A model and numerical framework is developed for piezoelectric materials. The model treats the piezoelectric and electrostrictive effects by incorporating orientation-dependent, single-crystal properties. The method is implemented in Object Oriented Finite Element program, a public domain finite element code, so it can be applied to arbitrary two-dimensional microstructures with crystallographic anisotropy. The model is validated against analytic solutions. Consistency of the method for known cases permits application of the technique to more complicated two-dimensional systems. The piezoelectric and electrostrictive response is determined for a few simple device geometries and provides insight for design and convergence criteria.

1. Introduction

Progress towards optimal microstructures in high-performance electromechanical actuators and sensors depends, in part, on the development of novel materials, device architecture, amplification mechanisms, and processing techniques. In piezoelectric materials, the effect of microstructure on the local state of stress and polarization is not simple to model because the fields are coupled, and the coupling is not necessarily spatially uniform. Furthermore, reliable models depend upon the proper incorporation of the physical properties at a microstructural level.

The spatial interactions of fields and material properties in a microstructure depend on fine-scale details. The macroscopic response may vary considerably for similar microstructures with the same microstructural parameters. To investigate the effects of microstructure on properties, two categorically different approaches may be considered: the fine scale effects can be spatially averaged and the microstructure approximated as a homogeneous material; or the spatial distribution of the properties of a particular microstructure can be incorporated into a complex model that treats all known interactions to the level of spatial resolution. The first, or homogenizing, approach will not suffice. The microstructural method reported in this paper provides a means to assess the effect of such correlations, non-linearities, and statistics. It can be used in samples with large spatial correlations or in materials that suffer the inadequacies of small number statistics, where the solution derived from the homogenization approach deviates greatly from the actual distribution of fields. The method is intended to improve processing design for devices, particularly when the device scale is similar to that of the microstructure or the relevant design feature depends on extremes of microstructural distributions.

Ultimately, piezoelectric function depends on the relationship between the spatial variations of the mechanical and electric fields as well as the anisotropy of the underlying single-crystal properties of each grain in a microstructure. It is not straightforward to develop criteria to determine which properties are confidently predicted by an effective medium approach and those that are directly related to localized interactions.
This paper describes a modeling framework for microstructural effects on complex piezoelectric microstructures. The framework is implemented with the finite element method and verified for simple geometries. The method is implemented in two dimensions (with plane stress and plane strain conditions). Numerical convergence with mesh size and direct applicability to simulations of device geometry are demonstrated. The analysis performed on the tested device geometries provides a set of simple guidelines for piezoelectric actuator design.

In a companion paper, the numerical method is used to determine the effects of crystallographic texture in polycrystalline BaTiO3 and PZN–PT.

II. Model Framework

(1) Equilibrium Equations and Constitutive Relations

If a non-piezoelectric phase undergoes a transition to a piezoelectric phase, the material's symmetry changes by the loss of an inversion center. In some cases, the piezoelectric phase transition induces a non-zero remnant strain and electric polarization. The magnitude of remnant strain can be reversibly changed with increased polarization and stress. If crystallographically equivalent remnant states of strain can be set by applying a very strong field, the material is called a ferroelectric.

It is possible to derive the conditions of local equilibrium of an electromechanical solid \((V \cdot \mathbf{\dot{\sigma}} = 0; V \cdot \mathbf{\mathbf{D}} = 0)\) by minimizing a functional form of the total free energy \(\mathcal{F}\). The computational method presented in this paper follows directly from discretizing the variational formulation and substituting the electromechanical constitutive equations for each homogeneous region of a microstructure. The equilibrium equations are satisfied automatically when the discrete form of the free energy functional is minimized. With the free energy functional the computational method is reduced to specification of the constitutive equations, discretization, and subsequent numerical solution.

For the specification of electromechanical constitutive relations, mechanical and electrical fields are coupled through material properties:

\[
\begin{align*}
\sigma_{ij} &= C_{ijkl}^{E}E_{kl}^{T} - C_{ijkl}^{E}d_{mnk}^{E}E_{m} \\
D_{i} &= e_{ij}^{0}E_{j} + d_{ijk}C_{jklm}^{E}E_{m}
\end{align*}
\]

The symbols are defined in Table I. Each coefficient follows Nye's notation. For cases in which the material properties are also functions of applied fields, a higher order approximation is obtained by expanding the physical properties with respect to the intensive quantities:

\[
\begin{align*}
e_{ij}^{0} &= e_{ij}^{0} + \chi_{ijkl}\sigma_{kl} + \Lambda_{ijkl}E_{k} \\
d_{ij} &= d_{ij}^{0} + \Gamma_{ijklm}\sigma_{mn} + \gamma_{ijkl}E_{l} \\
C_{ijkl}^{E} &= C_{ijkl}^{E0} + \chi_{ijklm}\sigma_{mn} + \zeta_{ijklm}E_{m}
\end{align*}
\]

In the limit of infinitesimally small changes with respect to equilibrium, the total strain can be expanded in terms of the contributions from each applied field:

\[
e_{ij}^{T} \equiv e_{ij}^{\text{elastic}} + e_{ij}^{\text{electric}} + \ldots
\]

Table I. Glossary of Symbols for Thermodynamic Properties

<table>
<thead>
<tr>
<th>Definition</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{ijkl}^{E})</td>
<td>Stiffness tensor at constant electric field</td>
</tr>
<tr>
<td>(\vec{D})</td>
<td>Total polarization or displacement vector</td>
</tr>
<tr>
<td>(D_{i})</td>
<td>ith component of displacement vector</td>
</tr>
<tr>
<td>(E_{i})</td>
<td>ith component of electric field</td>
</tr>
<tr>
<td>(F)</td>
<td>Total Helmholtz free energy</td>
</tr>
<tr>
<td>(d_{ijk})</td>
<td>Piezoelectric tensor (d-form)</td>
</tr>
<tr>
<td>(e_{ijk})</td>
<td>Piezoelectric tensor (e-form)</td>
</tr>
<tr>
<td>(f)</td>
<td>Helmholtz free energy density</td>
</tr>
<tr>
<td>(u_{i})</td>
<td>ith component of the spatial displacement vector</td>
</tr>
<tr>
<td>(\Gamma_{ijklmn})</td>
<td>Electro-elastic tensor</td>
</tr>
</tbody>
</table>

Fifth rank tensor expressing linear correction to piezoelectric tensor due to change of stress. Zero for crystals with inversion center symmetry.

\[
\frac{\partial d_{ij}}{\partial \sigma_{mn}} |_{\sigma, E_{0}}
\]

\(\Lambda_{ijkl}\) | Electro-optic tensor |

Linear correction to dielectric response. This correction only exists in materials lacking an inversion center.

\[
\frac{\partial e_{ij}}{\partial E_{k}} |_{\sigma, E_{0}}
\]

| \(\vec{e}_{ij}^{\text{T}}\) | Dielectric permittivity tensor |
| \(e_{ij}^{\text{E}}\) | Dielectric permittivity at constant total strain |

The dielectric permittivity at constant strain is related to the dielectric permittivity at constant stress through the relation:

\[
\frac{e_{ij}^{\text{E}}}{e_{ij}^{\text{T}}} = \left(\frac{\sigma_{mn}C_{mnk}^{E}d_{kl}}{\sigma_{kl}^{E}}\right)
\]

\(\xi_{ijklmn}\)	Total strain tensor
\(\varsigma_{ijkl}\)	ith component of total strain tensor
\(\zeta_{ijklm}\)	Electric hardening tensor

Contribution to stiffness from induced polarization. Absent in centrosymmetric materials.

\(\xi_{ijklmn}\)	\(\frac{\partial C_{ijkl}}{\partial E_{m}}	_{\sigma, E_{0}}\)
\(\varsigma_{ijkl}\)	Component of stress tensor	
\(\sigma_{ij}\)	ith component of stress tensor	
\(\phi\)	Electric potential	
\(\chi_{ijklmn}\)	Higher-order stiffness tensor	

Reversible stress hardening coefficient.

\[
\lambda_{ijklmn} = \frac{\partial C_{ijkl}}{\partial \sigma_{mn}} |_{\sigma, E_{0}}
\]
The electric contribution to the total strain defines the piezoelectric coefficient tensor:

\[e_{ij}^{\text{electric}} = d_{ij} E_k \]

Substituting Eq. (3) in Eq. (6) and defining \(e_{ij}^{\text{electrostrictive}} \) as the quadratic contribution to strain yields:

\[e_{ij}^{\text{electrostrictive}} = \gamma_{ijkl} E_l E_k \quad \text{with} \quad \gamma_{ijkl} = \frac{\partial^2 e_{ij}^{\text{eg}}}{\partial E_l \partial E_k} \]

Cubic and higher order contributions of the electric field to the total strain are neglected, but can be incorporated into the formulation.

An alternative description of the quadratic contribution to strain from an electric field is described in terms of the polarization vector \(\mathbf{P} \), where the corresponding electrostrictive tensor, \(Q_{ijkl} \), relates strain to polarization change:

\[e_{ij}^{\text{electrostrictive}} = Q_{ijkl} P_k P_l \quad \text{with} \quad Q_{ijkl} = \frac{\partial^2 e_{ij}^{\text{eg}}}{\partial P_k \partial P_l} \]

By expanding

\[\gamma_{ijkl} = \frac{\partial d_{ij}}{\partial E_l} = \frac{\partial}{\partial E_l} \left(\frac{\partial e_{ij}^{\text{eg}}}{\partial P_k} P_k \right) \]

an electric field representation can be related to a polarization field:

\[\gamma_{ijkl} = Q_{jmn} \kappa_{mn}^{\sigma} \kappa_{al}^{\sigma} + \Lambda_{klm} d_{mij} b_{m}^{\sigma} \]

where

\[\kappa_{ij}^{\sigma} = e_{ij}^{\sigma} - \epsilon_0 \delta_{ij} \]

and

\[\beta_{ij}^{\sigma} b_{m}^{\sigma} = \delta_{ij} \]

Here, \(\delta_{ij} = 1 \) if \(i = j \) and zero otherwise.

For systems in which electro-optic effects can be neglected, the dielectric and piezoelectric tensors take the following form:

\[d_{ij} = d_{ij}^{0} + Q_{jmn} \kappa_{mn}^{\sigma} \kappa_{al}^{\sigma} E_l \]

and

\[e_{ij}^{\sigma} = e_{ij}^{\sigma,0} - d_{ij}^{0} C_{mnk}^{E} d_{kl} + C_{ijkl} Q_{klpq} \kappa_{pq}^{\sigma} \kappa_{al}^{\sigma} e_{pq}^{T} \]

(2) Plane-Stress Formulation

For a piezoelectric solid whose material properties are homogeneous out of a specified plane, such as in a ferroelectric film, the description of the local thermodynamic state of a polycrystalline solid can be reduced to a quasi-two-dimensional representation. For a piezoelectric material subjected to in-plane surface tractions and electric displacements, but free to deform out of the plane (i.e., in a state of plane stress), the electromechanical free energy density is \(^4\)

\[f = \frac{1}{2} \epsilon_{ij}^{(2)} C_{ijkl}^{E} e_{kl}^{T} + \frac{1}{2} E_i e_{ij}^{(2)} E_j - E_i e_{ij}^{(2)} e_{ij}^{(2)} \]

where \(\epsilon_{ij} \) is the permittivity of vacuum.

\(^4\)Because this is an expansion about a stable state, it is implicit that hysteretic effects, domain wall motion, charge separation, mass diffusion, and other irreversible kinetic effects cannot be operative, thus these equations apply. In a ferroelectric, there may be irreversible phase transitions that include switching events and local motion of domains.

Define \(e_{ij}^{(2)} \) as the two-dimensional in-plane part of the strain with indices \(i, j = \{1, 2\} \) (the out-of-plane index is taken as 3), and \(\eta_{i} \) as the out-of-plane components:

\[\eta_{i} = \frac{e_{i3}^{(2)}}{\sqrt{2}} \]

For plane-stress conditions:

\[\sigma_{ij} = C_{ijkl}^{E} (e_{ij}^{(2)} - d_{mij} E_m) = 0 \quad \text{[} i = 1, 2, 3 \text{]} \]

Let \(d_{mij}^{(2)} \) be the two-dimensional in-plane contribution to the piezoelectric tensor

\[d_{mij} = \left(\begin{array}{ll} d_{mij}^{(2)} & d_{mij}^{(2)} \\ d_{mij}^{(2)} & d_{mij}^{(2)} \end{array} \right) \]

Here, \(d_{mij} \) is the out-of-plane contribution to the piezoelectric tensor.

Equations (18) and (19) imply

\[C_{ijkl}^{E} (e_{ij}^{(2)} - d_{mij}^{(2)} E_m) = -2C_{ijkl}^{E} (\eta_{j} - d_{mij} E_m) \]

which gives

\[\eta_{i} = -\frac{1}{2} \xi_{ij} C_{ijkl}^{E} (e_{ij}^{(2)} - d_{mij}^{(2)} E_m) + d_{mij} E_m, \]

where \(\xi_{ij} C_{ijkl}^{E} \equiv \delta_{ij} \). Using Eqs. (15), (16), and (21), \(f \) is

\[f = \frac{1}{2} \epsilon_{ij}^{(2)} D_{ijkl} e_{kl}^{(2)} - \frac{1}{2} E_i \chi_{ij} E_j - E_i e_{ij}^{(2)} e_{ij}^{(2)} \]

where the plane-stress stiffness is

\[D_{ijkl} \equiv C_{ijkl}^{E} - C_{ijkl}^{E} e_{mn}^T C_{mnk}^{E} d_{mij}^{(2)} \]

and the plane-stress permittivity is

\[\chi_{ij} \equiv \epsilon_{ij}^{(2)} + d_{mij} C_{mnk}^{E} d_{mij} \]

Equation (22) is the plane-stress analog to Eq. (15).

(3) Numerical Solution

The formulation described in Section 2.2 was implemented by applying the finite element method (see Appendix A). The numerical implementation results in a set linear equations (Eq. (22)) of the form \(K V = b \) in each degree of freedom. The final form of this matrix depends on the mesh and element properties. \(\mathbf{V} \) is a vector with components corresponding to each unknown degree of freedom (nodal displacements and voltage) and \(b \) is a vector of the surface specified contributions from each degree of freedom (surface forces, electrostatic surface charges, boundary voltages and displacements). The global stiffness matrix, \(\mathbf{K} \), is typically a sparse \(M \times M \) matrix and can be determined a priori, in the linear case. \(M \) corresponds to the number of degrees of freedom not determined by the boundary conditions in the system.
The global solution can be obtained by a suitable numerical method for solving large sparse linear systems. The current implementation utilizes the conjugate gradient method. The solution is an approximation in two senses. The first is the numerical approximation to the linear system of equations and the second is due to discretization. The quality of the solution to the linear equations is ensured by requiring that the residual \(r = |\mathbf{K}\mathbf{V} - \mathbf{b}|/|\mathbf{b}| \) is less than a specified tolerance. A maximum value of \(r \) is specified prior to solution. With regard to discretization, a numerical solution should capture the relevant features and variations of the fields and asymptotically converge to the exact solution with mesh refinement.

In the case of a material microstructure with local field-dependent properties, the form of the global equilibrium equation has a similar form, but is generally non-linear (i.e., the stiffness matrix depends on the (unknown) solution). If the electric field does not vary out of the plane. This is a valid approximation to known solutions for simple cases. The modified version of OOF, currently under development, will address piezoelectric microstructures without significant modifications.

III. Model Validation and Discussion

(1) Model Implementation

The framework described in the sections above was implemented by modifying the Object Oriented Finite Element program (OOF), version 1.2. OOF is a freely available software developed at NIST for the analysis of properties of microstructures. Because OOF is designed to operate on two-dimensional geometries, such as those from microstructural images these modifications permit solutions for arbitrary two-dimensional microstructures of piezoelectric phases with spatially variable crystallographic orientation. The solutions consist of both electric and mechanical fields. The absolute value difference between the analytical and numerical predictions is shown in Fig. 2.

The tolerance was set to \(r = 1 \times 10^{-12} \). Each simulation required about a million floating point operations (1 Mflop) for convergence (1 ms on an SGI Origin 2000). The exact and numerical solutions for this case have uniform electric and strain field distributions. Figure 1 compares the numerical and analytic solutions for angular variations of the uniform piezoelectric strains \(e_{ij} \), normalized by their values at \(\theta = 0 \). The normalized angular dependencies have exact expressions:

\[
\begin{align*}
\frac{e_{11}}{d_{33}E_1} &= \cos^3 \theta + \frac{d_{15} + d_{33}}{d_{33}} \sin^2 \theta \cos \theta \\
\frac{e_{22}}{d_{31}E_1} &= \cos^3 \theta + \frac{d_{31} - d_{15}}{d_{31}} \sin^2 \theta \cos \theta \\
\frac{e_{33}}{d_{33}E_1} &= \cos \theta
\end{align*}
\]

The absolute value difference between the analytical and OOF predictions is shown in Fig. 2.

The simulation results were computed on \(5 \times 5 \) node regular meshes. The tolerance was set to \(r = 1 \times 10^{-12} \). Each simulation required about a million floating point operations (1 Mflop) for convergence (1 ms on an SGI Origin 2000).

To demonstrate the convergence of the non-linear case, an electrostrictive system (BaTiO3, point group \(m \bar{3}m \), properties in Table II) was simulated. The solution was obtained for a square domain (1 mm \(\times 1 \) mm). The \(c \)-axis was oriented parallel to the \(x \)-direction. A voltage difference along the \(x \)-direction was applied.

Table II. Physical Properties for Hypothetical Single-Crystal, Piezoelectric Solid. Piezoelectric coefficients correspond to BaTiO3.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{11})</td>
<td>2.751</td>
<td>Pa</td>
<td>(d_{33})</td>
<td>-34.7</td>
<td>pC/N</td>
</tr>
<tr>
<td>(C_{33})</td>
<td>1.649</td>
<td>Pa</td>
<td>(d_{31})</td>
<td>85.7</td>
<td>pC/N</td>
</tr>
<tr>
<td>(C_{44})</td>
<td>0.543</td>
<td>Pa</td>
<td>(d_{15})</td>
<td>392.0</td>
<td>pC/N</td>
</tr>
<tr>
<td>(C_{12})</td>
<td>1.789</td>
<td>Pa</td>
<td>(e_{31})</td>
<td>10.0</td>
<td>pC/N</td>
</tr>
<tr>
<td>(C_{13})</td>
<td>1.516</td>
<td>Pa</td>
<td>(e_{33})</td>
<td>10.0</td>
<td>pF/m</td>
</tr>
</tbody>
</table>

\(\mathbf{K} = \mathbf{K}\mathbf{V} - \mathbf{b}\mathbf{V}/|\mathbf{b}| \) until a non-linear tolerance \(|\mathbf{K}\mathbf{V} - \mathbf{b}\mathbf{V}|/|\mathbf{b}| \leq \text{tol} \) to find \(\mathbf{V} \).

Because the system lacks an implicit length scale, the obtained results are independent of mesh resolution. Below, a simulation is presented that incorporates a length scale that permits evaluation of mesh refinement.

Fig. 1. Angular dependence of three contributions to normalized strain, \(e_{11} \), \(e_{22} \), and \(e_{33} \), (out-of-plane). Solid lines correspond to analytic predictions; dots show the Object Oriented Finite Element program solution.
applied in steps of 10 V ranging from −100 to 100 V; the sides parallel to the x-axis are electrically unconstrained. All edges are mechanically unconstrained.

By applying Eq. (13), and assuming that \(d_{lik}^{0} = 0 \) (the case for point group \(n\overline{m}3n \)) the strain in the direction of an electric field applied along the \(x \)-direction is

\[
\varepsilon_{11} = (\varepsilon_{11}^{0} - \varepsilon_{66})Q_{11}E_{1}^{2}
\]

(28)
The electrostrictive constant is given in matrix notation.\(^{23}\)

Linear and non-linear tolerances were set to \(r_{L} = 10^{-4} \) and \(r_{NL} = 10^{-7} \), respectively. The domain was divided in a uniform mesh with a total of 25 nodes. Each simulation took on the order of four Newton steps to converge. Each Newton step took on the order of 1 Mflop. A comparison between the OOF calculation and the exact response is shown in Fig. 3.

IV. Convergence with Discretization

To assess discretization effects (i.e., mesh refinement), a simulation length scale is required for comparison with mesh size. Two hypothetical linear piezoelectric devices with such length scales were simulated (see Figs. 4 and 6). The simulated actuators will be referred to as anti-parallel and dead-layer devices, respectively.

The anti-parallel device (Fig. 4) is composed of two otherwise identical piezoelectric layers with anti-parallel \(c \)-axes. They are 1.0 mm long and 0.25 mm thick. Their material properties correspond to point group 4\(\overline{mm} \) and are summarized in Table II. The layers are perfectly bonded. The left edge of both layers is perfectly clamped to an infinitely stiff perfect conductor. The right side of the bilayer is bonded to a perfectly compliant (zero stiffness) perfect conductor.

Numerical solutions for the deflection of the bilayer appear in Fig. 5 as a function of mesh refinement. The highest resolution mesh (16 384 nodes, 49 152 degrees of freedom) required 5152 iterations to converge (a total of 4 \(\times \) 10\(^5\) Mflops). The meshes with the coarsest resolution (20 nodes, 48 degrees of freedom) required 23 iterations to converge (a total of 7.5 Mflops). The convergence tolerance was 1 \(\times \) 10\(^{-12}\) for all refinements. Figure 5 suggests that approximately 32 elements across the characteristic length scale is sufficient for convergence.\(^{38}\)

In the anti-parallel piezoelectric device, a non-zero electric field component perpendicular to the applied voltage difference is observed. In this device, when a voltage difference is applied, the converse piezoelectric effect induces a change of shape in the \(y \) and \(z \) directions, which correspond to crystallographically allowed contributions to the contraction/expansion at these

Table III. Physical Properties Used in Single-Crystal Calculations for Electrostrictive BaTiO\(_3\)\(^{30,32,33}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{11})</td>
<td>172.80</td>
<td>GPa</td>
</tr>
<tr>
<td>(C_{12})</td>
<td>81.96</td>
<td>GPa</td>
</tr>
<tr>
<td>(C_{44})</td>
<td>108.22</td>
<td>GPa</td>
</tr>
<tr>
<td>(Q_{11})</td>
<td>(11.1 \times 10^{-2})</td>
<td>(\text{m}^2/\text{C}^2)</td>
</tr>
<tr>
<td>(Q_{12})</td>
<td>(-4.42 \times 10^{-2})</td>
<td>(\text{m}^2/\text{C}^2)</td>
</tr>
<tr>
<td>(Q_{44})</td>
<td>(5.85 \times 10^{-2})</td>
<td>(\text{m}^2/\text{C}^2)</td>
</tr>
<tr>
<td>(\varepsilon_{11}^{0})</td>
<td>17.4</td>
<td>(\mu \text{F/m})</td>
</tr>
</tbody>
</table>
boundaries. Via the direct piezoelectric effect, the material’s deformation induces a change of polarization at the interface, which in turn induces a non-zero contribution to the electric field, perpendicular to the externally applied voltage difference.

The anti-parallel device is an inefficient piezoelectric actuator—it’s geometrical arrangement induces a large amount of stored mechanical energy at the interface. These localized mechanical and electrical energy densities could cause depoling, particularly for those transducers operating at temperatures close to the Curie temperature. Away from the Curie temperature, localized mechanical energy density distributions affect mechanical reliability.

The second piezoelectric transducer, the dead-layer device, is a piezoelectric strip perfectly bonded to a non-piezoelectric, metallic substrate (Fig. 6). The bottom layer is a perfectly conducting isotropic material with Young’s modulus of 100 GPa and Poisson's ratio of 0.33. The c-axis of the piezoelectric layer makes an angle of 54.74° with respect to the laboratory y-axis. This orientation was chosen to maximize the single-crystal piezoelectric response observed in Fig. 1.

The numerical error in bending of the dead-layer device can be observed in Fig. 7 as a function of element size. The solution for the coarsest mesh (20 nodes, 48 degrees of freedom) required about 2.5 Mflops. The solution for the finest mesh (16384 nodes, 49152 degrees of freedom) required about 1200 Mflops.

Fig. 7. Normalized vertical displacement of the upper-right corner in dead-layer piezoelectric device as a function of normalized element size. Here $\frac{\Delta y}{\Delta x} = 14.432(A_e/A)^{0.931}$.

Compared with the anti-parallel piezoelectric device, no residual, lateral electric fields (in directions perpendicular to the applied voltage difference) are produced. The electrical energy necessary to displace this actuator is less than the contributions from the anti-parallel device.

The magnitudes of the electric and stress fields in the dead-layer device reaches their maximum value at the interface of the active layer, particularly where the internal boundary meets the surface of the device. Here, the local properties mismatch and boundary conditions induce the observed effect. Therefore, polarization domain switching and mechanical failure is favored to initiate at the surface and interface of the device. The maximum displacement in the dead-layer device is maximized by the choice of orientation of the c-axis.

V. Summary and Conclusions

A model and numerical framework was established for the solutions of equilibrium electric and mechanical fields. The numerical implementation provides a method for calculating the response of a two-dimensional device as a function of its boundary conditions and geometry. Linear and quadratic representations of piezoelectric material properties were developed and provide a second-order model for reversible electromechanical materials. The solutions are accurate and consistent with simple geometries for which analytic solutions were derived. Numerical solutions were obtained for specific piezoelectric layers, and the geometries provide a length scale that can be used as a normalizing parameter to test numerical convergence with respect to mesh refinement. This convergence criteria is used in a continuing paper as a reference length scale to establish the validity of the calculations.18

The electromechanical response was compared for two hypothetical piezoelectric devices. The analysis suggests the response of these types of devices can be optimized by orienting the c-axis to a value that maximizes their response. Surfaces and internal interfaces play an important role in determining the response of a piezoelectric device. A specific microstructure and well-determined applied fields lead to a distribution of mechanical and electrical energy that impacts directly on the life and reliability of the device; advanced actuator devices can benefit from such analyses.

The results for simple geometries in this paper are useful for developing design strategies for piezoelectric devices and can be summarized as follows:

1. The macroscopic response of a piezoelectric actuator is a result of the spatial contributions from the direct and converse
piezoelectric effect. For a specific electromechanical transducer, the resulting electric and strain fields are a consequence of the spatial interactions of the inherent geometrical features (microstructure) and result in fields in directions that may not be parallel to the macroscopic applied field.

(2) Coherent internal interfaces where piezoelectric properties change discontinuously will result in regions of large elastic energy density and potentially affect mechanical reliability.

(3) The spatial incompatibility of elastic, dielectric, and piezoelectric properties results in localized spatial regions of electrostatic and elastic energy, which are favorable sites for depoling of the device.

(4) A sensible choice for the numerical value and crystallographic orientation of the utilized piezoelectric materials for single-crystal devices will maximize the macroscopic response and will minimize the induced mechanical energy distribution.

One of the main benefits of this modified version of OOF is its ability to easily capture complex microstructural features through simple point-and-click operations. Thus, this framework permits the description of a wide variety of microstructural features, such as pore and crack distributions, electromechanically dead layers, and interactions with static ferroelectric domains.

A further extension of this framework to account for spatial charge distributions and its impact on the local fields is easily included. Such addition only requires the full form of Coulomb’s Law, i.e., \(V = D \cdot \rho \), as well as the relevant constitutive thermodynamic relations already established in Section 2.24 Similarly, the description of static (and pinned) domains can be readily assessed, by automatically identifying these microstructural features on a scanned micrograph (i.e., by carefully identifying the local Euler angles of each variant). Furthermore, the thermodynamic equilibrium of the underlying ferroelectric domains can be explored. Here, the local state of a volume element of material is determined by the electromechanical Gibbs free energy. If this free energy reaches a local maximum value (specified by the material’s single-crystal coercive electric field or stress tensor) the element will attempt to acquire an orientation that simultaneously decreases the local free energy. A Monte Carlo algorithm, similar to the one utilized for other instances of OOF (e.g., Kessler, Griffith, or Valeria elements) will easily incorporate these ideas.25 However, the imposed constitutive laws should comply with the crystallographic constraints imposed by the parent phase and the involved variants of the ferroelectric phase.

The results in this paper establish the validity of the numerical method and its convergence behavior. The convergence to known solutions provides confidence that application of this numerical model to complex microstructures will provide a valid solution where analytical solutions are impossible. Thus, this paper establishes the groundwork for the numerical method for analysis of microstructural properties that is utilized in the companion paper.18

Appendix A. Finite Element Formulation

In the absence of body forces and localized electrostatic charges, the virtual change in the electromechanical free energy is:26

\[
\int_{\Omega} (\bar{\sigma} \bar{\delta} \bar{e} - D \cdot \bar{\delta} \bar{E}) d\Omega = \int_{S_w} \bar{\delta} X \cdot \bar{\sigma} \cdot n dS + \int_{S_e} \bar{\delta} \phi \bar{B} \cdot n dS \quad (35)
\]

where \(\Omega \) is the volume with bounding surface \(S \) with unit normal \(n \). The subsets of \(S \) (\(S^{W} \) and \(S^{E} \)) where mechanical tractions (\(\bar{\sigma} \cdot n \)) and surface charge (\(D \cdot n \)) are specified may overlap. The strain, \(\bar{e} \), and electric field, \(\bar{E} \), are functions of the spatial derivatives of the displacement field \(\bar{u} \) and electrostatic potential \(\phi \).

The finite element approximation is introduced by discretizing the domain (volume) into a complete set of non-overlapping homogeneous subregions (elements). Each element is connected to its neighbors through shared discrete values (nodes). Within each element, \(n \), the fields are described by linear combinations of functions \(N^n_j \) (shape functions).27 Substitution of \(N^n_j \) into Eq. (21) reduces the integral to a set of coupled linear equations.28,29

By substituting the two-dimensional electromechanical properties derived in Section II into Eq. (21) one finds for the case of linear triangular elements:30

\[
\Delta \left(\begin{array}{c} B_{\delta k}^w D_{\delta k \delta}^W B_{\delta k}^W \quad -B_{\delta k}^w \epsilon_{\delta k} G_{\delta}^m \n -G_{\delta}^m \epsilon_{\delta k} G_{\delta}^m \quad -G_{\delta}^m \chi_{\delta j} G_{\delta}^j \end{array} \right) \begin{bmatrix} \phi^\mu \\ \bar{u}^\mu \end{bmatrix} = \left(\begin{array}{c} \bar{\sigma} \cdot \bar{\delta} \bar{u}^\mu \\ \bar{D} \cdot \bar{\delta} \bar{u}^\mu \end{array} \right)_{\bar{S}^W} \quad (36)
\]

where \(\mu \) and \(\nu \) are the indices for each node in the element (i.e., \(\mu, \nu = 1, 2, 3 \) for triangular elements). The symbols are defined in Table V.

Table IV. Physical Properties for Barium Titanate Used in Calculations of Piezoelectric Bending Devices (Anti-Parallel and Dead-Layer)\(^{38,39}\)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
<th>Symbol</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{11})</td>
<td>275.1</td>
<td>GPa</td>
<td>(d_{31})</td>
<td>-34.7</td>
<td>pC/N</td>
</tr>
<tr>
<td>(C_{33})</td>
<td>164.9</td>
<td>GPa</td>
<td>(d_{33})</td>
<td>85.7</td>
<td>pC/N</td>
</tr>
<tr>
<td>(C_{44})</td>
<td>54.35</td>
<td>GPa</td>
<td>(d_{15})</td>
<td>392.0</td>
<td>pC/N</td>
</tr>
<tr>
<td>(C_{12})</td>
<td>178.9</td>
<td>GPa</td>
<td>(e_{11})</td>
<td>17.442</td>
<td>(\mu F/m)</td>
</tr>
<tr>
<td>(C_{13})</td>
<td>151.6</td>
<td>GPa</td>
<td>(e_{33})</td>
<td>0.965</td>
<td>(\mu F/m)</td>
</tr>
</tbody>
</table>

Table V. Glossary of Used Symbols in Finite Element Numerics

<table>
<thead>
<tr>
<th>Definition</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B^w_{\delta k})</td>
<td>Displacement-to-strain conversion matrix</td>
</tr>
<tr>
<td>(D_{\delta k \delta}^W)</td>
<td>Two-dimensional stiffness tensor. For a solid under plane-stress conditions, (D_{\delta k \delta}^W) is given by Eq. (23)</td>
</tr>
<tr>
<td>(G_j^m)</td>
<td>Finite element gradient vector (m)th Element, (j)th node (see Zienkiewicz)26</td>
</tr>
<tr>
<td>(K)</td>
<td>Total stiffness matrix</td>
</tr>
<tr>
<td>(K_m)</td>
<td>Stiffness matrix (defined by Eq. (36))</td>
</tr>
<tr>
<td>(N^n_j)</td>
<td>Trial function in (m)th element, (j)th node</td>
</tr>
<tr>
<td>(P)</td>
<td>Number of nodes in element</td>
</tr>
<tr>
<td>(a^m)</td>
<td>Trail function coefficients in triangular (m)th element, (j)th node</td>
</tr>
<tr>
<td>(b)</td>
<td>Total body force</td>
</tr>
<tr>
<td>(\bar{u})</td>
<td>Total degrees of freedom vector</td>
</tr>
<tr>
<td>(\bar{u}_m)</td>
<td>Vector of degrees of freedom (contains the (m)th element voltage and displacement fields)</td>
</tr>
<tr>
<td>(x_{\mu j}), (y_{\mu j})</td>
<td>Nodal positions of (j)th node, (m)th element</td>
</tr>
<tr>
<td>(\Delta)</td>
<td>Area of triangular element</td>
</tr>
<tr>
<td>(\delta \phi)</td>
<td>Electric potential test function</td>
</tr>
<tr>
<td>(\phi^n_m)</td>
<td>Finite element approximation to electric potential in (m)th element</td>
</tr>
<tr>
<td>(\phi_{\mu j})</td>
<td>Nodal electric potential in (m)th element, (j)th node</td>
</tr>
<tr>
<td>(\chi_{\mu j})</td>
<td>Effective two-dimensional permittivity matrix. The explicit form is given by Eq. (24)</td>
</tr>
</tbody>
</table>
Acknowledgments

Many thanks to Dr. Catherine M. Bishop for the helpful discussions and for reading this manuscript.

References