), \ldots, c_N u(x_N) \) are not the exact standard deviations of \(c_1 X_1, \ldots, c_N X_N \). A statement of coverage probability for the interval \([y \pm k\mu(y)]\) must be justified by the claimant.

Comment 3: (i) The degrees of freedom associated with a Type B evaluation are not comparable to the degrees of freedom associated with a Type A evaluation. The Type A degrees of freedom represent statistical-uncertainty in \(u_A(x_i) \) arising from a limited number of independent measurements \(m_i \) available to evaluate \(u_A(x_i) \). The degrees of freedom are \(m_i \) minus the number of statistical parameters estimated (restrictions) before evaluating \(u_A(x_i) \). The Type B degrees of freedom associated with \(u_B(x_j) \) represent subjective doubt about the parameters of a state-of-knowledge probability distribution assigned to the variable \(X_j \).

(ii) It is superfluous in my opinion to quantify doubt about a state-of-knowledge probability distribution. For example in Bayesian statistics, one does not quantify doubt about a prior probability distribution which represents the state-of-knowledge about a statistical parameter before measurement. Hence the degrees of freedom associated with a Type B uncertainty are superfluous.

(iii) It is difficult to quantitatively about a state-of-knowledge probability distribution.

(iv) I have never seen any metrologist assigning finite degrees of freedom to a Type B evaluation.

3. Approximate \(t \)-distribution based on the \(W-S \) formula

The ISO-GUM \([1\text{, sections G.3 and G.4}]\) suggests that a better value of \(k \), than the one determined from normal distribution is provided by a \(t \)-distribution with effective degrees of freedom obtained from the \(W-S \) formula. Suppose \(Y \) is equal to \(\sum_{i=1}^{N} c_i X_i \), for \(i = 1, \ldots, N \), and \(X_1, \ldots, X_N \) are mutually independent. Suppose the probability distributions for \(X_1, \ldots, X_n \), for \(n < N \), are Type A and the probability distributions for \(X_{n+1}, \ldots, X_N \) are Type B. Suppose, for \(i = 1, \ldots, n \), the expected value and standard deviation of a state-of-knowledge distribution for \(X_i \) are determined from \(m_i \) independent normally distributed measurements. Suppose \(E(X_i) = x_i \) and \(S(X_i) \approx u_A(x_i) = s(x_i) \) with degrees of freedom \(v_i = m_i - 1 \), respectively \([1\text{, sections 4.1.6 and 4.2}]\). Suppose \(X_{n+1}, \ldots, X_N \) are evaluated from the assigned state-of-knowledge distributions with expected values \(E(X_i) = x_j \) and standard deviations \(S(X_j) = u_B(x_j) \) \([1\text{, section 4.3}]\) with subjective degrees of freedom \(v_j \) \([1\text{, section G.4.2}]\).

Let us define

\[
X_A = \sum_{i=1}^{n} c_i X_i \tag{5}
\]

and

\[
X_B = \sum_{i=n+1}^{N} c_i X_i \tag{6}
\]

Then \(Y = \sum_{i=1}^{N} c_i X_i = X_A + X_B \), where \(X_A \) and \(X_B \) are the Type A and the Type B components of \(Y \). Following the ISO-GUM \([1\text{, section 5.1}]\) an estimate for \(X_A \) is

\[
x_A = \sum_{i=1}^{n} c_i x_i \tag{7}
\]

and its associated standard uncertainty is

\[
u_A(x_A) = \sqrt{\sum_{i=1}^{n} c_i^2 u^2_A(x_i)}. \tag{8}
\]

The standard uncertainty \(u_A(x_A) \) is an approximation for the standard deviation \(S(X_A) = \sqrt{\sum_{i=1}^{n} c_i^2 S^2(X_i)} \).

My understanding of the ISO-GUM \([1\text{, sections G.3 and G.4}]\) is that it ascribes to the variable \((X_A - x_A)/u_A(x_A)\) an
The expression (9) for v_{eff}^A is referred to as the W–S formula. The effective degrees of freedom v_{eff}^A quantify the statistical-uncertainty in $a(x_A)$ arising from limited numbers m_1, \ldots, m_n of measurements available for evaluating the parameters of the Type A variables X_1, \ldots, X_n, respectively.

The expected value $E(X_A)$ and standard deviation $S(X_A)$ are, respectively,

$$x_B = \frac{\sum_{j=1}^{N} c_j x_j}{N},$$

and

$$u_B(x_B) = \left[\sum_{j=1}^{N} c_j^2 u_j^2 (x_j) \right]^{1/2}.$$ \hspace{1cm} (10)

The ISO-GUM suggests that the coverage factor k_p of an uncertainty interval $[y \pm k_p u(y)]$ for y may be determined by assigning to the variable $(Y - y)/u(y)$ an approximate t-distribution with effective degrees of freedom v_{eff}, where

$$y = x_A + x_B = \sum c_i x_i,$$

$$u(y) = \sqrt{u_A^2(x_A) + u_B^2(x_B)}$$

$$= \sqrt{\sum_{i=1}^{n} c_i^2 u_i^2 (x_i) + \sum_{j=1}^{N} c_j^2 u_j^2 (x_j)}.$$ \hspace{1cm} (13)

and

$$v_{\text{eff}} = \frac{\left[u(y) \right]^4}{\sum_{i=1}^{N} (\left| c_i u_A(x_i) \right|^2 / u_j^2) + \sum_{j=1}^{N} (\left| c_j u_B(x_j) \right|^2 / u_j^2)}.$$ \hspace{1cm} (14)

Thus the ISO-GUM suggests that k_p may be determined by assigning to the variable Y an approximate state-of-knowledge scaled-and-shifted t-distribution with degrees of freedom v_{eff} that have been scaled by $u(y)$ (13) and shifted by y of equation (12). Suppose $tp(v_{\text{eff}})$ is a percentile\(^*\) of the t-distribution with degrees of freedom v_{eff} such that the interval $[-tp(v_{\text{eff}}), +tp(v_{\text{eff}})]$ encompasses the fraction p of this distribution. Then according to the ISO-GUM, $[y \pm tp(v_{\text{eff}}) u(y)]$ is an uncertainty interval for Y with an approximate coverage probability p.

Comment 4: The W–S formula was developed for what are now called the Type A evaluations determined from sampling theory (frequentist statistics). Its origins are discussed in [6]. References [6–8] discuss the use of W–S formula from the viewpoint of sampling theory when $n = N = 2$.

Comment 5: The uncertainty interval $[y \pm tp(v_{\text{eff}}) u(y)]$ is wider than the interval $[y \pm 2u(y)]$ based on normal distribution for finite values of v_{eff}. The coverage factor $tp(v_{\text{eff}})$ and hence the width of the interval $[y \pm tp(v_{\text{eff}}) u(y)]$ increases as the effective degrees of freedom v_{eff} decrease [1, table G.2]. Thus the lesser the degrees of freedom, the larger is the width of the interval $[y \pm tp(v_{\text{eff}}) u(y)]$. The larger width of the interval $[y \pm tp(v_{\text{eff}}) u(y)]$ reflects the uncertainty in $u(y)$ indicated by its effective degrees of freedom v_{eff}.

Comment 6: The ISO-GUM does not explicitly state the conditions in which a user may determine the coverage factor k_p from an approximate t-distribution with effective degrees of freedom v_{eff} determined from the W–S formula. Are these the same conditions as those stated in the ISO-GUM [1, section G.2] for determining k_p from normal distribution and restated here in section 2?

Comment 7: The ISO-GUM does not discuss the accuracy of the stated (supposed) coverage probability p of the interval $[y \pm tp(v_{\text{eff}}) u(y)]$ determined from an approximate t-distribution with effective degrees of freedom v_{eff} determined from the W–S formula. The correct coverage probability would depend on the joint probability distribution for the input variables X_1, \ldots, X_N and the corresponding probability distribution for $Y = \sum c_i X_i$ (see, comment 1).

Comment 8: It seems that the ISO-GUM’s use of an approximate scaled-and-shifted t-distribution with effective degrees of freedom v_{eff} for $Y = \sum c_i X_i$ requires two sets of assumptions.

(1) Assumptions that underlie the W–S formula for the Type A variables X_1, \ldots, X_n: Each input quantity X_i, for $i = 1, \ldots, n$, is (i) evaluated from a series of m_i mutually independent measurements having the same normal\(^5\) sampling distribution with expected value X_i and variance σ_i^2, and (ii) the sets of m_1, \ldots, m_n measurements for evaluating X_1, \ldots, X_n, respectively, are independent [10–12]. A consequence of the second part of this assumption is that the state-of-knowledge distributions for X_1, \ldots, X_n are mutually independent. Here the number n of the Type A variables may be as little as two.

(2) Assumptions similar to those that underlie the central limit theorem: In particular, the number of summands in $Y = X_A + c_{a1} X_{a1} + \cdots + c_{aN} X_{aN}$ is sufficiently large for the central limit theorem to apply for the given standard deviations of the variables $X_A, c_{a1} X_{a1}, \ldots, c_{aN} X_{aN}$.

4. Approximate normal distribution based on a Bayesian uncertainty

Suppose the assumptions that underlie the W–S formula for the Type A variables X_1, \ldots, X_n, stated in comment 8, are reasonably satisfied. There are two statistical approaches to determine an estimate for an input quantity X_i: sampling theory (frequentist statistics) and Bayesian statistics [13]. Both approaches agree with the ISO-GUM’s definition of a Type A evaluation for the input quantity X_i. An estimate for X_i

\(^*\) In sampling theory (frequentist statistics), an approximate t-distribution for $(x_A - X_A)/u_A(x_A)$ with effective degrees of freedom v_{eff}^A obtained from the W–S formula requires that s_A be the arithmetic mean and s_A^2 be the sample variance of m_i independent normally distributed measurements with unknown variance σ_i^2 and that the sets of m_1, \ldots, m_n measurements be independent. The ISO-GUM [1, section G.4.1] applies to imply that the normal distribution for the m_i independent measurements is not essential. This is incorrect. The W–S formula requires that s_A and s_A^2 have independent sampling distributions, for $i = 1, \ldots, n$. It turns out that normal distribution is the only probability distribution for which the sampling distributions of x_A and s_A^2 are mutually independent [9]. Therefore normal distribution is essential.
and its associated standard uncertainty determined through Bayesian statistics from only the measurements without assuming any additional information are obtained by using non-informative prior distributions for X_i and σ_i^2. Non-informative prior distributions for X_i and σ_i^2 indicate that there is no prior knowledge about their values before (or in addition to) measurement. A convenient pair of non-informative prior distributions is as follows: the prior distribution for X_i is proportional to one and the prior distribution for σ_i^2 is proportional to $1/\sigma_i^2$. The m_i independent normal measurements provide a likelihood function for X_i and σ_i^2 given the measurements. It can then be shown using the Bayes’s theorem that the Bayesian posterior state-of-knowledge probability distribution for $(X_i - \bar{x}_i)/s(x_i)$ is the t-distribution with degrees of freedom $v_i = m_i - 1$. It follows that the Bayesian distribution for X_i, based on only the m_i measurements is a scaled-and-shifted t-distribution with degrees of freedom v_i that have been scaled by $u_A(x_i) = s(x_i)$ and shifted by x_i. The expected value and standard deviation of a t-distribution with degrees of freedom v_i are, respectively, zero and $\sqrt{v_i/(v_i - 2)} = \sqrt{(m_i - 1)/(m_i - 3)}$. The expected value and standard deviation of the Bayesian posterior distribution for X_i are $E(X_i) = x_i$ and $S(X_i) = \sqrt{(m_i - 1)/(m_i - 3)} \times u_A(x_i)$, respectively. The standard deviation $S(X_i)$ is a Bayesian standard uncertainty, $u_A(x_i)$, associated with the estimate x_i. That is,

$$u_A(x_i) = \sqrt{m_i - 1 \over m_i - 3} u_A(x_i).$$

The ISO-GUM interprets the standard uncertainty $u_A(x_i)$ as $s(x_i)$ determined from frequentist statistics as an approximate standard deviation of a state-of-knowledge distribution for X_i with degrees of freedom $v_i = m_i - 1$. The standard uncertainty $u_A(x_i)$ is the standard deviation of a Bayesian posterior distribution for X_i, which is a state-of-knowledge distribution by definition. Thus $u_A(x_i)$ may be regarded as an approximation for $u_A(x_i)$. The approximation is poor when the degrees of freedom v_i are small but good when v_i are large.

The Bayesian uncertainty $u_{A,Bayes}(x_i)$ requires at least four independent normal measurements m_i. When $m_i = 2$ or $m_i = 3$, there are three options. First, investigate other reasonable prior distributions for X_i and σ_i^2 that might yield useful expressions for $u_{A,Bayes}(x_i)$. Second, use a Type B probability distribution for X_i. Third, use ad hoc standard uncertainties. When $p = 95\%$, the ad hoc standard uncertainties for $m_i = 2$ and $m_i = 3$ are, respectively, $u_{A}(x_i) = 6.483 \times u_A(x_i)$ and $u_{A}(x_i) = 2.195 \times u_A(x_i)$. Prior distributions convey information in addition to the measurement data. In order to develop an approximate probability distribution for Y that is comparable to the ISO-GUM’s t-distribution based on the N-S formula, we need non-informative prior distributions that do not carry additional information.

The ad hoc standard uncertainties were suggested in [2] by replacing the undefined factor $\sqrt{1/(m_i - 1)}$. The m is less than four, with the ratio of the relevant percentiles of t-distribution and normal distribution for the chosen p of 95\%.

We propose to approximate the Bayesian scaled-and-shifted t-distribution for X_i by a normal distribution, $N(x_i, u_{A,Bayes}(x_i))$, with expected value x_i and variance $u_{A,Bayes}(x_i)$. The two distributions agree up to the moments of order two [1, section C.2.13]; the moment of order three is zero because of symmetry. Then an approximate Bayesian posterior distribution for X_A is normal $N(x_A, u_{A,Bayes}(x_A))$ where x_A is defined in equation (7) and

$$u_{A,Bayes}(x_A) = \sum_{i=1}^{n} c_i^2 u_{A,Bayes}(x_i)$$

$$= \sum_{i=1}^{n} m_i - 3 u_{A}^2(x_i).$$

Now $Y = \sum_{i=1}^{n} c_i X_i = X_A + X_B$. Therefore, the expected value and standard deviation of Y are, respectively, $y = x_A + x_B = \sum_{i=1}^{n} c_i x_i$ as in equation (12), and

$$u_{Bayes}(y) = \sum_{i=1}^{n} m_i - 3 u_{A}^2(x_i) + \sum_{j=m+1}^{n} c_j^2 u_{B}^2(x_j).$$

Suppose the requirements that underlie the central limit theorem are reasonably satisfied for the sum $Y = X_A + X_B = X_A + X_{m+1} X_{m+1} + \ldots + X_{n} X_{n}$, where the distribution for X_A is approximately normal. Then the distribution for Y may be assumed to be approximately normal with expected value y and variance $u_{Bayes}(y)$. Thus $[y \pm z_p u_{Bayes}(y)]$ is an uncertainty interval for Y with approximate coverage probability p, where z_p is a percentile of the standard normal distribution such that the interval $[-z_p, +z_p]$ encompasses the fraction p of this distribution. For $p = 95\%$, $z_p = 1.96$ and the interval $[y \pm z_p u_{Bayes}(y)]$ becomes $[y \pm 1.96 u_{Bayes}(y)]$, which may sometimes be approximated as $[y \pm 2 u_{Bayes}(y)]$.

5. Benefits of a Bayesian uncertainty and the approximate normal distribution

The ISO-GUM is consistent because it interprets the Type A evaluations as parameters of state-of-knowledge distributions. Then Type A and Type B evaluations have a common probabilistic interpretation and they can be combined through a measurement equation. The ISO-GUM’s interpretation is justified when each Bayesian statistics is used for the Type A evaluations or sampling theory estimates are regarded as approximations to Bayesian estimates. Therefore the ISO-GUM may be regarded as an extension of Bayesian statistics to incorporate non-statistical evaluations.

As indicated in the ISO-GUM [1, section E.4.3], the statistical-uncertainty in $u_A(x_i)$ arising from the limited number m_i of measurements may be large for practical values of m_i. Therefore, $u_A(x_i)$, defined in section 2, is an incomplete expression of the uncertainty associated with x_i without an accompanying statement of its degrees of freedom. Similarly, the statistical-uncertainty in $u(y)$, defined in section 3, may
be large when its effective degrees of freedom \(v_{\text{eff}} \) are small. Therefore, \(u(y) \) is an incomplete expression of the uncertainty associated with \(y \) without an accompanying statement of its effective degrees of freedom. Unlike sampling theory, a Bayesian standard uncertainty has no statistical-uncertainty. Thus \(u_{\text{A,Bayes}}(x_i) \) is a complete expression of the uncertainty associated with \(x_i \), for \(i = 1, \ldots, n \). Similarly, \(u_{\text{Bayes}}(y) \) is a complete expression of the uncertainty associated with \(y \).

The use of an approximate normal distribution for \(Y \) based on a Bayesian uncertainty \(u_{\text{Bayes}}(y) \) greatly simplifies the expression of uncertainty associated with \(y \) by eliminating altogether the need for calculating effective degrees of freedom from the W–S formula.

The primary expression of uncertainty in the ISO-GUM is standard uncertainty. An uncertainty interval is a secondary expression of uncertainty obtained from standard uncertainty. The ISO-GUM accounts for the statistical-uncertainty in \(u(y) \) arising from the limited numbers \(m_1, \ldots, m_n \) of measurements when an uncertainty interval \([y \pm k_p u(y)]\) is computed by using a larger coverage factor \(k_p = t_p(\nu_p) \) determined from a t-distribution rather than the coverage factor \(k_p = z_p \) determined from the normal distribution. The factors \(\sqrt{\{(m_i - 1)/(m_i - 3)\}} \), for \(i = 1, 2, \ldots, n \), built in the Bayesian standard uncertainty \(u_{\text{Bayes}}(y) \) enlarge it when one or more of the numbers \(m_1, \ldots, m_n \) of measurements are small. Thus Bayesian statistics automatically accounts for the numbers of measurements in the standard uncertainty which is the primary expression of uncertainty.

6. Analytical comparison with respect to the Behrens–Fisher distribution for the difference between two means

Suppose the measurement equation for the value of the measurand is \(Y = X_1 - X_2 \), where \(X_1 \) and \(X_2 \) are independently distributed. Suppose the estimate and standard uncertainty for \(X_i \) are \(x_i \) and \(u(x_i) \), respectively, for \(i = 1 \) and 2. Then \(y = x_1 - x_2 \) and \(u(y) = \sqrt{u^2(x_1) + u^2(x_2)} \). This measurement equation applies when a common uncertainty is measured by two different instruments, methods or laboratories and the metrological interest lies in the difference between the two evaluations. In CIPM key comparisons [15] among national metrology institutes (NMIs), pair wise degrees of freedom \(s_{x_i}^2 \), and their associated standard uncertainties \(u(d_{x_i}) \) are of the form \(y \) and \(u(y) \), respectively.

We consider a special application of the measurement equation \(Y = X_1 - X_2 \), where \(X_1 \) is evaluated from \(m_1 \) independent and normally distributed measurements with unknown variance \(\sigma_1^2 \), for \(i = 1 \) and 2. Thus both \(X_1 \) and \(X_2 \) are Type A variables. Then, as discussed in section 2, result \(x_i \) is the arithmetic mean and uncertainty \(u(x_i) \) is the standard deviation of the mean \(x(x_i) = s_i/\sqrt{m_i} \). A Bayesian posterior distribution for \(T_i = (X_i - x_i)/u(x_i) \), based on the non-informative prior distributions for \(X_i \) and \(s_{x_i}^2 \) introduced in section 4, is the \(t \)-distribution with degrees of freedom \(v_i = m_i - 1 \). In this situation the probability distribution of \((Y - y)/u(y) \) is known to be the Behrens–Fisher distribution\(^9\)

\(^9 \) The distribution of \([T_1 \sin \theta - T_2 \cos \theta] \), where \(\theta \in 0 \leq \theta < \pi/2 \) radians (90°), is a Behrens–Fisher distribution [16, 17]. The distribution of \((Y - y)/u(y) \) has \(\theta = \tan^{-1}[u(x_1)/u(x_2)] \). The Behrens–Fisher distribution was originally with parameters \(v_1 = m_1 - 1 \), \(v_2 = m_2 - 1 \) and \(\theta = \tan^{-1}[u(x_1)/u(x_2)] \) [18]. The percentiles of Behrens–Fisher distribution for the coverage probability \(p \) of 95% are tabulated in [19] for \(v_1, v_2 \in 1, 2, \ldots, 8, 10, 12, 24 \) and \(\theta = 0°, 15°, 30°, 45°, 60°, 75° \) and 90°. These percentiles may be used to determine the correct coverage factor \(k_p \) of the uncertainty interval \([y \pm k_p u(y)]\) for \(Y \) for various values of \(v_1, v_2 \) and \(\theta \), and \(p \) of 95%.

This example is referred to in textbooks on statistics as ‘the two-sample problem with unknown and possibly unequal variances’. For this case, reference [20, appendix B] discusses three other approximations proposed in [21] and [22] for the distribution of \((Y - y)/u(y) \). The approximations proposed in [21] and [22] are better than the approximate \(t \)-distribution based on the W–S formula. The approximation proposed in [22] applies to sums of many scaled \(t \)-distributions. In this section, we investigate the accuracies of the coverage factors determined from the approximate \(t \)-distribution based on the W–S formula and the approximate normal distribution based on a Bayesian uncertainty with respect to the correct coverage factor \(k_p \) based on the Behrens–Fisher distribution.

The correct coverage factor \(k_p \) of an uncertainty interval \([y \pm k_p u(y)]\) for \(Y \) with coverage probability \(p \) is \(k_p = BF_p(v_1, v_2, \theta) \), where \(BF_p(v_1, v_2, \theta) \) is a percentile of the Behrens–Fisher distribution such that the interval \([-BF_p(v_1, v_2, \theta), +BF_p(v_1, v_2, \theta)]\) encompasses the fraction \(p \) of this distribution. An approximate coverage factor determined from the \(t \)-distribution based on the W–S formula is \(k_p(W) = t_p(\nu_p) \), where \(t_p = [u(y) \sqrt{\nu_1^2(x_1)/\nu_1^2 + u^2(x_2)/\nu_2^2}] \). An uncertainty interval for \(Y \) determined from the approximate normal distribution based on a Bayesian uncertainty with respect to the interval \([y \pm k_p u(y)]\) determined from the Behrens–Fisher distribution, we express the former as \([y \pm k_p(B) u(y)]\), where \(k_p(B) = z_p \times u_{\text{Bayes}}(y)/u(y) \). Then we compare the three coverage factors \(k_p = BF_p(v_1, v_2, \theta) \), \(k_p(W) = t_p(\nu_p) \), and \(k_p(B) = z_p \times u_{\text{Bayes}}(y)/u(y) \) for various values of \(v_1 \) and \(\theta \), and \(p = 95% \). Here, \(t_p \) is the correct coverage factor and \(k_p(W) \) and \(k_p(B) \) are approximate coverage factors.

To determine the coverage factors \(k_p, k_p(W) \), and \(k_p(B) \), we require numerical values for the parameters \(u(x_1) = s_1/\sqrt{m_1} \) and \(u(x_2) = s_2/\sqrt{m_2} \). We arbitrarily set \(s_1^2 = 100 \) and determined the corresponding \(s_2^2 \) by solving the equation \(\theta = \tan^{-1}[u(x_1)/u(x_2)] \) for various values of \(\theta \). The ratios \(u(x_1)/u(x_2) \) corresponding to \(\theta = 15°, 30°, 45°, 60° \) and 75° are, respectively, 27%, 58%, 100%, 173% and 373%. The value \(\theta = 45° \) represents the situation where the uncertainties \(u(x_1) \) and \(u(x_2) \) are equal. The values \(\theta = 30° \) and 60° represent the situation where the difference between \(u(x_1) \) and \(u(x_2) \) is small. The values \(\theta = 15° \) and 75° represent the situation where the difference between \(u(x_1) \) and \(u(x_2) \) is large.

The use of W–S formula is of greatest advantage when one or both the degrees of freedom \(v_1 \) and \(v_2 \) are small. Therefore, the smaller values of \(v_1 \) and \(v_2 \) are of greater interest.

developed in what is called fiducial inference; however, it was subsequently identified as a Bayesian distribution [18].
Tables 1–6 display $k_p(W)$, $k_p(B)$, k_p, and the relative errors $\Delta k_p(W) = |k_p - k_p(W)|/k_p$ and $\Delta k_p(B) = |k_p - k_p(B)|/k_p$ for the triplets (v_1, v_2, θ), where $v_1, v_2 = 1, 2, 3, 4, 5, 10$ and $24; v_1 < v_2$; and $\theta = 15^\circ$, 30°, 45°, 60°, and 75°. Comparison for $v_1 < v_2$ is made by comparing the coverage factors for the triplets $(v_2, v_1, 90^\circ - \theta)$ [18]. The relative errors $\Delta k_p(W)$ and $\Delta k_p(B)$ indicate the accuracies of $k_p(W)$ and $k_p(B)$ with respect to k_p, respectively. In tables 1–3, when $v_1 = 2$ or 1, we use for $u_{Baye}(x_i)$ ad hoc standard uncertainties given in section 4.

Table 1 is for the case where both v_1 and v_2 are either 1 or 2. The minimum and maximum values of the absolute relative error $|\Delta k_p(W)|$ are 2.39% and 76.06%, respectively. The minimum and maximum values of the absolute relative error $|\Delta k_p(B)|$ are 0.70% and 29.29%, respectively. In the cases considered, $|\Delta k_p(B)|$ is less than or equal to $|\Delta k_p(W)|$.

Table 2 is for the case where either v_1 or v_2 is 1 and the other is 3, 4, 5, 10 or 24. The minimum and maximum values of the absolute relative error $|\Delta k_p(W)|$ are 3.39% and 66.06%, respectively. The minimum and maximum values of the absolute relative error $|\Delta k_p(B)|$ are 0.03% and 6.37%, respectively. In the cases considered, $|\Delta k_p(B)|$ is substantially less than $|\Delta k_p(W)|$.

Table 3 is for the case where either v_1 or v_2 is 2 and the other is 3, 4, 5, 10 or 24. The minimum and maximum values of the absolute relative error $|\Delta k_p(W)|$ are 1.48% and 29.63%, respectively. The minimum and maximum values of the absolute relative error $|\Delta k_p(B)|$ are 0.05% and 3.52%, respectively. In the cases considered, $|\Delta k_p(B)|$ is substantially less than $|\Delta k_p(W)|$.

Table 4 is for the case where $v_1, v_2 = 3, 4, 5, 10$ and 24 and the difference between $u(x_1)$ and $u(x_2)$ is large ($\theta = 15^\circ$ or 75°). The minimum and maximum values of the absolute relative error $|\Delta k_p(W)|$ are 0.16% and 4.92%, respectively. The minimum and maximum values of the absolute relative error $|\Delta k_p(B)|$ are 0.01% and 6.77%, respectively. Thus the absolute relative error in both $k_p(W)$ and $k_p(B)$ is small when the difference between $u(x_1)$ and $u(x_2)$ is large ($\theta = 15^\circ$ or 75°). Mostly, $|\Delta k_p(B)|$ is less than $|\Delta k_p(W)|$. In few cases, $|\Delta k_p(W)|$ is less than $|\Delta k_p(B)|$.

Table 5 is for the case where $v_1, v_2 = 3, 4, 5, 10$ and 24 and the difference between $u(x_1)$ and $u(x_2)$ is small ($\theta = 30^\circ$ or 60°). The minimum and maximum values of the absolute relative error $|\Delta k_p(W)|$ are 1.63% and 16.00%, respectively.
ISO-GUM’s use of the Welch–Satterthwaite formula

The minimum and maximum values of the absolute relative error $|\Delta k_p(B)|$ are 0.07% and 6.87%, respectively. In the cases considered, $|\Delta k_p(B)|$ is substantially less than $|\Delta k_p(W)|$.

Table 4. Relative errors $\Delta k_p(W)$ and $\Delta k_p(B)$ for $(v_1$, v_2, θ), where v_1, v_2 = 3, 4, 5, 10, 24, $v_1 \neq v_2$ and θ = 15° and 75°. Comparison for $(v_1$, v_2, θ), where $v_1 < v_2$ is given by the comparison for $(v_2$, v_1, $90° - \theta$).

<table>
<thead>
<tr>
<th>v_1</th>
<th>v_2</th>
<th>θ</th>
<th>$k_p(W)$</th>
<th>$k_p(B)$</th>
<th>$\Delta k_p(W)$</th>
<th>$\Delta k_p(B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>15°</td>
<td>3.18</td>
<td>3.39</td>
<td>0.0027</td>
<td>0.0639</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>15°</td>
<td>3.18</td>
<td>3.36</td>
<td>0.0106</td>
<td>0.0660</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>15°</td>
<td>3.18</td>
<td>3.34</td>
<td>0.0155</td>
<td>0.0670</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>15°</td>
<td>3.18</td>
<td>3.33</td>
<td>0.0210</td>
<td>0.0676</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>15°</td>
<td>3.18</td>
<td>3.32</td>
<td>0.0230</td>
<td>0.0677</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>15°</td>
<td>2.78</td>
<td>2.77</td>
<td>0.0016</td>
<td>0.0000</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>15°</td>
<td>2.78</td>
<td>2.76</td>
<td>0.0082</td>
<td>0.0000</td>
</tr>
<tr>
<td>24</td>
<td>4</td>
<td>15°</td>
<td>2.78</td>
<td>2.73</td>
<td>0.0155</td>
<td>0.0010</td>
</tr>
<tr>
<td>24</td>
<td>5</td>
<td>15°</td>
<td>2.78</td>
<td>2.73</td>
<td>0.0181</td>
<td>0.0009</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>15°</td>
<td>2.57</td>
<td>2.53</td>
<td>0.0026</td>
<td>-0.0013</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>15°</td>
<td>2.57</td>
<td>2.51</td>
<td>0.0116</td>
<td>-0.0126</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>15°</td>
<td>2.12</td>
<td>2.16</td>
<td>0.0099</td>
<td>-0.0142</td>
</tr>
<tr>
<td>24</td>
<td>5</td>
<td>15°</td>
<td>2.05</td>
<td>2.06</td>
<td>0.0049</td>
<td>-0.0072</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15°</td>
<td>3.18</td>
<td>3.39</td>
<td>0.0027</td>
<td>0.0639</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>15°</td>
<td>2.78</td>
<td>2.77</td>
<td>0.0016</td>
<td>0.0000</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>15°</td>
<td>2.57</td>
<td>2.53</td>
<td>0.0026</td>
<td>-0.0013</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>15°</td>
<td>2.12</td>
<td>2.16</td>
<td>0.0099</td>
<td>-0.0142</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>15°</td>
<td>2.05</td>
<td>2.06</td>
<td>0.0049</td>
<td>-0.0072</td>
</tr>
</tbody>
</table>

The relative errors displayed in tables 1–6 for $p = 95%$ show that generally the correction factors $k_p(B)$ determined from the approximate normal distribution based on a Bayesian uncertainty are more accurate than the correction factors $k_p(W)$ determined from the approximate t-distribution based on the W–S formula. We conclude that the approximate normal distribution based on a Bayesian uncertainty is both simpler and better in this non-trivial metrology application.

7. Parameters for comparing the two approximate distributions by numerical methods

A thorough investigation of the relative performance of the approximate t-distribution based on the W–S formula as suggested in the ISO-GUM and the simpler approximate normal distribution based on a Bayesian uncertainty as proposed in this paper would require comparison for a range of measurement equations by numerical methods. Suppose Y is equal to $\sum c_iX_i$, for $1, \ldots, N$, where X_1, \ldots, X_n have the Type A distributions, and X_{a1}, \ldots, X_{N} have the Type B distributions. A number of values for n and a number of values of N would have to be considered for $n = 1, \ldots, N$ and $N = 2, 3, \ldots$. One would have to consider various negative and positive sensitivity coefficients c_1, \ldots, c_N associated with the variables X_1, \ldots, X_n and X_{a1}, \ldots, X_{N}. A useful comparison may assume that the expected value and
standard deviation of X_i, for $i = 1, \ldots, n$, are determined from m_i independent normally distributed measurement and X_{i+1}, \ldots, X_N have rectangular distributions. For each Type A variable X_i, one would consider various values for the number m_i of independent measurements with normal sampling distributions. For each X_i, one would consider various values of the standard deviations σ_i, for $i = 1, \ldots, n$. For each X_i, one would consider a number of rectangular distributions of various widths for $j = n + 1, \ldots, N$. The required coverage probability p may be set as 95% or several different values of p may be considered. Numerical simulation would be required for each combination of the aforementioned parameters. The number of simulations for each combination of parameters should be sufficiently large for a meaningful difference between the approximate coverage factors determined from the two approximate distributions for Y. Numerical simulation would indicate the accuracies of the coverage factors determined from each of the two approximate distributions.

8. Conclusion

The ISO-GUM interprets the Type A evaluations (commonly determined from sampling theory) as parameters of state-of-knowledge probability distributions. It has previously been shown that the ISO-GUM’s interpretation is justified when the Type A evaluations are either determined from Bayesian statistics or are regarded as approximations to Bayesian estimates determined from sampling theory [2]. In certain disciplines, uncertainty is traditionally expressed as an interval about an estimate for the value of the measurand. Expression of uncertainty as an interval with a stated (supposed) coverage probability requires a description of the probability distribution for the value of the measurand. The ISO-GUM suggests that under certain conditions, motivated by the central limit theorem, the coverage factor of an uncertainty interval that yields the required coverage probability may be determined from an approximate t-distribution with effective degrees of freedom obtained from the W–S formula. As a sequel to [2], this paper proposes an approximate normal distribution based on a Bayesian uncertainty as an alternative to the approximate t-distribution based on the W–S formula. The use of an approximate normal distribution based on a Bayesian uncertainty greatly simplifies the expression of uncertainty by eliminating altogether the need for calculating effective degrees of freedom from the W–S formula.

When the measurand is the difference between two means, each evaluated from independent normally distributed measurements, the probability distribution for the value of the measurand is known to be a Behrens–Fisher distribution. We compared the accuracy of correction factors determined from the two approximate distributions with respect to the correct coverage factor from the Behrens–Fisher distribution for the coverage probability of 95%. Our investigation shows that in this special case the coverage factor determined from the approximate normal distribution is generally more accurate. This example suggests that perhaps the simpler approximate normal distribution may be preferable to the approximate t-distribution for other measurement equations as well. A thorough investigation of the relative performance of the approximate t-distribution based on the W–S formula as suggested in the ISO-GUM and the simpler approximate normal distribution based on a Bayesian uncertainty as proposed in this paper would require comparison for a range of measurement equations by numerical methods.

The assumptions that underlie the approximate t-distribution based on the W–S formula and the approximate normal distribution based on a Bayesian uncertainty are essentially identical. Unless these assumptions are validated, one is not fully justified in using the approximate distributions. Some tend to use the approximate t-distribution based on the W–S formula as a general rule [23]. To the extent that one is willing to use the approximate t-distribution without validating the underlying assumptions, one should be willing to use the simpler approximate normal distribution.

Acknowledgments

Suggestions by the referees have greatly improved the paper. The following provided useful comments on several earlier drafts of this paper: Bob Frenkel, Ron Boisvert, Bonita Saunders and Al Jones.

References

[10] Welch B L 1947 The generalization of ‘Student’s’ problem when several different population variances are involved Biometrika 34 28–35
[11] Welch B L 1937 The significance of the difference between two means when the population variances are unequal Biometrika 29 350–62
ISO-GUM’s use of the Welch–Satterthwaite formula

[16] Behrens W V 1929 Ein Betrag zur Fehlenberechnung bei wenigen Beobachtungen Landwirtschaftliche Jahrbücher 68 807–37

