
1st Annual PKI Research Workshop
Proceedings

www.cs.dartmouth.edu/˜pki02/

August 2002

Gaithersburg, Maryland, USA
April 24-25, 2002

1st Annual PKI Research Workshop---Proceedings

ii

Organizers

General Chair: Ken Klingenstein, University of Colorado.

Program Chair: Sean Smith, Dartmouth College.

Stipends Chair: Neal McBurnett, Internet2.

WIP Chair: Peter Honeyman, University of Michigan.

Local Arrangements Chair: Nelson Hastings, NIST.

Scribe: Ben Chinowsky, Internet2.

Program Committee:

Peter Alterman, NIH.
Steve Bellovin, AT&T Labs Research.
Stefan Brands, McGill University.
Bill Burr, NIST.
Carl Ellison, Intel.
Stephen Farrell, Baltimore Technologies.
Richard Guida, Johnson and Johnson.
Peter Honeyman, University of Michigan.
Ken Klingenstein, University of Colorado.
Larry Landweber, University of Wisconsin.
Neal McBurnett, Internet2.
Clifford Neuman, USC.
Sean Smith, Dartmouth College.
Steve Tuecke, Argonne National Laboratory.

Additional thanks to: Renee Frost, Tim Polk, Jim Rees, Ellen Vaughan, and Jiaying Zhang.

1st Annual PKI Research Workshop---Proceedings

iii

1st Annual PKI Research Workshop---Proceedings

iv

Contents

Preface. vii

Summaries

Workshop Summary. 3

Dueling Theologies. 7

XKMS Panel. 9

Work-in-Progress Session. 11

Refereed Papers

NOVOMODO:Scalable Certificate Validation and Simplified PKI Management. 15
Silvio Micali.

Validity Management in SPKI. 27
Yki Kortesniemi.

Extended Validation Models in PKI: Alternatives and Implications. 37
Marc Branchaud, John Linn.

Trust Assertion XML Infrastructure. 45
Phillip Hallam-Baker.

Making Certificates Programmable. 57
John DeTreville.

A Distributed Credential Management System for SPKI-based Delegation Systems. 65
Oscar Canovas, Antonio F. Gomez.

Scalability Issues in PMI Delegation. 77
Scott Knight, Chris Grandy.

Password-Enabled PKI: Virtual Smartcards versus Virtual Soft Tokens. 89
Ravi Sandhu, Mihir Bellare, Ravi Ganesan.

Delegated Cryptography, Online Trusted Third Parties, and PKI 97
Trevor Perrin, Logan Bruns, Jahan Moreh, Terry Olkin.

Security Characteristics of Cryptographic Mobility Solutions. 117
Sarbari Gupta.

A Note on SPKI’s Authorization Syntax. 127
Olav Bandmann, Mads Dam.

Public-key Support for Collaborative Groups. 139
Steve Dohrmann, Carl Ellison.

1st Annual PKI Research Workshop---Proceedings

v

Authorization Policy in a PKI Environment. 149
Mary Thompson, Srilekha Mudumbai, Abdelilah Essiari, Willie Chin.

Invited Talks and Experience Reports

Improvements on Conventional PKI Wisdom. 165
Carl Ellison.

Report: EDUCAUSE - NIH PKI Interoperability Pilot Project. 177
Peter Alterman, Russel Weiser, Michael Gettes, Kenneth Stillson, Deborah Blanchard, James Fisher, Robert Brentrup,
Eric Norman

Experiences Establishing an Experimental International Coalition Public Key Infrastructure. 193
Glenn Fink, Shawn Raiszadeh, Timothy Dean.

Position Papers

PKI Trust Models. 209
Yassir Elley.

How Things Look from the Trenches. 211
William F. Flanigan, Jr., Deborah M. Mitchell.

Impediments to Deployment of PKI from the Perspective of Grid Computing. 215
Marty Humphrey.

Novel Schemes for Certificate Management in Public-Key Infrastructure. 217
Ravi Mukkamala.

1st Annual PKI Research Workshop---Proceedings

vi

Preface

Since its discovery three decades ago, public-key cryptography has excited computer scientists and practitioners alike,
because of its potential to enable trusted information services between parties who do not share secrets a priori.
Public-key infrastructure—the technology to make this cryptography work in practice—would appear to be critical in
the emerging information infrastructure, which replete with boundaries—organizational, temporal, and many others—
that separate parties and make sharing difficult or impossible.

However, public-key cryptography has not fully achieved this vision. Some would assert that “PKI has not happened
yet”; others believe it is happening, but more slowly than anticipated. Researchers also exist with more extreme
viewpoints.

We convened this workshop to address the gap between this vision and the current state of PKI, and attracted a critical
mass of participants from government, industry, and academia, and representing a full spectrum of approaches and
opinions.

This volume contains a written record of the result: the formal refereed papers and experience reports of the confer-
ence, as well as summaries of the panels and discussions, and position papers submitted by some attendees.

On behalf of the entire organizing team, I thank all the participants. We hope that this is the first in a series of
conferences that helps our community achieve the long-term vision of PKI.

Sean Smith, Program Chair
Dartmouth College
Hanover, New Hampshire USA

sws@cs.dartmouth.edu

1st Annual PKI Research Workshop---Proceedings

vii

1st Annual PKI Research Workshop---Proceedings

viii

Summaries

1st Annual PKI Research Workshop---Proceedings

2

Workshop Summary

Ben Chinowsky
Internet2

This report summarizes current issues in PKI as dis-
cussed at the 1st Annual PKI Research Workshop, held
April 24-25, 2002 and sponsored by NIST, NIH and
Internet2.

Sense of the Meeting

While reaching consensus was not among the goals of
the workshop, there appeared to be something close to
general agreement on the following points.

PKI trust relationships must be built on real-
world trust relationships. In the workshop’s XKMS
panel discussion, Phillip Hallam-Baker described PKI
as “the interface between the Internet and the Real
World,” and it was evident throughout the workshop
that PKI practitioners are increasingly taking this as
a starting point. At the coarsest level of generaliza-
tion, hierarchical (aka traditional) PKIs are usually more
appropriate for hierarchical organizations—such as the
military, as discussed by Green, Winnenberg, Henry,
and Fink. Non-hierarchical PKIs (aka trust networks,
webs of trust, or anarchy) are usually more appropri-
ate for non-hierarchical organizations—such as the col-
laborative groups discussed by Dohrmann and Ellison.
Hallam-Baker illustrated the idea of building PKIs on
existing trust relationships in his overview of the Trust
Assertion XML Infrastructure (TAXI), the direct an-
cestor of SAML and XKMS. Even in the “Dueling
Theologies” session that opened the workshop, there
was little of the my-model-is-better-than-your-model
style of argument common to many discussions of PKI.
Instead, there is a growing awareness that we have a
wide variety of tools and a wide variety of circumstances
in which they can be applied, and growing agreement
that starting from existing real-world trust relationships,
whether those relationships be hierarchies or networks,
is the central principle that should guide how we apply
these tools.

At the same time, there is also broad agreement that
the closer you look at these top-level categorizations—

hierarchical vs. non-hierarchical, real-world vs. not—
the more questions arise. Does “traditional PKI” re-
fer only to X.509 with a strict X.500-style naming hi-
erarchy, or is it broader than that? When members of
a purchasing department operating under instructions
to honor any purchase order coming from some spec-
ified class of individuals nonetheless insist on making
some kind of personal contact before placing an order
for someone they’re not familiar with, what are the real-
world trust relationships that PKI should follow? Clearly
the top-level categories, while necessary, are not suffi-
cient for describing either real-world or PKI trust rela-
tionships. It was also noted that in some cases—such as
the use of PKI to ensure privacy or anonymity—it can be
important to make sure that PKI trust relationships don’t
follow real-world trust relationships.

Because the real-world trust relationships of many
large organizations are “heterarchical”—consisting of
a diverse set of hierarchies, anarchies, and combina-
tions of the two—heterarchical PKIs appear to have
a bright future. Such hybrid PKIs are created by
means of bridge CAs. Federal PKI Steering Committee
Chair Spencer briefly discussed progress on the Federal
Bridge Certification Authority (FBCA). Alterman pre-
sented a progress report on the NIH-EDUCAUSE PKI
Interoperability Project, which centers on communi-
cation between the FBCA and the Higher Education
Bridge Certification Authority (HEBCA); Alterman
summed up by saying that “there are NO show-
stoppers.” The workshop’s work-in-progress session in-
cluded a discussion by Alterman of possible topologies
for a multiple-bridge infrastructure.

Directory functionality is a central concern for
both traditionally- and non-traditionally-minded
PKI practitioners. For example, Marc Branchaud of
RSA noted that “the directory is the main thing that
makes X.509 work,” and Peter Alterman observed that
“solving directory issues is the key to interoperability.”
On the other hand, in his critique of “conventional PKI
wisdom,” Carl Ellison puts the problem of naming enti-
ties front and center. Ellison sees the gap between the
ways computers use names (precisely) and the way hu-
mans use names (imprecisely) as a big obstacle to hu-

1st Annual PKI Research Workshop---Proceedings

3

mans being able to trust that they have chosen the right
cert from a directory and are dealing with the person they
think they are dealing with. At Intel this has become
known as “the John Wilson problem.” Ellison advocates
using personal directories or naming services that can
use “local names” (e.g., “my mom”) to retrieve keys.

Users want security, but they’re not willing to
tolerate much additional system complexity in
order to get it. If security adds significant complexity,
users will either use it incorrectly—which can provide a
false sense of security, leaving the user worse off than
before—or not use it at all. Carl Ellison argued that the
main successful deployment of certificates so far, SSL,
is in effect mostly used to grant this false sense of secu-
rity. Ellison suggested an experiment comparing the fre-
quency of stolen credit card numbers in encrypted and
unencrypted transactions; he was was sufficiently confi-
dent in his pessimism about SSL to offer to include his
own credit card in the non-encrypted sample.

Legal issues, in particular certificate policy is-
sues, are very hard. Fink, discussing his work with
the Naval Surface Warfare Center, observed that PKI can
also stand for “Policy Keeps Interfering.” Green laid
heavy stress on the DoD’s work in this area: “we have
a major activity in the certificate policy world...if you’re
not paying attention to this you’re not taking PKI seri-
ously.” Klingenstein described a trust continuum run-
ning from collaborative trust (handshakes) to legal trust
(contracts). While collaborative trust tends to go with
the federated models of security (like Shibboleth, which
resembles a bridge CA in some respects), and legal trust
tends to go with traditional PKI, there are a wide range
of intermediate cases, and each user community needs
to decide what mix works best for it.

Issues and Approaches

Key management and mobility. Much discussion
was devoted to various schemes for ensuring that peo-
ple can access their keys as needed, both at the time of
issuance and thereafter. In the session on key manage-
ment, Gupta provided a survey of current approaches.
She emphasized the wide variety of solutions available
and noted three contraindications for attempting to im-
plement mobility: a need for strong non-repudiation, a
need to be able to recover encryption keys, and zero
tolerance for DoS attacks. Perrin presented a system
for sharing a single private key among many users; he
noted that his system is intended to interoperate with
conventional PKI rather than replace it. Perrin’s sys-

tem uses an online trusted third party; Peter Honeyman
pointed out that if you remove the asymmetric cryptog-
raphy from this system, it looks a lot like Kerberos, and
asked why he didn’t just use that. Perrin replied that his
system makes path validation possible and can be im-
plemented without a central server for the shared pri-
vate key (though the prototype does indeed use such
a server). Also on the theme of incorporating secret-
key cryptography, Sandhu pointed out that “it is com-
pletely possible to design a sufficiently secure password
system...security is always about adequacy.” Absolute
security doesn’t exist anyway, and users don’t inher-
ently hate passwords, they just don’t want so many of
them. With respect to the question of what’s holding
back physical smartcards; Sandhu observed that “it’s the
readers, stupid;” he described the principal motivation
of his work on virtual smartcards as to provide a “phased
migration path” from weak passwords to strong PKI.

Smartcards are a major focus of effort for the military,
and the DoD and International Coalitions presentations
included two striking cautionary tales drawn from their
experience. One speaker noted that smartcard readers
present more of a challenge than smartcards themselves,
and recounted an episode in which users were issued
smartcards and PINs, but then six months elapsed before
the card readers were installed and working, so that the
PINs were mostly forgotten. Henry noted that the DoD
currently combines smartcards with Geneva Convention
cards; as the Geneva Convention card is to be surren-
dered upon capture by the enemy, this clearly needs to
be fixed.

Also closely related to key management were the pre-
sentations of Boneh and Levy on their respective devel-
opments of identity-based encryption (IBE). IBE uses
information about the user, such as an email address, to
create a public key, making it possible to send some-
one encrypted mail without them having to first set up a
keypair and publish their public key. The recipient then
visits a server to obtain the corresponding private key.
Boneh emphasized the “viral” deployment properties of
this system, seeing its potential to encourage broader use
of PKI as its principal advantage. Levy emphasized the
control that IBE gives the sender over what information
the receiver needs to provide the server in order to get
their private key; the sender thus gains precise control
over how secure the encryption will be.

Authorization. Underscoring the importance of au-
thorization for PKI as a whole, in addition to the main
session on authorization, three of the four presentations
in the workshop’s “Scale” session were also devoted to
authorization. DeTreville set out his thinking on how

1st Annual PKI Research Workshop---Proceedings

4

to do scalable distributed authorization by building re-
lational algebra into certificates. Canovas discussed his
work on delegation of authorization in SPKI, which has
been deployed in a production smartcard system at his
university. Knight discussed the role-based X.509 privi-
lege management infrastructure he is developing for the
Canadian Department of National Defence.

In the authorization session proper, Dam discussed a
streamlined version of the SPKI authorization syntax
which is adequate for almost all real-world uses but
which executes in linear rather than exponential time.
Dohrmann outlined a PKI that he and Carl Ellison de-
veloped with the overarching goal of improving ease of
use, thereby improving the likelihood that the system
will be used correctly. One of the ways they do this is
by having lines of authority to grant authorizations fol-
low existing lines of authority within an organization;
for example, long authorization chains that go up one
side of the org chart and down the other are preferred
to short ones that cut across from one leaf node to an-
other. Thompson provided an overview of approaches
to authorization and an in-depth look at Akenti. Akenti
is a Grid-oriented authorization system which has been
implemented as an Apache module and which has been
used by the Diesel Combustion Collaboratory and the
National Fusion Collaboratory.

The workshop’s emphasis on ensuring ease of use was
especially strong in the discussions of authorization, re-
flecting a general awareness of the conceptual complex-
ity of relationships in this area.

Validation and revocation. In the validation ses-
sion, Micali introduced NOVOMODO, a scheme for
ultra-lightweight certificate validation via 20-byte to-
kens. Micali developed an extended analogy between
these tokens and the validity stickers affixed to student
ID cards at the start of each term. Tero Hasu, present-
ing work by his colleague Kortesniemi discussed a range
of options for validity management of SPKI authoriza-
tion certificates, and set out a very simple (only two
messages) validity management protocol. Branchaud
noted that while X.509 was built on the assumption that
CAs aren’t online, that assumption no longer necessar-
ily holds. He provided an overview of resulting options
for distributed and delegated validation, looking beyond
OCSP to, “in the limit,” possibly getting rid of certifi-
cates altogether.

Agenda

In order to work out both the social and the mechani-
cal issues, we need more deployment experience.
While the deployments discussed at the workshop have
provided many useful lessons, the user base of these de-
ployments is tiny in relation to the user base PKI will
need to support. In addition to the hundreds of techni-
cal details that can only be fully resolved in the course
of a full-scale deployment, there are a lot of “Why
Johnny Can’t Encrypt”-type questions that can’t be an-
swered until there is more experience with PKIs support-
ing thousands rather than dozens of users. In addition
to removing obstacles to deployment, we must also en-
sure that there is sufficient positive motivation for PKI;
as Phillip Hallam-Baker noted, “you don’t want to de-
ploy PKI starting with problems that have already been
solved better.”

We need to do a better job of working with
social scientists, lawyers, and other “non-
technical” experts. It seems clear that these experts
are available and willing to help, but the initiative and
direction in applying their skills have to come from the
technical community.

We need to keep cross-pollinating. There was
near-unanimous opinion in favor of immediately be-
ginning planning for a 2nd Annual PKI Research
Workshop, and that planning is now underway.

1st Annual PKI Research Workshop---Proceedings

5

1st Annual PKI Research Workshop---Proceedings

6

Dueling Theologies

Ben Chinowsky
Internet2

In this panel session, Rich Guida gave his view of what’s
holding back the traditional X.509 model that he fa-
vors, and Carl Ellison summarized his criticisms of this
model.

Guida listed several factors holding back wider deploy-
ment of PKI, including: too many legacy applications
and too few PKI-enabled applications; a widespread de-
sire on the part of decision-makers to be on the leading
rather than the bleeding edge; lack of common seman-
tics; organizational politics, including the “not invented
here” syndrome; and (least importantly) technical is-
sues. Guida also pointed out that, as with network tech-
nologies more generally, it is very hard to calculate ROI
for PKI, and suggested that those pushing PKI deploy-
ment not get “wrapped around the ROI axle.” Guida sees
PKI becoming widespread first within enterprises, then
between them, and lastly with consumers. Guida also
outlined the PKI he’s currently working on for Johnson
& Johnson.

Ellison sees fundamental problems with conventional
PKI. In his view, there are four pieces of PKI “conven-
tional wisdom” which need to be rejected.

• 1. Conventional wisdom: Everyone needs to have
an identity cert for digital signatures.

Objection: Each person has multiple identities (as a
driver, as a bank account holder, as an employee...);
therefore each person would need many identity
certs.

• 2. Conventional wisdom: Certs should come from
a CA with strong private-key security.

Objection: It’s too expensive to have more than
a few such CAs, making it necessary for users to
travel to the CA in order to get a cert. Using RAs
can improve this situation; Ellison advocates going
this solution one better by putting the CA on the
RA’s desk.

• 3. Conventional wisdom: Once you’ve done 1) and
2), you know who you’re talking to...

Objection: “Human beings do not use names the
way we computer scientists would like them to.”

Ellison noted that when he tells stories of the con-
fusion created by the multiple John Wilsons at Intel,
people tend to respond along the lines of “that’s
nothing, listen to this.” When using names, peo-
ple have a strongly ingrained tendency to go with
the first apparent match they see, leading to (in the
stories Ellison related) misdirected email messages,
airline boarding pass mixups, and (almost) un-
wanted botox injections.

• 4. Conventional wisdom: ...and you also have non-
repudiation.

Objection: The costs of strong private-key secu-
rity and the need for tamper-proof cameras to wit-
ness digital signing make nonrepudiation impracti-
cal. The usefulness of providing nonrepudiation is
in any case limited to situations in which a victim
can be made whole, thus excluding cases where, for
example, secrecy or human life is at stake.

Ellison’s solution is to dispense with identity certs and
CAs, replacing them with authorization certs issued by
whoever has the authority to grant the authorization un-
der existing business practices.

Much of the Q&A was devoted to rebuttals to Ellison’s
objections to traditional PKI. Several people pointed out
that traditional PKI need not lean so heavily on names
as Ellison assumes it does: naming is often backed up
by established business relationships and larger sets of
information about the named entities. While Ellison
agreed that the use of these backups can help, his re-
sponse centered on stressing just how little rigor can be
expected from users. He also cited an episode in which
he used SSL to make an apparently secure transaction
with a vendor, then checked the cert and found that it had
been issued to another entity entirely. While presum-
ably the vendor had contracted with this entity for web
services, nowhere in the process was there any proof of
this.

There was also a short discussion of nonrepudiation;
Ellison argued that online credit card transactions are
safe for the purchaser, and therefore widespread, pre-
cisely because they can be repudiated, and not because
SSL protects the transaction from eavesdropping.

1st Annual PKI Research Workshop---Proceedings

7

1st Annual PKI Research Workshop---Proceedings

8

XKMS Panel

Ben Chinowsky
Internet2

Phillip Hallam-Baker, one of the architects of XKMS,
opened the discussion by describing the central idea of
XKMS as to remove complexity—especially the com-
plexity of path discovery—from the client, so that it
doesn’t have to be concerned with anything more than
“I want to talk to Alice.” While agreeing that XKMS
could prove useful in hiding complexity from the user,
and that offloading path validation might be useful in
enabling PKI on computationally weak devices such as
cell phones, Tim Polk countered that most desktop ma-
chines can handle path validation just fine. Polk is
also suspicious of “unified field theories” in general,
and XKMS’s aspiration to be the unified field theory
for PKI in particular. He’s also skeptical about the
claim that XML is superior to ASN.1 as a format for
PKI—while ASN.1 is complex, so is XML, and ASN.1
is “the devil we know,” as well as being better at de-
scribing “bit-for-bit identity.” Blair Dillaway, another
coauthor of the XKMS technical note, cited Microsoft’s
interest in using XKMS to develop its digital rights
management and delegation system, which is based on
XRML, in a more open and flexible direction. MIT’s
Dan Greenwood argued that XKMS fails to address key

business and legal issues. While “public key technolo-
gies are best tailored to support and reflect existing busi-
ness and legal infrastructures—that is where trust is cre-
ated,” XKMS appears to be centrally concerned with
“stranger to stranger” authentication. Greenwood cited
LegalXML and his own actuarinet.mit.edu as
exemplifying a better approach.

Eric Norman opened the questions by asking, “what is
trust?” Hallam-Baker replied that trust is quantification
of risk. Greenwood objected that, while it would be
nice if a workable definition of trust could be so sim-
ple, the concepts of a trusted third party and nonrepudi-
ation are also necessary. Tim Polk concurred that there
is an irreducibly subjective and unquantifiable aspect to
trust—we just have to live with it. Hallam-Baker noted
that XKMS tools are now available in VeriSign’s Trust
Services Integration Kit, and stressed the importance of
SOAP as the key to interoperability among SAML, GXA
and other standards for security information.

1st Annual PKI Research Workshop---Proceedings

9

1st Annual PKI Research Workshop---Proceedings

10

Work-in-Progress Session

Ben Chinowsky
Internet2

Peter Honeyman, of the Center for Information
Technology Integration at the University of Michigan,
hosted a work-in-progress session on the evening of
April 24.

Carl Ellison and Peter Alterman focused on details of
work presented more fully in the conference proper.

• Ellison discussed Brewer’s CAP postulate and its
applications to cert validation. The CAP postu-
late states that a digital system design can achieve
any two of {Consistency, Availability, tolerance of
network Partitions}, but not all three.

• Alterman discussed the need for a bridge-to-bridge
protocol for the emerging multiple-bridge infras-
tructure. Among other things, such a protocol must
be able to cope with naming conflicts and transitive
trust. A variety of topologies are possible: peer-
to-peer, mesh, a forest of hierarchies, or a single
rooted hierarchy.

Workshop chair Sean Smith gave an overview of projects
currently underway at the Dartmouth PKI Lab; see
www.cs.dartmouth.edu/˜pkilab/ for more in-
formation.

Burt Covnot, Mark Earnest, and Allison Mankin pre-
sented work not covered in the workshop plenary ses-
sions.

• Covnot, of Bank of America, explored “the care
and feeding of identity certificates and attribute cer-
tificates.” Should customers be issued multiple
identity certificates, or should their already-issued
identity certificates be extended into broader ser-
vices? Similarly, do multiple attribute certificates
help or hinder deployment of security technolo-
gies? When certificates expire, should new keys
be generated, or should an existing private key be
recertified?

• Earnest recounted Penn State’s experiences with
DCE, drawing parallels with the challenges of PKI.

Penn State plans to make use of both KX.509 and
Shibboleth in its PKI migration.

• Mankin gave an update on work on DNS security.
The IETF DNSSEC working group has determined
that narrowly restricting the use of keys among
services minimizes problems with trust transitiv-
ity. Other protocol designs being engineered at-
tempt to reduce the complexity of client implemen-
tations. After years of technical and political work,
the major players appear close to actually deploy-
ing DNSSEC.

1st Annual PKI Research Workshop---Proceedings

11

1st Annual PKI Research Workshop---Proceedings

12

Refereed Papers

1st Annual PKI Research Workshop---Proceedings

13

1st Annual PKI Research Workshop---Proceedings

14

 NOVOMODO

Scalable Certificate Validation And Simplified PKI Management

by

Silvio Micali

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

(On Sabbatical Leave)

silviom@rcn.com

Conference’s Areas of Inquiry: Scalability of PKI; new approach to attribute certificates; and
how the required PKI may differ from the PKI traditionally defined.

Abstract

In [1], a scalable and small-bandwidth certificate validation scheme was presented. We call this system
NOVOMODO, to emphasize the new way in which it approaches the field.

In this paper, we recall the NOVOMODO technology and
• Compare the efficiency and security of NOVOMODO and OCSP; and
• Discuss how NOVOMODO may simplify PKI management in several applications (e.g., attribute certs).

1. Traditional Certificate Validation And
NOVOMODO

In essence, a digital certificate C consists of a CA's
digital signature securely binding together several
quantities: SN, a serial number unique to the
certificate, PK, the public key of the user, U, the
user's identifier, D1, the issue date, D2, the expiration
date, and additional fields. In symbols, C=SIGCA(SN,
PK, U, D1, D2,...).

It is widely recognized that digital certificates
provide the best form of Internet authentication. On
the other hand, they are also difficult to manage.
Certificates may expire after one year (i.e., D2 - D2 =
1 year). However, they may be revoked prior to their
expiration; for instance, because their holders leave
their companies or assume different duties within
them. Thus, each transaction enabled by a given
digital certificate needs a suitable proof of the current
validity of that certificate, and that proof often needs
to be archived as protection against future claims.

Unfortunately, the technologies used today for
proving the validity of issued certificates do not scale
well. At tomorrow's volume of digital certificates,
today's validity proofs will be either too hard to
obtain in a secure way, or too long and thus too
costly to transmit (especially in a wireless setting).
Certificate validation is universally recognized as a
crucial problem. Unless efficiently solved, it will
severely limit the growth and the usefulness of our
PKIs.

1.1 Traditional Certificate Validation

Today, there are two main approaches to proving
certificates' validity: Certificate Revocation Lists
(CRLs) and the Online Certificate Status Protocol
(OCSP).

CRLs

CRLs are issued periodically. A CRL essentially
consists of a CA-signed list containing all the serial
numbers of the revoked certificates. The digital
certificate presented with an electronic transaction is

1st Annual PKI Research Workshop---Proceedings

15

then compared to the most recent CRL. If the given
certificate is not expired but is on the list, then
everyone knows from the CRL that the certificate is
not valid and the certificate holder is no longer
authorized to conduct the transaction. Else, if the
certificate does not appear in the CRL, then the
certificate is deduced to be valid (a double negative).

CRLs have not found much favor; for fear that they
may become unmanageably long. (A fear that has
been only marginally lessened by more recent CRL-
partition techniques.) A few years ago, the National
Institute of Standards and Technology tasked the
MITRE Corporation [3] to study the organization and
cost of a Public Key Infrastructure (PKI) for the
federal government. This study concluded that CRLs
constitute by far the largest entry in the Federal PKI's
cost list.

OCSP

In the OCSP, a CA answers a query about a
certificate C by returning its own digital signature of
C's validity status at the current time. The OCSP is
problematic in the following areas.

Bandwidth. Each validity proof generated by the
OCSP has a non-trivial length. If RSA or other
factoring based signature schemes are used, such a
proof in fact requires at a minimum 2,048 bits for the
CA's signature.

Computation. A digital signature is a computationally
complex operation. In certain large applications, at
peak traffic, the OCSP may require computing
millions of signatures in a short time, which is
computationally very expensive to do.

Communication (if centralized). Assume a single
validation server implements the OCSP in a
centralized manner. Then, all certificate-validity
queries would have, eventually, to be routed to it, and
the server will be a major "network bottleneck"
causing considerable congestion and delays. If huge
numbers of honest users suddenly query the server, a
disrupting "denial of service" will probably ensue.

Security (if distributed). In general, distributing the
load of a single server across several (e.g., 100)
servers, strategically located around the world,
alleviates network congestion. In the OCSP case,
however, load distribution introduces worse problems
than those it solves. In order to sign its responses to
the certificate queries it receives, each of the 100
servers should have its own secret signing key. Thus,
compromising any of the 100 servers is

compromising the entire system. Secure vaults could
protect such distributed servers, but at great cost.

1.2 NOVOMODO

NOVOMODO works with standard certificate
formats (e.g., X.509v3) and enables a CA to prove
the validity status of each certificate C at any time
interval (e.g., every day, hour, or minute) starting
with C's issue date, D1. C's time granularity may be
specified within the certificate itself, unless it is the
same for all certificates. To be concrete, below we
assume a one-day granularity for all certificates, and
that each certificate expires 365 days after issuance.

One-way hashing. NOVOMODO uses a one-way
hash function H (such as SHA [4]) enjoying the
following properties:
1. H is at least 10,000 times faster to compute than

a digital signature;
2. H produces 20-byte outputs, no matter how long

its inputs; and
3. H is hard to invert: given Y, finding X such that

H(X)=Y is practically impossible.

The Basic NOVOMODO System

Making a certificate C. In addition to traditional
quantities such as a serial number SN, a public key
PK, a user name U, an issue date D1, an expiration
date D2 (=D1+365), a certificate C also includes two
20-byte values unique to it. Specifically, before
issuing a certificate C, a CA randomly selects two
different 20-byte values, Y0 and X0, and from them
computes two corresponding 20-byte values, Y1 and
X365, as follows. Value Y1 is computed by hashing Y0
once: Y1=H(Y0); and X365 by hashing X0 365 times:
X1=H(X0), X2=H(X1), ..., X365 = H(X364). Because H
always produces 20-byte outputs, Y1, X365, and all
intermediate values Xj are 20-byte long. The values
Y0 ,X0,X1,...,X364 are kept secret, while Y1 and X365
are included in the certificate:
C=SIGCA(SN,PK,U,D1,D2,...,Y1,X365). We shall call
Y1 the revocation target and X365 the validity target.

Revoking and validating a not-yet-expired certificate
C. On the i-th day after C's issuance (i.e., on day
D1+i), the CA computes and releases a 20-byte proof
of status for C as follows. If C is revoked, then, as a
proof of C's revocation, the CA releases Y0 , that is,
the H-inverse of the revocation target Y1. Else, as a
proof of C's validity on that day, the CA releases
X365-i, that is, the i-th H-inverse of the validity target
X365. (E.g., the proof that C is valid 100 days after
issuance consists of X265.) The CA may release Y0 or

1st Annual PKI Research Workshop---Proceedings

16

X365-i by providing the value in response to a query or
by posting it on the World Wide Web.

Verifying the status of a not-yet-expired certificate C.
On any day, C's revocation proof, Y0, is verified by
hashing Y0 once and checking that the result equals
C's revocation target, Y1. (I.e., the verifier tests for
himself that Y0 really is the H-inverse of Y1.) Note
that Y1 is guaranteed to be C's revocation target,
because Y1 is certified within C. On the i-th day after
C's issuance, C's validity proof on that day, X365-i, is
verified by hashing i times the value X365-i and
checking that the result equals C's validity target,
X365. (I.e., the verifier tests for himself that X365-i
really is the i-th H-inverse of X365.) Note that a
verifier knows the current day D as well as C's
issuance date D1 (because D1 is certified within C),
and thus immediately computes i=D-D1.

NOVOMODO Security (Sketch)

• A proof of revocation cannot be forged.

The proof of revocation of a certificate C
consists of the H-inverse of C's revocation target
Y1. Because H is essentially impossible to invert,
once a verifier checks that a given 20-byte value
Y0 is indeed C's proof of revocation, it knows
that Y0 must have been released by the CA. In
fact, only the CA can compute the H-inverse of
Y1: not because the CA can invert H better than
anyone else, but because it computed Y1 by
starting with Y0 and hashing it! Because the CA
never releases C's revocation proof as long as C
remains valid, an enemy cannot fake a
revocation proof.

• A proof of validity cannot be forged.

On day i, the proof of validity of a certificate C
consists of the i-th H-inverse of C's validity
target X365. Because H is essentially impossible
to invert, once a verifier checks that a given 20-
byte value X365-i is indeed C's proof of validity
on day i, it knows that the CA must have
released X365-i. In fact, only the CA can
compute the i-th H-inverse of X365: not because
the CA can invert H better than anyone else, but
because it computed X365 by starting with X0 and
hashing it 365 times, thus computing along the
way all the first 365 inverses of X365! If
certificate C become revoked on day i+1, the CA
has already released the values X365-1,...,X365-i
in the preceding i days (when C was still valid)
but has not released and will never release the
value X365-i-1 (or any other value Xj for j <365-i)
in the future. Consequently, to forge C's validity
proof on day i+1, an enemy should compute on

his own the i+1st H-inverse of X365 (i.e., the H-
inverse of X365-i), which is very hard to do!
Similarly, an enemy cannot compute a validity
proof for C on any day after i+1. To do so, it
should again be able to invert H on input X365-i.
For instance, if it could compute C's validity
proof on day i+2, X362-i-2, then by hashing it once
it would easily obtain X365-i-1, the H-inverse of
X365-i.

NOVOMODO Efficiency

• A certificate C includes only two additional 20-

byte values, Y1 and X365.
This is a negligible cost. Recall that C already
consists of a CA signature (at least 2048-bit
long) of data that includes a public key PK (at
least 1024-bit long), and that C may include
comments and plenty of other data in addition to
SN, PK, U, D1 and D2.

• Generating Y1 and X365 requires only 366
hashings total.
This too is a negligible cost. Recall that issuing a
certificate already requires computing a
signature.

• Proofs of revocation and proofs of validity are
only 20-bytes long.
Our 20-byte proofs are trivial to transmit and
trivial to store, making the 20-byte technology
ideal for wireless applications (because here
bandwidth is still limited, and so is the storage
capacity of many cellular phones and other
wireless devices).

NOVOMODO proofs can be so short because
they derive their security from elementary
cryptographic components, such as one-way
functions, which should exhibit an exponential
amount of security. (Quite differently, digital
signature schemes have complex security
requirements. Their typical number-theoretic
implementations offer at best a sub-exponential
amount of security, and thus necessitate much
longer keys.)

NOVOMODO proofs remain 20-bytes long
whether the total number of certificates is a few
hundred or a few billion. In fact there are 2160
possible 20-byte strings, and the probability that
two certificates may happen to have a common
proof of revocation or validity is negligible.

Note too that the length of our 20-byte proofs
does not increase due to encryption or

1st Annual PKI Research Workshop---Proceedings

17

authentication. Our 20-byte proofs are intended
to be public and thus need not be encrypted.
Similarly, our 20-byte proofs are self-
authenticating: by hashing them the proper
number of times they yield either the validity
target or the revocation target specified within
the certificate. They will not work if faked or
altered, and thus need not be signed or
authenticated in any manner.

Finally, a 20-byte proof of validity on day i, X365-

i , need not additionally include the value i: in a
sense, it already includes its own time stamp!
Indeed, as discussed before, i is the difference
between the current day and the certificate's
issue day, and if hashing X365-i i times yields the
validity target of certificate C, then this proves
that X365-i is C's proof of validity on day i.

• The 20-byte proofs are computed instantly.
A proof of revocation Y0 or a proof of validity
X365-i is just retrieved from memory.
(Alternatively, each X365-i could be recomputed
on the fly on day i; for instance by at most 364
hashings, if just X0 is stored during certificate
issuance. Surprisingly more efficient strategies
are discussed in the next section.)

NOVOMODO and Wireless

NOVOMODO is ideal for wireless implementations.
Its scalability is enormous: it could accommodate
billions of certs with great ease. The bandwidth it
requires is negligible, essentially a 30-bit serial
number for the query and 20-byte for the response.
The computation it requires is negligible, because a
certificate-status query is answered by a single table
look-up and is immediately verified. Of course, great
scalability, minimum bandwidth and trivial
computation make NOVOMODO the technology of
choice in a wireless environment.

But there is another use of NOVOMODO that
provides an additional advantage in wireless
applications. Namely, every morning --e.g., at
midnight-- a wireless user may receive a 20-byte
proof of the validity of his certificate for the
remainder of the day. (This 20-byte value can be
obtained upon request of the user, or pushed to the
user’s cellular device automatically –e.g., by means
of a SMS message or other control message..) Due to
its trivial length, this proof can be easily stored in
most cellular telephones and PDAs. Then, whenever
the user wants to transact on that day, the user simply
sends its own certificate together with the cert’s 20-
byte proof of validity for that day. Because the proof

of validity is universally verifiable, the verifier of the
cert and proof need not call any CA or any responder.
The verifier can work totally off-line. In the cellular
environment, in which any call translates into money
and time costs, this off-line capability is of great
value.

2. NOVOMODO vs. OCSP

NOVOMODO and OCSP are both on-demand
systems: namely, a user sends a query about the
current validity of a certificate and gets back an
unforgeable and universally verifiable proof as a
response. But there are differences in

1) Time accuracy;
2) Bandwidth;
3) CA efficiency;
4) Security; and
5) Operating costs.

TIME ACCURACY
In principle, an OCSP response may specify time
with unbounded accuracy, while a NOVOMODO
response specifies time with a predetermined
accuracy: one day, one hour, one minute, etc. In low-
value applications, one-day validity is plenty
acceptable. For most financial applications, Digital
Signature Trust considers a 4-hour accuracy
sufficient. (Perhaps this is less surprising than it
seems: for most financial transactions, orders
received in the morning are executed in the afternoon
and orders received in the afternoon are executed the
next business day.) In any event, time is not specified
by a real number with infinitely many digits. In an
on-demand validation system, a time accuracy of less
than one minute is seldom meaningful, because the
clocks of the querying and answering parties may not
be that synchronized. Indeed, in such a system, a time
accuracy of 15 seconds is de facto real time.

To handle such an extreme accuracy, NOVOMODO
needs to compute hash chains that are roughly 1M
long (i.e., needs to compute validity fields of the type
X1M), because there are at most 527,040 minutes in a
year. If chains so long could be handled efficiently,
NOVOMODO would de facto be real time.
Computing 1M hashings is not problematic at
certificate issuance: 1M hashings can be performed in
less than 1 second even using very reasonable
platforms, and a certificate is typically issued only
once a year, and not under tremendous time pressure.
Similarly, 1 second of computation is not problematic
for the verifier of a cert validity proof (e.g., a
merchant relying on the certificate) considering that
he generally focuses just on an individual transaction,

1st Annual PKI Research Workshop---Proceedings

18

and has more time at hand. Computing 1M hashings
per certificate-status request would, however, affect
the performance of the server producing validity
proofs, because it typically handles many transactions
at a time. Fortunately, this server needs not to
compute all these hashings on-line starting with X0,
but by table look up –capitalizing on having in
storage the full hash-chain of every certificate.
Nonetheless, storing 1M-long hash-chains may be a
problem in applications with huge numbers of
certificates. But, fortunately, as we shall mention
later on, even ordinary servers can, using better
algorithms, re-compute 1M-long hash chains with
surprising efficiency.

BANDWIDTH
NOVOMODO has an obvious bandwidth advantage
over OCSP. The former uses 20-byte answers, while
the latter typically uses 256 bytes.

CA EFFICIENCY
A validity query is answered by a (complex) digital
signature in the OCSP case, and by a (trivial) table
look-up in the NOVOMODO case, as long as the CA
stores the entire X-chain for each certificate.

Note that, with a population of 1 million certificates,
the CA can afford to store the entire X-chain for each
certificate when the time accuracy is one day or one
hour. (In the first case, the CA would have to store
365 20-bytes values; that is, 7.3K bytes per cert, and
thus 7.3B bytes overall. In the second case, 175.2B
bytes overall.) If the time accuracy were 15 seconds,
then each hash chain would consist of 1M 20-byte
values, and for the entire system the overall storage
requirement would be around 10.5 tera-bytes: a
sizable storage.

To dramatically decrease this storage requirement,
the CA may store just a single 20-byte value (i.e., X0)
for each cert, and re-compute from it each Xi value
by at most 1M hashings. Alternatively, Jacobsson [5]
has found a surprising time/storage tradeoff. Namely,
the CA may re-compute all n Xi values, in the right
order, by storing log (n) hash values and performing
log(n) hashings each time. If n were 1M, this implies
just storing 20 hash values per cert and performing
only 20 hashings each time the cert needs validation.
Other non-trivial tradeoffs are possible. In particular,
for our 1M-chain case, Reyzin [R] has shown that a
CA can compute all Xi values (i=1M down to 1) by
storing only 3 hash values and performing at most
100 hashings each time.

In sum, even in a de facto real-time application (i.e.,
using a 15-second time accuracy) NOVOMODO can,

by just storing 60 bytes per cert, replace a complex
digital signature operation with a trivial 100-hash
operation.

SECURITY AND OPERATING COSTS
The last two differences are better discussed after
specifying the type of implementation of
NOVOMODO and OCSP under consideration.

Centralized NOVOMODO vs. Centralized OCSP:
Security Analysis

Whenever proving certificate validity relies on the
secrecy of a given key, a secure vault ought to protect
that key, so as to guarantee the integrity of the entire
system. By a centralized implementation of
NOVOMODO or OCSP, we mean one in which a
single vault answers all validity queries. Centralized
implementations are preferable if the number of
deployed certificates is small (e.g., no more than
100K), so that the vault could handle the query
volumes generated even if almost all certificates are
used in a small time interval, triggering almost
simultaneous validity queries. In such
implementations, NOVOMODO is preferable to
OCSP in the following respects.

CENTRALIZED NOVOMODO OFFERS BETTER
DOOMSDAY PROTECTION
In the traditional OCSP, if (despite vaults and
armored guards) an enemy succeeds in penetrating
the vault and compromises the secret signing key,
then he can both "resurrect" a previously revoked
certificate and "revoke" a still valid one. (Similarly, if
the CRL signing key is compromised in a CRL
system.) By contrast, in NOVOMODO penetrating
the secure vault does not help an adversary to forge
the validity of any previously revoked certificate. In
fact, when a certificate becomes revoked at day i, not
only is its revocation proof Y0 made public, but,
simultaneously, all its Xi values (or at least the values
X0 through X365-i) are deleted. Therefore, after a
successful compromise, an enemy finds nothing that
enables him to "extend the validity" of a revoked
certificate. To do so, he should succeed in inverting
the one-way hash H on X365-i without any help, which
he is welcome to try (and can indeed try without
entering any secure vault). The worst an enemy can
do in a NOVOMODO system after a successful
compromise is to fake the revocation of valid
certificates, thus preventing honest users from
authenticating legitimate transactions. Of course, this
would be bad, but not as bad as enabling dishonest
users to authenticate illegitimate transactions.

1st Annual PKI Research Workshop---Proceedings

19

Distributed NOVOMODO vs. Distributed OCSP:
Security and Operating-Cost Analysis

Centralized implementations of NOVOMODO and
OCSP require all queries about certificate validity to
be routed to the same vault. This easily results in long
delays and denial of service in applications with
millions of active certificates. To protect against such
congestion, delays, and denial of service, one might
spread the load of answering validity queries across
several, geographically dispersed, responder servers.
However, in the case of the OCSP each additional
responder needs to have a secret signing key, and
thus needs to be hosted in a vault, making the cost of
ownership of an OCSP system very onerous. A high-
grade vault meeting the requirements of financial
institutions costs at least $1M to build and $1M to
run. (A good vault would involve armored concrete,
steel doors, back-up power generators, protected fuel
depot to run the generator for potentially a long time,
etc. Operating it would involve a minimum of 4
different teams for 24X7X365 operations, plus
managerial supervision, etc.) In an application
requiring 10 such vaults to guarantee reasonably fast
response at peak traffic, the cost of ownership of the
OCSP system would be $10M of initial investment
and an ongoing budget of $10M/year. Even if less
secure vaults and operations were used, millions of
dollars in initial and ongoing costs would still be
necessary.

In the NOVOMODO case, however, a distributed
implementation can be achieved with a single vault
(which a CA would have anyway) and an arbitrary
number of “un-trusted responders” (i.e., ordinary
servers). Let us see the exact details of a distributed
NOVOMODO system assuming, to be concrete, that
(a) there are 10M certs; (b) there are 1,000 servers,
strategically located around the globe so as to
minimize response time; and (3) the time granularity
is one-day.

Distributed NOVOMODO: CA Operations
(Initialization Cost)
Every morning: Starting with the smallest serial
number, compile a 10M-entry array F as follows: For
each certificate C having serial number j, store C's
20-byte validity/revocation proof in location j. Then,
date and sign F and send it to each of the 1,000
servers.

Distributed NOVOMODO: User Operations (Query
Cost)
To learn the status of a certificate C, send C's serial
number, j, (and CA ID if necessary) to a server S.

Distributed NOVOMODO: Server Operations
(Answer Cost)
Every morning: If a properly dated and signed array
F is received, replace the old array with the new one.
At any time: answer a query about serial number j by
returning the 20-byte value in location j of the current
F.

Distributed NOVOMODO Works:

1. Preparing Array F is instantaneous.
If the whole hash chain is stored for each cert,
then each entry is computed by a mere table
look-up operation. (Else, it can be computed on
the spot by using Reyzin’s method.)
2. F contains no secrets.
It consists of the accurate and full account of
which certificates are still valid and which
revoked. (The CA’s goal is indeed making this
non-secret information as public as possible in
the most efficient manner)
3. Transferring F to the servers is

straightforward.
This is so because F contains no secrets, requires
no encryption, and poses no security risks.
Though 10M certs are a lot, sending a 200M-
byte file to 1000 servers at regular intervals is
very doable.
4. Each server answer is 20-byte long.
Again, each answer requires no encryption,
signature or time stamp.
5. No honest denial of service.
Because each value sent is just 20-byte long,
because each such a value is immediately
computed (by a table look up), and because the
traffic can be spread across 1000 servers, no
denial of service should occur, at least during
legitimate use of the system.
6. Servers need not be trusted.
They only forward 20-byte proofs received by
the CA. Being self-authenticating, these proofs
cannot be altered and still hash to the relevant
targets.

DISTRIBUTED NOVOMODO OFFERS BETTER
CA SECURITY
Distributed NOVOMODO continues to enjoy the
same doomsday protection of its centralized
counterpart: namely, an enemy successfully entering
the vault cannot revive a revoked certificate.
Sophisticated adversaries, however, refrain from
drilling holes in a vault, and prefer software attacks
whenever possible. Fortunately, software attacks,
though possible against the distributed/centralized
OCSP, cannot be mounted against Distributed
NOVOMODO.

1st Annual PKI Research Workshop---Proceedings

20

In the OCSP, in fact, the CA is required to receive
outside queries from untrusted parties, and to answer
them by a digital signature, and thus by means of its
precious secret key. Therefore, the possibility exists
that OCSP’s required "window on the outside world"
may be maliciously exploited for exposing the secret
signing key.

By contrast, in distributed NOVOMODO there are no
such "windows:" the CA is in the vault and never
receives or answers any queries from the outside; it
only outputs non-secret data at periodic intervals.
Indeed, every day (or hour) it outputs a file F
consisting of public information. (The CA may
receive revocations requests from its RAs, but these
come from fewer trusted entities via authenticated
channels ---e.g., using secure smart cards.) The
untrusted responders do receive queries from
untrusted parties, but they answer those queries by
means of their file F, and thus by public data.
Therefore, a software attack against NOVOMODO
ordinary responders may only “expose” public
information.

3. NOVOMODO and Simplified PKI
Management

PKI management (e.g., [7] [8]) is not trivial.
NOVOMODO may improve PKI management in
many applications by

• Reducing the number of issued certs;
• Enabling privilege management on the cert;

and
• Sharing the registration function with

multiple independent CAs.

Let us informally explain these improvements in PKI
management in a series of specific examples. (Note
that features and techniques used in one example can
be easily embedded in another. We do not explicitly
do this to avoid discussing an endless number of
possible variations.)

3.1 Turning a Certificate ON/OFF (and
Suspending It)

EXAMPLE 1: MUSIC DOWNLOADING
Assume an Internet music vendor wishes to let users
download any songs they want, from any of its 1000
servers, for a $1/day fee. This can be effectively
accomplished with digital certificates. However, in
this example, U may be quite sure that he will
download music a few days of the year, yet he cannot

predict which or how many these days will be. Thus
the Music Center will need to issue for U a different
one-day certificate whenever U so requests: U
requests such a certificate and, after payment or
promise of payment, he receives it and then uses with
any of the 1000 music servers on that day. Issuing a
one-day cert, however, has non-trivial management
costs both for the vendor and the user. And these
costs must be duplicated each time the user wishes to
enjoy another “music day.”

NOVOMODO technology can alleviate these costs as
follows. The first time that U contacts the vendor, he
may be issued a certificate C with issue date D1=0,
expiration date D2= 365, and a validity field X365, a
revocation target Y1, and a suspension field Z365.
(The vendor’s CA builds the suspension field very
much as a validity field: by starting with a random
20-byte value Z0 and then hashing it 365 times, in
case of one-day granularity. It then stores the entire
hash chain, or just Z0, or uses a proper time/storage
method to be able to generate any desired Zi.) At day
i=1,...,365, if U requests "a day of music” for that
day, then the vendor simply releases the 20-byte
value X365-i to indicate that the certificate is valid.
Else, it releases Z365-i to indicate that the certificate is
“suspended.” Else, it releases Y0 to indicate that the
certificate is revoked.1

That is, rather than giving U a new single-day
certificate whenever U wishes to download music,
the vendor gives U a single, yearly certificate. At any
time, this single certificate can be turned ON for a
day, by just releasing the proper 20-byte value. Thus,
for instance, NOVOMODO replaces issuing (and
embedding in the user’s browser) 10 single-day
certificates by issuing a single yearly cert that, as it
may happen, will be turned ON for 10 out of the 365
days of the year.2

3.2 Turning ON/OFF Many Certificates For
The Same User

1 Optionally, if U and the music vendor agree to --say-- a
"week of music starting at day i," then either the 20-byte
values for those 7 days are released at the proper time, or
the single 20-byte value X365-i-7 is released at day i.

2 The vendor could also use the method above to issue a
cert that specifies a priori the number of days for which it
can be turned ON (e.g., a 10-day-out-of 365 cert). Because
it has a more predictable cost, such certs are more suitable
for a gift.

1st Annual PKI Research Workshop---Proceedings

21

EXAMPLE 2: SECURITY-CLEARANCE
MANAGEMENT

Digital certificates work really well in guaranteeing
that only proper users access certain resources. In
principle, privileges could be specified on the cert
itself. For instance, the State Department may have
10 different security-clearance levels, L1,…L10, and
signify that it has granted security level 5 to a user U
by issuing a certificate C like

C=SIGSD(SN,PK,U, L5, D1,D2,...)
Where again D1and D2, represent the issue and
expiration dates.

However, specifying privileges on the cert itself may
cause a certificate-management nightmare: whenever
its privileges change, the cert needs to be revoked.
Indeed, the security level of an employee may vary
with his/her assignment, which often changes within
the same year. For instance, should U’s security-
clearance level be temporarily upgraded to 3, then the
State Department should revoke the original C and
issue a new cert C’. This task could be simplified
somewhat by having U and thus C’ retain the same
public key (and expiration date) as before; for
instance, by having

C’=SIGSD(SN’,PK,U, L3, D1’,D2,...).
However, U still faces the task of “inserting” the new
C’ into his browser in a variety of places: his desk-
top PC, his lat-top, his cell phone, his PDA, etc.
Now, having the CA take an action to re-issue a
certificate in a slightly different form is one thing, but
counting on users to take action is a totally different
thing!

This management problem is only exacerbated if
short-lived certificates (e.g. certificates expiring one
day after issuance) are used. In the context of the
present example, single-day certs may enable a State
Department employee or user U to attend a meeting
where a higher security level is needed. (If U had
such a cert in a proper cellular device, smart card or
even mag stripe card, he could, for instance, use it to
open the door leading to the meeting that day.) The
use of short-lived certificates is much broader, and
has been advocated because it dispenses with the
difficulty of revocation to a large extent (no point
revoking a cert that will expire in 24hours, at least in
most applications). However, issuing short-lived certs
so that they reside in all pertinent users’ browsers still
is a management cost.

These management costs can be alleviated with use
of NOVOMODO as follows. Assuming that one-day
time accuracy is enough, the State Department issues

to a user U a certificate containing 10 validity fields
and 1 revocation field: e.g.,
C=SIGSD(SN,PK,U,D1,D2, A365, B365, C365, D365, E365,

F365, G365, H365, I365, J365, Y1,)

where the first validity field, A365, corresponds to
security-clearance level 1 … and the 10th validity
field, J365, corresponds to security-clearance level 10,
while, as usual, Y1 is C’s revocation field. Cert C is
used as follows. If, on day n, U is in good standing
(i.e., cert C is still valid), and U’s security-clearance
level is 5, then the State Department publicizes (e.g.,
sends to all its responders in a distributed
NOVOMODO implementation) the 20-byte validity
proof E365-n. If, on day m, U’s security-clearance
level becomes 2, then the State Department
publicizes B365-m. And so on. As soon as C becomes
invalid (e.g., because U is terminated as an employee
or because U’s secret key is compromised), then the
State Department publicizes Y0 (and erases “future”
A, B, C, D, E, F, G, H, I, and J values from its
storage).

This way, cert C, though internally specifying its own
privileges, needs not be revoked when these
privileges change in a normal way, and users need
not load new certs in their browsers. In essence,
NOVOMODO has such minimal footprint, that a CA
(rather than issuing, revoking, and re-issuing many
related certs) can issue with great simplicity a single
cert, having a much higher probability of not being
revoked (because changes of security-clearance level
do not translate into revocation). As a result, fewer
certs will end up been issued or revoked in this
application, resulting in simpler PKI management.

In sum,

NOVOMODO replaces the complex
certificate management relative to a set of
dynamically changing properties or
attributes by a single certificate (with
minimum extra length) and a single 20-byte
value for attribute.

Telecom companies may use a method similar to that
of Example 2 to switch a given wireless device from
one rate plan to another, or for roaming purposes.

3.3 Landlord CAs and Tenant CAs

A main PKI cost is associated to the RA function.
Indeed, identifying a user U may require an
expensive personal interview and verifying that
indeed U knows the right secret key (corresponding
to the to-be-certified public key PK). It would be nice
if this RA function could be shared across many CAs,

1st Annual PKI Research Workshop---Proceedings

22

while enabling them to retain total independent
control over their own certs.

EXAMPLE 3: ORGANIZATION CERTIFICATES

The Government and big organizations consist of
both parallel and hierarchical sub-organizations:
departments, business units, etc. An employee may
be affiliated with two or more sub-organizations. For
instance, in the U.S. Government, he may work for
NIST and the Department of Commerce. Issuing a
digital certificate for each such affiliation results in a
high total number of certificates and a complex PKI
management: every time an employee drops/adds one
of his/her affiliations, it is best to revoke the
corresponding cert/issue a new one. Ideally, two
opposites should be reconciled: (1) The Organization
issues only one cert per employee, and (2) Each Sub-
Organization issues and controls a separate cert for
each of its affiliates.

These two opposites can be reconciled by
NOVOMODO as follows. To begin with, notice that
NOVOMODO is compatible with de-coupling the
process of certification from that of validation, the
first process being controlled by a CA and the second
by a validation authority (VA). For instance,
assuming a one-day time accuracy, once a CA is
ready to issue a certificate C with serial number SN,
it sends SN to a VA, who selects Y0 and X0, secretly
stores the triplet (SN, Y0,X0), computes as usual Y1
and X365, and then returns Y1 and X365 to the CA, who
includes them within C. This way, the CA need not
bother validating C: the CA is solely responsible for
identifying the user and properly issuing C, while the
VA is the only one who can prove C valid or
revoked. This de-coupling may be exploited in a
variety of ways in order to have organization
certificates that flexibly reflect internal sub-
organization dynamics. The following is just one of
these ways, and uses Government and Departments
as running examples. The Government as a whole
will have its own CA, and so will each Department.

Envisaging k different Departments with
corresponding CAs, CA1…CAk, and one-day time
accuracy, a Government certificate C has the
following form:

C=SIGGOV(SN,PK,U, D1, D2, X365, Y1, [X365
1,

Z365
1],…, [X365

k, Z365
k])

where, as usual, SN is the cert’s serial number, PK
the public key of the user, U the user’s identity, D1
the issue date, D2 the expiration date, X365 the validity
field, Y1 the revocation field, and where

X365

j is the validation field of CAj; and
Z365

j is the suspension field of CAj.

Such a certificate is generated by the Government
CA with input from the Department CAs. After
identifying the user U and choosing a unique serial
number SN, the issue date D1, and the expiration date
D2, the Government CA sends SN, PK, U, D1, D2
(preferably in authenticated form) to each of the
Department CAs. The jth such CA then

• chooses two secret 20-byte values X0
j and

Z0
j,

• locally stores (SN,PK,U, D1, D2, X0
j, Z0

j) or,
more simply, (SN, X0

j, Z0
j); and

• returns [X365
j, Z365

j] for incorporation in the
Government certificate in position j (or with
“label” j).

This certificate C is managed with Distributed
NOVOMODO as follows, so as to work as a 1-cert, a
2-cert,…, a k-cert; that is, as k independent certs, one
per Department. On day n, envisaging 100
responders,

• the Government CA sends all 100
responders the 20-byte value X365-n if C is
still valid, and Y0 otherwise.

• the jth Department CA sends all 100
responders the 20-byte value X365-n

j to
signify that C can be relied upon as a j-cert
and Z365-n

j otherwise.

Therefore, the Government CA is solely responsible
for identifying the user and issuing the certificate, but
each of the Department CAs can independently
manage what de facto is its own certificate. (This is
absolutely crucial. If CA1 were the Justice
Department and CA2 the DOD, then, despite some
overlapping interests, it is best that each acts
independently of the other.) The resulting certificate
system is very economical to run. First, the number
of certs is greatly reduced (in principle, there may be
just one cert for employee). Second, a given
employee can leave and join different Departments
without the need of revoking old certs or issuing new
ones. Third, different Department CAs may share the
same responders. (In fact, whenever the mere fact
that a given user is affiliated with a given Department
is not a secret –something that will be true for most
departments-- the servers essentially contain only
“publishable information”.) Thus a query about the
status of C as a j-certificate is answered with two 20-
byte values: one as a Government cert and one as a j-
cert. This enables one to more nimbly revoke C at a
“central level” (e.g., should U lose the secret key
corresponding to PK).

1st Annual PKI Research Workshop---Proceedings

23

POSSIBLE ALTERNATIVES
In the above example, certificate C was only
revocable in a central way, but it could easily be
arranged that the responsibility of revocation is push
down to individual Departments. For instance, to
enable the jth Department CA, in full autonomy, to
revoke as well as suspend C as a j-certificate, C may
take the following form:

C=SIGGOV(SN,PK,U, D1, D2, [XN1

1, Y1
1, ZN1

1],…, [
XNk

k, Y1
1, ZNk

k]).

Also, different departments may have different time
accuracies for their own certs. This too can be easily
accomplished by having C of the following format,

C=SIGGOV(SN,PK,U, D1, D2, [TA1, XN1
1, Y1

1,
ZN1

1],…, [TAk, XNk
k, Y1

1, ZNk
k])

where

TAj is the time accuracy of the jth CA; and
Nj is the number of time units between D1and D2.
(E.g., if TAj is one day and D1 - D2 = 1 year, then XNj

j
= X365

j.)

LANDLORD CAs, TENANT CAs, AND LEASED
CERTS
Within a single organization, one major advantage of
issuing certs structured and managed as above
consists in enabling the cert to stay alive though the
user moves from one sub-organization to another. It
should be realized, however, that the above
NOVOMODO techniques are also applicable outside
a single-organization domain. Indeed, the
Government CA can be viewed as a landlord CA, the
k Department CAs as tenant CAs servicing unrelated
organizations (rather than sub-organizations), and the
certificate can be viewed as a leased cert. This
terminology is borrowed from a more familiar
example where the advantages of “joint construction
and independent control” apply. Leased certs are in
fact analogous to spec buildings having the identical
floor footprints. Rather than building just his own
apartment, a builder is better off constructing a 20-
floor building, setting himself up in the penthouse
apartment and renting or selling out right the other
floors. Each of the 20 tenants then acts as a single
owner. He decides in full autonomy and with no
liability to the builder whom to let into his flat, and
whom to give the keys. A 20-story building is of
course less expensive than 20 times a single-story
one: it may very well cost 10 times that. This
economy of scale is even more pronounced in a
leased cert. Indeed, the cost of issuing a regular cert

and that of issuing a leased one is pretty much the
same. Thus issuing leased certs could be very
profitable to a landlord CA, or at least repay it
completely of the costs incurred for its own certs. On
the other hand, tenant CAs have their advantage too,
in fact

1. they save on issuance costs: they share the

cost of issuing a cert k ways; and
2. they save on infrastructure costs: they share

the same responders (since they contain only
public data).

Natural candidates to act as landlord CAs for external
tenant CAs are:

• credit card companies;
• large financial institutions, and

again
• the Government (e.g., via the USPS

or the IRS).

In many cases, in fact, they have long and close
relationships with millions of “users” and may more
easily issue them a digital cert without investing too
many resources for user identification (e.g., a credit
card company has been sending bills for years to its
customers, and can leverage this knowledge). A
credit card company may like the idea of issuing
certificates as a landlord CA in order to run more
effectively its own affinity program (having hotel
chains, airlines etc. as their tenants). The IRS may
have already decided to use digital certificates, and
leased certs may later on provide them with a revenue
stream that will repay of the costs incurred for setting
up a faster and better service.

FURTHER ALTERNATIVES
So far, the way we have described landlord and
tenant CAs requires that the landlord CA cooperates
with its own tenant CAs during the issuance process,
and thus that it has already identified its tenant CAs
beforehand. It is actually possible, however, for a
landlord CA to issue rental certs envisioning –say—
20 tenant CAs, without having identified all or any of
these tenants. Rather, future tenant CAs will be able
to rent space in already issued certs. This capability is
ideal for new cert-enabled applications. Rather than
undergoing the expenses necessary to issue certs to
millions of customers, a company offering a new
certificate-enabled product may approach a landlord
CA having issued millions of certs, rent space in
them after the facs, and then sign on as customers a
large portion of the landlord-CA users by turning ON
all their corresponding certs overnight (without any
customer identification and other issuing costs) and
then starting managing them according to its own

1st Annual PKI Research Workshop---Proceedings

24

criteria. We shall describe various techniques for
enabling this functionality in a forthcoming paper.

References

[1] Efficient Certificate Revocation; by Silvio
Micali; Proceedings 1997 RSA Data Security
Conference.

[2] Online Certificate Status Protocol, version

2. Working document of the Internet
Engineering Task Force (IETF) RFC 2560.

[3] Public Key Infrastructure, Final Report;

MITRE Corporation; National Institute of
Standard and Technology, 1994.

[4] Secure Hash Standard; FIPS PUB 180,

Revised July 11, 94 (Federal Register, Vol.
59, No. 131, pp. 35211-34460); revised
August 5, 1994 (Federal Register Vol. 59,
No. 150, pp. 39937-40204).

[5] Low-Cost Hash Sequence Traversal; by

Markus Jakobsson; To appear in Financial
Cryptography 2002.

[6] General Time/Storage Tradeoffs for Hash-

Chain Re-computation; by Leo Reyzin;
unpublished manuscript.

[7] Internet Public Key Infrastructure, Part III:

Certificate Management Protocols; by
S.Farrell, A. Adams, and W. Ford; Internet
Draft, 1996

[8] Privacy Enhancement for Internet

Electronic Mail – Part II: Certificate-Based
Key Management; by S. Kent and J. Linn;
1989.

1st Annual PKI Research Workshop---Proceedings

25

1st Annual PKI Research Workshop---Proceedings

26

Validity Management in SPKI

Yki Kortesniemi
Helsinki University of Technology

Yki.Kortesniemi@hut.fi

ABSTRACT

In a distributed system, using authorisation certificate based access control tends to facilitate the granting of rights.
On the other hand, the problems of limiting usage or revoking the rights become more difficult, as the issuer of the
right is no longer in control of the issued certificate.

In this paper we take a look at the role of certificates in access control, evaluate the technical merits of different
validity management mechanisms an SPKI authorisation certificate supports, discuss the problems related to man-
aging the validity and finally introduce a protocol for validity management.

1. Introduction

Access control becomes an interesting question when-
ever an entity controls some resource that others would
like to use. In the absence of control, a resource likely
ends up being exploited without any benefit to the
owner. A computer related example is the protection of
a database system. Traditionally, this has been imple-
mented using an ACL (Access Control List), which lists
the authorised usernames and their associated rights.
This solution has many good qualities in mainframe-
type systems, but in a distributed environment with
multiple instances of the database, problems arise be-
cause we are relying on a central list. Solutions like
replication can be used to lessen the impact, but essen-
tially an ACL is a centralised solution.

Authorisation certificates, on the other hand, yield
themselves quite naturally to a distributed environment.
SPKI certificates, for instance, can successfully be used
to implement systems that support anonymity, delega-
tion and dynamic distributed policy management – all
qualities not traditionally associated with ACLs. The
key idea in authorisation certificates is to give the user
an unforgeable ticket, which states the user's rights,
thus making ACLs unnecessary. The verifier monitor-
ing the resource simply has to make sure that the cer-
tificate is valid, originates from the verifier and has
been granted to the user in question, before giving the
user access to the resource. It is interesting to note that
Kerberos combines elements from both ends: it main-
tains the long term access information in the server’s
database (ACL), but the actual access control decisions
are based on short-lived tickets not unlike certificates.

However, actual authorisation certificates tend to be
much longer-lived and do not normally rely on a back-
ing ACL.

The self-containment is a strong point of authorisation
certificates, but also the source of one of their weak-
nesses: the difficulty of revoking them. With ACLs,
revocation is easy: just erase the unwanted entries. With
certificates, the problem is more complicated, because
instead of the issuer, the user is in control of the certifi-
cate. Therefore, all the revocation solutions for SPKI
certificates rely on additional online checks. By using
online servers, we lose the self-containment, but this
loss is often acceptable. Nevertheless, using these revo-
cation mechanisms always has a performance impact on
the system, and they should therefore be used with con-
sideration.

The immutability of certificates, unfortunately, also
makes it difficult to keep track of the amount of usage –
we cannot just cross out a part of the certificate as a
sign of usage, we need other methods. One solution
proposed in [10] is to use online servers to keep track of
usage, thus enabling the use of tickets that are valid 10
times or credit cards that have monthly limits. How-
ever, managing this limit presents some problems.

In this paper, we take a look at the validity management
options of one particular authorisation certificate,
namely Simple Public Key Infrastructure (SPKI) cer-
tificate[7][8], study the problems of managing them and
finally offer a solution in the form of a revocation man-
agement protocol.

1st Annual PKI Research Workshop---Proceedings

27

The intended application domains could include things
like organisations, which want to control their internal
access rights – in these cases the users identity is usu-
ally known by the administrators granting the rights and
the user might have several rights assigned to the same
public key. At the other end we have global applica-
tions, where consumers buy some access rights with
cash (e.g. the right to read the current issue of a particu-
lar magazine) and want to stay anonymous. In this case,
the user might create a new public key for every right
bought just to enhance privacy.

The rest of the paper is organised as follows: we first
look at access control and how certificates can be used
for it. Then, we look at SPKI certificates and their va-
lidity management methods, discuss their suitability for
different situations and finally present a protocol for
managing the online servers.

2. Access Control and certificates

The goal of access control is to make sure that only
authorised users (be they humans or computers) get
access to the protected resources. The access control
process therefore can be said to consist of the following
phase (depicted in Figure 1):

Figure 1. Phases of access control.

0. Making the decision
In this phase, the issuer (someone either owning
the resource or having the right to control access
to it) makes the decision to grant a subject the
right to access the resource. This decision could be
based on things like the issuer knowing the subject
(a friend), the subject holding some position in is-
suer’s organisation or the subject being a paying
customer to issuer’s service.

1. Expressing the decision
For the decision to be automatically enforced, it
has to be expressed in a precise format. This could
be e.g. an ACL entry or an authorisation certifi-
cate.

2. Enforcing the decision
Whenever the subject tries to use the resources,
the validator makes sure that the right still exists.
This could entail checking the subject’s creden-
tials or the ACL and verifying that the subject is
indeed the same as mentioned in the credentials or
in the ACL.

3. Changing or revoking the decision
Should the access right become insufficient, un-
necessary or should there be risk of misuse, the
right can be changed or even revoked.

4. The right expires
Eventually, the right expires, either intentionally,
or implicitly.

2.1. Different types of certificates

There exist three major types of certificates: identity
certificates (e.g. X.509 and PGP), authorisation certifi-
cates (e.g. SPKI) and attribute certificates as shown in
Figure 2.

Figure 2. Three major types of certificates.

An identity certificate binds a public key to a name so
that outside parties can be convinced that a particular
person uses a particular key. Of course, this entails that
the issuer (typically an organization called Certification
Authority, CA) actually makes sure that the key is con-
trolled by said person. Hence, CAs must be trusted by
all users and they tend to be large organisations.

An authorisation certificate, on the other hand, binds a
right to a public key. Authorisation certificates can be
issued by anyone owning a resource or having the right
to grant access to someone else’s resource. This means
that potentially every human, computer, or even a soft-
ware agent could be issuing certificates. This difference
in the number and resources of issuers between the two
certificate types has significant implications on the
revocation systems used, as we’ll later discuss.

1st Annual PKI Research Workshop---Proceedings

28

The third, a less common type, an attribute certificate,
is used to bind an authorisation to a name. Essentially,
it is a distributed version of an ACL.

To better appreciate the differences between identity
and authorisation certificates, let us briefly look at how
they are utilised in phases 1 and 2 of the access control
process. In phase 0, certificates play no role, and the
role of authorisation certificates in phases 3 and 4 is the
subject for the rest of the paper. In this discussion, we
assume the usage of public key based authentication.

2.2. Using certificates in phase 2: Enforcing
the decision

To fulfil phase 2 in the access control process, we have
to prove the binding between the subject requesting
access and the required right. As we can see from
Figure 2, there are several ways of doing this. In all of
these, the binding between the subject and the key is
assumed much tighter than the binding with password.
This assumption however does not always hold, as the
subject can either lose the control or just give the re-
quired private key away. In both these situation, revoca-
tion of that key and the associated rights is normally
required.

The most common way of using certificates is to use
identity certificates to establish a mapping from the key
to a name and then use ACLs or attribute certificates to
map the name to an authorisation. This approach nicely
extends existing solutions, but it also has many prob-
lems:

• By design, it makes anonymous usage impossible.
In some system, it is a requirement to prevent
anonymous usage, but in other cases knowing the
user’s identity is not a necessity; it merely pro-
motes unnecessary monitoring of users.

• Making a tight binding through the name is not
easy, as it requires names that unique within the
application domain – otherwise namesakes can
share their rights. If we have a small organisation,
this might be quite feasible, but even in a moder-
ately sized organisation there can be more than one
John Smith and we have to be very careful never to
mix them up. And if we make global consumer ap-
plications, we need globally unique names, which
are difficult for humans and impractical for com-
puters. The local names can be complemented with
additional information to make them global, but for
global applications it is more straightforward to use

global identifiers like public keys from the begin-
ning.

• The binding from a key to an authorisation is un-
necessarily long – it consists of two steps: key to
name and name to authorisation. This is an impor-
tant aspect, as the verification of this binding will
be performed many times – in fact, every time the
subject uses the resource.

However, this two step binding does present an advan-
tage: by revoking the identity certificate we can auto-
matically revoke all the associated rights (naturally, this
is an advantage only if there are several rights associ-
ated to a single certificate). Further, we can create a
similar construct with authorisation certificates, if nec-
essary, so this is not a unique advantage of identity cer-
tificates.

An authorisation certificate, on the other hand, makes a
direct binding from the key to the authorisation. This
makes the binding simpler, but also practically anony-
mous. In reality, the key is a pseudonym, but since
these pseudonyms do not have to be registered any-
where, it can be very difficult to trace them back to the
user’s identity. And, should the anonymity become a
problem, it can be circumvented by verifying the sub-
ject’s identity already in phase 1 (but if this is omitted,
we cannot perform it retroactively).

Based on the above, we can conclude that authorisation
certificates offer a simpler solution to phase 2 than so-
lutions based on identity certificates.

2.3. Using certificates in phase 1: Express-
ing the decision

This phase is a more natural application area for iden-
tity certificates. They are often used to get the unique
name of the subject, which is then used in the ACL or
in an attribute certificate. But as we saw, this approach
presents some problems.

Another way of using identity certificates is to acquire
the known user’s public key to issue them an authorisa-
tion certificate. This applies to situations such as issu-
ing rights to members of an organisation. It should be
noted, however, that identity certificates are not always
necessary for issuing authorisation certificates. For in-
stance, we could receive the public key directly from
the subject in a face-to-face meeting, in which case an
identity certificate is unnecessary.

1st Annual PKI Research Workshop---Proceedings

29

2.4. Additional advantage of authorisation
certificates - delegation

If the certificate does not expressly forbid it, it is possi-
ble to delegate the rights listed in the certificate to other
users without any help from the owner of the resource -
a feature, which makes distributed management easier
to organise than in centralised solutions. In fact, regular
users can delegate their own rights. For example, this
means that we can implement a scheme, where a parent
can issue a copy of her credit card to a child and limit
the amount the child can charge from the card, while
still keeping her own credit card [9].

The downside of this flexibility is that the certificate
chains can become very long and evaluating them is no
longer trivial. The solution is to view the chains as a
means of implementing the granting of rights and then
let the verifier automatically create a reduction certifi-
cate that replaces the chain with a single certificate,
thus making the usage of the right efficient.

3. The SPKI Certificates

The Internet Engineering Task Force (IETF) has been
developing SPKI as a more flexible alternative to
X.509. The key idea is that anyone (or anything) with
access to a resource can authorise others to use the re-
source by issuing them an authorisation certificate. So,
compared to X.509, where only CAs issue certificates,
in SPKI any person, computer, etc. can issue certifi-
cates - and also has to be able to manage their validity.

Altogether there are six validity options in SPKI certifi-
cates. The simplest and the only locally evaluateable is
the validity period. In addition, the current SPKI struc-
ture includes three online validity checks: CRLs, re-
validations and one-time checks. Furthermore, [10]
proposes formats for two additional online validity
checks: limit and renew. As we shall later see, the dif-
ferent methods can be ordered by increasing capability.
Therefore, using more than one online method in the
same certificate is usually redundant since the most
capable suffices (although the selected method can be
used several times).

The author’s model for the lifecycle of an SPKI certifi-
cate is depicted in Figure 3. Each new certificate begins
its life in the suspended state (transition 1), but the cer-
tificate moves to the available state when its validity
period, crl and reval permit, possibly even immediately
(transition 2). In the available state, the certificate can
be used, provided that one-time and limit agree (transi-
tion 3). Should the crl or reval methods be used to re-

voke the certificate, it moves to the suspend state if it
can later become available again (transition 4), or to the
expired state if it no longer can be made available (tran-
sition 5 and 6). Finally, the certificate should naturally
expire as dictated by the validity period (transitions 7
and 8). The renew method (transition 9) complements
the model by forming a chain of shorter lived certifi-
cates – once a short-lived certificate expires, the subse-
quent one is ready to take its place (though it could be
argued that the validity periods of consecutive certifi-
cates might be allowed to overlap).

Figure 3. The lifecycle of an SPKI certificate.

3.1. Validity periods

In SPKI, the validity period definition consists of two
parts:

<not-before>::
"(" "not-before" <date> ")" ;

<not-after>::
"(" "not-after" <date> ")" ;

Both parts are optional, and if either one is missing, the
certificate is assumed to be valid for all time in that
direction.

<valid-basic>::
<valid-date> | <valid-dates> ;

<valid-date>::
<not-before> | <not-after> ;

<valid-dates>::
<not-before> <not-after> ;

1st Annual PKI Research Workshop---Proceedings

30

There is an additional type of validity period called
``now'', which has a length of 0, and can only be the
result of an online check. It is interpreted to mean that
the certificate is valid the moment the validation request
was made, but it states nothing about the future. If the
same certificate is used repeatedly, the online check has
to be repeated, as well.

To facilitate the decision of whether or not a certificate
is valid at a particular instance of time, all the different
validity conditions end up being converted to validity
periods as specified above. So, validating a certificate is
relatively straightforward: check that the validity period
stated in the certificate, as well as the online checks
(converted to validity periods), are all valid at the time
of use, and the certificate as a whole is then valid, and,
therefore, grants the included permission.

3.2. Online checks

All the online checks are defined using the following
format:

<online-test>::"(" "online"
<online-type> <uris> <principal>
<s-part>* ")" ;

where <online-type> can be crl, reval, one-
time or limit. The <uris> specify one or more
URIs (Uniform Resource Identifier [6]) that can be used
to request revalidation; e.g. in the case of crl, the URI
points to the crl file. <principal> specifies the pub-
lic key used for verifying the signature on the online
reply. The <s-part> is optional, and may contain
parameters to be used in the online check.

Next, we’ll go over the individual methods and their
reply formats.

3.3. CRL

CRL (Certificate Revocation List) is based on the idea
that a certificate is valid unless it appears on the speci-
fied CRL. SPKI includes both traditional and delta
CRLs in its specification. These must also be signed by
the aforementioned principal. The CRL formats
are specified below.

<crl>::"(" "crl" <version>?
"(" "canceled" <hash>* ")"
<valid-basic>")" ;

<delta-crl>::"(" "delta-crl" <ver-
sion>? <hash-of-crl>

"(" "canceled" <hash>* ")"
<valid-basic> ")" ;

3.4. Reval

Reval is based on an opposite idea: the certificate is
invalid unless the prover can provide a current ``bill of
health'', which testifies that the certificate can be con-
sidered valid for the stated period. [10] specifies the
reply format:

<reval-reply>::"(" "reval"
<version>? "(" "cert" <hash> ")"
"invalid"? <valid-basic> ")" ;

The reply identifies the original certificate in the hash
and gives a confirmed (in)validity period for that cer-
tificate. The reply must be signed with the key given as
<principal> in the original certificate.

3.5. One-time

One-time is based on the idea that it is impossible for
the issuer to predict anything about the future validity
of a certificate and, therefore, the user has to check the
validity with every use of the certificate. The certificate
contains a URI to the server, and the reply is ``yes'' or
``no'' with a time period of ``now''.

<one-time-reply>::"(" "one-time"
<version>? "(" "cert" <hash> ")"
"invalid"? "(" "one-time" <nonce>
")" ")" ;

Again, the hash must correspond to the original certifi-
cate, and the reply message must be signed by the prin-
cipal given in the certificate.

3.6. Limit

Limit is meant to enable quotas, i.e. it can be used to
limit the usage based on suitable properties, like the
number or length of usage. It is otherwise similar to
one-time except that the server will not reply to queries,
unless the user is able to prove that she is authorised to
use the resource in question by presenting a suitable
certificate chain. The limit query sent to the online
server is of the form:

<limit-query>::"(" "test" <version>?
"limit" <cert> <request>? <chain>
")" ;

1st Annual PKI Research Workshop---Proceedings

31

<request>:: "(" "request" <s-part>
")" ;

<chain>::"(" "chain" <cert>+ ")" ;

Above, <cert> is the certificate whose online test(s)
are to be made, <request> specifies the amount of
resources requested, and <chain> proves that the
verifier is entitled to ask about the validity of the cer-
tificate. The last certificate of the chain must be the
validation certificate, which contains the <nonce> that
is to be included in the reply to the query.

<limit-reply>:: "(" "limit"
<version>? "(" "cert" <hash> ")"
"invalid"? "(" "one-time" <nonce>
")" <context> ")" ;

<context>:: "(" "context" <hash> ")"
;

where <hash> is a hash of the concatenation of the
canonical forms of <request> and <chain>.

3.7. Renew

Renew offers an alternative approach to revocation.
Instead of issuing long-lived certificates and then wor-
rying about their validity, we issue a string of short-
lived certificates, which together cover the lifetime of a
long-lived certificate. This simplifies matters, as the
short-lived certificates can often operate offline and the
network connection is required only to automatically
fetch the subsequent certificate.

If everything is in order, the reply contains the next
certificate:

<renew-reply>:: "(" "renew" <ver-
sion>? <cert> ")" ;

If, however, the right has been cancelled, the reply is of
the form:

<renew-reply>:: "(" "renew" <ver-
sion>? "(" "cert" <hash> ")"
<valid-basic>? ")" ;

Again, the hash must correspond to the original certifi-
cate and the validity period states a period of time dur-
ing which renewal requests will be denied (i.e. the con-
ceptual long-lived certificate is not valid during this
period).

4. Related work

The majority of work done in the field of certificate
revocation has so far concentrated on identity certifi-
cates, in particular X.509 identity certificates. There
exist several RFCs and Internet drafts that deal with
X.509 certificate management and validation
[5][1][2][3][4][14][12]. As to revocation methods, most
of them concentrate on the CRL concept, and on how to
effectively use it, but lately the trend has been to intro-
duce other methods including online methods.

As to research, the majority of work has concentrated
on evaluating the efficiency of CRLs and implementing
improved, yet similar solutions. Further, some different
solutions have been proposed [13]. Some work has also
concentrated on the risk models and on the evaluation
of different mechanisms in light of these risks [15][11].
Unfortunately, compared to SPKI authorisation certifi-
cates, there are a few significant differences in the
X.509 model, which prevent us from directly applying
the same solutions:

- The number of certificate issuers. In X.509,
the number of CAs that issue certificates is or-
ders of magnitude smaller (in SPKI, every
human, computer etc. can issue certificates).
This makes CRLs, which aggregate revocation
information, much more feasible.

- Risk model. In X.509, the issuer and verifier
are normally separate entities. The risk is taken
by the verifier, yet the revocation decisions are
made by the issuer. In SPKI, the risk takers
are also issuing the certificates and can there-
fore control the revocation decisions to bal-
ance the risk.

These issues have been discussed in more detail in [10]

5. Choosing the validation and revocation
methods

The phases of access control were presented in Figure
1. In [10] we have discussed the revocation problems at
the time the certificates are used (phase 2 in Figure 1).
These include the problems of authenticating the par-
ticipants and providing undeniable evidence, also for
liability reasons. In this paper, we focus on phases 1, 3
and 4. In phase 1, the essential problems include choos-
ing the right validation methods, choosing the servers to
implement them, informing the servers about the valid-
ity rules, and possibly paying the server's owner, if the
servers are operated by a third party. In phase 4, the

1st Annual PKI Research Workshop---Proceedings

32

problems include things like informing the server about
the revocation decision and providing undeniable proof,
again for liability reasons.

5.1. Validity period

Phase 4 is simply a mechanism for making sure that
certificates do not remain valid indefinitely, but instead
automatically expire after a reasonable time. As a rule,
it is a good practice to always include an expiration date
in a certificate (only in very rare situation are there
good reasons to make it a permanent certificate). In
most of the cases, the matters themselves tend to
change over time, so it makes sense to periodically reis-
sue the certificates, if the rights are still required. Oth-
erwise, the issuer is stuck with a growing number of
certificates, which cannot be purged from the systems,
as they are still officially valid.

5.2. Choosing the online method

This section discusses some of the main criteria in
choosing the most suitable revocation method for a
particular situation. Most, if not all, of these choices
should be made by the designer of the system - they
should not be left to the end users. [9] provides further
examples of cases for each method and how they affect
the end user. The results of this discussion have been
summarised in Table 1.

An authorisation certificate is essentially a ticket grant-
ing the specified right to the indicated recipient. Now,
the certificate is always valid unless its validity is
somehow limited by listing conditions in the validity
field of the certificate. Once the certificate has been
issued, there is no practical method of getting it back
from, say, a misbehaving user. The only recourse the
issuer has is to include some limiting conditions in the
validity field when the certificate is created. Here lies
the difficulty: all possible future problems have to be
anticipated and suitable countermeasures devised at the
creation time. This is almost a mission impossible, be-
cause delegation will take place - the final user cannot
be known until the time the certificate is used.

The choice of the most suitable validation/revocation
method depends on what we want to achieve with it.
We typically have two different goals: to control the
amount of usage either discriminately (limit) or non-
discriminately (one-time), or just to enable the revoca-
tion of the right in case the circumstances change, there
is misuse of the right, etc. With the proposed changes to
SPKI, any of the online methods can be used for the
latter.

In the latter use, one important aspect is how fast we
want our revocation command to take effect. CRLs and
reval are both issued with a validity period, which is
then the worst case time the issuer has to wait for her
command to take effect. On the other hand, making the
period very short does have performance implications,
as the users are then forced to be online more often and
fetch the latest validity statement. The issuer can natu-
rally vary the validity period depending on the rate of
problems or some other factor, but essentially both
methods are best suited for situations, where the valid-
ity period does not have to be very short. This is par-
ticularly true about CRLs, where the validity period has
to be the same for all certificates on the list, thus mak-
ing it less practical to shorten the period if one of the
certificates is showing signs of misuse. Processing
overhead for the online server is fairly low with both of
these methods, as the same reply can be used through-
out the validity period.

On the other hand, a typical end user, e.g. someone
using a certificate-based credit card, is less interested in
the performance problems and more interested in the
system behaving in an intuitive manner: when the par-
ent presses the button to revoke the child’s credit card,
the revocation should take effect immediately, not after
some arbitrary time. Even if security-wise this time
might not be that important, compared to the time it
might have taken for the parent to realise that security
has been breached and that the certificate should be
revoked, the delay is still a source of anxiety to the par-
ent and should whence be minimised. For that reason, a
method like CRL or reval is not good: they sacrifice the
sense of control for the benefit of reduced overhead.

Table 1: A summary of the online methods

Method Typical use Processing overhead Revocation speed
Limit Quota High Immediate
One-time Limit usage on non-user specific factors Moderate Immediate
Reval Revocation Low After current reval validity period
CRL Revocation Low After current crl validity period
Renew Revocation Low After current certificate expires

1st Annual PKI Research Workshop---Proceedings

33

The only additional advantage they offer is support for
offline operation, which is not necessary in all situa-
tions. On the other hand, the delay does not have to
matter to the end user – the possible misuse and its
costs can be included in the business model of the sys-
tem, similarly to the existing credit card systems [9].

One-time is more suitable in a situation where we es-
sentially want our revocation decision to take effect
immediately or at least with a very short delay. On the
other hand, we pay a price in performance for this con-
venience – every instance of usage requires network
connection, as well as an individual reply from the
server. So, if the certificate is used very often and per-
formance really becomes a problem, we might consider
using a lighter method and taking care of the misuse
with the business model as mentioned above.

The other use for one-time, namely, controlling the
amount of use, is another matter. In this case, we con-
sider the certificate to be a recommendation, but the
actual right depends on the circumstances, like the time
of day or current load on the system. In this case, we
are most likely more than willing to accept the per-
formance penalty in exchange for the additional func-
tionality.

Finally, limit is most likely used for controlling a quota;
the possibility of revocation is just a fringe benefit. In
this case, we pay an even higher price in performance,
as its usage requires a two-phase negotiation with indi-
vidual replies, but the new possibilities should more
than outweigh that.

6. Background for the validity management
protocol

In this section, we go over some of the key questions in
designing the protocol.

6.1. Who can issue commands?

One of the basic things is naming the principal(s) that
are allowed to issue revocation commands. The most
obvious solution would be to state that the principal,
who issued the certificate, is implicitly assumed to have
the right to revoke it. However sometimes it would
make sense to authorise others to revoke a particular
certificate, for instance in a situation, where it is im-
perative that the certificate is revoked as fast as possible
after a breach but the original issuer is not available to
perform the revocation.

6.2. Requesting status information

The issuer might be interested in following how the
certificate is used, particularly if it contains one-time or
limit conditions, or if there are several individuals with
the ability to revoke the certificate.

6.3. Auditability

The commands and their replies have to be auditable in
case there is dispute as to the correct replies given by
the server.

6.4. Support pre-evaluated answers and
dynamic answers

In some cases, the answers are known in advance, e.g.
when we revoke a certificate. In other situation, like
with one-time and limit, we want to evaluate the answer
at the time of usage.

7. SPKI Validity Management protocol

The protocol has been defined in XML and correspond-
ing DTD can be found in appendix A. It defines the
structure and contents of the messages between the is-
suer and online server. All messages are signed, which
guarantees message integrity and authentication. Fur-
ther, to protect against replay attacks and to guarantee
confidentiality, a secure transport layer is used to carry
the messages.

The protocol consists of just two messages: a command
and a corresponding reply.

7.1. The Command

The command has the following structure:

Server_update cert, chain?,
online_test_hash, de-
lete_request*, test_definition*,
status_query*, signature

Cert is the certificate, whose online condition is being
managed. Chain is an optional field containing a list
of certificates that proves that the current command
issuer is authorised to send the command (this is re-
quired only if the command is sent by someone other
than the certificate issuer). Online_test_hash
identifies, which one of the possibly multiple validity
conditions in the certificate is being managed.

1st Annual PKI Research Workshop---Proceedings

34

The following three fields form the main part of the
message. Even though they all are optional, at least one
of them must be included in the command for it to be
valid. The first, delete_request, defines which
already defined rules are to be deleted. Each de-
lete_request contains a validity period; all rules
applying to that validity period are to be deleted.

The next part, test_definition, issues the new
validity rules. There are two types of rules: pre-
evaluated answer to be distributed at the specified time,
and dynamic code that is to be evaluated by the server
when a request is made. The pre-evaluated answer is
further divided in three classes: a yes_no_answer is
used for reval and crl, i.e. methods that reply with a
validity period, Now_answer is used for one_time and
new_cert_answer is used with renew. Limit always
requires a dynamic_condition.

The final part, status_query, requests information
on the validity status. It defines validity period for
which we want the status information. Further, with the
verbose flag the server is instructed to include in the
reply the rule used to deduce the status.

The command ends with a signature.

7.2. The Reply

The reply follows a similar structure:

server_reply cert_hash,
online_test_hash, delete_reply*,
test_definition_reply*,
status_reply*,service_status,
signature

Cert_hash is a hash of the certificate in question.
Delete_reply and test_definition_reply
contain status codes about the success of the corre-
sponding commands. Finally, status_reply con-
tains status information for the requested periods and
optionally the rules for deducing those.

8. Conclusions

In this paper, we have discussed the problems of man-
aging the online validation and revocation of SPKI au-
thorisation certificates. Due to their nature, authorisa-
tion certificates are well suited for granting rights, but
limiting or revoking them presents a bigger challenge.

All the existing solutions to these problems are based
on online servers that give authoritative statements

about the validity of a certificate. We have discussed
the advantages and drawbacks of the various solutions.
Finally, we have presented a protocol for managing the
online servers.

9. References

[1] C. Adams, P. Sylvester, M. Zolotarev, R. Zuc-
cherato: Internet X.509 Public Key Infrastruc-
ture Data Validation and Certification Server
Protocols. Request for Comments: 3029, Feb-
ruary 2001.

[2] C. Adams, S. Farrell: Internet X.509 Public
Key Infrastructure Certificate Management
Protocols. Request for Comments: 2510,
March 1999.

[3] C. Adams, S. Farrell: Internet X.509 Public
Key Infrastructure Certificate Management
Protocols. Internet Draft, December 2001.

[4] Ambarish Malpani, Russ Housley, Trevor
Freeman: Simple Certificate Validation Proto-
col (SCVP). Internet Draft, March 2002.

[5] A. Aresenault, S. Turner: Internet X.509 Pub-
lic Key Infrastructure: Roadmap. Internet
Draft, January 2002.

[6] Tim Berners-Lee, Roy T. Fielding, and Larry
Masinter. Uniform Resource Identi_ers (URI):
Generic syntax. Request for Comments: 2396,
August 1998.

[7] Carl M. Ellison, Bill Franz, Butler Lampson,
Ronald L. Rivest, Brian M. Thomas, and Tatu
Ylönen. Simple public key certificate. Internet
draft (expired), IETF SPKI Working Group,
March 1998.

[8] Carl M. Ellison, Bill Franz, Butler Lampson,
Ronald L. Rivest, Brian M. Thomas, and Tatu
Ylönen. SPKI certificate theory. Request for
Comments: 2693, September 1999.

[9] Kristiina Karvonen, Yki Kortesniemi, Antti
Latva-Koivisto. Evaluating Revocation Man-
agement in SPKI from a User’s Point of
View, Proceedings of Human Factors in Tele-
communication 2001, November 2001, Ber-
gen, Norway

1st Annual PKI Research Workshop---Proceedings

35

[10] Yki Kortesniemi, Tero Hasu, Jonna Särs: A
Revocation, Validation and Authentication
Protocol for SPKI Based Delegation Systems,
Proceedings of Network and Distributed Sys-
tem Security Symposium (NDSS 2000), 2-4
February 2000, San Diego, California

[11] Patric McDaniel and Aviel Rubin. A Response
to "Can We Eliminate Certificate Revocation
lists". In Proceedins on the Financial Cryptog-
raphy '00. The International Financial Cryp-
tography Association (IFCA)., February 2000.

[12] M. Myers, R. Ankney, A. Malpani, S.
Galperin, C. Adams: X.509 Internet Public
Key Infrastructure Online Certificate Status
Protocol - OCSP. Request for Comments:
2560, June 1999.

[13] Moni Naor and Kobbi Nissim. Certificate
revocation and certificate update. In Proceed-
ings of the 7th USENIX Security Symposium,
San Antonio, Texas, January 1998. Usenix As-
sociation.

[14] Denis Pinkas, Russ Housley: Delegated Path
Validation and Delegated Path Discovery Pro-
tocol Requirements (DPV&DPD-REQ). Inter-
net Draft, April 2002.

[15] Ronald L. Rivest. Can we eliminate certificate
revocation lists? In Proceedings of the Second
International Conference on Financial Cryp-
tography, Anguilla, British West Indies, Feb-
ruary 1998.

Appendix A: The DTD of SPKI Validity
Management Protocol

<!--

 DTD for a SPKI online test management messages.

-->

<!ELEMENT hash EMPTY>

<!ATTLIST hash data CDATA #REQUIRED>

<!ELEMENT cert_hash hash>

<!ELEMENT cert EMPTY>

<!ATTLIST cert data CDATA #REQUIRED>

<!ELEMENT chain (cert+)>

<!ELEMENT online_test_hash hash>

<!ELEMENT reason (#PCDATA)>

<!ELEMENT no EMPTY>

<!ELEMENT notbefore (#PCDATA)>

<!ELEMENT notafter (#PCDATA)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT valid (notbefore?, notafter?)>

<!ELEMENT yes_no_answer no?, valid>

<!ELEMENT now_answer no?, valid>

<!ELEMENT new_cert_answer cert, notbefore>

<!ELEMENT currently_in_use EMPTY>

<!ELEMENT dynamic_condition valid?>

<!ATTLIST dynamic_condition

 type PCDATA #REQUIRED

 data CDATA #REQUIRED>

<!ELEMENT crl_test yes_no_answer | dynamic_condition>

<!ELEMENT reval_test yes_no_answer | dynamic_condition>

<!ELEMENT one_time_test now_answer | dynamic_condition>

<!ELEMENT renew_test new_cert_answer |
 dynamic_condition>

<!ELEMENT limit_test dynamic_condition>

<!ELEMENT limit_status (#PCDATA)>

<!ELEMENT service_status (#PCDATA)>

<!ELEMENT test_definition (crl_test | reval_test | one_time_test |
renew_test | limit_test)>

<!ELEMENT test_definition_reply reason>

<!ELEMENT status_query verbose?, valid?>

<!ELEMENT status_reply (yes_no_answer, currently_in_use?) |
now_answer |

(new_cert_answer, currently_in_use?) | limit_status, dy-
namic_condition?>

<!ELEMENT delete_request valid>

<!ELEMENT delete_reply reason>

<!ELEMENT signature EMPTY>

<!ATTLIST signature data CDATA #REQUIRED>

<!ELEMENT server_update cert, chain?, online_test_hash, de-
lete_request*, test_definition*, status_query*, signature>

<!ELEMENT server_reply cert_hash, online_test_hash, de-
lete_reply*, test_definition_reply*,
status_reply*,service_status, signature

1st Annual PKI Research Workshop---Proceedings

36

Extended Validation Models in PKI:
Alternatives and Implications

Marc Branchaud

RSA Security
Vancouver, BC, Canada

marcnarc@rsasecurity.com

John Linn
RSA Laboratories
Bedford, MA, USA

jlinn@rsasecurity.com

1. Introduction
The fundamental goal of PKIs is to provide a

means for participating entities to establish and manage
trust in other entities, either within or across domain
boundaries. As PKIs have evolved, so has the set of
alternate methods supporting validation of entities, their
certificates, and their keys. Validation processing de-
termines whether or not the acceptance of a certificate
or key represents a suitable risk to a relying party. As
such, it is a central and necessary basis to support reli-
ance on PKI-based authentication.

Increasingly, PKI designers seek to distribute vali-
dation-related information and processing among coop-
erating components, reducing the complexity at indi-
vidual relying parties. These techniques afford the po-
tential for great power, but also imply fundamental
shifts in the trust relationships among the entities in-
volved within a PKI. In this paper, we examine tradi-
tional technology practice in the field, consider newly
emerging alternatives and their characteristics, and look
ahead to candidate future directions and their implica-
tions.

2. Existing PKI Practice
Early work in PKI definition culminated in Version

1 of CCITT Recommendation X.509 [CCIT88]. This
work, initially instigated as a supporting mechanism to
authenticate directory queries and responses, assumed
the availability and use of a directory as a repository for
certificates and Certificate Revocation Lists (CRLs).
Use of certificates and CRLs, signed by responsible
Certification Authorities (CAs), made it unnecessary
for the directory to be strongly trusted for security pur-
poses; no compromised directory could forge an entry
that a verifier would accept. As a central premise, no
CA or other security-relevant component operating as a
CA’s agent needed to be accessible on-line in order to
support authentication with certificates once issued.

In the late 1980s and early 1990s, related work in
the Internet community concerned usage of X.509 cer-
tificates to support e-mail protection, a project known
as Privacy-Enhanced Mail (PEM) [Linn93] [Kent93].
PEM was designed to operate in environments common
at that time, where communications facilities were often
costly and confined to store-and-forward messaging.
For these reasons, even fixed-site users often accessed
their messages in an off-line mode. As a result of these
factors, the PEM design placed a high priority on mak-
ing messages self-contained for processing purposes.
Facilities were designed so that certificate chains could
be attached to messages and so that CRLs could be ob-
tained via e-mail. Further, PEM contemplated a hierar-
chic certification model, within which it was straight-
forward for a sender to predetermine the path elements
that would be acceptable to message recipients.

CRLs are the “traditional” and most widely stan-
dardized revocation facility for certificate-based infra-
structures, and have an existing and growing installed
base. Their evolution has continued as additional exten-
sions have been defined, particularly to allow partition-
ing of CRL data across multiple objects in large-scale
environments. They provide a means for propagating
revocation information in a signed fashion, allowing its
storage in directories and other stores that need not be
trusted for security purposes. Nonetheless, CRLs have
long been one of the most controversial components of
PKI systems. Their disadvantages include limited time-
liness, the need for widespread propagation of poten-
tially large objects (within which most individual veri-
fiers are interested in only a small portion of the con-
tent), and the fact that concise proofs of validity are not
directly available for presentation along with certifi-
cates.

The IETF PKIX (Public Key Infrastructure using
X.509) working group was established in 1995 and be-
came the central forum for defining PKI facilities for
use by Internet applications. In addition to profiling
X.509 certificate and CRL constructs for Internet usage
[Hous99], it also undertook the definition of the Online

1st Annual PKI Research Workshop---Proceedings

37

Certificate Status Protocol (OCSP) [Myer99] as an al-
ternative to CRLs, enabling responder servers to pro-
vide revocation information for certificates in the form
of signed responses to per-certificate queries. CAs can
explicitly delegate their revocation reporting to separate
responders acting as their agents, representing this
delegation with an extension in the certificates that they
issue to the responders. Through this delegation, the CA
private keys used for certificate signing can remain in
off-line systems, though the responders’ private keys
must be accessible to sign responses to on-line queries.

The OCSP semantics were designed to enable mi-
gration from CRLs; OCSP responders can use CRLs as
a source of revocation information or can be more di-
rectly coupled into CA databases. Like CRLs, OCSP
responses are signed and can be saved along with vali-
dated messages to enable revalidation at a future point
in time. OCSP queries determine whether one or more
individual certificates have been revoked or are in sus-
pension. It explicitly excludes validation of the certifi-
cate’s signature, timeliness, or path-level validation,
though extensibility for additional validation services is
possible within the protocol framework. OCSP request-
ors must perform path-level processing, as the public
key of a certificate issuer is required in order to con-
struct a status query for a certificate. Variant and alter-
native protocols have been proposed with broader func-
tionality, and will be discussed next.

3. Delegated Validation
The IETF PKIX working group is currently devel-

oping requirements and examining proposals for dele-
gating certification path construction and validation
from a relying party’s client to a server. This work is at
least partially motivated by the success of OCSP, which
has seen wide adoption because it allows applications to
offload the task of determining a certificate’s status.
Similarly, delegated path processing is seen as a way to
offload the tricky and onerous work of discovering and
validating certification paths.

PKIX is exploring two aspects of server-side path
processing. In the first, Delegated Path Discovery
(DPD), a server is given a target end-entity certificate
and one or more trust anchors. The server then sets
about discovering candidate paths between the trust
anchor(s) and the target certificate. These certification
paths are returned to the client, which will then set
about validating the chains using the regular
X.509/PKIX rules, including checking the status of
each certificate, using CRLs or OCSP. In this model,
the client need not trust the DPD server, as the client
performs all cryptographic, status and path validation
itself.

The second aspect, Delegated Path Validation
(DPV), is more interesting from a trust management
perspective. With DPV, the client expects the server to
not only discover candidate certification paths but to
also completely validate and status-check these paths.
The client is essentially looking for a Boolean response
as to whether or not it can accept the target end-entity
certificate. The client must completely trust its DPV
server, as it abdicates to the server all responsibility for
determining acceptable paths. Even where the client
provides the server with its own policy inputs or trust
anchors, such data are primarily advisory as the client
can neither control nor examine the server’s internal
processing.

It is this complete delegation of responsibility that
fundamentally distinguishes DPV from DPD and
OCSP. The delegation model of the latter two protocols
expects their clients to intelligently participate in the
PKI, and so their servers can only return copies of CA-
sourced information. OCSP and DPD servers must op-
erate within the confines of that information, and are
essentially mechanistic publishing and data-gathering
tools. The clients will verify that their results come
from an authoritative source. On the other hand, DPV
servers are free to draw on other sources of information
in order to synthesize appropriate responses. DPV serv-
ers can act with much more autonomy, as their clients
have no way to verify the “correctness” of their behav-
ior.

A number of advantages are gained when clients
are willing to abdicate their responsibility and control to
follow the DPV model. Not the least of these is a radi-
cal simplification of the client applications. Clients can
do away with path validation and discovery code,
which may include support for multiple protocols and
algorithms. In the limit, clients need not even be able to
parse a certificate’s contents in order to use some DPV
services.

Another advantage of the DPV delegation model is
that it provides domain administrators with a conven-
ient central point to manage inter-organizational trust
on behalf of the domain’s relying parties. Trust rela-
tionships can be switched off and on for all or part of a
domain according to whatever criteria the domain’s
policies dictate, and without the need for any reconfigu-
ration or even notification of the domain’s clients. This
property alone may motivate enough organizations to
deploy DPV, enabling rapid, widespread adoption.

It is necessary to recognize, however, that reliance
on DPV implies a dependency on on-line service avail-
ability in order to perform validation. Further, aggrega-
tion of queries within a DPV server may present a con-
venient point for privacy-relevant data about client re-
quests to be collected. Nonetheless, DPV’s operational

1st Annual PKI Research Workshop---Proceedings

38

characteristics relative to off-line validation are moti-
vating growing interest, and broad adoption appears
likely.

The DPV delegation model turns each DPV server
into a trust anchor for its clients. This distributes the
trust anchors throughout the PKI, which in turn reduces
the number of clients that must be reconfigured follow-
ing the compromise of any particular trust anchor. This
effect can also be achieved without DPV, through the
deployment of general CA hierarchies where (as op-
posed to top-down hierarchies), each CA certifies its
parent as well as its children. In a general hierarchy any
CA can act as a trust anchor that provides connectivity
with the entire PKI, and the compromise of any CA will
only require reconfiguration of its trusting clients as
well as its parent and child CAs. We note, however,
that such general CA hierarchies have proven to be rare
in practice, whereas the DPV model expresses this
property naturally.

Two candidate protocols have so far emerged to
support DPV-style services. These are the Simple Cer-
tificate Validation Protocol (SCVP) [Malp01] and the
XML Key Management Specification (XKMS)
[W3C01].1 XKMS in fact provides more than just dele-
gated validation services; however, this section will
focus on the DPV-style services defined in “Tier 2” of
the XKMS XML Key Information Service Specifica-
tion (X-KISS). We note in passing that extensions to
OCSP to support a DPV service have been proposed.
As these are not materially different from the services
proposed in SCVP, we do not include the OCSP exten-
sions in our analysis.

SCVP and Tier 2 of XKMS (hereafter referred to
simply as XKMS) have significant syntactical differ-
ences, both in terms of each protocol’s messages and in
terms of how a client specifies the “certificate” to be
validated. SCVP is an ASN.1 protocol that exclusively
supports X.509 certificates, while XKMS is an XML
protocol that supports X.509, PGP and SPKI certifi-
cates. XKMS can also identify keys by reference (URI)
or even a simple name. (The relative merits of ASN.1
or XML are beyond the scope of this paper, and are
irrelevant to delegated validation.)

Fundamentally, both protocols enable a client to
delegate validation operations to a server. Each allows
the client to request various types of assertions from the
server regarding the certificate in the query. SCVP’s
focus on X.509 limits these to certification paths and
assertions of certificate revocation status, while XKMS

1 The specifications for both SCVP and XKMS are still in draft

form and subject to change. The analysis presented here considers the
protocols as specified in January 2002.

allows clients to also request raw public key values (on
the assumption that the server has validated the keys
according to the appropriate criteria). Both protocols
allow the client to also request various forms of evi-
dence to support the assertion in the response, including
certification paths and revocation status information.

In delegating validation operations, the client in ei-
ther protocol trusts that the server will act appropriately
on its behalf. Neither protocol explicitly defines server
behavior, although both imply that the server should
perform the operations that a non-DPV client would in
order to validate the certificate (e.g. perform PKIX-
style certificate path discovery and validation when
queried about an X.509 certificate). As with client-
based validation, extensions such as nameConstraints
can be incorporated in cross-certified paths in order to
limit the transitivity of trust. SCVP allows the client to
provide some input into the server’s processing, such as
policy identifiers, trusted CAs and certificate revocation
information. SCVP clients can also specify a “configu-
ration identifier” to, for example, inform the server of
the context of the client’s query.

XKMS does not allow its client to provide similar
information. This omission may not be as glaring as it
appears, for we note that in a delegated validation sys-
tem clients will not themselves validate the evidence
included in a response (though they will authenticate
the response itself). Thus the server is free to ignore the
client’s ancillary inputs, or it can tailor the evidence in
its response to match those inputs, and the client is not
in any position to detect such manipulation. (If the cli-
ent were able or willing to verify the evidence itself, it
would not really need a delegated validation service.)
This is what we mean when we say that a DPV client
must trust its server. Any ancillary input in a request
can be ignored, and any evidence in a response is
mainly useful to third parties auditing the response.
XKMS, as it lacks facilities for clients to provide ancil-
lary input, merely makes these facts more explicit.

This need to completely trust DPV servers does not
mean that delegated validation cannot be a good and
useful technology. It does, however, change the nature
of PKIs in ways that will be explored in the rest of this
paper. For now, we close this section with the notion
that some ancillary input can still play an important role
in a DPV system. Although information such as trusted
CAs and revocation information might help a server,
we expect that servers will typically have their own
resources for obtaining such information, and will be
configured with the trusted authorities of the clients
they serve. What will be truly useful is an indication of
the client context. This would allow the server to per-
form different levels of validation depending on
whether, for example, the client is merely reading e-

1st Annual PKI Research Workshop---Proceedings

39

mail or is performing an expensive purchase. Such a
context indicator could in fact instruct the server to em-
ploy different trusted authorities and/or different path
discovery and processing rules. All this could be trig-
gered by a single identifier communicated from the
client to the server, the values of which could be stan-
dardized or determined by private agreement.

4. Recursive and Chained Validation
Current standardization initiatives [Pink01] empha-

size use of DPV between clients and their associated
DPV servers, but it is possible to envision extending the
paradigm so that DPV servers themselves consult other
DPV servers to perform validation. A generalized PKI
structure could incorporate four tiers of elements gener-
ating or processing validation data: issuing CAs, their
OCSP responders, DPV servers trusted by relying par-
ties (RPs), and the RPs themselves. If and as use of
DPV becomes common, DPV-based queries might even
be extended back to DPV services associated with CAs.
In this fashion, DPV could be applied as a means to
publish CA status information, eventually eliminating
the OCSP tier. Potentially, use of CA-provided DPV
could make non-DPV status checking facilities moot
and could reduce the number of protocols required
within an overall PKI. It remains likely, however, for
DPV to remain under RPs’ jurisdiction, querying OCSP
responders maintained on behalf of issuing CAs. Inde-
pendent of whether CAs export their status information
via CRLs, OCSP, or DPV, it is possible for multiple
layers of DPV interaction to be interposed between an
RP and the information that an issuing CA provides for
one of its certificates. This section discusses alterna-
tives and issues arising in such inter-server delegated
models.

When large-scale PKIs combine OCSP and DPV,
trust may be delegated in two directions: from CAs, via
their OCSP responders, and from relying parties, via
hierarchies of DPV servers, each invoking the other’s
services. Borrowing the metaphor of a weather chart, a
path extending from a relying party to a remote issuer
CA can be thought of as crossing a “trust front”, delim-
iting zones of responsibility affiliated with the relying
party from zones affiliated with the issuer. In the gen-
eral case, path validation requires information provided
both from the issuing CA domain (i.e., certificates and
their associated revocation information) and from the
RP domain (to reflect its trust relationships and poli-
cies). When delegations to responders or validation
servers extend from either domain, the delegating do-
main must trust its delegates to represent its interests,
accurately process data obtained from other domains,
and reflect the data that it’s authoritative to provide.

In a DPV environment, each RP will normally fo-
cus its validation requests on a single trusted DPV
server (although it may be replicated to ensure avail-
ability), which will be responsible for validating any
and all certificates that its RPs receive. A given DPV
server may select to delegate among a set of other DPV
servers, depending on the particular certificate being
queried and on the policies under which validation is
being performed. If different clients use different DPV
server paths to validate a particular certificate, it is pos-
sible that the information they receive via different
sources (and their associated paths) may yield different
results. This prospect arises whenever an RP obtains
status information indirectly via active intermediaries,
rather than by accessing the information directly from
its source.

We distinguish three forms of interaction that can
take place among delegated validation servers:

• Chained queries, within which a specific
server is recognized as authoritative to respond
to a query about a particular certificate. All
queries about that certificate that are received
by other servers are forwarded to the authorita-
tive server, and the information obtained by a
requesting server can remain in a form that is
traceable to the authoritative domain.

• Referred queries, which resemble chained que-
ries except that the requesting server is redi-
rected to the authoritative server rather than
having the query mediated on the requestor’s
behalf by the server that initially received it.
As with chained queries, the information ob-
tained by a requesting server can remain in a
form that is traceable to the authoritative do-
main.

• Recursive queries, where each server aggre-
gates information obtained from other servers
in order to respond to the queries it receives,
but where a requestor must directly and fully
trust the delegated validation server that it con-
tacts as the provider for information about a
set of domains. In this form of interaction, in-
termediaries distill the information issued by
authoritative sources and actively integrate it
with data maintained in their own databases,
rather than transferring and processing it in a
fashion that keeps it independently verifiable
by relying parties.

Different DPV servers may employ different query
models, satisfying different goals and constraints; fur-
ther, a given DPV server may employ different models
depending on the domain associated with a particular
certificate that is to be validated. Of the models, recur-

1st Annual PKI Research Workshop---Proceedings

40

sive queries imply the greatest level of trust delegation
from the requesting server to the target, as they move
the critical operations of aggregation and synthesis of
validation data to the target. This reduces the amount of
data that needs to be propagated to requestors, typically
making protocol exchanges simpler and more compact.
Analogous to end-entity client use of DPV, recursive
inter-server DPV interactions imply that requesting
DPV servers place fundamental trust in the target DPV
servers to which they direct their queries. In a recursive
DPV environment, multiple DPV services, operated by
different domains, may be involved in determining the
validity of a certificate. The domains responsible for
operating DPV services may not directly correspond to
the domains responsible for individual certification path
elements, though validation policies could be applied to
enforce such a constraint.

Referred and chained queries, in contrast, collect
validation data for integration and processing by the
requesting entity, whether an RP or a DPV server; as
such, they transfer a larger volume of information for
requestor processing. These approaches can enable in-
dependent auditability, can contribute to post-facto re-
validation for non-repudiation purposes, and can help
DPV servers to partition the impact of compromised
data originating from particular sources. If signatures
are applied and retained on the received data, requestors
can preserve records of the validation data they obtain
in a form that is provably traceable to authoritative is-
suers. It appears unlikely that many RPs will commonly
revalidate determinations made by their DPV servers,
unless on an exception or post-facto basis, as RPs pre-
pared to perform this processing would gain relatively
little benefit from using DPV. They would need to ob-
tain (either through DPV itself or via out-of-band
means) trusted keys with which to verify the signatures
of remote servers, and to validate that those servers
were authoritative to report status on behalf of specific
domains. Even within a model where individual RPs
elect to delegate trust to DPV servers, it may still be
desired for those DPV servers to maintain validation
data records on behalf of their domains.

One fundamental design choice for PKI designs
and deployments is as follows:

• Is the set of certificates that a relying party can
validate intentionally confined to those do-
mains with which it (and/or its DPV server)
has established direct working relationships; or

• Is broader validation sought as a goal?

If the scope of certificates to be validated can be
constrained in advance, directly established relation-
ships between individual DPV servers may suffice to
support the RP community of interest. If universal vali-

dation is desired, however, DPV servers must be able to
take recourse to a general certification hierarchy or
mesh as a means to obtain trust connectivity among one
another.

Recursive DPV distributes knowledge of suitable
paths and sources for validation data among the set of
DPV servers rather than collecting it within each do-
main that requests that certificates be validated. In a
recursive model, individual entities need not perform
end-to-end path discovery. This decentralization may
prove valuable in enabling interconnected PKIs to scale
to very large sizes. The distributed nature of recursive
DPV echoes and accentuates a basic DPV characteris-
tic; not only are its RPs unable to independently revali-
date processing performed within their own DPV serv-
ers, they also lack independent assurance of the quality
of information on which their servers depend. Overall,
recursive DPV offers significant power and flexibility,
but also implies significant growth in the set of on-line
components comprising a distributed trusted computing
base for certificate validation. Chained and referred
DPV models distribute more data and processing com-
plexity among participating components, but allow the
participants to operate with a higher level of mutual
suspicion among one another.

5. Implications and Future Directions
There are profound implications that arise when us-

ing inter-server delegated validation models such as
those described in the previous section. Ostensibly,
DPV services perform two distinct functions: certifica-
tion path discovery and verification, and certificate
status confirmation. The latter is necessary because of
the nature of certificates. Specifically, a certificate con-
veys a binding that its CA believed to be true when the
certificate was issued. However, typical certificate users
often need to know if the CA still believes the binding
to be appropriate when the certificate is used, rather
then it was issued. Hence the desire to check a certifi-
cate’s status.

An obvious effect of inter-server delegated DPV is
that it eliminates the need for CRLs. This is because
such a system constructs paths between domains online,
through the involvement of each intermediate domain’s
servers. Since each domain is making an active asser-
tion about which pathways are valid, and each includes
certificate status as one of its validity criteria, separate
mechanisms for obtaining certificate status are no
longer necessary.

Active domain participation can be leveraged even
further. For example, it can change the way that inter-
domain trust is established and managed. This is cur-
rently achieved with cross-certification, but if a domain

1st Annual PKI Research Workshop---Proceedings

41

is going to make an active statement about the status of
its cross-certificates, it may as well instead make a
statement about the relationships the cross-certificates
represent. With active participation, domains need no
longer rely on cross-certificates as a source of policy
information, but can instead manage this data locally
within their DPV servers. This allows for much finer
control of the inter-domain relationship. At the coarsest
level, the relationship can be present for some clients
but not for others, or only at particular times. A more
sophisticated application would enable the relationship
under certain contexts, but not others. This would be
the equivalent of having multiple cross-certificates be-
tween two domains that are issued under different poli-
cies, something that is theoretically possible but has yet
to be seen in practice. The central administration bene-
fits of DPV servers make practical the application of
multiple policies to a relationship with another domain.

The effects of active domain participation can be
felt even further. Consider that in a fully delegated DPV
environment queries about a particular certificate even-
tually reach the issuer of that certificate, or an entity
designated by that issuer to speak authoritatively on its
behalf. This is necessary to obtain the status of the cer-
tificate. However, if the issuer of the certificate (or its
designate) is making an active statement about the cer-
tificate’s status, it could just as easily take advantage of
the situation to make statements about the certificate’s
actual contents. In the limit, the certificate’s issuer
could, in response to a query, return certificate contents
as separate elements rather than in the form of a certifi-
cate. So, for example, if the name of the certificate’s
subject has changed since the certificate was issued, the
issuer could return the new name in its DPV response.
The issuer could also return the subject’s current public
key, which would altogether eliminate the need to pub-
lish revocation information.

Taking this notion to its extreme conclusion leads
us to consider the elimination of certificates entirely.
Rather than obtaining a certificate, entities enrolling in
a PKI could register their public key with an authority,
which would give them an identifier of some sort. This
identifier could then be presented, as is possible in
XKMS, instead of a certificate in any challenge-
response, key establishment, or digital signature verifi-
cation protocol. The receiving party would submit the
identifier to its local DPV server, which would resolve
it (by eventually querying the authority that issued the
identifier) into the registered public key that could be
used to complete the protocol.

It is the online, active nature of inter-server dele-
gated DPV that makes this possible. The ultimate sce-
nario described above may or may not be practical, or
even desirable, but it does highlight the fundamental

shift that DPV services create in PKI. The original
framers of X.509 did not contemplate domains making
active statements about their certificates. Indeed, any
online components (i.e. the X.500 directory) were spe-
cifically not trusted. DPV heralds a departure from that
philosophy, and it will have profound effects on the
very infrastructure itself.

6. Conclusions
On-line validation methods for PKI certificates are

attracting increasing interest and adoption. Current
standards directions emphasize the simplification of
client-side processing. Two aspects are fundamental:

• Reduced volume of validation support data
propagated to clients; and

• Reduced complexity of validation processing
within clients.

In order to satisfy these goals, clients must delegate
their trust to new services, relying on those services to
perform validation for them. Rather than being elimi-
nated, validation complexity will move to a new set of
distributed components, operating as active intermedi-
aries. When this delegation is performed, many “tradi-
tional” PKI assumptions will no longer hold, as new
trusted points become active peer participants within
distributed PKI-based architectures.

All on-line validation strategies can improve upon
CRLs’ schedule-driven revocation responsiveness, if
their underlying information sources permit; DPV in-
troduces the possibility of a different sort of latency as
data is aggregated at intermediaries. Approaches differ
significantly, however, in the scope of active compo-
nents that must be trusted for validation purposes, and
in the trusted properties that they must provide. As
adoption of delegated validation proceeds, facilities to
constrain these trust characteristics, preserving appro-
priate levels of mutual suspicion, are likely to be impor-
tant.

Finally, delegated validation services represent a
fundamental change in the assumptions that underlie a
PKI. Most significantly, domain authorities can become
active participants in the PKI, interacting dynamically
with relying parties rather than merely making asser-
tions at particular points in time. This has profound
effects on the nature of PKI technology, leading to
questions about the explicit need for revocation, and
even about the nature of certification itself.

1st Annual PKI Research Workshop---Proceedings

42

Acknowledgments
The authors thank the workshop’s anonymous re-

viewers and Russ Housley of RSA Laboratories for
their comments on this paper.

References
[CCIT88] CCITT Recommendation X.509 (1988),

"The Directory - Authentication Frame-
work".

[Hous99] R. Housley, W. Ford, W. Polk, and D.
Solo, “Internet X.509 Public Key
Infrastructure: Certificate and CRL
Profile”, Internet RFC-2459, January
1999, http://www.ietf.org/rfc/rfc2459.txt.

[Kent93] S. Kent, “Privacy Enhancement for Inter-
net Electronic Mail: Part II: Certificate-
Based Key Management”, Internet RFC-
1422, February 1993,
http://www.ietf.org/rfc/rfc1422.txt.

[Linn93] J. Linn, “Privacy Enhancement for Inter-
net Electronic Mail: Part I: Message En-
cryption and Authentication Procedures”,
Internet RFC-1421, February 1993,
http://www.ietf.org/rfc/rfc1421.txt.

[Malp01] A. Malpani, P. Hoffman, R. Housley, T.
Freeman, “Simple Certificate Validation
Protocol (SCVP)”, Internet draft work in
progress, IETF PKIX working group, July
2001.

[Myer99] M. Myers, R. Ankney, A. Malpani, S.
Galperin, C. Adams, “X.509 Public Key
Infrastructure: Online Certificate Status
Protocol – OCSP”, Internet RFC-2560,
June 1999,
http://www.ietf.org/rfc/rfc2560.txt.

[Pink01] D. Pinkas, “Delegated Path Validation and
Delegated Path Discovery Protocol Re-
quirements”, Internet draft work in pro-
gress, IETF PKIX working group, No-
vember 2001.

[W3C01] P. Hallam-Baker, editor, “XML Key
Management Specification (XKMS)”,
W3C Note, March 2001,
http://www.w3.org/TR/xkms/.

1st Annual PKI Research Workshop---Proceedings

43

1st Annual PKI Research Workshop---Proceedings

44

Trust Assertion XML Infrastructure

Phillip Hallam-Baker

VeriSign Inc.

Abstract

The Trust Assertion XML Infrastructure (TAXI) is described. TAXI is a PKI research project that had the

objective of developing technology that would assist the deployment of PKI. Parts of the TAXI architecture

have since been realized in open standards, notably the XKMS [XKMS] and SAML [SAML]

specifications, other parts of the TAXI architecture such as XTAML [XTAML] and XKASS [XKASS]

have been published as research notes for public review and possible standardization at a later date. The

paper describes the architectural principles underlying the design decisions taken in these specifications.

1 Cryptography and Trust

Public Key cryptography permits secure

communication to be established between any

parties provided only that each has trustworthy

knowledge of the public key of the other. The

means by which that trustworthy knowledge is

obtained is known as Public Key Infrastructure

(PKI).

PKI secures the interface between the abstract

world of electronic communications and the

concrete offline world. PKI is complex and

subtle because the world is complex and subtle.

The deployment of PKI in the real world has

been subject to numerous disputes about

architecture, factional schisms and political

intrigues. While some of these disputes have

technical merit few have advanced the cause for

PKI. The quest for the perfect PKI has too often

been the enemy of deployment of a good PKI.

This paper describes the Trust Assertion XML

Infrastructure (TAXI), a research project that

was undertaken in the summer of 2000 with the

objective of developing technology that would

assist the deployment of PKI. Parts of the TAXI

architecture have since been realized in open

standards, notably the XKMS [XKMS] and

SAML [SAML] specifications, other parts of the

TAXI architecture such as XTAML [XTAML]

and XKASS [XKASS] have been published as

research notes for public review and possible

standardization at a later date.

Standards documents intended to describe a

normative specification should not provide any

discussion of the architectural principles. This

paper is intended to make good this omission and

to explain how the different components of the

TAXI architecture were intended to fit together.

In view of the developments since the original

TAXI architecture was developed this paper

makes use of the terminology and concepts used

in the XKMS and SAML specifications rather

than those of the original documents.

1.1 Certificates

The traditional model of Public Key

Infrastructure is based on the model proposed by

Lauren Kohnfelder’s in 1978 [Kohn78]. An

email user A may obtain the public key of email

user B by consulting a directory. The need for

online access to the directory could be avoided

by signing individual directory entries to form a

‘certificate’.

The PKI most closely associated with certificates

is X.509 [X.509], which realizes the Kohnfelder

model in the context of the X.500 directory

[X.500]. The influence of the Kohnfelder model

is also seen in PKI proposals that attempt to

escape from the certificate model including PGP

[PGP], SPKI [SPKI] and even DNSSEC

[DNSSEC]. All share the basic principle of using

signed data to bind the public key of a user to a

sign that identifies them. Regardless of whether

the signed data is called a ‘certificate’, a ‘key

signing’ or a ‘signed record’, the differences in

how the signed data is generated and used are

considerably less important than the similarities.

The X.509 specification was originally

developed as a part of the OSI network standard

developed as a joint standard of ISO/IEC and the

ITU. As increasing use was made of the X.509

standard by Internet protocols an IETF working

group was formed to describe the use of X.509 in

1st Annual PKI Research Workshop---Proceedings

45

that context. Over time the IETF Public Key

Infrastructure X.509 (PKIX) [PKIX] group has

specified additional protocols that extend the use

of X.509 so that the terms X.509 and PKIX are

often used interchangeably.

1.1.1 Trust Topology and Names

For many years the PKI debate centered on the

topology of trust. Certificate hierarchies,

heterarchies and Webs of Trust were advanced

each with merits and demerits. In the authors

view this debate obscured rather than clarified

the issues that should have been at the center of

the debate, namely:

! The ability of relying parties to locate a

public key for a particular purpose

! The ability of relying parties to locate a

trust path that validates a public key

! The ability of relying parties to control

the trust criteria that are applied

A highly constrained trust topology such as a

strict hierarchy makes the process of locating

keys and trust paths easier to implement and

manage than a less constrained topology. An

unconstrained topology in which all participants

are peers appeals to the spirit of egalitarianism

by obviating the need (but not precluding the

existence) of centralized control.

While the trust topology debate has continued,

real world deployment of PKI has largely

converged on a single model in which multiple

trust providers issue certificates and relying

parties decide which trust providers to rely on.

1.1.2 Naming

A certificate binds a public key to a name; the

question of naming has thus been at the center of

many PKI debates. In the DNSSEC and the

original X.509 architecture the certificate

hierarchy precisely matches that of a hierarchical

naming scheme.

A name is a signifier that bears only a

conventional relationship to the signified

[Sebok]. It follows therefore that if the trust

providers are to be true peers they must have

equal capacity to define naming conventions.

This principle is embodied in the Rivest and

Lampson SDSI paper [SDSI] that introduces a

naming scheme in which all names are relative

and “Alice” becomes “The person who Doug

calls Alice”.

This relativist naming scheme proposed appears

unlikely to provide much value in practice.

While all names are ultimately subjective the

ability to communicate depends on the parties

having established a vocabulary of shared terms.

While names are defined in many ways and there

is ultimately no single authority that is

responsible for assigning names there is in

practice little ambiguity. Names are chosen to

facilitate communication. If Bob, Doug and

Carol are in regular communication and each use

the name ‘Alice’ to refer to a different individual

a means of resolving the ambiguity will be

found. It is more likely that the convention

chosen will involve a property of the people

called Alice that distinguishes them from each

other than the speaker.

1.1.3 Beyond Email

The certificate-based model of PKI was

developed to address the problem of sending

secure email messages within the specific

constraints of the early ARPANET. The X.509

specification was originally designed to support

secure email in the context of the X.500

directory and X.400 mail. X.509 has since been

extended to meet many requirements that were

originally out of scope. In the process the

X.509/PKIX specifications have grown larger

and more complex.

Despite their complexity, the X.509/PKIX

specifications are in several ways incomplete. In

a commercial environment it is far more likely

that Alice would issue a check in error than lose

her safe key. PKIX provides no fewer than four

methods of determining the validity status of a

certificate. No mechanism is provided to

determine the validity status of a signed

document.

1.2 Client Complexity

One of the principal objections made to the

deployment of traditional PKI is the complexity

of the specification. Full support for the industry

standard X.509/PKIX specification requires a

very large and complex client implementation

1st Annual PKI Research Workshop---Proceedings

46

that very few applications support directly

(figure 1).

Client PKI Client PKI

Directory Directory

Figure 1 Client Complexity in Traditional PKI is
High.

While PKI is ubiquitously supported in

mainstream email, browser and operating

systems software, ‘sophisticated’ PKI features

such as cross-certification, OCSP etc. are not.

Such features are typically only supported by

PKI ‘plug-ins’ provided by third party PKI

vendors. Plug-ins of this type have proved

expensive to deploy and maintain, particularly

since each PKI client must be configured with

the location of the local PKI repository. A new

plug in deployment is required each time there is

a change to the PKI configuration, support for

new PKI features is required or the base

application is upgraded.

1.2.1 Historical Complexity and
Necessary Complexity

Part of the complexity of PKIX is due to the

process by which the specification developed.

The CRL specification was developed as a

certificate blacklist mechanism. As the number

of certificates grew, CRLs grew to unacceptable

size leading to various extensions to mitigate the

problem. At the same time the Online Certificate

Status Protocol (OCSP) was developed to

provide real-time reporting of certificate status.

Despite the close relationship between CRLs and

OCSP the data formats and protocols associated

with each are separate.

Although much of the complexity of PKIX could

be reduced through a thorough re-design process,

the main reason that the PKIX specification is

complex is that it attempts to address a complex

problem. In many instances it has been the

attempt to address a complex problem with a

too-simple solution that has led to complexity.

PKI is complex because trust relations in the real

world are complex and cannot necessarily be

reduced to a series of standardized machine-

readable data formats. The choice for a PKI

architect therefore is not whether there is

complexity but how it is managed and where it is

placed.

1.2.2 Directory as Certificate
Repository

The close relationship between the X.500 and

X.509 specifications led many to assume that

digital certificates ‘should’ be stored an X.500 or

LDAP directory. This assumption leads to the

conclusion that the deployment of a PKI at either

a local or global level is dependent on the

deployment of a directory.

While many companies have deployed local

directories these are almost without exception

considered internal resources whose contents are

company confidential.

While the X.500 or LDAP protocols might form

a basis for a certificate retrieval protocol, the

directory data model is not. The underlying

principle of the directory data model is that the

directory server supports a generic query

mechanism to a hierarchical data structure. This

model is ill suited to the needs of a certificate

repository that is servicing highly specific

queries against a heterachical PKI topology.

1.2.3 The Client Deployment Trap

The problem that appears to have brought

deployment of new PKIX features to a halt is the

client deployment trap. For a PKI feature to be

useful every client must first support it. For

mainstream application vendors to support a

feature it must first be useful. None of the

mainstream PKI enabled applications (Netscape

Communicator, Microsoft Outlook, Lotus Notes)

provide native support for cross-certification.

The feature would have little value until it was

widely supported and will not be supported in

any degree until it provides value.

1.2.4 The End to End Principle

The end-to-end principle is one of the key

architectural principles of the design of the

Internet. Under the end-to-end principle the

network core is as simple as possible, a packet

switching network that provides no guarantees as

to the reliability or order of packet delivery.

1st Annual PKI Research Workshop---Proceedings

47

Sophistication is achieved at the ends of the

communication where acknowledgement of

received packets is made and packets are

reassembled into order.

The end-to-end principle has been applied to

security to establish the doctrine that security

enhancements should be applied at the ‘ends’ of

the communication. For example an email

message should ideally be secured from the

sender to the recipient.

The difficulty raised by this interpretation of the

end-to-end principle is that the ends of the

communication are devices while the ends of the

trust relationship are people and/or

organizations. The sophisticated management of

trust relationships is complex and subtle and has

proved to be beyond the level of complexity that

developers of client applications will tolerate.

Properly understood, the end-to-end principle

argues that complexity must be eliminated where

possible and where it cannot be eliminated must

be confined to those parts of the network

infrastructure that are capable of supporting it.

1.2.5 Trust Management

The use of cryptography and PKI typically

appeals to individuals of independent character.

As a consequence PKI architectures have

emphasized the role of individual choice in the

configuration of their trust relationships. This

approach is a poor match to enterprise needs

where trust relationships between enterprises are

by definition established at an enterprise level.

The PKI approach that requires PKI

configuration to take place at the client end does

not meet the needs of enterprises attempting to

manage their trust relationships at the enterprise

level. The client centric model of PKI requires

that all trust relationships be expressible in a data

format supported by the client and that the client

support all the necessary location and retrieval

protocols.

As the number of PKI enabled devices increases

the trust management problem increases. Even

highly motivated individuals managing their

personal devices are unlikely to want to maintain

their trust configuration separately on the laptop,

desktop, handheld, mobile phone etc.

1.3 New Challenges

Despite the numerous objections made against it,

the deployment of PKI has been a success by

most ordinary measures. Millions of people use

PKI each day, in most cases without being aware

that they have been using it. PKI is already

established that provides to anyone with a need

secure email, a secure means to make payments

over the Internet, a Virtual Private Network.

Although PKI has succeeded by most ordinary

measures it has failed against its perceived

potential. Security remains an optional extra used

in cases of need, PKI enabled cryptography has

not yet become the ubiquitous default.

This qualified success poses a considerable

challenge to the deployment of alternative

approaches. Attempts to replace X.509

completely have largely failed completely or

been confined to a single narrow area of

application. New PKI infrastructure can only be

justified if it enables new applications of

cryptography that were impossible or impractical

with the existing infrastructure.

1.3.1 Constrained Devices

As the cost of processing power has decreased

the number of devices with embedded CPUs has

increased dramatically. Far from eliminating the

constraints of CPU power on PKI, improvements

in processor performance have increased them as

manufacturers attempt to embed PKI into mobile

phones, personal organizers and all manner of

network devices.

In addition to lacking the processing capability

to support sophisticated a sophisticated PKI

client implementation, constrained devices often

lack user interface capabilities that are

appropriate to the task. The task of adding a root

certificate into a PC web browser is supported by

a rich user interface that presents the user with

all the necessary information. While it is possible

to add a root certificate into a mobile phone with

a 20-button keypad and a 20-character display, it

is unlikely that the process can be made

acceptable to many consumers.

X.509 has been adapted to meet the constraints

of wireless use in the WAP specification [WAP].

The modifications include the use of compressed

‘WAP Certificates’ and a messaging protocol

1st Annual PKI Research Workshop---Proceedings

48

that uses a certificate identifier in place of the

certificate itself to save bandwidth on

constrained links.

1.3.2 Financial Transactions

Financial services applications operate under

requirements that are quite distinct from the

email application that has traditionally formed

the PKI paradigm. Unlike email applications,

financial services applications can depend upon

the availability of network connectivity at all

times. Financial services have a well-defined

trust model that is backed by regulation,

insurance and contracts that define the liabilities

of the parties and operate in an environment in

which the precise timing of operations can

transfer liability from one party to another.

As a result of these different constraints financial

services applications have traditionally been at

the cutting edge of PKI, leading to developments

such as the Online Certificate Status Protocol

(OCSP) [OCSP].

The Identrus architecture [Identrus] applies

PKIX and OCSP to provide real time validation

of public keys in the context of the ‘four-corners’

model common to many financial transactions.

This architecture demonstrates a significant

limitation of the use of the certificate model

designed to support offline messaging to an

online application. Relying applications must

support OCSP processing in addition to

certificate processing, the PKIX architecture

does not support the use of an online protocol

instead of certificate processing.

1.3.3 Web Services

Web Services [SOAP] are a set of industry

standards based on XML that allow applications

running on different machines to exchange data.

The goal of Web Services is to reduce or

eliminate interface costs, the cost of exchanging

data between computer systems. Interface costs

represent two of the largest costs of running

information systems:

! Computers generate messages that are

sent to the customer by letter post or fax

and entered manually into another

computer system

! The largest cost in the deployment of a

new software system is often interfacing

the new system to the legacy systems

already deployed.

Web Services offer the promise of enabling a

new and more cost effective IT strategy in which

communications that currently require human

intervention are automated. Web Services have

the potential to change the way that Enterprises

communicate both internally and externally.

While X.509 certificate meet some of the PKI

requirements of Web Services the use of an

ASN.1 based PKI to support an XML based

messaging infrastructure is unsatisfactory. While

the overhead required to support ASN.1 and

X.509 on a server platform is quite reasonable,

the same overhead is unreasonable for many of

the intended clients.

2 Trust Assertion XML Infrastructure

The TAXI architecture is based on the following

principles:

! Minimize the complexity of client

deployment, configuration and

management.

! Separate the client implementation from

the structure of the underlying PKI.

The TAXI architecture makes extensive use of

the XML Signature [XML-SIG] <KeyInfo>

element that allows a public key to be identified

using practically any means including:

! The Public Key parameters (e.g. RSA

modulus and exponent)

! Any naming scheme (e.g. URI, X.500

Common Name)

! X509 Certificate, CRL, OCSP token

! SPKI, PGP key signing.

! A URL for the retrieval of any of the

above

2.1 Architecture

The TAXI architecture is divided into four tiers

that represent increasing complexity from the

first to the fourth as follows:

Tier 1 Location
The location service is a Web service

that allows a client to locate information

concerning a public key analogous to

1st Annual PKI Research Workshop---Proceedings

49

the directory function in the PKIX

model

Tier 2 Validation
The validation service is a Web service

that allows a client to delegate both the

retrieval and processing of public key

information. The validation service is

analogous to a highly extended form of

the PKIX OCSP protocol.

Tier 3 Trust Assertion
A trust assertion contains a unique

identifier, one or more statements,

conditions and advice. Trust assertions

combine the roles of PKIX certificates,

attribute certificates and in some

instances signed documents themselves.

Tier 4 Status Assertion
A Status Assertion is an assertion that

makes a statement about the validity of

one or more other assertions. Status

Assertions combine the roles of CRLs

and OCSP in the PKIX model.

2.2 Specifications

2.2.1 XKMS

The XKMS specification consists of a

registration protocol and an enquiry protocol.

These protocols may be used independently.

The XKMS enquiry protocol is the XML Key

Information Service Specification (X-KISS)

which supports two service tiers:

Tier 1: Locate
The client sends one <KeyInfo> element

to the service and requests that the trust

service provide a <KeyInfo> element that

identifies the same key but is in a different

format (e.g. X.509 certificate converted to

key parameters).

Tier 2: Validate
The trust service validates the trustworthiness of

the information returned according to service

specific criteria.

2.2.1.1 Tier 1 Location

A client receives a signed XML document. The

<KeyInfo> element in the signature specifies a

retrieval method for an X.509 certificate. The

client lacking the means to either resolve the

URL or parse the X.509 certificate to obtain the

public key parameters delegates these tasks to

the trust service (Figure 2).

 Client Trust

Service

<ds:KeyInfo>
<ds:KeyName>

<ds:KeyInfo>
<ds:KeyValue>

Server - A

GET / HTTP/1.1
...

HTTP/1.1 101 OK
X509Certificate

Figure 2: Key Location Service

2.2.1.2 Tier 2 Validation

The Validate service allows a client to delegate

all trust processing functions to a trust service.

As with the Locate service the client creates a

query that specifies the information the

validation service is to locate. Unlike the

location service however the validation service is

responsible for ensuring the trustworthiness of

the data returned before relying upon it.

A client receives a signed XML document and

queries the trust service to determine whether the

signing key is trustworthy. In this case an X.509

certificate authenticates the signing key. The

Trust Service builds a certificate trust path, then

validates each certificate in the path against the

relevant Certification Revocation List. The client

is shielded from this complexity however and the

trust service returns only the information of

specific interest to the client; the key parameters,

the data bound to the key and the validity of the

binding (Figure 3).

1st Annual PKI Research Workshop---Proceedings

50

Client Trust

Service

<Query>
<...>

Result=Valid
<KeyBinding>

<KeyID>
<ds:KeyInfo>

PKI services

Figure 3 Key Validation Service

Delegation of trust processing functions to a trust

service makes enterprise-wide control and

oversight of PKI configuration possible. This is

essential in Business-to-Business applications

where the important trust relationships are

between enterprises and not between individuals

or the applications they use.

2.2.2 X-KRSS

 XML Key Registration Service Specification

(X-KRSS) defines a protocol for a trust service

that accepts registration of public key

information. Once registered, the public key may

be used in conjunction with other web services

including X-KISS.

X-KRSS is designed to support all of the

functions associated with the public key

lifecycle:

Registration. The registration function supports

registration of an association of a public key and

additional data (such as a name) to create a ‘key

binding’. Private keys may be generated either

locally by the client (desirable for signing keys)

or by a central key generation service (desirable

in cases where key recovery is supported).

Requests may be authenticated with either a

limited use shared secret or a digital signature.

Renewal. XKMS allows a PKI to be operated

without digital certificates ever being issued,

eliminating the need for certificate renewal. In

cases where certificates are issued by the

underlying PKI renewal processing may be

performed automatically without the need for

client interaction.

Revocation. An authorized party may request

that the trust service revoke a key binding. This

may be necessary because the key has been

compromised or because information contained

in the key binding is incorrect.

Recovery. Private key recovery is essential when

an end user has lost their private key and requires

access to their encrypted data. The X-KRSS

recovery function provides an authenticated

means of re-issuing a private key to a user.

X-KRSS may be configured hierarchically in the

manner of a Local Registration Authority. This

allows a registration request to be authenticated

by a local trust service then passed on to another

trust service where actual processing is

performed.

2.2.3 SAML

The Security Assertion Markup Language

[SAML] specifies both the TAXI Tier 3 trust

assertion framework and specific assertion

statements to support federated authentication

and authorization applications.

Each trust assertion is encoded in a common

XML package, which at a minimum consists of:

Basic Information.
Each assertion must specify the version of

the SAML assertion syntax, a unique

identifier that serves as a name for the

assertion, a unique identifier for the issuer

and the time instant of issue.

The Asserted Statement(s)
The statement(s) that are asserted by the

issuer of the assertion.

In addition an assertion may contain the

following additional elements:

Conditions.
The assertion status may be subject to

conditions. The status of the assertion might

be dependent on additional information from

a validation service. The assertion may be

dependent on other assertions being valid.

The assertion may only be valid if the

relying party is a member of a particular

audience.

Advice.
Assertions may contain additional

information as advice. The advice element

1st Annual PKI Research Workshop---Proceedings

51

MAY be used to specify the assertions that

were used to make a policy decision.

Relying applications may ignore advice elements

but are required to understand all the conditions

elements in an assertion if they are to rely on it.

SAML defines three Assertion Statements as

follows:

Authentication Assertion
An authentication assertion contains a

statement made by the issuer that asserts the

subject was authenticated by a particular

means at a particular time.

Authorization Decision Assertion
An authorization decision assertion contains

a statement made by the issuer that asserts

the request for access by the specified

subject to the specified object has resulted in

the specified decision on the basis of some

optionally specified evidence.

Attribute Assertion
An attribute assertion contains a statement

made by the issuer that asserts the specified

subject is associated with the specified

attribute(s).

2.2.4 XTAML

One of the most common objections made to the

XKMS trust service model is that it does not

provide a means of establishing and maintaining

the trust relationship between the client and the

trust service. XKMS cannot eliminate the need to

implement X.509 if a certificate is still required

to secure this trust relationship. XTAML is

designed to meet this need in the context of a

large scale PKI deployment in which a root of

trust might be embedded in a large number of

devices and consequently there is a need to be

able to manage the private keys associated with

the root of trust itself in a highly controlled

offline environment that is independent of the

online private keys used to authenticate actual

Web Services transactions.

By design XTAML supports only the most

limited delegation model. In the X.509 model a

certificate signing certificate may be used to

delegate a signing authority that is restricted to

particular domains and/or certification policy. In

contrast the XTAML delegation model provides

only ‘all or nothing’ delegation required to

support the requirements of online/offline key

management.

The XML Trust Axiom Markup Language

(XTAML) defines SAML Trust Assertions that

support the management of trust axioms. A trust

axiom is a ‘root of trust’ analogous to a root

certificate in a certificate based PKI. An

important application of trust axioms is

managing the trust relationship between a client

and a trust service.

XTAML defines SAML statement elements for

specifying axiomatic and delegate keys and for

asserting the validity status of another assertion.

A new condition element is defined that makes

the validity status of an assertion dependent on

online verification. Two new advice elements are

defined to allow an assertion to provide advice

on the reissue of the assertion and for issue of

related assertions.

2.2.5 XKASS

Another objections made to the use of XML

Signature to authenticate Web Service requests

and responses such as XKMS is the processing

overhead required to create and verify digital

signatures.

XKASS provides a means of using a lightweight

Message Authentication Code (MAC) to

authenticate Web Service messages by means of

a shared secret established through a key

agreement mechanism. The design of the

XKASS is similar to the Just fast Keying [JFK]

proposal made to the IETF IPSEC working

group but requires only one round trip in the

typical case instead of two made possible by a

different approach to the handling of Denial of

Service attacks.

2.3 Assertion Calculus

The SAML specification defines a framework

for encoding Trust Assertions but does not

provide a general framework for defining the

semantics of assertion statements. One means of

attaching specific semantics to an assertion

statement is by means of an assertion calculus

that sets out the rules by which a set of assertions

are reduced to specific actions in response to a

query.

1st Annual PKI Research Workshop---Proceedings

52

Each assertion calculus is specific to an

application such as access control or

management of financial instruments. The laws

of the assertion calculus comprise a formal

specification

For example in an access control application an

attempt to access a resource would generate a

query of the form:

[Q1] Is Alice granted Read access to the

Accounts file?

Given the assertions:

[A1] Alice is a member of the Finance group

[A2] The Finance Group is granted Read

access to the Accounts file

The query may be answered by applying the rule

[R1] IF (P is a member of the Q group) AND

 (The Q group is granted X access to Y)

THEN

P is granted X access to Y.

[P1] Applying R1 to A1 and A2, substituting

Alice for P, Finance for Q, Read for X and

Accounts file for Y we obtain:

[A3] Alice is granted Read access to the

Accounts file

If the rules of the assertion calculus are labeled

and specified in a suitable form the proof might

be encoded in XML and attached to assertion A3

encoding the conclusion as advice.

While an application might employ a general

purpose theorem

One of the principal advantages of the assertion

calculus approach is that it allows an assertion

generator to incorporate an integral verification

step that independently verifies the correctness

of the assertion by verifying the proof. Such a

process is well within the capabilities of current

formal methods tools, which cannot currently be

said for the process of generating a proof in an

arbitrary calculus.

3 Applications

The TAXI architecture reduces the complexity of

a large number of PKI applications of which we

present a representative sample only.

3.1 Facilitating Deployment of
Traditional PKI

The principal design goal for TAXI was to

facilitate the deployment of traditional PKI by

eliminating the need for a ‘fat client’ to support

sophisticated PKI functionality. This goal is

realized in the XKMS specification that allows a

simple client to access a sophisticated PKI by

means of the XKMS Web Service interface.

XKMS enables deployment of sophisticated PKI

topologies such as the Federal Government

Bridge CA [FBCA] without the need to deploy

PKI plug-in applications to support the specific

topology.

3.2 Wireless LAN Configuration

A wireless LAN protocol such as 802.11b allows

a user within range of an access point access to a

LAN without the need for a physical connection.

By eliminating the need for physical access a

wireless LAN protocol removes a control that

mitigates two significant security risks, first

anyone within range might intercept network

traffic, second unauthorized use of the network.

Recent analysis [Borisov01] of the 802.11b WEP

cryptographic protocol [WEP] has demonstrated

that the WEP protocol provides inadequate

protection against the interception risk and little

protection against the unauthorized use risk.

The risk of unauthorized use arises from the fact

that every user of the network shares the same

authentication key. The risk of unauthorized use

could have been controlled if a sufficiently

lightweight PKI had been available to the

developers. For example XKMS might be used

to permit network interface cards to be granted

or denied access to the network on the basis of a

private key embedded in the card.

3.3 Negotiable Financial Documents

Many financial transactions are represented by

the exchange of negotiable documents. In many

cases these documents are bearer instruments.

1st Annual PKI Research Workshop---Proceedings

53

For example a ship has fulfilled its obligations to

the dispatcher when it discharges its cargo to the

first person to present a valid bill of lading at the

destination port.

Replacing paper documents with electronic

representations offers many advantages

including lower costs for the carrier and its

customers. In addition an electronic instrument is

more readily traded than one restricted to

physical form.

A tier 3 trust assertion may be used to create an

electronic bill of lading that tracks the current

ownership of a specific asset (e.g. a cargo) and

manages transfer of that asset from one owner to

another by means of tier 4 status assertions. A

potential purchaser of a cargo may determine if

the seller is currently the owner of the cargo by

validating the assertion stating ownership.

3.4 Commercial Registry

Many business applications involve some form

of registry. For example in the US it is possible

to gain security for a debt by registering a charge

against assets of the debtor in a commercial

registry.

A commercial registry does not normally require

exceptional levels of availability, it is however

essential that the registry ensure an exceptional

level of data authenticity and persistence.

Although the human interface to such a registry

is likely to require customization to the

applicable law, the type of assets registered,

language, etc. the functions requiring exceptional

levels of data authenticity and persistence are

common to all registries.

Entries in the commercial registry may be

represented by tier 3 trust assertions. Discharge

or voiding of entries may be represented by

means of tier 4 status assertions.

4 Acknowledgements

Thanks are due to Warwick Ford, Barbara Fox,

Brian LaMachia, Jeremy Epstein, David Solo

and Mack Hicks for their many helpful

comments on the original TAXI research project.

Thanks are also due to the members of the

SAML and XKMS working groups who have

helped to turn theory into practice, in particular

Stephen Farrell, Shivram Mysore, Eve Maler,

Joe Pato, Jeff Hodges, Prateek Mishra, David

Orchard, Hal Lockhart, Carlisle Adams, Tim

Moses, Bob Blakely, Marlena Erdos, Scott

Cantor, Chris McLaren, Krishna Sankar, Irving

Reid, Daniel Ash, Joseph Reagle and Blair

Dillaway.

5 References

[DNSSEC] Eastlake, D. and C. Kaufman,

Proposed Standard for DNS Security, RFC

2065, January 1997.

[FBCA] W. T. Polk and N. E. Hastings, Bridge
Certification Authorities: Conecting B2B
Public Key Infrastructures. NIST 2001

http://csrc.nist.gov/pki/documents/B2B-

article.pdf

[Identrus] Identrus, web site

http://www.identrus.com/

[JFK] W. Aiello, S.M. Bellovin, M. Blaze, R.

Canetti, J. Ioannidis, A.D. Keromytis, O.

Reingold Just Fast Keying (JFK), Internet

draft http://www.ietf.org/internet-

drafts/draft-ietf-ipsec-jfk-00.txt

[Kohn78] Kohnfelder, L. M. (1978). Towards
a Practical Public-Key Cryptosystem.
Laboratory for Computer Science.

Cambridge, Massachussetts Institute of

Technology.

[LDAP] T. Howes, M. Smith, The LDAP
Application Program Interface. RFC 1823

August 1995.

[OCSP] M. Myers, R. Ankney, A. Malpani, S.

Galperin, C. Adams, X.509 Internet Public
Key Infrastructure Online Certificate Status
Protocol - OCSP. RFC 2560 June 1999.

[PGP] Atkins, D., Stallings, W. and P.

Zimmermann, PGP Message Exchange
Formats, RFC 1991, August 1996.

[PKIX] Public Key Infrastructure X.509,

Internet Engineering Taskforce.

[SAML] P. Hallam-Baker and Eve Maler,

Assertions and Protocol for the OASIS
Security Assertion Markup Language
(SAML) http://www.oasis-

1st Annual PKI Research Workshop---Proceedings

54

open.org/committees/security/docs/draft-

sstc-core-25.pdf

[SDSI] Ron Rivest and Butler Lampson, SDSI -

A Simple Distributed Security Infrastructure

[SDSI],

http://theory.lcs.mit.edu/~cis/sdsi.html

[Sebiok] T. Sebiok, Signs: An Introduction to
Semiotics. Toronto: University of Toronto

Press, 1994�

[SOAP] D. Box, D Ehnebuske, G. Kakivaya, A.

Layman, N. Mendelsohn, H. Frystyk

Nielsen, S Thatte, D. Winer. Simple Object
Access Protocol (SOAP) 1.1, W3C Note 08

May 2000, http://www.w3.org/TR/SOAP/

[SPKI] C. Ellison, B. Frantz, B. Lampson, R.

Rivest, B. Thomas, T. Ylonen. SPKI
Certificate Theory, RFC 2693, September

1999.

[Borisov01] Nikita Borisov, Ian Goldberg, and

David Wagner. Intercepting mobile
communications: The insecurity of 802.11.

In Proceedings of MOBICOM 2001, 2001.

http://www.isaac.cs.berkeley.edu/isaac/mobi

com.pdf

[WAP] WAP Certificate profile Specification,

http://www1.wapforum.org/tech/terms.asp?d

oc=WAP-211-WAPCert-20010522-a.pdf

[WEP] LAN MAN Standards of the IEEE
Computer Society. Wireless LAN medium
access control (MAC) and physical layer
(PHY) specification. IEEE Standard 802.11,
1977 Edition, 1977

[X.500] ITU-T Recommendation X.501:
Information Technology - Open Systems
Interconnection - The Directory: Models,

1993.

[X.509] R. Housley, W. Ford, W. Polk, D. Solo.

Internet X.509 Public Key Infrastructure
Certificate and CRL Profile. RFC 2459,

January 1999.

[XKASS] P. Hallam-Baker, XML Key
Agreement Service Specification (XKASS),
May 2001, XML Trust Center Research

note,

http://www.xmltrustcenter.org/research/docs

/X-KASS-31.pdf

[XKMS] W. Ford, P. Hallam-Baker, B. Fox, B.

Dillaway, B. LaMacchia, J. Epstein, J. Lapp,

XML Key Management Specification

(XKMS), W3C Note 30 March 2001,

http://www.w3.org/TR/xkms/

[XTAML] P. Hallam-Baker, XML Trust Axiom
Markup Language 1.0, VeriSign Inc.

September 2001.

http://www.xmltrustcenter.org/

[XML-SIG] D. Eastlake, J. R., D. Solo, M.

Bartel, J. Boyer , B. Fox , E. Simon. XML-
Signature Syntax and Processing, World

Wide Web Consortium.

http://www.w3.org/TR/xmldsig-core/

1st Annual PKI Research Workshop---Proceedings

55

1st Annual PKI Research Workshop---Proceedings

56

Making certificates programmable

John DeTreville
Microsoft Research

johndetr@microsoft.com

Abstract

Certificates carry signed statements within a Public-
Key Infrastructure (PKI). As we begin to build more com-
plex and more open PKIs, the limited expressiveness of
current certificate languages becomes a concern. While
certificates are traditionally treated as simple data struc-
tures conforming to a given schema, we show an alterna-
tive derivation of the concept of a certificate in which
certificates can contain control information in the form of
program code. One example is program code written in
declarative statements in a variant of the relational alge-
bra, which can work together in rich ways.

1. Introduction

In a Public-Key Infrastructure (PKI)—such as X.509
[10] or SDSI/SPKI [13, 7]—distributed parties can com-
municate using persistent signed data structures called
certificates. Certificates can carry authorizations that con-
trol access to distributed resources (saying, for example,
that John Smith can access a particular Web site at his
workplace) as well as more abstract data and rules that
can provide support for authorization decisions (e.g., John
Smith is a full-time programmer; programmers are em-
ployees; full-time employees can access the Web site).
Certificates conform to an established syntax—such as
ASN.1 for X.509 certificates [11] and encoded S-
expressions or XML for SDSI/SPKI certificates [12]—
and an established semantics.

As our ambitions for PKIs become greater, the ex-
pressiveness of their certificates can become a cause for
concern. We might wonder whether our certificates—
their syntax and their semantics—are expressive enough.
Can they convey the necessary sorts of information to
support the operation of the PKI? For example, if our
certificates are very simple data structures that can work
together only in a few restricted ways, it might be impos-
sible to support a rich variety of authorization structures.
While this may be seen as an advantage in some contexts
(for example, if we might wish to constrain the uses of a
PKI), it is certainly a potential shortcoming in a more
open environment.

We might also wonder if our certificates and our cer-
tificate language are suitably well-defined. Ensuring the
wide interoperability of certificates in an open PKI can be
difficult or impossible in practice [9]. We note for exam-
ple that certificates are often extended for new uses by
simply adding new fields in a manner that can change the
meaning of existing fields in subtle and perhaps unfore-
seen ways, breaking existing uses. Conversely, we might
expect that a more regular design, based on fewer base
concepts that can be used together in more ways, might
improve interoperability while at the same time increasing
expressiveness.

In this paper we rederive the concept of a certificate
in a novel way, in which a certificate can contain program
code, written in a simple declarative language, as well as
data. The use of program code can increase the expres-
siveness of certificates while eliminating a number of
special cases present in existing certificate languages, and

auth.
request

auth.
response

operation
request

operation
response

Figure 1: A hypothetical central authorization service

service
central

authorization
service

state logic resource

client

1st Annual PKI Research Workshop---Proceedings

57

is one path toward deriving more powerful certificate
languages that will allow us to build richer and more
flexible PKIs.

2. A hypothetical central authorization
service

The principal purpose of certificates—let us say—is
to support authorization in an open distributed environ-
ment. Certificates therefore combine two distinct kinds of
information. First, they include information directly re-
lated to authorization. For example, they may state that a
certain group of people is authorized to access a shared
resource, or that a certain person belongs to that group.
They also include information required by their use in an
open distributed environment. For example, they may
include a validity interval, or an address to check for
revocation, or information that supports the proper chain-
ing of certificates.

To help separate these concerns, let us first consider a
hypothetical environment where all authorization deci-
sions have been centralized, as shown in Figure 1. When-
ever a client requests an operation from a service
controlling a resource, the service must determine
whether this client is authorized to perform this operation;
in this centralized model, the service simply passes an
authorization request to the central authorization service,
identifying the client, the resource, and the requested op-
eration. Based on its encapsulated state and logic, the
central authorization service authorizes or rejects the op-
eration; if the operation is authorized, the service per-
forms the requested operation and returns the result to the
client. The central authorization service encapsulates the
system’s authorization information (its “state”) and the
authorization rules (its “logic”) for all resources and for
all clients, and it is used only as a “black box” that can
only answer specific questions.

Such a centralized authorization service is of course
impractical in many ways. Its performance and availabil-
ity would be limited and it certainly could not scale to the
size of the Internet. Worse yet, such a large-scale service
would be impossible to administer, since it would com-
bine information from thousands or millions of autono-
mous administrative domains and would hard-code the
rules on how these domains operate and how they inter-
operate. It would be closed because third parties could not
readily extend its state and logic.

Let us imagine, though, that our centralized distribu-
tion service is otherwise powerful enough to perform the
needed authorization tasks, and that its only problems are
those due to its centralized nature. How can we solve
these problems, or at least ameliorate them? In other
words, how can we decentralize (i.e., distribute) the au-
thorization service?

3. Mobile code

One approach to decentralizing the authorization
service is to make its state and logic mobile—that is, to
encapsulate some piece of its state and logic in a
certificate that can travel across the network to the service
controlling the resource and execute there. There have
been various proposals that support this sort of mobile
code [4] and this approach is greatly simplified when the
authorization process is purely functional—without side-
effects—as is usually the case. We assume some
mechanism for executing the code in the certificate safely
at the receiving service.

Simply adding mobile code to our centralized design
is not enough. It improves performance, and it improves
availability, but it does not address the remaining problem
of administering the system's global authorization state
and logic. We can simply partition the state and logic, of
course—and such a partition is clearly the solution—but
the various partitioned administrative domains must still
be able to interoperate. Below, we derive a architecture
for partitioning that allows multiple administrative
domains to interact in flexible ways. Our language for
state and logic is purely applicative, thus allowing its safe
execution at the recipient.

4. Certificates as cache entries

One way to improve performance and availability in
any system is through the use of caching. Once a service
sends a request to our hypothetical central authorization
service and receives a response, it can cache the request-
response pair to avoid requerying the central service for
the same request in the future. Of course, the response
must not depend on state that can change.

In their simplest form, certificates are an extension of
the caching idea. As shown in Figure 2, a service can hold
a certificate, signed by the central authorization service,
encapsulating the request-response pair. It can use this
certificate exactly as it would use the corresponding cache
entry, but the certificate has several additional advantages.

• Cache entries are implicitly authenticated be-
cause the service (presumably) knows that the
information in the cache came from the central
authentication service, over an authenticated
connection. In contrast, a certificate is explicitly
authenticated because it carries a signature from
the central authentication service. A service can
trust a certificate received from another service,
or even from a client. This feature further im-
proves the performance and flexibility of the PKI.

1st Annual PKI Research Workshop---Proceedings

58

operation
request

operation
response

Figure 2: Certificate issued by a central authorization service

client

certificate
“auth. request −>
auth. response”
(signed, central

authorization service)

service

resource

auth.
query

auth.
response

operation
request

operation
response

Figure 3: A hypothetical central authorization database

service
central

authorization
database

tables views resource

client

Figure 4: Tables and views
in the central authorization database

John Smith Internet gateway connect

...

...

John
Smith full-time

... ...John Smith

...

Employees (table)
Full-time

Employees
(view)

Authorizations (view)

...

... ...

1st Annual PKI Research Workshop---Proceedings

59

• A certificate can potentially be obtained at a
convenient time before it is needed. While a
cache operates transparently, meaning that any
request might need to contact the central authori-
zation service, certificates allow us to explicitly
collect—ahead of time—all of the information
needed to authorize an operation, eliminating the
need for the central authorization service to be
available at the same time as each operation.
This feature improves the availability of the PKI.

• Instead of supplying the response for one par-
ticular request, a certificate can contain wild
cards, supplying the responses for a family of re-
quests. For example, a certificate can say that a
certain set of individuals—defined in some
way—is authorized to perform a certain set of
operations on a certain set of resources. This fea-
ture improves the performance and flexibility of
the PKI. We will return to the idea of wild cards
later in this paper.

In the simple use of certificates shown, the central
authorization service remains a black box and does not
expose or export its internal state and logic to its callers
except in the form of request-response pairs. In the fol-
lowing sections we will make the black box more trans-
parent by extending and regularizing the statements that
certificates can carry.

5. Using a relational database to represent
state and logic

To expose the internal structure of the central au-
thorization service, it is necessary first to specify what
forms the state and rules can take. In this section, we
demonstrate how its state and logic can be modeled by a
relational database [5, 8].

As shown in Figure 3, the central authorization data-
base contains tables and views. Tables store data, while
views are defined in terms of data that appear in tables
and other views. The service receiving an operation re-
quest sends an authorization query to the database, and
receives an authorization response.

Figure 4 shows the internal organization of one ex-
ample database in further detail. Here, full-time employ-
ees are authorized to connect to an Internet gateway. An
Employees table holds the names of the employees and
their employment status. A Full-time Employees view is
derived from the Employees table, and the final Authori-
zations view is further derived from the Full-time Em-
ployees view. In this simple example, the Employees
table holds the raw data while the Full-time Employees
view and the Authorizations view serve to encode the
authorization logic.

When this example database is used, a service que-
ries the Authorizations view at the authorization database,
giving the client name (“John Smith,” or more generally a
public key), resource name (“Internet gateway”), and op-
eration name (“connect”) as keys. The database responds
to the query by returning all matching rows. In this exam-
ple, the database returns one row in case of authorization
success, and zero rows in case of failure.

We can define the database views and queries in a
number of forms, including relational algebra, which op-
erates on tables and queries using operators like select,
project, and join. In this paper, we extend the relational
algebra with two additional operators.

• We add a union operator that combines tables or
views with the same schema. Although the Au-
thorizations view is shown here as a simple view
on the Full-time Employees view, it would more
generally be the union of a number of views,
each of which might define authorizations on a
particular resource, set of resources, etc.

• We also add recursion, to allow for the computa-
tion of transitive closures. This is useful for
modeling authorization chains, as discussed be-
low.

Because nonmonotonicity can be unsafe in a distrib-
uted environment, we additionally restrict our relational
algebra to be monotonic by eliminating negation. It is a
topic for future work to characterize those uses of non-
monotonicity and negation that nevertheless can be safely
allowed.

While the schema of the Authorizations view must be
partly standardized—and known to the services querying
the authorization database—the schemas of the other
views and tables need not be standardized at all. This can
be seen as a significant advance over older PKI schemes
like X.509 and even SDSI/SPKI. The tables can include
arbitrary data with arbitrary structure, and the Authoriza-
tions view can be the result of arbitrary computations on
these tables. (Of course, these computations must be ex-
pressible in our extended relational algebra; this is true for
the classes of authorization problems that we have stud-
ied.)

Traditional security languages include special-case
syntax and semantics for encoding extra conditions and
information needed for authorization. Because of the use
of arbitrary schemas and the power of the extended rela-
tional algebra, though, the authorization database can
represent these conditions and information directly. For
example, while SDSI/SPKI includes a mechanism for
group membership, we note that our authorization data-
base can model groups directly in the relational algebra,
as in the example above. We can also represent different
kinds of groups, such as groups of resources or groups of
operations; this is impossible or limited in traditional lan-
guages. Similarly, we can model the idea of certification

1st Annual PKI Research Workshop---Proceedings

60

authorities and certificate chains, as in X.509 and
SDSI/SPKI, directly in the extended relational algebra
instead of building it into our language. (This requires the
addition of recursion to the relational algebra, as dis-
cussed above.) Different administrative domains can be
programmed to have different properties, and we can also
generalize the use of one-dimensional chains to allow
more complex and more general trust relations.

(We note that the relational algebra is closely related
to the logic-programming language datalog [1]. The cen-
tral authorization database can therefore be replaced by a
program written in datalog or another logic-programming
language, as in the Binder security language [6].)

Choosing to represent our authorization information
and rules in a relational database system might seem as
merely shifting our problems from one domain to another.
However, there is a wealth of experience in designing
good relational database schemas [2]—such as the use of
normal forms—as well as formalizing the semantics of
schemas. We believe that many of the problems of au-
thorization are simplified by restatement in the context of
databases, relational algebra, and logic programming.
Furthermore, the greater generality of the database con-
text can lead to a more general solution to the authoriza-
tion problem.

6. Certificates as signed database excerpts

Certificates served to encapsulate request-reply pairs
with our original central authorization service, and they
play much the same role in conjunction with the central
authorization database. However, since we can now ex-
pose some of the internal structure of the central authori-
zation database—we can name its tables and its views and

give their schemas and definitions—we can now store
much richer information in our certificates.

As shown in Figure 5, services still use the certifi-
cates issued by the central authorization database in lieu
of an on-line request and reply. Unlike the earlier use of
certificates, though—in which certificates simply cached
signed request-reply pairs—these certificates can store
additional information which the services can use to de-
rive future authorizations. Figure 5 outlines the two types
of certificates that the central authorization database can
now issue.

• The first type of certificate includes an excerpt—
one or more rows—from a table or view. Here,
the first certificate includes rows from the Em-
ployees table. This type of certificate states that
the excerpted rows were found in the named ta-
ble or view.

• The second type of certificate defines a view in
terms of a relational algebra expression involv-
ing other tables and other views. Here, the sec-
ond certificate includes the definition of the Full-
time Employees view in terms of the Employees
table.

These certificates are, of course, still signed by the
central authorization database, and can be received from
the central authorization database or from a client or other
service. These database certificates name the table or
view that their information comes from, and also include
enough schema information to allow their interpretation at
the service.

The database certificates can include enough infor-
mation to derive the replies for many different requests.
(This is an example of the wild-card feature described
earlier.) Just as we do not require these certificates to in-
clude all of the rows of a table or view, they also need not

operation
request

operation
response

Figure 5: Certificates issued by a central authorization database

client

certificate
(from employees table)

(signed, central
authorization database) service

resourcecertificate
full-time employees =
project(select(…), ...)

(signed, central
authorization database)

1st Annual PKI Research Workshop---Proceedings

61

contain the complete definition of a view. For example, a
database certificate encapsulating the Authorizations
view—which might be the union of a large number of
views—can simply say that it includes one particular
view. Database certificates therefore contain only partial
information; they can say only that a given authorization
does exist, and cannot say that it does not. (Extensions to
partially eliminate this restriction are possible but are out-
side the scope of this paper.)

Constraining the structure of the central authorization
service to be a relational database thus allows our certifi-
cates to include richer, more general forms of information.
Our central authorization database can issue certificates
whose meaning cannot be represented in X.509 or in
SDSI/SPKI—as illustrated below—and it regularizes the
treatment of existing features.

7. Distributing the database
Our central authorization database is still centralized,

and while the use of certificates has reduced the problems
of performance and availability, they still exist. Worse,
we have not attacked the administrative problems inherent
in a centralized architecture. To eliminate these problems,
we now show how to partition the central authorization
database into a distributed authorization database.

Figure 6 illustrates the operation of the distributed
authorization database. The database still contains tables
and views, but they are stored in multiple services on the

network. In this example, for instance, a Human Re-
sources (HR) service holds the Employees table, but the
service controlling the resource itself can define the por-
tion of the Authorizations view that it interprets. Yet an-
other intermediate service can define the Full-time
Employees view referenced by the Authorizations view.

Although most tables and views can be stored any-
where on the network, we require that the Authorizations
view be distributed among the services that control the
various network resources. The distributed authorization
database thus follows the lead of the PolicyMaker lan-
guage [3], in which the root of all authorization decisions
is local by convention and is established administratively.
Distributed certificates are still used in the same way as
our earlier certificates. As shown earlier in Figure 5, a
service controlling a resource can use multiple certificates
to make authorization decisions. When these are distrib-
uted authorization certificates, they may come from mul-
tiple services.

As shown in Figure 7, certificates are signed by the
services that issue them. Here, Employee certificates are
signed by the HR service, while Full-time Employee cer-
tificates are signed by the intermediate service. The ser-
vice at the resource need not sign its definition of the
Authorizations view to use it, since it originates locally.
Each definition of a view identifies the public key used by
the tables or views it uses an inputs.

We have thus eliminated the need for the central da-
tabase service to issue and sign certificates. Since multi-
ple autonomous services can now issue certificates, we

1st Annual PKI Research Workshop---Proceedings

62

can directly accommodate multiple administrative do-
mains. Administrative domains can interoperate because
they can explicitly refer to one another by the public keys
of the issuing services. The resulting system is similar in
many ways to traditional uses of certificates but it has
some notable differences. In particular, references to pub-
lic keys need not be constant, but can themselves be
drawn from tables and views, as shown in Figure 8. Here,
the policy expressed is that full-time employees can ac-
cess the Internet gateway if authorized by their bosses.
We combine our earlier Full-time Employees view with a
Bosses view, as well as an Approvals view local to each
boss.

Allowing views in one service to refer to tables or
views in another allows the PKI designer to use an arbi-
trary number of levels of indirection. Since it is a folk
theorem in Computer Science that any problem in com-
puting can be solved by adding another level of indirec-
tion, we can expect that this will be a powerful technique,
and that it will serve to make explicit and to extend some
number of security assumptions that might otherwise be
wired into the system architecture.

In particular, this distributed certificate structure pro-
vides a concrete interpretation of the abstract notion of
“trust.” One service trusts another if its views depend on
tables or views from that other service. Because the data-
base can hold the names of services (e.g., their public
keys), we can organize services into groups or other more
complex relations. For example, we might have a table of
which services “trust” which others. Certification Au-
thorities are no longer special entities in our PKI; we can
choose to implement them in the same form as in tradi-
tional PKIs—that is, their certificates can continue to bind
names to identities, or to delegate the power to issue fur-

ther certificates—or we can choose different schemas that
take advantage of our greater flexibility and generality.

9. Conclusions and future work

We have shown how certificates can be made more
expressive and more precise by allowing them to include
program code written in a language such as an enhanced
relational algebra. While we have outlined the operation
of such a system, much future work is clearly needed.

We have not touched on certificate revocation in this
paper. While the standard techniques for revocation con-
tinue to apply, we would still like to understand how to
make revocation programmable, as well as checking for
revocation. More generally, we have assumed that the
statements in our system has no side effects, which is
clearly a poor assumption in many cases.

While making certificates programmable increases
their expressiveness, greater expressiveness can always be
misused and can in fact keep us from saying the right
things by making it too easy to say the wrong things, or to
understand the implications of our statements. Thus, the
choice of a security language ultimately involves an engi-
neering tradeoff between increasing generality and main-
taining usability. Understanding this tradeoff again
requires further experience.

operation
request

operation
response

Figure 7:
Certificates issued by a distributed authorization database

client

certificate
(from “employees”)

(signed, HR service) service

resourcecertificate
full-time employees =
project(select(…), ...)
(signed, intermediate

service)

1st Annual PKI Research Workshop---Proceedings

63

References

[1] M. Ajtai and Y. Gurevich. “Datalog vs. first-order
logic.” In Proc. 30th IEEE Symp. on Foundations of
Computer Science, pages 142–146, 1989.
[2] J. Biskup. “Achievements of relational database
schema design theory revisited.” In B. Thalheim and L.
Libkin, eds., Semantics in Databases, Lecture Notes in
Computer Science, Vol. 1358, pages 29–54. Springer-
Verlag, 1998.
[3] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized
trust management,” in Proc. 1996 IEEE Symp. on
Security and Privacy, May 1996.
[4] L. Cardelli. “Abstractions for mobile computation.”
In J. Vitek and C. Jensen, eds., Secure Internet Program-
ming: Security Issues for Mobile and Distributed Objects,
vol. 1603 of LNCS, pp. 51–94. Springer-Verlag, 1999.
[5] E. F. Codd. “A relational model for large shared data
banks.” Comm. of the ACM, 13(6):377–387, June 1970
[6] DeTreville, J. 2002. “Binder: a logic-based security
language.” To appear, Proc. 2002 IEEE Symp. on Secu-
rity and Privacy, May 2002.
[7] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Tho-
mas, and T. Ylonen. “SPKI certificate theory.” IETF RFC
1693, September 1999.

[8] J. Gray, et al. “System R: Relational approach to da-
tabase management.” ACM Trans. on Database Systems
1(2), pages 97–137, June 1976.
[9] P. Gutmann, “X.509 style guide,” available at
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.t
xt, October 2000.
[10] ITU-T Recommendation X.509, “The directory:
public-key and attribute certificate frameworks.” March
2000.
[11] ITU-T Recommendation X.680. “Abstract Notation
One (ASN.1): Specification of basic notation.” December
1997.
[12] X. Orri & Mas, J.M. 2001. “SPKI-XML certificate
structure.” IETF Internet Draft, November 2001.
[13] R. Rivest and B. Lampson, “SDSI—a simple
distributed security infrastructure,” available at
http://theory.lcs.mit.edu/~cis/ sdsi.html.

1st Annual PKI Research Workshop---Proceedings

64

A Distributed Credential Management System for SPKI-based
Delegation Systems

Óscar Cánovas†, Antonio F. Gómez‡

†Department of Computer Engineering
‡Department of Information and Communications Engineering

University of Murcia
30071 Murcia (Spain)

ocanovas@um.es, skarmeta@dif.um.es

Abstract

Traditionally, certificates have been used to link a
public key to a particular name identifying that key.
However, public key certificates are digitally-signed
statements which can be used in order to assert
many other types of information. SPKI has become
one of the most outstanding proposals referring to
authorization, and several applications have been
based on SPKI certificates in order to provide au-
thorization services to well-known scenarios in dis-
tributed systems. Most of these scenarios are based
on delegation, where resource guards have an ACL
with few entries granting keys belonging to some au-
thorization or naming authorities the right to dele-
gate all access to the controlled resources. These au-
thorities can issue certificates delegating these per-
missions to other subordinates authorities, or to spe-
cific users. In this way, the structure generated re-
flects the system management process. However,
generation of these certificates usually is system-
dependent. In this paper, we present a management
system that can be used in all SPKI scenarios based
on delegation. This system addresses some problems
related to scalability, certificate distribution, and in-
teroperability. We define how certification requests
can be expressed, how different security policies can
be enforced using this system, which are the entities
involved in a certification scenario, and we propose
a mechanism able to exchange authorization-related
information among these entities.

1 Introduction

Loren Kohnfelder defined ”certificate” in 1978 as
a digitally-signed statement holding a name and a
public key, and nowadays the words certificate and

identity certificate are still used as synonyms. How-
ever, a certificate is a record stating some infor-
mation about the entity the certificate was issued
to, and this information may be a role membership
statement, or an authorization. Authorization cer-
tificates bind a capability to a key, and this capabil-
ity can be used to determine what the entities are
allowed to do.

One of the most outstanding proposals related to
this type of certificates has been the SPKI/SDSI in-
frastructure [8]. SPKI/SDSI provides three types
of digital certificates (ID, attribute, and authoriza-
tion) that can be used in several security scenarios.
In fact, there are several proposals which make use
of SPKI certificates in order to provide authoriza-
tion services to many different application environ-
ments, such as WLAN networks [10], CORBA dis-
tributed objects [12], or web servers [4]. Most of
these scenarios are based on delegation, where re-
source guards have an ACL with few entries grant-
ing keys belonging to some authorization or nam-
ing authorities the right to delegate all access to
the controlled resources. However, some of these
proposals do not explain how certificates are issued
by the authorities, and this usually is application-
dependent. Although simple and not distributed ap-
proaches can constitute a good alternative for small
scenarios, some problems derived from scalability
or interoperability might arise in more complex en-
vironments [3]. Generation or revocation of these
certificates should not be implemented using sim-
ple command-line applications. A structured and
distributed system must be provided.

A system is necessary which addresses the prob-
lems related to scalability, certificate distribution,
and interoperability. In this paper, we present

1st Annual PKI Research Workshop---Proceedings

65

DCMS (Distributed Credential Management Sys-
tem). DCMS defines how certification requests
should be expressed, how different security policies
can be enforced using this system, which are the
entities involved in a certification scenario, and how
these entities can exchange authorization-related in-
formation. We have used the AMBAR (Access Man-
agement Based on Authorization Reduction) proto-
col [2] in order to perform that exchange, but sim-
ilar protocols can be also used. This system is di-
vided into the naming management system (NMS),
which manages the issues related to SPKI ID cer-
tificates, and the authorization management system
(AMS), which is responsible for those procedures
related to SPKI attribute and authorization certifi-
cates. We believe that this system can lead up to
the definition of an application-independent system
which can be used in order to provide authorization
services to many different scenarios based on del-
egation. DCMS also complements some proposed
mechanisms for revocation and validation of SPKI
certificates [11], and can make use of public reposi-
tories for certificate storage purposes [9].

We can find similar proposals in the literature. In
[13], a security architecture is presented which is
related to authentication, authorization and delega-
tion in a distributed environment based on SPKI.
This proposal differs from DCMS about object for-
mats, and system structure. We use s-expressions
in order to specify the authorization policies and
requests, instead of HTTP-like messages and codes.
We do not find necessary to use a different encod-
ing since SPKI-like s-expressions are appropriate,
straightforward, and standard. Moreover, we do
provide a generic framework of authorities, proxies
and protocols that can be used as guidelines to de-
sign and implement authorization management ser-
vices. In fact, our system has been implemented us-
ing the Intel version 3.14 of CDSA (Common Data
Security Architecture) [5].

This paper is organized as follows. Section 2
presents an authorization scenario based on delega-
tion in order to clarify why DCMS is useful. Section
3 provides some basic background on the AMBAR
protocol. Section 4 presents the entities involved in
the naming management system (NMS), and shows
the s-expressions that will be used in this system
to specify certification requests and access control
lists. Section 5 contains similar details concerning
the authorization management system (AMS). Sec-
tion 6 presents how system entities can interoper-
ate using the AMBAR protocol. Finally, Section 7

makes some concluding remarks.

2 Motivation

In this section we are going to show a distributed
system where SPKI certificates and delegation can
be used to implement physical access control [3]. We
will also explain why DCMS is necessary.

This distributed system is based on a RBAC (Role
Based Access Control) model [15]. The central con-
cept of RBAC is that permissions are associated
with roles, and users are assigned to appropriate
roles. This greatly simplifies management of per-
missions since the two relations are considered com-
pletely independent.

In this system, special devices named TICA are
used, which are able to perform some access con-
trol operations like opening doors. They are located
at the entrances of the different buildings and/or
departments, and they can establish their own ac-
cess control conditions, trusted entities, and autho-
rization mechanisms. TICAs delegate authorization
management to particular authorization authorities
(AA). This is accomplished through authorization
certificates issued by the TICAs for a set of specific
AAs. These certificates basically give the AAs to-
tal authority over the device, and also permission
to further delegate the access control is granted.
TICAs can also delegate the authority by means
of ACL entries containing the same information in-
cluded in those certificates. Then, AAs usually cre-
ate new attribute certificates giving a subset of per-
missions to the roles defined by any of the exist-
ing naming authorities (NA). Roles are managed by
NAs, which issue ID certificates in order to state
that a particular user has been assigned to a spe-
cific role. In this way, TICAs are the beginning of
the authorization path, and not only the policy en-
forcement point. The device is able to make the
security decision regarding the authorization data
presented by the user requesting the access.

However, this certification management process
must be designed and implemented using a scal-
able approach. An encoding for certification re-
quests must be defined, and a mechanism is neces-
sary which is able to exchange authorization-related
information among the entities involved.

Using DCMS, once TICAs have delegated the au-
thorization management task to the different au-

1st Annual PKI Research Workshop---Proceedings

66

thorities, principals can request individual certifi-
cates in order to gain access. These requests can be
generated and sent to the authorities by the princi-
pal itself, or can be submitted using trusted service
access points (SAP). Authorities will issue the re-
quested certificates depending on the authorization
policy (authorities are the policy decision point).
This policy can be represented using SPKI ACLs,
a database or any other method, and it is system-
dependent, although in the next sections we will as-
sume that it is implemented using ACLs.

Figure 1 shows a particular scenario where TICAs
delegate the authorization tasks to different AAs.
Users make use of DCMS in order to obtain specific
authorization certificates from these entities. In this
case, we assume that authority A and the SAP are
the AMBAR peers. Once the certificates are gener-
ated, these can be presented to the TICAs in order
to gain access.

Figure 1: Use of DCMS

3 AMBAR Protocol

AMBAR (Access Management Based on Authoriza-
tion Reduction) [2] is a protocol for secure exchange
of authorization-related information based on public
key cryptography. This protocol does not depend on
a particular type of authorization or identity-based
certificate, and it contains a negotiation phase de-
signed to adapt the protocol to access control sce-
narios with different requirements (anonymity, con-
fidentiality, credential recovery, etc.). In general,
it provides functionality to transmit resource access
requests, the authorization information related to
those requests (credentials, ACLs), and results ob-
tained from a certificate chain discovery method or
compliance checker. ACLs can be transmitted in
order to give some information to the client about
which credentials would be necessary to access the
resource. However, disclosure of security policies

(ACLs are particular implementations of these poli-
cies) must be carefully performed since they can
contain sensitive information [16].

It has been designed to be session-oriented in
order to optimize those scenarios where the re-
quest/response messages are exchanged between the
same client and server. In addition, it does not need
to rely on any additional security protocol since it
adds confidentiality and integrity to the data being
transmitted.

The AMBAR protocol consists of different compo-
nents organized, as Figure 2 illustrates, in two lay-
ers.

Figure 2: AMBAR Architecture

• Session Management module (SM). This
module transmits the client and server security
preferences, and generates the cryptographic
data used by the TC layer to protect the sub-
sequent communications. Clients and servers
negotiate the following parameters:

– Symmetric cipher. Parties select the sym-
metric cipher and its key length.

– Operation mode. AMBAR supports two
operation modes: anonymous client mode
and fully identified.

– Identity-based certificates. It is possible to
select X.509, OpenPGP, or SPKI certifi-
cates.

– Authorization-based certificates. AMBAR
supports SPKI certificates, PKIX at-
tribute certificates and KeyNote asserts.

– Credentials distribution. Parties can select
whether the credentials will be provided
by the client (push), or will be obtained
by the server from either a repository or
an issuer (pull).

• Request Management module (RM). The
RM module transmits two types of messages:
messages related to authorization requests and
credentials; and messages related to decisions
and ACLs. Contents and the sequence of these

1st Annual PKI Research Workshop---Proceedings

67

messages are determined by the negotiated op-
eration mode and the method for distribution
of credentials. As we mentioned previously, a
session-oriented protocol allows some optimiza-
tion to be performed. Therefore, the RM mod-
ule could be responsible for optimizing autho-
rization computations.

• Authorization Results Management
module (ARM). The ARM module gener-
ates notifications and transmits the demanded
resources. Negative notifications are transmit-
ted by the server when the access is denied. If
the access were granted, there would be two
possible response messages: an affirmative no-
tification if the client requested the execution
of remote actions; or the controlled resource.
It also enables (disables) the DSM module
when an authorization request demanding the
establishment (conclusion) of a data stream is
granted.

• Error Management module (EM). Sys-
tems use the EM module to signal an error or
caution condition to the other party in their
communication. The EM module transmits a
severity level and an error description.

• Data Stream Management module
(DSM). The described request/response
model is not suitable if we plan to use
AMBAR as a transparent layer providing
confidentiality, authentication and access
control services. The DSM module, initially
disabled, controls the transmission of arbitrary
data streams, which are enabled once a request
demanding the activation of this module is
granted.

• Transport Convergence module (TC).
The TC module provides a common format to
frame SM, RM, ARM, EM, and DSM mes-
sages. This module takes the messages to be
transmitted, authenticates the contents, then
applies the agreed symmetric cipher (always
a block-cipher), and encapsulates the results.
The cryptographic data used to protect the in-
formation is computed by the SM module dur-
ing the negotiation phase.

The AMBAR protocol is part of a complete autho-
rization framework for certificate-based access con-
trol systems. It is implemented with the Intel 3.14
version of CDSA (Common Data Security Architec-
ture) [5]. We have used the CSP (Cryptographic

Service Provider) module built upon OpenSSL, and
the X.509 and SPKI CL (Certificate Library) mod-
ules. We decided to use CDSA since this architec-
ture provides all security services necessary to im-
plement the framework and additionally, this pro-
vides integrity services which can be used to en-
sure component integrity and trusted identification
of the component’s source.

4 Naming Management System
(NMS)

As we mentioned previously, DCMS is composed by
two subsystems, NMS and AMS. In this section we
are going to present the naming management sys-
tem, which is responsible for the certification oper-
ations related to SPKI ID certificates. This type of
certificates can be used to link a name to a partic-
ular principal (public key), and also to define group
membership. NMS is very useful when authoriza-
tion is based on group membership. In relation to
the scenario presented in Section 2, we can imagine
a TICA granting physical access to those principals
which are members of group G. NMS can be used
by principals in order to obtain an ID certificate
for group G, which is issued by a particular naming
authority.

Naming is not a requirement of distributed sys-
tems, but it is worth noting that large-scale SPKI-
based delegation systems can be simplified using
this mechanism. Naming is an optional tool for
group management which can be useful to address
scalability of complex systems.

4.1 Architectural elements

Figure 3 shows the three types of entities involved
in NMS: requestors, service access points, and nam-
ing authorities. In this section we are going to give
a brief description about these core entities, we in-
troduce why they are necessary and how they inter-
operate.

• Requestor. A requestor is a principal de-
manding the generation of a new ID certifi-
cate. This entity must create a certification
request and must send it to a particular nam-
ing authority (NA) in order to obtain the de-
manded certificate. This submission can be ac-
complished using a service access point or mak-
ing use of an AMBAR connection between the

1st Annual PKI Research Workshop---Proceedings

68

Figure 3: NMS entities

requestor and the NA. Other certificates can be
attached to the request in order to demonstrate
that the principal has permission to obtain the
demanded certificate. There are two types of
requestors: first, the principal demanding an
ID certificate for a particular public key; sec-
ond, the principal demanding an ID certificate
for a particular name (e.g. a certificate stating
that group B is a subgroup of group A). As we
will see later, these two situations are managed
following different approaches.

• Service access point. Requestors can make
use of access points in order to submit their
certification requests to the appropriate nam-
ing authorities. Access points are optional, but
they are very useful since they provide several
additional services to requestors. First, naming
authorities can be hidden from users. More-
over, in some scenarios with many authorities,
it might be complicated to know which are the
appropriate naming authorities for a particu-
lar ID certificate (especially with group mem-
bership certificates). SAPs can learn that lo-
cation information from digitally-signed state-
ments containing information about the system
structure and properties. It is simpler to dis-
tribute this type of information to few SAPs
than to all the principals. Finally, they can pro-
vide a certification service to requestors with-
out AMBAR capabilities. Communication be-
tween requestors and access points is system-
dependent, and it ranges from secure connec-
tions to public terminals placed at buildings or
departments.

• Naming authority. Naming authorities are
the certificate issuers. They create ID certifi-
cates upon the requests received through the
access points or directly from the requestors.
NAs are controlled by a particular authoriza-
tion policy, which can be implemented using

SPKI ACLs or other mechanisms. Whenever
a NA receives a request and its related cer-
tificates, it executes a certificate chain discov-
ery algorithm [6] in order to determine whether
the certification request must be granted or de-
nied. Inputs to this algorithm are the request,
the additional certificates, and ACL entries. If
a certificate chain is discovered, the algorithm
returns the information that will be used to
generate the new certificate. Communication
with NAs are performed using AMBAR. As
we have previously mentioned, AMBAR pro-
vides functionality to exchange authorization-
related information. Using this protocol, enti-
ties can be authenticated (identification of re-
questors is optional), messages are encrypted
and authenticated, and some optimization can
be performed in order to avoid unnecessary cal-
culations and transmissions (previous messages
and authorization decisions can simplify further
requests).

4.2 S-expressions for certification re-
quests and ACL entries

Certification requests for ID certificates must
contain information about the issuer defining
the name, the name itself, the intended subject,
and validity dates. Encoding can be based on
s-expressions [14] since there is no need for making
use of new syntax, and this can simplify the
authorization process. Thus, requests might be
encoded according to the representation form
recommended by SPKI for the authorization tag
field [7]. However, it is worth noting that the data
elements contained in a request are also contained
in a SPKI ID certificate, and therefore the structure
for this type of certificates can be used. It is not
necessary to define a completely new structure in
order to express certification requests. Moreover,
as we will explain, the same structure can be used
by ACLs in order to encode authorization policies.
S-expressions that we have used for certification
requests and ACL entries have the following format:

(cert-request

(issuer (name NAi N
j
i))

(subject P)

(valid ..)

)

• cert-request. This identifies the s-expression as
a certification request.

1st Annual PKI Research Workshop---Proceedings

69

• NAi. This is the public key of the naming au-
thority. This authority is responsible for issuing
the ID certificates related to the name N

j
i .

• N
j
i . N j is one of the names defined in the

namespace of the authority NAi.

• P. This is the principal (or principals) request-
ing the ID certificate. P might be:

– A public key.

– A set of entities. There are two possibili-
ties in order to express a set of entities. On
the one hand, we can use a group name,
i.e., (name NA N). On the other hand, we
can use the *-operator set, such as for in-
stance (* set Q R), where Q and R must
be public keys or names.

• valid. This specifies the requested validity pe-
riod. The structure of this field is the one in-
cluded in the SPKI standard.

If this s-expression is used as a certification request,
P can only be a public key or a name, and it means
that a new ID certificate is being demanded, whose
issuer will be NAi, P will be the subject, N

j
i will

be the name linked to P , and will be valid during,
at most, the specified validity interval. However,
if this s-expression is included in the tag field of a
SPKI-like ACL entry, it means that the principal
(or principals) P are authorized to obtain an ID
certificate from NAi, where the name N

j
i will be

linked to P (or each of the principals contained in P)
during the specified validity period. Furthermore,
N

j
i can make reference to several names when a (*

prefix) form or a (* set) form is used.

Certification requests are encoded as sequences of
two elements. The first element is the s-expression
specifying the request, and the second one is a dig-
ital signature of that sequence. Signatures are en-
coded using the signature structure defined in [7],
and they are generated using the requestor’s private
key. Requests have similar structure to certificates,
but certificates are signed by issuers and requests
are signed by requestors.

4.3 Some examples

In order to clarify how NMS entities cooperate to
generate ID certificates, in this section we are go-
ing to analyze two certification requests. First, we

explain how a principal can obtain an ID certifi-
cate. Then, we will show how subgroups can be
defined using ID certificates whose subject field also
is a name. In these examples, authorization policies
are represented by ACLs.

4.3.1 ID certificates for principals

In this first example, P is a principal demanding
an ID certificate stating P as a member of group
N j , which is defined by NAi. P creates the next
certification request:

(sequence

(cert-request

(issuer (name NAi N
j
i))

(subject P))

(signature ..)

)

This request is sent to NAi in order to obtain the
demanded certificate. The request will be granted
if NAi can find a certificate chain from its ACL
entries to the requestor’s public key. The authority
contains the next ACL:

(acl

(entry

(subject (name NAl Nk
l))

(tag (cert-request

(issuer (name NAi N
j
i))

(subject (* set P Q R))

))

)

)

This ACL specifies that only members of Nk
l can

request an ID certificate for N
j
i . If P , Q, or R

were members of Nk
l they could request their own

certificates. Otherwise, Nk
l can be considered as

a relaying party able to make the request. In this
case, we will assume that P is a member of Nk

l ,
and therefore P must send the next ID certificate
in order to be authorized:

(cert

(issuer (name NAl Nk
l))

(subject P)

)

1st Annual PKI Research Workshop---Proceedings

70

Finally, the naming authority uses the data ob-
tained from the authorization decision in order to
create the certificate (signature has been omitted).

(cert

(issuer (name NAi N
j
i))

(subject P)

)

4.3.2 Subgroups

Subgroups are created using ID certificates whose
subject field is also a name. This can be useful
in order to establish group hierarchies by means of
ID certificates. However, it is worth noting that
a significant difference exists between generation of
subgroups and creation of ID certificates for pub-
lic keys. Generation of ID certificates is normally
requested by the principals involved, but subgroup
certificates cannot be requested by the subgroup it-
self. Authorized requestors are policy-dependent,
but some appropriate candidates are the naming au-
thority defining the subgroup, or even a subgroup
member. In this example, the authorized requestor
is the naming authority, but this has delegated the
authorization to principal R in order to avoid sign-
ing certification requests with the same private key
used to generate ID certificates.

This is the request sent by R to NAi in order to
define Nk

l as subgroup of N
j
i (it is signed using the

private key of R):

(sequence

(cert-request

(issuer (name NAi N
j
i))

(subject (name NAl Nk
l)))

(signature ..)

)

Next ACL specifies that NAl can request an ID
certificate for N

j
i , and can also delegate that

permission.

(acl

(entry

(subject NAl)

(propagate)

(tag (cert-request

(issuer (name NAi N
j
i))

(subject (name NAl Nk
l))

))

)

)

R also sends the next authorization certificate
in order to demonstrate that NAl delegated the
permission to R:

(cert

(issuer NAl)

(subject R)

(tag (cert-request *))

)

Finally, NAi uses the data obtained from the au-
thorization decision in order to create the certificate.

(cert

(issuer (name NAi N
j
i))

(subject (name NAl Nk
l))

)

5 Authorization Management Sys-
tem (AMS)

Section 2 shown a scenario where authorization cer-
tificates can be used in order to gain physical ac-
cess to buildings. The system was based on dele-
gation, and users obtained this type of certificates
from trusted authorization authorities. In this sec-
tion we are going to present the authorization man-
agement system, which is responsible for certifica-
tion operations related to SPKI authorization and
attribute certificates.

5.1 Architectural elements

NMS and AMS are based on similar architectural el-
ements. Requestors and access points are also part
of AMS. Naming authorities are replaced by autho-
rization authorities (AA), but they share some basic
functionality. AAs create attribute and authoriza-
tion certificates upon the requests received through
the access points or directly from the requestors.

An AMS requestor is a principal demanding the gen-
eration of a new attribute or authorization certifi-
cate. This entity must create a certification request
containing information about the authorization tag
(the tag is completely application-dependent). Like

1st Annual PKI Research Workshop---Proceedings

71

in NMS, there also are two types of requestors: first,
the principal requesting an authorization certificate;
second, the principal requesting an attribute certifi-
cate for a particular name. As we will see later, we
consider that these two situations should be man-
aged following different approaches.

5.2 S-expressions for certification re-
quests and ACL entries

S-expressions used in AMS to specify certification
requests are also based on the structure defined by
SPKI for attribute and authorization certificates.
The main difference between NMS and AMS s-
expressions is the tag field. This field contains in-
formation about the particular authorization being
requested (when it is contained in a certification re-
quest) or granted (when it is part of an ACL entry).

Certification requests are also encoded as sequences
composed by the request itself, and its signature.

5.3 Some examples

In order to clarify how AMS entities cooperate to
generate authorization and attribute certificates, in
this section we are going to analyze two certifica-
tion requests. First, we explain how a principal can
obtain an authorization certificate. Then, we will
show how attribute certificates can be generated.
In these examples, authorization policies are also
represented by ACLs.

5.3.1 Authorization certificates

In this first example, P is a principal demanding
an authorization certificate containing a tag tagA

from authority AAi . Next certification request is
created by P :

(sequence

(cert-request

(issuer AAi)

(subject P)

(tag tagA))

(signature ..)

)

This request is sent to AAi in order to obtain the
demanded certificate. The request will be granted

if AAi can find a certificate chain from its ACL
entries to the requestor’s public key. The authority
contains the next ACL:

(acl

(entry

(subject P)

(tag (cert-request

(issuer AAi)

(subject P)

(tag tagB)

))

)

)

This ACL specifies that P can request an authoriza-
tion certificate containing the permission specified
by tagB (tagA must be more restrictive or equal
to tagB). Finally, the authorization authority uses
the data obtained from the authorization decision
in order to create the requested certificate.

(cert

(issuer AAi)

(subject P)

(tag tagA)

)

One of the main advantages of this proposal is that
it is possible to specify a class of certificates, pos-
sibly infinite in size, without having to issue them
all. The appropriate finite subset of that class can
be issued on demand. The potential infinite size of
the class comes from use of *-forms.

5.3.2 Attribute certificates

Attribute certificates can be used to specify roles.
The subject can be a name defining a role, and this
type of certificate states the permission related to
that role. Roles can be seen as various job functions
in an organization, and users can be assigned to one
role depending on their responsibilities. The role
permissions use to be stable since roles activities do
not change frequently. However, we must answer the
question: ”Who must the requestor of an attribute
certificate be?”

Certificates are issued by authorization authorities,
hence valid requestors are those specified by their
authorization policies. AMS should keep inherent

1st Annual PKI Research Workshop---Proceedings

72

policies to a minimum, in order to allow users of
the system to design their own authorization poli-
cies. Therefore, valid requestors can range from role
members to specific role managers. Nevertheless, we
find the latter approach very interesting for complex
systems since role management can be greatly sim-
plified using specific administrators (role managers).
Authorities can authorize role managers to request
attribute certificates for a particular set of group
names. This authorization can be expressed as:

AAi ⇒ RM1

i (Nk
l , N

g
f), RMn

i (Nh
j)

This expression denotes that authority AAi autho-
rizes role manager RM1 to request attribute cer-
tificates for the group Nk defined by NAl, and for
the group Ng defined by NAf . AAi also autho-
rizes RMn to request this type of certificates for
the group Nh defined by NAj .

We are going to see how this relation can be
implemented using AMS. In this example, RM 1

i

requests an attribute certificate for N
g
f , with the

authorization tag tagA. This is the request sent by
RM1

i to AAi (it is signed using the private key of
RM1

i):

(sequence

(cert-request

(issuer AAi)

(subject (name NAf N
g
f))

(tag tagA))

(signature ..)

)

The authority contains an ACL implementing the
above-expressed relation. This is the ACL:

(acl

(entry

(subject RM1

i)

(tag (cert-request

(issuer AAi)

(subject (* set

(name NAl Nk
l)

(name NAf N
g
f)))

(tag tagB)))

)

(entry

(subject RMn
i)

(tag (cert-request

(issuer AAi)

(subject (name NAj Nh
j))

(tag tagC)))

)

)

Finally, the authorization authority uses the data
obtained from the authorization decision in order
to create the requested certificate.

(cert

(issuer AAi)

(subject (name NAf N
g
f))

(tag tagA)

)

6 Use of AMBAR in DCMS

Requests and certificates are exchanged using AM-
BAR connections. Although other protocols like
SSL (Secure Socket Layer) can be used for this pur-
pose, we find AMBAR a valuable approach since it
has been designed to exchange authorization-related
information. Entities making use of AMBAR do
not pay attention to issues such as the encapsula-
tion of requests or certificates. They create AM-
BAR connections in order to exchange this type of
information, and AMBAR modules are responsible
for encapsulation and protection. Furthermore, this
protocol has been designed to be session-oriented
in order to optimize those scenarios where the re-
quest/response messages are exchanged between the
same client and server (such as for instance, access
points and authorities).

In DCMS, there are two types entities which must
make use of AMBAR: access points and authori-
ties. Requestors can request their certificates using
access points, and therefore AMBAR functionality
is not a requirement for them. Authorities should
not employ their private keys to establish AMBAR
connections since it is not suitable to protect their
communications making use of the same private key
signing the certificates. Authorities should generate
a new key pair for communication purposes, and
they should issue a certificate authorizing the new
key pair to act as their network interface. This cer-
tificate should include a tag (tag dcms-com), and
will be used by access points and requestors to val-
idate that they are indeed exchanging information
with the right authority.

1st Annual PKI Research Workshop---Proceedings

73

AMBAR connections used in DCMS can perform
authentication based on X.509 certificates, or SPKI
certificates. Access points and authorities are al-
ways authenticated, but identity of requestors can
be preserved using the anonymous mode. Creden-
tials (additional certificates attached to the request)
can be provided by access points or requestors (push
method), or can be recovered from public reposito-
ries by authorities (pull method). Figure 4 shows
an exchange (push) between an access point and an
authorization authority, and how data are encap-
sulated in AMBAR messages. If the certification
request is granted, the authority sends a Resource
message containing the certificate. Otherwise, a
Negative Notification message is generated. Negoti-
ation is performed only once. Then, requests and re-
sults are exchanged using the previously-established
channel.

Figure 4: Communication between an access point
and an authority

7 Conclusions

In this paper, we have proposed a management sys-
tem that can be used in SPKI scenarios based on
delegation. We present how certification requests
for ID, attribute, and authorization certificates can
be expressed, how authorization policies can be en-
forced in a distributed way, and which are the enti-
ties involved in a certification scenario.

We consider that our system provides strong mecha-
nisms to address scalability-related problems. First,
we have tried to keep inherent policies to a mini-
mum, in order to allow system administrators to de-
sign their own authorization policies. What is more,
following our approach, it is possible to specify a set
of certificates without having to issue them all since
they are issued on demand. Added to this, we make
a clear distinction between requestors and subjects
of certificates. We do not force both entities to be
the same one, enabling therefore the participation
of relying parties.

In order to complete our proposal, additional mech-
anisms must be designed, such as certificate revo-

cation or certificate storage. Currently, we are also
developing a new service of DCMS for automatic re-
duction of certification chains. Certificate reduction
can be used to improve performance of authoriza-
tion decisions and, as is commented in [1], to provide
anonymity services.

8 Acknowledgements

This work is partially supported by TIC2000-0198-
P4-04 project (ISAIAS), and by IST-2001-32161
project (Euro6ix)

References

[1] T. Aura and C. Ellison. Privacy and Account-
ability in Certificate Systems. Technical Report
HUT-TCS-A61, Helsinki University of Technol-
ogy, 2000.

[2] O. Canovas and A.F. Gomez. AMBAR: Ac-
cess Management Based on Authorization Re-
duction. In Proceedings of the International
Conference on Information and Communica-
tions security (ICICS 2001), volume 2229 of
Lecture Notes in Computer Science, pages 376–
380. Springer Verlag, November 2001.

[3] O. Canovas, A.F. Gomez, H. Martinez, and
G. Martinez. A Role-Based Implementation
of Physical Access Control using Authorization
Certificates. Technical Report UM-DITEC-
2002-2, Department of Computer Engineering,
University of Murcia, January 2002.

[4] Dwaine Clarke. SPKI/SDSI HTTP Server and
Certificate Chain Discovery in SPKI/SDSI .
Master’s thesis, M.I.T., September 2001.

[5] Intel Corporation. Common Data Security
Architecture (CDSA). World Wide Web,
http://developer.intel.com/ial/security, 2001.

[6] J.E. Elien. Certificate discovery using
SPKI/SDSI 2.0 certificates. Master’s the-
sis, Massachusetts Institue of Technology, May
1998.

[7] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Ylonen. Simple Public Key
Certificate. IETF Internet Draft, draft-ietf-
spki-cert-structure-06.txt edition, July 1999.

[8] C. Ellison, B. Frantz, B. Lampson, R. Rivest,
B. Thomas, and T. Ylonen. SPKI certificate

1st Annual PKI Research Workshop---Proceedings

74

theory, September 1999. Request For Com-
ments (RFC) 2693.

[9] T. Hasu and Y. Kortesniemi. Implementing an
SPKI Certificate Repository within the DNS,
Poster Paper Collection of the Theory and
Practice in Public Key Cryptography (PKC
200) edition, January 2000.

[10] J. Koponen, P. Nikander, J. Rasanen, and
J. Paajarvi. Internet access through WLAN
with XML encoded SPKI certificates. In Pro-
ceedings of NordSec’00, October 2000.

[11] Y. Kortesniemi, T. Hasu, and J. Sars. A Re-
vocation, Validation and Authentication Pro-
tocol for SPKI Based Delegation Systems. In
Proceedings of Network and Distributed System
Security Symposium (NDSS 2000), February
2000.

[12] T. Lampinen. Using SPKI Certificates for
Authorization in CORBA based Distributed
Object-Oriented Systems. In Proceedings of
NordSec’99, pages 61–81, November 1999.

[13] Per Harald Myrvang. An Infrastructure for
Authentication, Authorization and Delegation.
PhD thesis, Department of Computer Science,
University of Tromso, May 2000.

[14] R. Rivest and B. Lampson. SDSI: A simple
distributed security infrastructure.

[15] R. Sandhu, E. Coyne, H. Feinstein, and
C. Youman. Role-based access control models.
IEEE Computer, 29(2), February 1996.

[16] K. Seamons, M. Winslett, and T. Yu. Lim-
iting the Disclosure of Access Control Policies
during Automated Trust Negotiation. In Pro-
ceedings of Network and Distributed System Se-
curity Symposium, April 2001.

1st Annual PKI Research Workshop---Proceedings

75

1st Annual PKI Research Workshop---Proceedings

76

Scalability Issues in PMI Delegation

Scott Knight
Royal Military College of Canada

knight-s@rmc.ca

Chris Grandy
NDHQ/Directorate of National Information Systems (DNIS)

grandy.cc@forces.ca

Abstract

The Canadian Department of National Defence (DND) is shifting its methods for the delegation and exercise of
authority from paper-based to electronic-based means. DND has deployed a commercial PKI but there is no general
technical solution presently employed by DND for access control or electronic authorization of workflow in
distributed processing environments. The aim of this research is to show how an authorization system, or privilege
management infrastructure (PMI), can be used to support business processes DND. The results are expected to be
applicable to large enterprises in general.

The research demonstrates how ITU-T standard X.509 can be used to support DND authority and delegation
models. The investigation involves the analysis of the key authorizations within a specific DND problem domain.
The X.509 standard and concepts from role-based access control form the basis of the PMI design. This involves the
use of attribute certificates to control the specification and delegation of privileges. A novel interpretation of X.509
attribute certificates is proposed that provides separate hierarchies of responsibility for the management and
delegation of roles. The results provide insight into, and quantification of, the complexity of the resulting delegation
chains. The use of a roles based model for delegation is seen as being important to the scaling of PMI to service
large enterprises with mature, complex authority structures. If the processing complexity can be managed, the
flexibility of being able to model the actual privilege delegation paths in an organization is an advantage of a role-
based model.

1. Introduction

Public-key infrastructure (PKI) has matured into a
commercially supported, deployable technology. With a
high degree of assurance current PKI products offer
secure, reliable security services to support
identification, authentication, confidentiality, and non-
repudiation. These are powerful services but the
adoption of PKI in enterprise environments has been
slow. It is the opinion of the authors that wider
proliferation of PKI will come with the ability to
provide effective support for authority structures within
an enterprise. The authority structures within an
enterprise govern business process. Every legitimate
task is performed under the approval of some authority
that has ultimate responsibility for that part of the
business process. In many cases there is a requirement
that the entities performing a task must have the
appropriate approval, or privilege, to do so. An
attribute-certificate based privilege management
infrastructure (PMI) is a mechanism that can be used to

support enterprise authority structures. Attribute-
certificate based PMI is an aspect of PKI and requires
underlying services for the management of public-key
certificates (PKCs). To this extent the proliferation of
PMI can lead to more wide spread adoption of PKI.
Although there are standards that define PMI services
[X.509], and some commercial products that provide
support, there is little attention in the literature paid to
the issues of scalability in an enterprise environment.
Also, there do not seem to be examples of attribute-
certificate deployment models to support business
process. This work examines these issues by proposing
a PMI model to support authority structures in the
Canadian Department of National Defence (DND).

DND has deployed a commercial PKI to be used to
support the Government of Canada policy on Electronic
Authorization and Authentication [Gov96]. The PKI is
intended to support a variety of new systems and legacy
systems, and to provide a unified mechanism for
managing task authorization.

1st Annual PKI Research Workshop---Proceedings

77

An attribute-certificate based PMI model is used to
explore the complexity of the certificate chains that
need to be verified when exercising privilege. The
resulting certificate chains are quite complex and some
chain pre-processing strategies are discussed to reduce
the real-time privilege verification overhead.

This work is an extension of [Gra01]. Although the
model discussed here pertains to DND it is believed
that the work is relevant in a broader context and
reflects authority structure and business process issues
in large organizations in general. The rest of the paper
is organized as follows. Section 2 reviews the
significance of privilege management in the context of
supporting an organization’s security policy. An
overview of privilege management within DND is
presented in Section 3 to provide the context for the
development of a role-based authorization model.
Complexity issues arising from the model are discussed
in Section 4. Finally, Section 5 concludes the paper and
discusses further work.

2 Support Mechanisms for a Security
Policy

In defining security policy the classic literature defines
three security properties: confidentiality, integrity and
availability. The security policy defines the access
privileges a specified set of subjects have for objects in
the system. The objects are the information resources
that are protected by the system. In an information
system the security policy is realized by implementing
security mechanisms such as identification and
authentication (I&A), access control, audit. Through the
use of public-key certificates a PKI system can provide
strong I&A support for a system. This mechanism
provides good assurance of the true identity of the
subjects. In most business systems there must be a
determination of what kinds of access are permitted to
the system objects. Currently access control and the
format of the authorization database is application
specific (stovepipes) and there is no unified way to deal
with permission. A standard mechanism for the support
of access control decisions can provide more complete
support for security policy at the enterprise level. This
support can be provided by attribute-certificate based
PMI and the development of such mechanisms may
lead to greater proliferation of PKI in general.

The authority structures in a specific enterprise
environment have evolved over a period of time and
represent efficiencies in the command and control of
the organization. This is the case with the DND case
study being examined. It seems reasonable to expect
that the PMI would support the organization’s authority

structures and business process, and not expect that the
organization would have to make large changes to its
authority structures and business process to adapt to the
PMI mechanisms.

2.1 Attribute-certificates
X.509 public-key certificates have some support for
privilege management through the use of subject
attributes. However in the following cases it is
recommended that attribute-certificates are the more
suitable mechanism [X509]:

a) a different entity is responsible for
assigning particular privilege to a holder
than for issuing PKCs;

b) there are a number of privilege attributes
to be assigned to a holder, from a variety
of authorities;

c) the lifetime of a privilege differs from that
of the holder’s PKC validity;

d) the privilege is valid only during certain
intervals of time which are asynchronous
with that user’s PKC validity or validity
of other privileges; or

e) delegation of authority is permitted, and
for any specific delegation there may be
differences in the kind of privilege that the
delegating authority passes down to the
delegated authority.

All these conditions are true in the case of the DND
example. In complex inter and intra-organizational
relationships, it makes more sense to manage
authentication separately. It is reasonable to expect that
PKC authorities will not have jurisdiction over
privileges that are solely the domain of the process
owner. One would expect this will become the rule
rather than the exception as the market encourages the
emergence of commercial CA services and PKI
outsourcing providers [WH99].

It is also the case that the authority structures of the
example environment have evolved to be heavily role-
based. For example, a member of the Canadian Armed
Forces normally has a career spanning decades.
Personal identification information is static for long
periods during this time. The member may serve in a
number of different roles (concurrently and
overlapping). The privileges associated with the roles
may be defined and modified by different agencies than

1st Annual PKI Research Workshop---Proceedings

78

those assigning the member to the role. It is expected
that this is not unique to the example, and that there are
a large number of enterprise environments where these
conditions hold. The X.509 standard provides a
mechanism for managing roles. This seems to be a
natural mechanism to be used to model the required
authority structures. The standard warns that the “use of
roles within an authorization framework can increase
the complexity of path processing.” There is no
indication in the standard of how complex the path
processing can become, how the model will scale to
larger organizations, or how the role delegation paths
will effect the performance of privilege verifiers.

There are several factors that make X.509 attribute
certificates (ACs) an attractive option for managing
privileges. An X.509 AC can be managed in the same
way as the X.509 PKC. ACs can also be digitally
signed like PKCs. This authenticates the attributes and
provides integrity protection so that the certificates
cannot be modified. ACs are generalizations of identity
certificates, PKCs (an identifier through the use of a
public-key is just one of many possible attributes), and
have naturally evolved from them [Bra00]. ACs are
digital certificates that serve primarily to enable
verifiers to establish attributes other than the identity of
the key holder (such as access rights, authorities,
adherence to standards, legal requirements, privileges,
permissions, capabilities, preferences, assets,
demographic information, and policy specifications).
An authorization service, PMI, can be designed using
attribute certificates which each point to a PKC. More
comprehensively, a PMI includes people, policies,
hardware and software interacting together to bind
privileges to a user by issuing him attribute certificates

[Ada99].

Because a PMI depends on the authentication provided
by a PKI, a PKI must be available before a PMI can be
implemented. Since ACs do not provide
authentication,one cannot assign privileges to a user
using attribute certificates if that user does not have at
least one associated PKC.

The standard specifies that a privilege holder must
present an attribute-certificate (AC) containing the
appropriate attributes/privileges to a privilege verifier
before access is granted to an information object (i.e.
the privilege holder asserts a privilege). The privilege
verifier acts as a reference monitor and controls access
to the object. The decision to allow access is based on
the security policy being enforced by the verifier and
any applicable environment variables (e.g. time of day).

2.2 Delegation
Delegation is the conveyance of privilege, from one
entity that holds such privilege to another entity. The
model consists of four components: the source of
authority (SOA), the attribute authority (AA), the
privilege holder and the privilege verifier.

The SOA occupies the highest position in the authority
hierarchy. Within a PMI, the source of authority (SOA)
is analogous to the root CA in hierarchical PKIs. It is
different in that there may be many sources of authority
(one for each privilege or set of privileges) whereas
there is only one root CA in a strictly hierarchical PKI.
The SOA is the issuer of certificates that assign
privileges to privilege holders and is present even in

Source of Authority

Attribute Authority Privilege Verifier

End-entity
Privilege Holder

Assigns
Privilege

Delegates
Privilege

Asserts
Privilege

Trusts

Asserts Privilege

(if authorized)

Figure 1 - The Delegation Model [Int00]

1st Annual PKI Research Workshop---Proceedings

79

environments where delegation does not occur.

In Figure 1, the SOA authorizes an entity to act as an
AA by assigning it a privilege and the authority to
delegate that privilege. The AA further delegates that
privilege to other AA’s or end entities through the
issuance of certificates that contain the same privilege
(or a subset thereof). The AA is analogous to
subordinate CAs within a PKI, but a CA issues public-
key certificates whereas an AA issues attribute
certificates. All entities that issue and obtain attribute
certificates need to be authenticated; therefore, they will
each require their own PKC. This means AAs will also
require PKCs. Each of the intermediary AAs may, in
certificates that it issues to further privilege holders,
authorize further delegation by those holders also acting
as AAs. The SOA may impose constraints on the re-
delegation of a privilege. A delegator can also further
restrict the ability of downstream AAs to delegate
[Int00]. A universal restriction on delegation, known as
the domination rule, is that no AA can delegate more
privilege than it holds [Int00].

The privilege verifier trusts the SOA as the authority
for a given set of privileges for the resource. Also,
when delegation is used, the privilege verifier trusts the
SOA to delegate some or all of those privileges to other
holders. If the privilege asserter’s certificate is not
issued by the SOA, then the privilege verifier must
locate a delegation path of certificates from that
privilege asserter to the SOA. The validation of that
delegation path must include checking that each AA
had sufficient privileges and was duly authorized to
delegate those privileges.

Processing an attribute certificate path in PMI is
analogous to processing other certificate paths within a
PKI. Validation is conducted with respect to attribute
authorities rather than certification authorities, and the
information pertains to privileges rather than identity.
However, with privilege path processing, the processing
engine will need to consider elements of both the PMI
and the PKI in the course of determining the ultimate
validity of a privilege asserter’s attribute certificate.
With respect to PKI, the privilege verifier must verify
the identity of every entity in the path using the
certification path processing procedure identified in the
X.509 standard [Int00]. For example, a referenced
public-key must be checked for its validity before the
digital signature on an attribute certificate can be
verified.

Privilege path processing relies on the elements of PMI
to establish a valid delegation path. The central
requirement is to ensure that each entity in the path has
the authority to delegate privileges to the entity below.

The delegation path is distinct from the certificate
validation path used to validate the public-key
certificates of the entities involved in the delegation
process. The attribute certificates within the path must
still be digitally signed by the corresponding authority.
The delegation path represents a chain of trust between
the privilege asserter and the SOA.

Figure 2 provides a general illustration of the privilege
processing checks used to establish a chain of trust back
to the SOA. The privilege verifier is presented with an
AC, EE-AC, belonging to an end-entity, EE. EE-AC
might pertain to access to some resource. In order to
verify that EE has legitimate possession of EE-AC the
verifier must verify the signature on the certificate to
ensure it actually was created by the issuer named on
the certificate. In this case the issuer is AA1. To ensure
that AA1 legitimately holds the relevant privilege the
verifier must retrieve the AC that is owned by AA1.
AA1-AC is the certificate that allocates privilege to
AA1; it is issued by AA2. AA1-AC must also have its
signature verified. AA2 may or may not be directly
trusted by the privilege verifier for the required
attributes. If not, the privilege verifier may have to
retrieve another AC (e.g. AA2-AC) until it finds one
issued by a directly trusted AC issuer (SOA) for that
privilege.

Once a valid chain has been confirmed, the privileges
contained in that attribute certificate may be used to
make an access control decision. The attributes are
compared with the relevant privilege policy and other
information associated with the context in which the
certificate is being used. It must be determined if the
privilege holder actually intended to assert the
contained privileges for use with that context. The fact
that a chain of certificates to a trusted SOA exists is not
enough. The willingness of the privilege holder to use
that certificate has to be clearly indicated and verified.
The standard does not specify this application-
dependent mechanism.

The issue of certificate revocation complicates this
process. For the purposes of this paper we will consider
certificates to be short lived and the use of certificate
revocation lists will not be required. A more complete
treatment of this issue and the formats for the attribute
certificates can be found in [Gra01].

2.3 Roles
Roles provide a means to indirectly assign privileges to
entities. Providing access control based on the entity’s
functional role as opposed to its personal identity is a
powerful concept known as Role-based Access Control

1st Annual PKI Research Workshop---Proceedings

80

(RBAC). RBAC is a useful approach because it can
reflect the authority structures within an enterprise. The
basic role model described in the X.509 standard
consists of two types of ACs. Specific privileges
associated with a particular role are specified within
Role Specification Certificates (RSCs). Entities are
assigned to the role (specified by the RSC) via another
attribute certificate called a Role Assignment
Certificate (RAC). The de-coupling of privilege
assignment to roles, from the role assignment to
individuals allows privileges to be updated without
affecting the assignment of the roles.

3 Authorizations in the Problem
Domain

3.1 A Procurement Example
Consider a familiar business transaction. Suppose a
customer on a Canadian Forces Base needs to procure a

personal computer. This computer may be required
because of an operational requirement and it will be
connected to the Defence Wide Area Network
(DWAN). This particular example is chosen for a
number of reasons. Many readers will relate to this
example. More importantly, the procurement requires
the delegation of authority and the cooperation of
several different roles.

Specific authorities and responsibilities for the control
and spending of funds appropriated by Parliament for
DND are conferred on the Minister of National Defence
(MND) by the Financial Administration Act (FAA) and
the National Defence Act (NDA). Since the MND
cannot carry out these responsibilities personally, it is
necessary for him to authorize officials to exercise these
authorities on his behalf.

The MND is required to ensure that separate
organizations or individuals are invested with spending
authority and the complimentary, but completely

EE - AC

AA1 - AC

AA2 - AC

Privilege Verifier

Check EE
privilege

Check AA1
authority to

delegate

Check AA2
authority to

delegate

Asserts
privilege

SOA directly trusted by privilege verifier
SOA

AA2

AA1

EE

Figure 2 - Chaining attribute certificates

1st Annual PKI Research Workshop---Proceedings

81

distinct, payment authority. This is a standard business
practice for fraud protection. This requires at least two
distinct delegation paths to ensure the proper
separation-of-duty. Additionally the computer is
required to be connected to the DWAN. This requires
the approval of a network technical authority that
derives its privilege from a completely separate
delegation path.

As an example of delegation, the Responsibility Centre
(RC) Manager plays a central role exercising spending
authority. An RC Manager is anyone (military or
civilian) who manages a distinct unit or organization,
prepares and controls a budget, and has spending
authority for his/her budget [Dep99].

It is possible to summarize a process model for this
procurement process.1 The customer, acting in the role
of RC Manager, will normally recognize the need for
the purchase. In this case, the requirement is for a
computer. The Base Telecommunications and
Information Services Officer (BTISO) role will take
responsibility for specifying and describing the
technical aspects of this need. The next five steps are
usually performed by the section belonging to the
Integrated Logistics Officer (ILogO role) based on the
input from the customer and the BTISO: determining
sourcing options; establishing price and terms;
preparing and placing a purchase order; and following
up on the order. The vendor receives the order and
ships the computer along with an invoice. The
customer, in his role as the RC Manager, receives the
computer and confirms it matches the requirement. He
then approves the invoice and submits the transaction
for review to another role, the Financial Officer, who
authorizes the release of funds to the vendor.

Other layers of delegation are possible. For example,
the BTISO would likely delegate this authority to
review and approve technical requirements to a
subordinate such as the Network Maintenance Officer
(NMO).

The processing of this procurement will require that the
individuals filling the various roles have access to the
necessary functions of the procurement system software
(a legacy system). Their access must be authorized.
Their decisions must enable the respective business
process function and can not be repudiable. An
interesting observation is that the entire transaction can

1 A complete process model for the procurement was
completed and is available at [Gra01].

be viewed as series of authentications and
authorizations.

3.2 Mapping the Requirement to
Attribute Certificates

The interaction of users in the various roles in the
previous section suggests that role-based access control
can have tremendous relevance in establishing
electronic authorization for business process. RBAC
takes the approach that authorizations are distributed
according to role rather than identity. The process
model clearly revealed that roles can be effectively used
to conduct a local procurement transaction.

The style of RBAC proposed by the X.509 roles model,
and summarized in section 2.3, can be applied to this
procurement example. Individuals could be assigned a
role assignment certificate matching one of the
procurement roles e.g. BTISO, ILogO, NMO. These
role assignment certificates could point to a
corresponding role specification certificate containing
the key authorizations, or privileges.

A complete design in support of this procurement
example will not be described here. The intent here is to
demonstrate the application of the X.509 standard to
this problem, and not to stipulate all the details of a
specific design. The portions of the design described in
this work are sufficient to support the modeling
scheme. Addressing every role in the process is not
only time-consuming, but also unnecessarily
repetitious. As much insight can be gained about the
specification, assignment and delegation of privileges
by investigating one role as by examining them all.
Therefore, only the BTISO role will be explored in
detail. The technique is completely analogous for the
other roles, such as the ILogO and the Finance Officer.

3.2.1 Extending the X.509 Roles Model
The BTISO typically requires more privileges than just
those needed to participate in a local procurement
transaction. He would also likely be the COMSEC
Custodian for the Base Crypto Account, the local
configuration authority for connections to the DWAN,
and, like many other managers (such as the customer in
this procurement example), an RC Manager responsible
for his own budget. While the details of these privileges
are unimportant here, it is likely that the privileges
associated with these other duties originate from
different sources of authority. Unfortunately, the X.509
standard offers no direct guidance for dealing with
complex roles

1st Annual PKI Research Workshop---Proceedings

82

The design in this paper employs a novel interpretation
of the roles model described within the X.509 standard.
The standard suggests using the role attribute within a
role assignment certificate to point to a single role
specification certificate where all the privileges are
held. The new interpretation builds upon this idea by
proposing that the role specification certificate can
itself contain role attributes, each pointing to another
role specification certificate.

Convenience was considered important in this design.
Otherwise, the attraction of using a certificate-based
PMI would fade for those wishing to apply it to
complex organizations and roles. The BTISO role in the
procurement example is quite common in DND; many
of the privileges and responsibilities associated with the
role are not unique to a particular Base. The same is
true for the other positions. It would be convenient if
the same role design could be reused wherever a
BTISO position exists. DND is an dynamic
organization that demands managers to adapt to
unfamiliar work environments in short periods of time.
It may be asking too much to expect an infantry
Colonel, newly appointed as a Base Commander, to
understand PMI and all the privileges required of his
BTISO. Sending him on a “shopping trip” for privileges
at the various SOAs, besides wasting time, will likely
yield incomplete and unsatisfactory results.
Convenience, therefore, also suggests that a Base
Commander should be able to appoint someone to a
position, such as a BTISO, by simply issuing him a
single role assignment certificate.

Think of the BTISO role as a super-role encompassing
the privileges held by a BTISO. Smaller, more specific
roles, such as COMSEC Custodian, DWAN
Configuration Control Officer and RC Manager, can be
thought of as sub-roles comprising the super-role.

Viewing complex roles in this way offers several
advantages. The most obvious convenience is that it
allows complex roles, or super-roles, to be quickly and
easily constructed by simply combining more
elementary roles. Designers of the role specification
certificate for the super-role can quickly gather many of
the necessary privileges by inserting pointers to role
specification certificates for the sub-roles.

Reuse is another observable benefit. The number of
attributes that have to be developed exclusively for the
role of BTISO can be minimized since many of the
necessary attributes already exist within the recognized
sub-roles. Of course, this can be a double-edged sword.
Each role will have to be carefully inspected to ensure
that a super-role does not inherit privileges that are part
of the sub-role, such that the super-role acquires

privileges it is not entitled to. Nonetheless, a single role
specification certificate can be reused by several super-
roles. The BTISO needs spending authority, but so does
the ILogO, the customer and many others across DND.
Somewhere in the hierarchies below these roles the
same generic set of spending privileges (identified by
the sub-role of RC Manager) could be referenced.

Finally, in keeping with the intent of the X.509
standard, many of the updates to complex super-roles
would be made automatically. Every change to a role
specification certificate will percolate upwards to
modify the capabilities of any role specification
certificate above it in the hierarchy. This effect will be
most pronounced whenever there are changes at the
bottom of the hierarchy. For example, any change in the
privileges associated with the role specification
certificate for RC Manager will automatically update
the capability of any super-role which references it, e.g.
the BTISO, the ILogO etc. Although designers of role
specification certificates higher in the hierarchy will
have to monitor the effects of these changes on the
super-roles, the outcome should be to generally increase
their currency and relevance since the changes are
being effected by the source of authority for a particular
privilege.

The bottom of the hierarchy would consist completely
of privileges that could not be decomposed any further.
These privileges would be contained within atomic role
specification certificates, such as RC Manager. These
atomic certificates contain privileges that naturally go
together; it would make no sense to split them any
further. It is likely that a large number of these atomic
role specification certificates will be re-used as sub-
roles within many other super-roles. These atomic role
specification certificates are a natural development
since, in all probability, a single source of authority will
be responsible for various privileges that are closely
related. For instance, all spending privileges, including
those associated with the role of RC Manager, are
controlled by the same source of authority, the MND.
These spending authorities (described earlier) are
designed to complement each other. Rather than assign
them individually, it would be practical to group these
complementary privileges together in role specification
certificates, such as for the role of RC Manager.

3.2.2 Delegation Chains for the Validation
of Role Specification
The specification and maintenance of these roles, used
across DND, would be a centralized function of the
National Defence Headquarters (NDHQ). In this way
role specifications are produced and maintained by

1st Annual PKI Research Workshop---Proceedings

83

people and organizations that understand the PMI and
the interaction of privilege. The SOA, in this case the
MND, would set up the required atomic certificates and
delegate the responsibility for the creation and
maintenance of complex roles for various parts of the
business process to staff officers. They can be thought
of as role managers. They produce ready-to-use role
specifications (probably complex roles) that can be
used by field officers to assign people to roles in their
organizations. The ability to access a step of the
business process must include verifying the delegation
chain from the required attribute/permission on an
atomic certificate, through more complex role
specification certificates, to the author of the RSCs (an
AA that must have the right to delegate the privilege),
and through any superior role-specification AAs back
to the SOA. The validation of this chain ensures that
the privilege is being exercised through an authorized
role, and that the creators of that role had the right to
delegate the privilege to the role.

3.2.3 Delegation Chains for the Validation
of Role Assignment
The delegation of authority to individuals has a separate
delegation chain tracing back to the SOA (in this case
the MND). The delegation of authority to individuals is
made by issuing role assignment certificates.

The MND delegates authority for the Canadian Armed
Forces to the Chief of the Defence Staff. The Chief of
the Defence Staff delegates authority for large
formations of the military to superior commanders who
in turn delegate authority for smaller units to
commanding officers. These delegations are made by
using the ready-to-use roles, which are prepared by the
centralized RSC managers in NDHQ. The commanders
do not have to, and do not want to, understand the
specification and maintenance of the ready-to-use
RSCs.

The ability to access a step of the business process must
include verifying the delegation chain from the required
attribute/permission on an atomic certificate, through
more complex role specification certificates, to the
commander assigning the role to an individual (an AA
that must have the right to delegate the privilege), and
through any superior commander AAs back to the
SOA. The validation of this chain ensures that the
privilege is being exercised through an authorized role,
and that the chain of commanders assigning that role to
the user both possess the privilege and had the right to
delegate the privilege to individuals down the chain of
command.

Figure 3 provides a graphical representation of these
dual delegation chains. It is assumed in the figure that
the AAs have the necessary privileges to delegate; the
diagram has been simplified and certificates associated
with this are not shown. The role specification
validation chain extends from the BTISO RSC back
through the manager for the BISTO role to the SOA.
The role assignment validation chain extends from the
BTISO RSC back through the Base Commander to the
SOA.

4 Delegation Path Complexity

When an end entity tries to access a controlled object
the privilege verifier protecting that object must ensure
the end entity is in valid possession of the
privilege/security attribute required by the security
policy to allow access. This will require the privilege
verifier to walk the certificate chains to ensure the chain
of trust is not broken between the SOA and the user of
the attribute. For each certificate, the verifier will have
to ensure the certificate is properly signed (a public-key
operation), and that some required attribute(s) exist in
the certificate. The public-key certificate operations
dominate the complexity, and attribute checks can be
ignored.

The diagram in Figure 3 has been simplified. In the
general case there may be a number of RSCs in a chain
that describes the role hierarchy from the complex role
the end user is using, to less complex roles, and finally
to atomic roles. Each of the RSC certificates in the
hierarchy would have a role specification validation
chain rooted at the SOA (section 3.2.2). Each
specification validation chain might include more than
one role manager (i.e. the role management might be
delegated down the chain). Each chain must be
validated.

A superior commander assigns the role to the end entity
by issuing a RAC. The role assignment validation chain
extending back through commanders to the SOA must
also be validated. But at each step back through this
chain the commanders’ own privileges were assigned to
them through their own role RACs. So the certificate
chains of each commander’s role must also be walked.

Consider the following simplifying assumptions.

a) There is a simple CA; the verifier has
access to a trust root certificate for the CA
that it can use to verify any PKC.
Therefore certificate validation requires
two public-key operations: signature
verification of the attribute certificate

1st Annual PKI Research Workshop---Proceedings

84

using the issuer’s PKC, and PKC
verification using the certificate for the
CA.

b) The SOA directly issues all atomic RSCs.

c) The RACs issued to the role managers
directly reference atomic RSCs and do not
reference complex roles.

d) Delegation in the role specification
validation chains is uniform. I.e. there are
always the same number of role managers
in the management delegation hierarchy
for each complex RSC.

e) The RSC role hierarchy is uniform. I.e.
there is always the same number of

complex RSCs in the chain from the end
entity’s role RSC to the atomic RSCs.

Now, let numroles be the number of complex roles in
the RSC hierarchy from the end entity’s RSC to the
atomic RSCs (including the end entity’s role). Let
nummgr be the number of role managers in the
management delegation hierarchy. Let numcdr be the
number of entities in the role assignment validation
chain extending back through commanders to the SOA
(including the end entity but not including the SOA).

Now, consider the number of certificates that need to be
validated in the delegation chains. The atomic RSC
containing the required privilege must be validated.
Also, each complex RSC in the role hierarchy must be
validated. This requires validation of the complex RSC
itself and validation of each of the manager’s RACs up

RAC

RAC

RAC

RSC

RSC

RSC

RSC

People

Certificates

Certificate authorship

Certificate attribute

MND

Base
Commander

BTISO

Manager
for

BTISO
Role

BTISO Role

Atomic roles
(e.g. COMSEC Custodian,
DWAN Configuration Control Officer,
RC Manager)

SOA

AA

AA

EE

Figure 3 – Delegation Chains

1st Annual PKI Research Workshop---Proceedings

85

the chain to the SOA. Therefore, for a role used by an
end entity or a superior commander
1+numroles(1+nummgr) operations are required to
validate its management chain delegation.

The role used by an end entity or a superior commander
is assigned using a RAC, which must be verified. The
validity of each superior commander’s role must also be
verified, which means validating its complete
management delegation chain too. The complete set of
attribute-certificates is then
numcdr(1+(1+numroles(1+nummgr)).

The number of operations required to validate an access
will be twice the number of certificates in the relevant
validation chains (from assumption a.). Therefore the
overall complexity of making an access control
decision for an end entity is:

2numcdr(2+numroles(1+nummgr)) (1)

If a very simple authorization structure is used, where
numroles=1, nummgr=1 and numcdr=2, as depicted in
Figure 3, then 16 operations are needed to make an
access control decision. However, within DND five
levels of command delegation would not be
unreasonable. E.g. delegation might proceed from the
MND, to Chief of the Defence Staff, to the Commander
of the Army, to the Base Commander, to the BTISO.
Now as a more typical example, consider the case
where numroles=3, nummgr=2 and numcdr=5.
Complexity for an access control operation is now 110.

Public-key operations are expensive and the complexity
of implementing this model seems high. This bears out
the complexity warnings in [x509], and in [FH00]
where Farrell and Housely do not recommend the use
of delegation chains. This complexity results from
attempting to mirror the distribution of privilege within
a real organization. If the processing complexity can be
managed, the flexibility of being able to model the
actual privilege delegation paths in an organization is
an advantage of this role-based model.

The complexity due to processing paths and retrieving
certificates may be mitigated through the use of a cache
within the verifier components. This possibility stems
from the observation that most of the authorization
structure is stable for significant periods of time. The
roles assigned to individuals are often stable of a period
of months. The privileges associated with roles would
also have a similar period of stability. Significant
segments of the certificate chains can be pre-validated
and cached. Many different end entities require the
validation of common chain segments. For example a

superior commanders role validation is used in
validating access requests for all subordinates. Only
chain segments that have changed recently need to be
revalidated. The investigation of efficient caching
schemes to improve the efficacy of implementation is
future work.

5 Conclusion

This work demonstrates how the X.509 standard can be
used to support Canadian Department of National
Defence authority structure models. It is expected that
the results are applicable to large enterprise
environments in general.

The roles model in the X.509 standard is compatible
with the hierarchy of roles concept within role-based
access control (RBAC). An interpretation of the X.509
standard is proposed that allows the construction of
complex super-roles from more basic sub-roles. This
structure leads to a separation of attribute authorities
responsible for the specification of roles, from attribute
authorities responsible for the assignment of roles. The
combined effect is to produce a PMI model that meets
the DND criteria for control over the granting of
authority.

The results provide insight into, and quantification of,
the complexity of the delegation chains. The use of a
roles based model for delegation is seen as being
important to the scaling of PMI to service large
enterprises with mature, complex authority structures.
Using role assignment and role specification certificates
in conjunction with delegation paths will be a challenge
for designers in complex business transactions. The
large number of certificates required in delegation
models will complicate implementation. This concern
may be mitigated if the verifier can cache certificates
and recently calculated delegation paths.

References

[Bra00] S. Brands. Rethinking Public Key
Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge,
Mass, 2000.

[Dep99] Department of National Defence.
Delegation of Authorities for Financial
Administration for DND and the CF A-FN-
100-002/AG-006, Government of Canada,
May 1999.

[FH00] S. Farrell and R. Housley. An Internet
Attribute Certificate Profile for

1st Annual PKI Research Workshop---Proceedings

86

Authorizations. Draft – PKIX Working
Group. August 2000. (work in progress).
http://www.ietf.org/internet-drafts/draft-ietf-
pkix-ac509prof-00.txt

[Gov96] Government of Canada. The Business Case
For Electronic Authorization and
Authentication (EAA) in The Government of
Canada. January 1996.

[Gra01] Grandy, Chris, Using A Privilege
Management Infrastructure To Support
Business Processes Within The Department
Of National Defence And The Canadian
Forces, Master’s Thesis Royal Military
College of Canada, April 2001.

[Int00] International Telecommunications Union.
ITU-T Recommendation X.509|ISO/IEC
9594-8: Information Technology – Open
Systems Interconnection – The Directory:
Public-Key and Attribute Certificate
Frameworks. ITU-T, 2000.

[WH99] P. Wing, B. O’Higgins. Using Public-Key
Infrastructures for Security and Risk
Management. In IEEE Magazine, pages 71-
73, September 1999.

1st Annual PKI Research Workshop---Proceedings

87

1st Annual PKI Research Workshop---Proceedings

88

Password-Enabled PKI:

Virtual Smartcards versus Virtual Soft Tokens

Ravi Sandhu

SingleSignOn.Net Inc., and
George Mason University
rsandhu@singlesignon.net

Mihir Bellare

SingleSignOn.Net Inc., and
University of California, San Diego

mihir@cs.ucsd.edu

Ravi Ganesan

SingleSignOn.Net Inc.,
11417 Sunset Hills Road, Reston, VA

ravi@singlesignon.net

Abstract
Recently there has been considerable interest

among PKI vendors and researchers in the concept of
password-enabled PKI. Several viable proposals and
products have emerged. Fundamentally there are two
distinct methods for using passwords with private
keys. One method is to use the password to retrieve a
private key, while the other uses the password as one
component of the private key. We motivate the
names virtual soft tokens for the former and virtual
smartcards for the latter. The major characteristics of
these two approaches are identified and contrasted.

1. Introduction and Motivation

The notion of a password-enabled PKI sounds like an
oxymoron to those of us who have lived through the
last decade of discussion on PKI and its rosy
prospects. PKI was supposed to do away with
passwords. By all logic and forecast, passwords
should be a relic of the stone age of cyberspace and
should no longer be in use today. PKI was expected
to replace them with private keys securely generated
and forever safe in tamper-proof smartcards. In the
coming brave new world, these private keys would be
activated by appropriate biometrics securely
embedded and captured by the smartcard. The reality
of 2002, however, is that passwords are used in
cyberspace on a scale scarcely imagined a decade
ago. There are hundreds of millions, perhaps even
billions, of instances of password usage in
cyberspace every day. Conservatively, consider tens
of millions of users each invoking ten instances of
password usages per day. In contrast one has to look
high and low to find actual uses of smartcards, even
in laboratory or pilot situations.

Simply stated, it is an indisputable empirical
fact that smartcards have not happened.1 If the

1 This statement should be understood in context of the use of
smartcards for PKI on the Internet via widely available desktops

original vision of smartcards with ubiquitous readers
had become reality there would be no need to talk
about password-enabled PKI. All the same, it is
worth mentioning that the vision of smartcards has
not faded completely, and they may still happen some
day. At this moment the DoD is engaged in a major
rollout of smartcards in numbers that make sense in
the scale of today’s Internet.2 Not a few thousand or
even a few hundred thousand but in the scale of 2 to
5 million. The discipline and resources of the DoD
have few parallels in the world. This is a fascinating
experiment to watch. It may finally prove the
feasibility of a large-scale deployment of smartcards.
Nonetheless it will be hard for Federal Government
agencies, corporations, educational institutions, etc.
to emulate this scale of deployment of smartcards.
Note that the difficulty is not so much in the process
and cost of issuing the smartcards per se, but much
more in deploying smartcard readers on each and
every computer in use by the user population.
Proliferation of devices such as PDAs and wireless
phones further compounds the problem. Moreover,
we have needs at larger scale than the DoD
experiment. The Federal Government often deals
with 100’s of millions of users. It is not unusual for
large corporations to be in touch with 10’s of millions
of users. It is certainly within their vision to be in
touch with 100’s of millions and even billions of
users in the future. Given the multi-year deployment
of DoD smartcards, one wonders how the truly large
scale will ever be realized in this mode. It seems
rather unlikely that we will have a national scale
deployment of smartcards in the near future, let alone
a global scale deployment. Organizations whose PKI
strategy depends entirely on smartcards happening
very soon are making a rather risky bet.

and laptops. The use of smartcards in specialized applications has
seen considerable success, more so in Europe and Asia than in
North America. In these applications the smartcard is often
embedded in a device such as a wireless telephone or a television-
set top box, or in a credit-card with specialized readers.
2http://www.defenselink.mil/news/Oct2000/n10102000_20001010
7.html

1st Annual PKI Research Workshop---Proceedings

89

If smartcards are not available where do we
store the user’s private key and how do we make it
portable? Most systems today store the private key
encrypted with a user-selected password on the hard
disk. Portability is achieved by transporting the
encrypted private key on removable media, such as a
floppy disk. Currently one cannot guarantee
availability of floppy disk readers, or other media-
specific devices, on every computer. In general the
portability of any media-specific transport is
questionable in a truly open environment. All the
same the notion of a “soft token”, that is a private-
key encrypted with a password, in contrast to a “hard
token”, that is a private-key which never leaves a
smartcard, has been around for over a decade and has
been deployed in several systems. From the user’s
perspective it is a natural progression to store the soft
token on a network server rather than having to carry
it around. This is very easily achieved by copying
the contents of the soft token onto a server.

Password-enabled PKI relies on passwords to
enable the use of private keys. Passwords are
extremely easy to use and are easily usable from
multiple computers. Users continue to express
frustration with passwords, mainly because they have
too many of them and are often required to change
them too often. Password-enabled PKI alleviates
both of these problems. PKI facilitates use of the
same digital identity at multiple relying parties,
including those with whom the user has had no prior
contact. Thus a user need not be burdened with a
separate password for every relying party. With a
dramatically reduced number of passwords to
remember, users can be reasonably persuaded (or
gently enforced) to choose passwords of adequate
complexity without having to write them on paper as
a memory aid. Gentle enforcement of password
complexity rules is more user-friendly than the
current conventional wisdom of constantly chasing
users to change passwords as a countermeasure to
selection of weak passwords (or the writing on paper
of many complex passwords).

To a large extent password-enabled PKI has
happened in spite of PKI orthodoxy which calls for
smartcard-enabled PKI wherein the private key never
leaves the smartcard. As such the concept of
password-enabled PKI has not really been studied
systematically. Instead a number of proposals have
been published and implemented, each one motivated
by its own principal considerations. One of the goals
of this paper is to provide a systematic analysis from
security, functionality and operational perspectives.
We specifically assume that the underlying
cryptographic protocols are secure. This is a
reasonable assumption since in many cases proofs of
security or at least strong informal arguments have

been provided. Empirically, we can say that it is quite
feasible to get the cryptography correct. Our goal is
to understand the overall security that is achieved and
the functional and operational implications of
specific approaches.

2. Password Vulnerabilities

It is generally agreed that password-enabled
PKI will not provide the same level of security as
smartcard-based3 or biometric-based PKI.4 All the
same there is considerable confusion about the actual
security vulnerabilities of passwords. So we begin
with a brief discussion of password vulnerabilities
before turning to the main topic of the paper.

There are some inherent vulnerabilities of
password-based systems. A password can be
compromised without knowledge of the legitimate
owner. There is no physical evidence of theft. The
possibility for undetected compromise is further
enhanced if users reuse the same password at poorly
protected sites, who may do something silly like
storing passwords in the clear (or even less extreme).
This is almost as bad as writing the password on
paper and displaying it in a public place. Conversely
a password can be easily shared. A common
example is a corporate executive who shares her
password with her secretary. In absence of other
convenient mechanisms for this purpose, sharing of a
password is a simple means to provide the secretary
access to the executive’s email. These inherent
vulnerabilities cannot be completely addressed
without cooperation and education of users.
However, technology to mitigate these problems does
exist. Misuse detection systems can help in
identifying occurrences of misuse due to compromise
or sharing. The concept of a trusted path can be used
to ensure that passwords are revealed to trusted
entities and not to software that spoofs the look and
appearance of trusted entities. Even more effective is
the use of protocols that do not reveal passwords but
instead prove knowledge of the password for
authentication.

Passwords are also susceptible to guessing
attacks. On-line guessing requires the attacker to try

3 It should be noted that not all smartcards are equal. It is possible
to do smartcards very badly so they are not tamperproof. For
purpose of this paper we assume that smartcards can be made
tamperproof. In practice this is a difficult goal.
4 Currently there is considerable interest in biometrics for
authentication, especially following the events of September 11,
2001. Biometric-enabled PKI, with or without the use of
smartcards, is a fascinating possibility for higher assurance than
achieved by password-enabled PKI or even smartcard-enabled
PKI. Consideration of biometric-enabled PKI is beyond the scope
of this paper.

1st Annual PKI Research Workshop---Proceedings

90

password guesses directly against the protected
system and see if the guessed password works
successfully. Enforcement of password complexity
rules makes these attacks harder. The threat is
further mitigated by throttling schemes which slow
down the rate at which such attacks can be pursued.
With a simple “three guesses and out” rule it is
possible to introduce denial of service vulnerabilities
but more sophisticated approaches are possible. For
our purpose we assume that on-line guessing is taken
care of in some such manner.

The most serious threat to existing password-
based systems is the possibility of off-line dictionary
attacks. In these attacks the attacker has knowledge
of the outcome of some cryptographic operation
which uses the password as a “key”. The precise
knowledge available and attendant attack varies from
system to system. We will generically call this
information as known plaintext.5 We will also use
the shorter term dictionary attack to specifically mean
off-line dictionary attack. Known plaintext is
sufficient to allow an attacker to verify if a password
guess is correct or not. The crucial aspect is that the
guesses can be verified off-line. By trying large
numbers (tens or hundreds of thousands) of
commonly used passwords from a so-called
dictionary the attacker can succeed without searching
the entire key space. This problem has been well
known since at least 1979 [MT79] but it continues to
be a major vulnerability of existing password-based
systems [WU99]. We can distinguish between
network-based and server-based offline dictionary
attacks. In the former case the required known
plaintext is obtained from the network protocol,
possibly by network sniffing or more directly by
simply running the protocol. Server-based attacks
require capture of this information by server
penetration in some way. In particular system
administrators of the server will typically have easy
access to the requisite known plaintext.

To complicate dictionary attacks a password is
typically salted before it is used as a “key”. The salt
is a random number which is usually not kept secret.
Different users with different salts will generate
different known plaintext making the dictionary
attack more time consuming. In particular the
attacker cannot precompute known plaintext values
from the dictionary passwords alone, but must do so
separately for each value of the salt. This makes
precomputation of the dictionary attack infeasible
since the space of possible salts is very large.

5 It should be noted that known plaintext can be known structure
rather than known content.

3. Password-based Cryptographic
Protocols

The Kerberos system [KN93, NT94] was one
of the first to use passwords as a basis for
cryptographic protocols. Susceptibility of Kerberos
to network-based dictionary attacks is well-known
[BM91, WU99].6 A number of password-based
cryptographic protocols immune to network-based
dictionary attacks have since been published.
Notable amongst these are the EKE [BM92], SPEKE
[JAB96] and SRP [WU98] protocols, but there are
many others. All these protocols use public-key
cryptography in some way, a requirement that has
been shown to be theoretically necessary [HK99b].
We can reasonably claim that, since about 1992, we
know how to construct password-based cryptographic
protocols immune to network-based dictionary
attacks.7

In the above protocols both the client and the
server store the password. Server compromise is
however a real threat, and in this case it immediately
yields the password to the attacker. In the augmented
EKE [BM93] and SNAPI-X [MPS00] protocols, the
server holds a hash of the password rather than the
password, so server-compromise does not
immediately yield the password to the adversary, but
the attacker, having compromised the server, can still
mount a dictionary attack based on the password
hash. Immunity to server-based dictionary attack is
not so easy to achieve. An approach based on
multiple servers has recently emerged. The user’s
password is used to retrieve shares of a secret from
multiple servers without exposure to network-based
dictionary attacks. The secret is then assembled at
the client computer from its shares. This long
random secret can then be used for a variety of
cryptographic purposes. Ford and Kaliski [FK00]
present an elegant n-of-n scheme for this purpose,
and suggest using 2-of-2 in practice. In general all n
servers need to be penetrated by an attacker.
Compromise of (n-1) is not sufficient. Jablon
[JAB01] proposes schemes with additional desirable
properties.

In practice schemes with multiple servers
impose operational requirements to keep additional
servers online and available. Moreover these servers
may be subject to common-mode security failures.

6 Kerberos failure to server attacks is complete and absolute
obviating the need to do a server-based dictionary attack. It is
interesting to note that Kerberos employs the user name and realm
name as salt in its string_to_key function [KN93].
7 Security analysis of such protocols is however subtle, and
definitions of security goals, together with proven secure protocols,
including a proof for the core of EKE, have emerged only more
recently [BPR00, BMP00].

1st Annual PKI Research Workshop---Proceedings

91

Once an attacker knows how to break one server,
likelihood of success on the other is quite significant
in practice. Possibility of insider attacks could be
reduced due to requirement of insider collusion
across multiple servers, but outsider attacks may not
be significantly mitigated. At the same time
operational quality may be degraded. Security
infrastructure is expected to be more robust than the
infrastructure it protects. Each security server would
generally be replicated for reliability purposes. Each
additional server therefore counts as two.
Appropriate hardening of a single server with suitable
separation of duties and least privilege could present
a more viable approach to outsider and insider
attacks.

4. Password-enabled PKI

With this background and motivation we now
address the main topic of this paper. There are
fundamentally two distinct ways to implement
password-enabled PKI.
1. Employ the user’s password as a means to

securely retrieve the user’s private key on to any
computer from where it can then be used without
further online interaction.

2. Employ the user’s password as a component of
the user’s private key which can be used only in
conjunction with another component which, in
turn, can only be used on an online server.

The principal distinction between these two
approaches is whether or not the user’s private key is
completely resident on the user’s computer in a
usable form. In the first case the user’s key is
available in the clear on the user’s computer and can
be used independent of any further interaction with
the online server. Network-based storage of a user’s
private key in this manner is analogous to storage of
an encrypted private key on a soft token. Once this
private key is decrypted on a computer it can be used
indefinitely without continued need for the soft
token. Because of this analogy we call this approach
a virtual soft token (or network-based soft token).

In the second approach the password only
enables usage of the private key without bringing the
entire private key together in one place. The overall
private key is split into two components. One
component is computed from the user’s password.
The other is resident on a secure online server. Let
us call the former component the password
component and the latter component the server
component. Both components are required whenever
the user wishes to use her overall private key but they
are never brought together in one place. Instead an
interactive protocol is carried out to achieve that

result. Network-based usage of a component of the
user’s private key in this manner is analogous to
usage of a private key in a smartcard. Just as the
private key never leaves the smartcard, the server
component of a user’s overall private key never
leaves the network server. Because of this analogy
we call the second approach a virtual smartcard (or
network-based smartcard).8

In the remainder of this paper we identify
major characteristics of these two approaches to
password-enabled PKI and compare them.

4.1. Virtual Soft Tokens

Virtual soft tokens enable retrieval of a user’s
private key onto any computer of the user’s choice.
A simplistic approach to this task would be to store
each user’s key encrypted with the user’s password
on an online server. Anyone could retrieve any of
these encrypted keys, but without knowledge of the
correct password would not be able to directly
decrypt them. The virtual soft token is simply a
substitute for the physical soft token.9 Unfortunately
this scheme is susceptible to dictionary attacks. An
attacker who has access to the encrypted private key
can verify guesses for the password by decrypting the
private key with the guess and verifying success or
failure with respect to the known public key.10

A virtual soft token therefore cannot be freely
accessible for download. Instead it must be protected
from network-based dictionary attacks by one of the
password-based protocols such as EKE, SPEKE or
equivalent.

Virtual soft tokens were first proposed in the
SPX system [TA91]. The designers of SPX did not
feel comfortable downloading the user’s long-term
private key to the client machine. Instead they
proposed creation of a short-term private key whose
public-key certificate was signed by the user’s long-
term private key. Only the short term key would be
downloaded to the client machine for unrestricted use
within its short life. In a sense this proposal is
stronger than a physical soft token since compromise

8 It should be noted that the term virtual smartcard has been used
for schemes that are virtual soft tokens in our terminology. This is
inappropriate since an essential characteristic of a smartcard is that
the private key never leaves the smartcard.
9 People who use soft tokens can trivially virtualize them in this
manner by simply copying the soft token to some server from
where it is accessible.
10 Hoover and Kausik [HK99a] suggest that this dictionary attack
can be avoided by protecting disclosure of the public key.
Unfortunately their approach of “cryptographic camouflage”
negates the main advantage of PKI where the public key does not
need to be confidential. Technically, Hoover and Kausik also
require elimination of redundancy in encryption of the private key
so “known structure” attacks are not possible.

1st Annual PKI Research Workshop---Proceedings

92

of the client leads to compromise of a short-term key
with a life of say 8 hours. Compromise of a client
with a long-term key with a life of say 1 year is more
devastating. In another sense the SPX soft token is
weaker with respect to non-repudiation. The user’s
long-term key is exposed on the SPX server where it
is needed to construct the certificate for the short-
term key. The SPX server can therefore impersonate
the user via knowledge of the long-term key.
Novell’s NetWare v4 deployed a similar process for
downloading a temporary private key [KPC95]
(although it used a different set of underlying
cryptographic algorithms).

Recent proposals for virtual soft tokens have
returned to the idea of retrieving the long-term
private key on to the client. As we have seen we
know how to prevent network-based dictionary
attacks in this context. A number of protocols for
this purpose were recently presented by Perlman and
Kaufman [PK99]. There are some significant
differences in detailed properties of these protocols.
Nonetheless from our vantage they all share a
common core of security properties: exposure of
long-term private keys on the client and immunity to
network-based dictionary attacks.

Ford and Kaliski [FK00], and later Jablon
[JAB01], propose solutions to server-based
dictionary attacks. As discussed earlier these
solutions require additional servers which may
degrade operational quality while the gain in security
may be diminished due to common-mode failures.

4.2. Virtual Smartcards

Virtual Smartcards are based on split private
keys. In classical 2-key RSA the public and private
keys for given n are related by the following
equation.

e*d = 1 mod φ(n)

The splitting of d into d1 and d2 is computed as
follows.

d1*d2 = d mod φ(n)

The fundamental operation of exponentiation in RSA
then gives us the following equations.

(Md1)d2 mod n =
(Md2)d1 mod n =
Md1*d2 mod n =

Md mod n

This idea can be extended to more than two
splits of the original private key d if so desired. It
can also be applied to an additive rather than
multiplicative split. These ideas were first published
by Colin Boyd [BOY89]. Their first application to
virtual smartcards is due to Ganesan [GAN95,
GAN96]. Ganesan’s innovation was to realize that
one of the split keys, say d1, can come from a
password and therefore easily remembered and
carried around mentally by a user. Nonetheless
security of d2 is equivalent to security of a traditional
RSA private key.11

To summarize, in a 3-key RSA system there
are 2 private keys whose multiplication mod φ(n) is
equivalent to a single overall private key. One of
these keys d1 is computed from the user’s password
and known only to the user. It is the password
component of the overall private key. The server
component of the overall private key is d2 which is
stored and used only on a secure online server. The
server component constitutes a virtual smartcard
which can be used only if knowledge of d1 is
demonstrated. The overall private key d is never
reconstructed on the client or the server. Every use
of d involves an online interaction between the client
and server.12

An immediate benefit of virtual smartcards is
the ability to do instant revocation. The server
resident d2 can be revoked at any time rendering the
password component d1 completely useless. From
here on d1 cannot be used to generate a signature
even if the certificate for (e,n) continues to be valid.
The network-based virtual smartcard will refuse to
participate in the signing protocol. This is a
tremendous benefit relative not only to virtual soft
tokens but also to local smartcards. Another benefit
is potential for misuse detection by monitoring usage
of the virtual smartcard. Note that these benefits
continue to accrue even if d1 is stored on a local
smartcard rather than computed from a password. As
such virtual smartcards provide valuable additional
services even when we reach the age of ubiquitous
smartcards (and smartcard readers).

MacKenzie and Reiter [MK01] have an
interesting variation on the use of split-key RSA.
They show how to make the loss of a local smartcard
safe in that there is no private key within the
smartcard that can be extracted. Also the smartcard
is useless without knowledge of the user’s password.
In a nutshell the password component of a user’s
password is much the same as in Ganesan’s scheme.

11 This notion is formally proved in Appendix A.
12 Contrast this with SPX discussed above where the entire private
key is resident on the server. SPX thereby fails to provide non-
repudiation.

1st Annual PKI Research Workshop---Proceedings

93

The server component, however, is stored encrypted
with the server’s public on the smartcard, i.e., d2
encrypted with the server’s public key. Cooperation
of the server is therefore required whenever the
smartcard is used. This is much like the virtual
smartcard scheme. However, revocation is done out
of band and requires the servers to maintain the
equivalent of revocation lists. Mobility in this scheme
is achieved by moving the device from computer to
computer which requires a suitable reader or
interface. This is a characteristic of conventional
local smartcards.

5. Conclusion

In this paper we have identified two
approaches to password-enabled PKI. We have
motivated the reasons for calling these virtual soft
tokens versus virtual smartcards. Virtual smartcards
remove exposure of the user’s private key on a client
computer while allowing for misuse detection and
instant revocation. Conversely, virtual soft tokens
expose the user’s private key on client computers and
cannot support misuse detection or instant revocation.
These are substantial differences.

As we look to the future, PKI thinking must
depart from its conventional reliance on smartcards
as the technology which will make PKI real. With
hundreds of millions of computers deployed all over
the world today retrofitting smartcard readers on each
one is a formidable task. A variety of wireless and
personal computing devices are also proliferating.
Uniform availability of smartcard readers across all
these devices is extremely unlikely. Instead we
should look to an environment where virtual
smartcards are pervasive with local smartcards and
biometrics being used for higher assurance situations.

The recent big push for identity services on the
Internet has veered away from PKI to proposals that
are entirely password based and make extensive use
of symmetric cryptography. In the past year we have
seen a number of such initiatives from big players in
the Information Technology arena. PKI still offers
considerable advantages over symmetric technology.
But if the PKI community is not alert and adaptive to
industry trends we may find the baby is thrown out
with the bath water.

References

[BM91] Bellovin, S and Merritt, M. “Limitations

of the Kerberos authentication system.”
Proceedings of the Winter USENIX
Conference, 1991, pp 253-267.

[BM92] Bellovin, S and Merritt, M. “Encrypted
key exchange: password-based protocols
secure against dictionary attacks.”
Proceedings of the IEEE Symposium on
Security and Privacy, 1992, pp. 72 –84.

[BM93] Bellovin, S and Merritt, M. “Augmented

encrypted key exchange: a password-
based protocol secure against dictionary
attacks and password file compromise.”
Proceedings of the ACM Conference on
Computer and Communications Security,
1993, pp. 244 – 250.

[BPR00] M. Bellare, D. Pointcheval and P.

Rogaway. “Authenticated Key Exchange
Secure Against Dictionary Attacks.”
Advances in Cryptology - Eurocrypt 2000
Proceedings, Lecture Notes in Computer
Science Vol. 1807, B. Preneel ed,
Springer-Verlag,2000.

[BMP00] V. Boyko, P. MacKenzie and S. Patel.
“Provably Secure Password Authenticated
Key Exchange Using Diffie-Hellman.”
Advances in Cryptology - Eurocrypt 2000
Proceedings, Lecture Notes in Computer
Science Vol. 1807, B. Preneel ed,
Springer-Verlag, 2000.

[BOY89] C. Boyd. Digital multisignatures. In

Cryptography and Coding, H. Beker and
F. Piper eds., Oxford University Press,
1989, pp. 241-246.

[BS01] M. Bellare and R. Sandhu. “The security

of practical two-party RSA signature
schemes.” Manuscript, November 2001.
Manuscript available via
http://www.cse.ucsd.edu/users/mihir.

[FK00] Ford, W. and Kaliski, B. “Server-assisted

generation of a strong secret from a
password.” Proceedings 9th IEEE
International Workshops on Enabling
Technologies: Infrastructure for
Collaborative Enterprises, 2000, pp 176 –
180.

[GY94] R. Ganesan and Y. Yacobi. A Secure

Joint Signature and Key Exchange
System. Bellcore Technical Report TM-
24531, October 1994.

[GAN95] Ravi Ganesan. Yaksha: Augmenting

Kerberos with public-key cryptography.

1st Annual PKI Research Workshop---Proceedings

94

Proceedings of the ISOC Network and
Distributed Systems Security Symposium,
1995.

[GAN96] R. Ganesan. Yaksha: Towards Reusable

Security Infrastructures. PhD Thesis.
Johns Hopkins University, Baltimore,
MD, 1996.

[HK99a] D. Hoover and B. Kausik, “Software

smart cards via cryptographic
camouflage.” Proceedings of the IEEE
Symposium on Security and Privacy,
1999.

[HK99b] S. Halevi and H. Krawcyzk. “Public-key

cryptography and password protocols.”
ACM Transactions on Information and
System Security (TISSEC)
Volume 2 , Issue 3 (August 1999),
Pages: 230 – 268.

[JAB96] D. Jablon, “Strong password-only

authenticated key exchange.” ACM
Computer Communications Review,
October 1996.

[JAB01] D. Jablon, “Password authentication using

multiple servers.” Proceedings RSA
Conference: Cryptographers' Track, 2001
San Francisco, CA, April 8-12, 2001,
Springer LNCS 2020.

[KPC95] C. Kaufman, R. Perlman and M. Speciner,

“Network Security: Private
Communication in a Public World.”
Prentice-Hall, 1995.

[KN93] J. Kohl and C. Neuman. The Kerberos

Network Authentication Service (V5).
RFC 1510, September 1993.

[MPS00] P. MacKenzie, S. Patel and R.

Swaminathan. “Password Authenticated
Key Exchange based on RSA.” Advances
in Cryptology - Asiacrypt 2000
Proceedings, Lecture Notes in Computer
Science Vol. 1976, T. Okamoto ed,
Springer-Verlag, 2000.

[MR01] P. MacKenzie and M. Reiter. “Networked

cryptographic devices resilient to
capture.” Proceedings of the IEEE
Symposium on Security and Privacy,
2001.

[MT79] Robert Morris and Ken Thompson,
“Password Security.” Communications of
the ACM, Volume 22 Issue 11, November
1979.

[NT94] C. Neuman and T. Ts'o. “Kerberos: An

Authentication Service for Computer
Networks.” IEEE Communications,
32(9):33-38. September 1994.

[PK99] R. Perlman and C. Kaufman, “Secure

password-based protocols for
downloading a private key.” Proceedings
of the ISOC Network and Distributed
Systems Security Symposium, 1999.

[TA91] J. Tardo and K. Alagappan, “SPX: global

authentication using public key
certificates” Proceedings of the IEEE
Symposium on Security and Privacy,
1991, pp. 232-244.

[WU98] T. Wu, “The Secure Remote Access

Protocol.” Proceedings of the ISOC
Network and Distributed Systems
Security Symposium, 1998.

[WU99] Thomas Wu, “A Real-World Analysis of

Kerberos Password Security.”
Proceedings of the ISOC Network and
Distributed Systems Security Symposium,
1999.

Appendix A: Equivalence of 3-key
RSA To 2-key RSA

We show that the security of 2-key RSA is equivalent
to the security of 3-key RSA, following Ganesan and
Yacobi [GY94] who first established this conjecture
of Boyd [BOY89].13

A traditional 2-key RSA pair is generated as follows.

1. Generate two large, distinct primes p, q of

roughly equal bit-length
2. Compute n=p*q
3. Select e such that gcd(e,φ(n))=1 and 1<e<φ(n),

where φ(n)=(p-1)*(q-1)
4. Compute d, such that 1<d<φ(n) and e*d =1 mod

φ(n)

13 We note that this argument only reflects key-recovery attacks.
Security arguments for our schemes that consider forgery attacks
are more involved, and provided in [BS01].

1st Annual PKI Research Workshop---Proceedings

95

5. Destroy p, q
6. Public key is e, n and private key is d

In the password-based 3-key system steps 1-4 are as
above, followed by the steps given below.
5. Ask user to select a password Pwd that meets

password selection rules
6. Pick an iteration count IC

Repeat
6.1 Pick a random SALT
6.2 Compute d1 = Expand(Pwd,SALT,IC)
Until (gcd(d1, φ(n))=1 and 1<d1<φ(n))
[The function Expand is specified via PKCS5.
The IC value and the final SALT value are
accessible for subsequent use by the user.]

7. Compute d2 such that 1<d2<φ(n) and d1*d2 = d
mod φ(n).

8. Destroy p, q, d
9. Public key is e, n; user's private key component

is d1 (user remembers password Pwd from
which d1 is computed) and appliance private key
component for that user is d2.

We claim that the expected number of iterations of
the repeat loop in Step 6 is around 2, so that the loop
terminates quite fast. (Assume the Expand function
is random and has range {0,1}k where 2k-1≤ n <2k.
Then the expected number of iterations is at most
(2*n)/φ(n) which is very close to 2.)

The strength of the split-key setting is that it provides
as much security as RSA even if the user password is
compromised, in the following sense: the problem of
computing d2 given n, e, d1 is as hard as the
traditional RSA problem of computing the secret
exponent given the public key in the standard setting.

To detail this claim, we recall that the traditional
RSA problem is defined as follows:

Given: n, e
Compute: d such that e*d=1 mod φ(n) and 1<d<φ(n)

We define the split-key RSA problem as follows:

Given: n, e, d1
Compute: d2 such that e*d1*d2 =1 mod φ(n) and
1<d2<φ(n)

We claim that if the split-key RSA problem is
tractable, then so is the traditional RSA problem. To
justify this claim, we assume we are given a method
of solving the split-key RSA problem relative to a
password generation process (formally, randomized
algorithm) P that models the client's choice of
password. The following code shows how we can

then solve the traditional RSA problem.
Explanations follow the code.

Given n, e,
1. Run P to obtain a password Pwd
2. Pick random SALT, and IC, and compute d1 =

Expand(Pwd,SALT,IC)
3. Run the given split-key RSA solving method on

input n, e, d1 to obtain d2
4. Let m = e*d1*d2 - 1
5. Use m, e to factor n [see later text for why this is

possible]
6. Use the factorization of n to compute φ(n)
7. Let d be the inverse of e modulo φ(n)
8. Output d

Note that the value d1 chosen in Step 2 may not be
relatively prime to φ(n) and in that case the algorithm
will probably not succeed. However, d1 as chosen in
step 2 has probability around 1/2 of being relatively
prime to φ(n) and hence the success probability of the
algorithm above is about one-half that of the given
method for solving the split-key RSA problem.

The value m computed in Step 4 is a multiple of φ(n),
because, modulo φ(n) we have:

 e*d1*d2 -1 = e*d1*d2 - e*d = e*[d1*d2-d] = 0.

Step 5 uses a well-known fact, namely that given a
multiple of φ(n) it is possible to factor n.

One might ask why the algorithm does not, after step
3, simply compute d = d1*d2, output d and halt, since
this d satisfies e*d mod φ (n) = 1. However this d
may not satisfy 1<d<φ(n).

1st Annual PKI Research Workshop---Proceedings

96

Delegated Cryptography, Online Trusted Third Parties, and PKI

Trevor Perrin, Logan Bruns, Jahan Moreh, Terry Olkin
{tperrin,logan,jmoreh,tolkin}@sigaba.com, Sigaba Corporation

Abstract

We propose that enterprise PKI users should delegate asymmetric cryptography operations to an online
trusted third party maintained by their enterprise, thus freeing themselves from the burdens of owning key pairs or
interfacing with PKI. Users would authenticate to this third party (which we’ll call a delegate server) and then re-
quest it to sign and decrypt data on their behalf with its own private key and encrypt and verify data with the public
keys of other users or other delegate servers. A delegate server would thus be like a CA in that it represents a group
of users but like an end-entity in that it signs and decrypts using its own private key and encrypts and verifies using
public keys which it has calculated certificate paths to. To bind encryptions and signatures performed with delegate
server keys to particular users we suggest two approaches, one using XML security standards, and one using what
we call signature operation certificates which are signed by a delegate server and bind a hash value to a signing user,
and encryption operation certificates which are encrypted to a delegate server and bind a symmetric key to an in-
tended decrypting user. These operation certificates have several benefits, and so we propose that conventional PKI
end-entities as well as delegate servers could use them to encapsulate signatures and encryptions, and that current
PKI protocols could be modified to support them. If this was done, enterprises could individually choose whether to
utilize delegate servers or conventional PKI. In many situations a delegate server infrastructure would be easier to
deploy, easier to use, and easier to integrate with applications, and would offer advantages in security, extensibility,
and efficiency.

1 Introduction

The deployment of cryptography on modern
computer networks is proceeding on two fronts. The
first is the use of cryptography to achieve authen-
tication. Users log-on to workstations, networks, and
networked applications using credentials such as
passwords, one-time password devices[1,2], smartcards
containing private keys, or biometrics[3]. Crypto-
graphy either provides encryption to protect the
transmission of the user's credentials (e.g. SSL[4] for
website passwords), or provides credentials-present-
ment protocols with various intrinsic degrees of
security (e.g. SRP[5,6] for passwords, or SSL with
client authentication for private keys).
 These authentication and session-establish-
ment protocols are easy to use for both the credentials-
presenting and the credentials-verifying parties, and
thus are widely deployed. Such methods are not, how-
ever, sufficient to fulfill the promise of cryptography.
Ideally a cryptographic infrastructure would be capable
of providing confidentiality and authentication to both
interactive and noninteractive communications amongst
large groups of users1. Compared to this, authentication
methods (with the exception of asymmetric key pairs)
are limited in both scale and scope: scale in that a single

credential should only be used between a single pair of
users, and scope in that these methods can only secure
interactive traffic, and thus cannot be used to encrypt or
sign data such as emails or files. Attempts to solve the
scalability problem involve clients authenticating once
to a "single sign-on" service with their primary creden-
tials and then receiving secondary credentials that they
can use to access other services. This approach repre-
sents the current cutting-edge of authentication tech-
niques, particularly on the web where it is being pur-
sued by Microsoft Passport[7], the Liberty Alliance
Project[8], and the SAML XML specification[9].
 The second front on which cryptography is
being deployed is known as public key infrastructure
(PKI). This technology assumes that every client
should possess a long-lived asymmetric key pair[10].
The public key can be shared with different parties,
which can then authenticate the private key owner, ver-
ify the owner's signature on a piece of data, or encrypt
data that only the owner can decrypt. A single key pair
thus allows point-to-many instead of just point-to-point
security, and can be used to secure both interactive and
noninteractive communications. These characteristics
enable certificates[11]: a user Alice could sign Bob's
public key along with Bob's name, thus producing a
certificate which could be published in a public direc-

1st Annual PKI Research Workshop---Proceedings

97

tory or carried around by Bob, and which would con-
vince anyone who trusts Alice that Bob's public key
really belongs to him. Bob can issue certificates to
other users as well; the certificates issued amongst a
group of users comprise a directed graph, and if one
user can compute a path from himself to another then
he can determine that other user's public key and use it
to secure communications between them. Often a spe-
cialized entity known as a certificate authority (CA)
will assume responsibility for issuing, revoking, and
publishing the certificates for some group of users. A
system of cooperating CAs, directories, and other sup-
porting services are what we collectively refer to as
PKI.
 PKI appears to meet our requirements for
cryptographic infrastructure, yet attempts to deploy it
over the last decade have met with strikingly little suc-
cess. Even within a single enterprise, PKI rollouts are
often expensive and time-consuming, and result in
stovepipe systems unable to interoperate with each
other, integrate with new applications, or evolve to
meet new demands and incorporate new technolo-
gies[12,13,14,15]. Some feel these are growing pains
that will disappear as the technology matures, but we
will argue that they instead reflect several systemic
flaws in the PKI vision:2
 First, private keys are difficult for people to
use and easy for attackers to abuse. Private keys are not
memorable like passwords, derivable from the person
like biometrics, or enterable from any keyboard like
one-time passwords. They are instead typically stored
in a file on the user's computer, stored on smartcards, or
stored at a server that delivers them to the user on re-
quest[16]. These approaches have various deficiencies
in terms of portability, universality, and security. Secu-
rity concerns are aggravated because private keys can
be stolen and abused offline (i.e. without generating an
audit trail).
 Second, trust relationships are difficult for
people to manage. If a global PKI had materialized,
with a single CA at the root of a certificate hierarchy,
then this would be a non-issue: each user would simply
configure his software to fully trust the CA's public
key. Instead many different CAs exist, some public and
some private, and in some systems (such as
PGP[17,18]) users can issue certificates to each other as
well. Faced with such a fragmented trust environment,
users must configure their software's trust list with the
"trust anchors" from which to begin computing certifi-
cate paths, by first importing and verifying these an-
chors' public keys and then indicating to what extent the
user trusts each anchor or over which names the user
considers the anchor authoritative. These procedures
are complicated yet security-critical, and users rarely
understand or perform them well[19].
 Third, the interface between end-user software

and PKI systems is complex and difficult to standard-
ize. End-user software must interact with the PKI to
perform management operations such as obtaining, re-
voking, renewing, archiving, and recovering the user's
certificate and key pair, and also to construct and vali-
date certificate paths to other users' public keys. These
operations require knowledge of the PKI's management
protocols, directory architecture, trust topology, certifi-
cate formats and profiles, certification policies, and
revocation/validity-checking methods, among other
things. Each of these provides an axis along which
PKIs can and do vary. As a result, PKI end-user soft-
ware tends either to provide lowest-common-
denominator support for PKI or to be tightly coupled to
a particular vendor’s products or even a particular de-
ployment, yielding systems that are either underfunc-
tional or overly rigid and brittle.
 Fourth, end-to-end path construction is ineffi-
cient: every user’s certificates and revocation data must
be made accessible to every other user in a timely fash-
ion, and every user must compute the paths between
himself and every other user with whom he wants to
communicate. The first requirement necessitates a
high-performance and high-availability distributed di-
rectory that will be difficult to scale to large communi-
ties of geographically dispersed users. The second re-
quirement results in redundant computations of poten-
tially lengthy and complex paths.
 A few observations about the enterprise envi-
ronment will suggest a way to remedy these flaws.
PKIs are generally deployed to support users who
communicate under the aegis of enterprises (meaning
businesses or similar organizations). In these enter-
prises there are authentication methods already de-
ployed to control access to networks and workstations;
there is trust between members and their enterprise, and
between enterprises and each other; there are adminis-
trators capable of configuring and maintaining net-
worked services for enterprise members; and there are
private networks offering reasonably high performance
and reliability, and some measure of protection against
outsider attacks.
 In such environments, we believe the authenti-
cation and PKI uses of cryptography should be hybrid-
ized in the form of a networked service, hosted by an
enterprise for its members, which users could authenti-
cate to and request to perform asymmetric cryptography
on their behalf. More precisely: users within an enter-
prise would authenticate to a locally-provided delegate
server (DS) which would possess a key pair and would
interface with a PKI system whose end-entities would
include both individuals and other DSs representing
other enterprises. To produce a signature on a docu-
ment Alice would send her DS a cryptographic hash of
the document, and the server would sign this hash along
with an attached statement that says "this was presented

1st Annual PKI Research Workshop---Proceedings

98

by Alice", and return this signed message to Alice who
would embed it in the document. To encrypt a docu-
ment to Bob, Alice would send her DS a symmetric
document encryption key and the name Bob, and the
DS would encrypt the symmetric key along with an
attached statement “this is intended for Bob” using
Bob’s public key or the public key corresponding to
Bob’s DS. When Bob received these secured docu-
ments from Alice he would extract the messages that
came from Alice’s DS and either process them using
his own private key or forward them to his DS. If the
latter, his DS would verify or decrypt these messages
and then examine the attached statements, and either
confirm that it was Alice on whose behalf the signature
was produced, or release the document encryption key
after verifying that it was indeed intended for Bob.
 This approach addresses the first flaw in PKI
by using convenient authentication methods, instead of
private keys, to access a server which can monitor all
events for intrusion detection and response purposes. It
addresses the second and third flaws by centralizing
trust relationships and PKI software at the organiza-
tional instead of individual level, where they can be
managed at a single point by qualified staff. It ad-
dresses the fourth flaw by associating certificates and
key pairs with enterprises instead of individual users,
thus reducing the volume of certificates and revocation
data that must be distributed and the length of paths that
must be computed. It also centralizes path computation
at servers where its cost can be amortized across large
groups of users.

One drawback of this approach is its reliance
on communication between users and DSs. This raises
issues of performance and availability, and also raises
the spectre of denial-of-service and traffic analysis at-
tacks[20], but the characteristics of enterprise networks
we mentioned above should mitigate these concerns.
Another drawback is the potential security risk and per-
formance bottleneck of performing all asymmetric op-
erations for an enterprise at a single point. We believe
that adequate security can be achieved by choosing an
appropriate lifetime and strength for DS key pairs and
by confining sensitive data at the DS to a secure co-
processor[21,22], and that adequate performance can be
achieved with appropriate hardware or techniques such
as caching Diffie-Hellman key agreement values. A
third drawback is that having DSs involved in all cryp-
tographic operations may raise privacy concerns, but it
provides compensating benefits such as centralized
auditing, fine-grained access control, and instantaneous
user revocation. A final drawback is that current cryp-
tographic protocols and data formats were not designed
with DSs in mind, but we believe that an elegant exten-
sion to the notion of certificates will make it easy to
retrofit DS support into current PKI systems.

In what follows we will expand on these points

to argue that DSs make large-scale cryptographic infra-
structure feasible. In the next section we will take a
step back and develop a more abstract understanding of
the problems and methods of cryptographic infrastruc-
ture. In section three we will apply this understanding
to the real world to show why delegated cryptography
makes sense. And in the final section we will consider
how current cryptographic protocols and data formats
could be retrofitted to support this technique.

2 Cryptographic Infrastructure

For our purposes, the basic situation of crypto-
graphic infrastructure is this: there is a graph consisting
of nodes linked by communication channels, where a
node could be a machine or a person, and a channel
could be such things as a trusted courier, a computer
network, or even just a stretch of time. Some of these
channels are physically secure. Others may be subject
to passive attacks, where an adversary eavesdrops on
the messages going back and forth; or active attacks,
where an adversary alters, deletes, and adds messages.
It is desired that certain communications between nodes
be confidential and/or authenticated. By confidential
we mean that an adversary cannot determine their con-
tents. By authenticated we mean that an adversary can-
not delude one party to a communication as to the other
party’s identity.

Physically secure channels are not subject to
attacks and are thus both confidential and authenticated.
Otherwise passive attacks can violate confidentiality
and active attacks can violate authentication. To ensure
these properties on channels subject to these attacks the
nodes must code their communications using crypto-
graphic algorithms. These algorithms can be used to
protect either noninteractive messages (i.e. self-
contained units of data sent from one node to another)
or interactive sessions. Interactive sessions allow the
use of cryptographic protocols which make certain se-
curity properties easier to obtain; in particular, Diffie-
Hellman key exchange[10] can establish confidential
sessions between any pair of nodes, thus making au-
thentication the only difficulty in the interactive case.

2.1 Cryptographic Data

With the exception of Diffie-Hellman key ex-

change, the algorithms and protocols used by two nodes
to provide confidentiality and authentication require
that certain related cryptographic data be used as inputs
by both sides. We can classify these data as credentials,
symmetric keys, or asymmetric keys. Credentials in-
volve a data source possessed by one node (such as a
password, one-time password device, eyeball, etc.) and
credentials-verifying data possessed by another node

1st Annual PKI Research Workshop---Proceedings

99

(such as the password itself, a hash of the password, an
SRP verifier[5,6] of the password, an iris code[23],
etc.). Credentials either possess low entropy (pass-
words), imprecision (biometrics), or time-variance
(one-time password devices), and thus can only be used
to authenticate interactive sessions (i.e. they can’t pro-
vide message security). Certain credentials, such as
passwords, can be used in conjunction with zero-
knowledge password protocols[5,6,24] that provide
mutual authentication between nodes. Otherwise, the
credentials need to be presented from one node to the
other, which can only be done securely if the creden-
tials-presenting node has already authenticated the cre-
dentials-verifier.

Symmetric keys possess high entropy, and
thus a pair of nodes sharing a symmetric key can ex-
change confidential and/or authenticated messages and
establish confidential and/or authenticated sessions.
Asymmetric key pairs consist of both a private and pub-
lic key. The private key should be kept secret by its
owner, but the public key could be shared with many
other nodes, which makes this type of cryptographic
data intrinsically different from both credentials and
symmetric keys, which can only provide security be-
tween a single pair of nodes (if these data are shared
with more than two nodes, the excluded parties to any
communication relying on these data could launch pas-
sive or active attacks on the communication). Source
authentication can be provided to messages travelling
from the private key owner to a public key possessor,
and confidentiality can be provided to messages travel-
ling in the opposite direction. The private key owner
can also authenticate himself interactively to a node
possessing the public key.

Pulling this together, nodes can generate cryp-
tographic data and then exchange them with other
nodes over secure channels, then leverage these data to
add security to vulnerable channels. Credentials or
symmetric keys must be exchanged over confidential
and authenticated channels; otherwise the adversary
could intercept or forge the data, and later on launch
attacks. Public keys can be exchanged over authenti-
cated but nonconfidential channels, since secure use of
asymmetric cryptography does not depend on the se-
crecy of public keys. The value of all this is that a se-
cure channel which may be too transient, performance-
limited, or costly to use for regular communications can
be used to bootstrap security on a more convenient but
vulnerable channel.

2.2 Trust

Now it may happen that nodes desire a secure

channel, but do not have any physically secure channel
with which to bootstrap a cryptographically secure one.
In this case, they may have to trust a third party. For

example, if Alice wants to send a secure message to
Charlie but can’t do so directly, she may have to entrust
this message to Bob. But just how far do Alice and
Charlie trust Bob? If Alice sends the message directly
through Bob, and Charlie is willing to believe Bob
when Bob says “Alice sent this”, then Bob is clearly in
a position to read, alter, and forge messages from Alice
to Charlie. Alternatively, Alice could give Bob a sym-
metric key to give to Charlie, then communicate with
Charlie herself on a separate channel, but since Bob
knows the symmetric key, he could still launch passive
or active attacks on this channel, so we won’t consider
this method as requiring significantly less trust in him.
A third alternative is for Alice and Charlie to exchange
public keys through Bob. Bob could perform a man-in-
the-middle attack here, giving Alice and Charlie false
public keys so that he could read and forge their mes-
sages, but if he doesn’t want to be found out when they
try to communicate he will have to launch an active
attack where he makes it appear as if the messages were
actually processed using the appropriate public keys. If
Bob’s diligence in these attacks flags, or if Alice and
Charlie acquire a communication channel that Bob
can’t attack, then it is likely that they will discover his
perfidy.

So we can roughly say that Bob is either com-
pletely trusted (meaning Alice and Charlie accept that
he can read or alter their communications without de-
tection), or partially trusted (meaning Alice and Charlie
accept that he can only read or alter their communica-
tions if he falsifies the key exchange, and that he can
only keep this from being detected by launching con-
tinuous active attacks on their communications). To
clarify the overall picture, we can imagine that each
node maintains a table of trust relationships, each of
which consists of some cryptographic data and a list of
names3 with associated trust values. For example, Al-
ice might have a trust relationship indicating that Bob’s
symmetric key is completely trusted for Bob but only
partially trusted for Charlie. The trust table contains
both primary trust relationships, which the node axio-
matically trusts, and derived relationships, which are a
consequence of communications that were secured un-
der some other relationship.

For example, when Bob sends Charlie’s public
key to Alice, Alice will add it to her trust table as a new
trust relationship, but if Alice laters discovers that
Bob’s key was compromised, or decides that she no
longer trusts Bob to vouch for Charlie, then the rela-
tionship containing Charlie’s public key and any rela-
tionships derived from it will be invalidated. As an-
other example, asymmetric cryptography is expensive.
When Alice establishes a secure session with Charlie,
she will likely not encrypt all her messages to him using
his public key but might instead verify his signature on
a Diffie-Hellman public value as a prelude to establish-

1st Annual PKI Research Workshop---Proceedings

100

ing a session key, which she will consider as a trust
relationship with Charlie for the duration of the session.

2.3 Trust Derivation

The point of the above is that a cryptographic
infrastructure can be analyzed in terms of both its static
structure of primary trust relationships and the proce-
dures it uses to build and utilize a dynamic structure of
derived trust relationships. To make this more concrete
we’ll examine PKI:

A classic, X.509-style PKI[25,26,27] consists
of end-entity nodes and CA nodes. End-entities and
CAs have key pairs, and end-entities have trust rela-
tionships with certain CAs wherein they partially trust
the CAs to vouch for certain other end-entities. CAs
express their trust relationships with each other and
with end-entities in the form of certificates, which they
make available in a directory (which is equivalent to
broadcasting them to all end-entities across an unsecure
channel). A certificate is an authenticated message
from a CA which asserts a trust relationship. This trust
relationship contains a public key and expresses com-
plete trust in an end-entity name if it is an end-entity
certificate, or expresses partial trust in a set of end-
entity names if it is a CA certificate. When an end-
entity examines a certificate which comes from a CA
whom the end-entity trusts, and references some names
which the end-entity trusts the CA to vouch for, the
end-entity will add a new, derived trust relationship to
its table consisting of the certificate public key and
those names. When an end-entity wants to communi-
cate with another, it will search in its trust table for a
completely trusted relationship with the other end-entity
and use the corresponding public key.

Now since CAs don’t participate directly in
end-entity communications, all derivation of trust rela-
tionships is performed by end-entities themselves. Fur-
thermore, since complete trust is only granted to end-
entity public keys whose corresponding private key is
assumed to be held by the end-entity himself, Alice has
only one choice when she wants to send a confidential
message to Bob: she must derive trust in his public key
and encrypt the message to it. One theme of this paper
is that there are alternative infrastructure choices worth
exploring. In particular, imagine replacing the CAs on
the trust path between Alice and Bob with online nodes
and changing the trust relationships along this path to
involve complete rather than partial trust. Alice could
still derive a trust relationship with Bob and encrypt to
him if these nodes published certificates, but she could
just as well encrypt and send the message to the next
node along the trust path, with an attached statement
that says “please forward this to Bob”. If each node did
the same the message would get to Bob securely with-
out any derivation of trust relationships at all.

More abstractly: given any network of trust re-
lationships, nodes could always securely communicate
with other nodes by relying on the involvement of in-
termediaries. Derived trust relationships are a way for
endnodes to improve this process by relying on inter-
mediaries to securely communicate a trust relationship
once which the endnodes can thereafter use directly.
This enables partial instead of complete trust in inter-
mediaries when the derived relationship involves public
keys, and more generally improves the performance,
security, and availability characteristics of an
infrastructure since the overhead of constantly
contacting the intermediaries is removed, and they are
also (at least to some extent) removed as potential
points of failure or attack.

From this perspective, the PKI decision to
minimize interaction with intermediate nodes seems
well-founded. But there are costs associated with end-
to-end derivation of trust relationships as well: for one,
if multiple end-to-end paths share an intermediate path
segment, having each endnode calculate a trust relation-
ship across that segment is redundant. For another,
end-to-end derivation requires each endnode to be ca-
pable of communicating with every other intermediary
in the infrastructure; this level of compatibility might be
difficult to achieve in a heterogenous infrastructure, and
the amount of communication required could be expen-
sive in a large or geographically dispersed system. Fi-
nally, an intermediary node might desire to control an
endnode’s ability to communicate securely, so as to be
able to monitor the endnode’s cryptographic activities,
and instantly revoke the endnode’s access if necessary.
This is not possible if trust paths can be derived be-
tween the endnode and other nodes that exclude the
intermediary. Clearly, weighing all these factors to
select and locate trust derivation mechanisms is a chal-
lenging job, and much of our argument centers on the
claim that conventional PKI has done this poorly.

2.4 Design Methodology

At this point we can suggest a methodology
for designing cryptographic infrastructures. First,
nodes and channels should be identified, and channels
should be classified as either secure enough to use for
establishing primary trust relationships or as vulnerable
and in need of cryptographic protection. Nodes should
then be assigned cryptographic data sufficient to their
capabilities: asymmetric key pairs if they are capable of
managing these and shouldering the computational bur-
den, credentials or symmetric keys otherwise. We
should assume nodes will distribute these data to each
other and assign trust in them, thus establishing their
primary trust relationships. Finally, mechanisms should
be deployed to support the derivation of trust relation-
ships. These should be placed so as to maximize the

1st Annual PKI Research Workshop---Proceedings

101

gains acquired by removing the involvement of inter-
mediaries while trying to avoid requiring derivations be
performed from nodes where this would be difficult or
expensive, or where it would remove nodes that we
would prefer to remain involved. We will apply this
methodology in the next section to analyze the applica-
tion of PKI to enterprise scenarios and to develop our
suggestion for a more effective approach.

3 Delegate Servers

We are using the term ‘enterprise’ for any or-
ganization that has the following characteristics: the
organization has a number of members and an adminis-
trative entity (or perhaps multiple entities, arranged in a
hierarchy); the members would like to have secure
communications with each other and with people out-
side the organization across vulnerable computer net-
works; the members trust the administrative entity to
vouch for the identity of everyone with whom they
communicate, and they also trust that it will not read,
modify, or forge their communications illicitly; each
member has some sort of secure channel with the ad-
ministrative entity, even if this is only the ability to
walk into the administrator’s office and talk to him; and
the administrative entity has the resources to operate a
networked service for the benefit of its members.

In the previous section we presented a meth-
odology for designing cryptographic infrastructures. In
the first section we presented a number of criticisms of
PKI, and presented an alternative approach using what
we called delegate servers. We will now apply our
methodology to the enterprise scenario, showing step-
by-step the construction of a DS-based infrastructure,
and highlighting how it differs from conventional PKI.

3.1 Credentials vs. Private Keys

First, we must identify nodes and channels.
Clearly each member of an enterprise is a node, and we
will make each enterprise’s administrative entity a node
as well (or perhaps a hierarchy of nodes, if this reflects
administrative relationships more adequately). Com-
puter networks will provide channels between all nodes
which are subject to both active and passive attacks, but
we will assume that there are low-performance but
physically secure channels between enterprise members
and administrative nodes, and that there are low-
performance channels protected against at least active
attacks between certain administrative nodes, whether
belonging to the same or different enterprises.

The next step is to assign cryptographic data to
nodes. The PKI approach is to give each administrative
node a key pair and call it a CA, and give each person a
key pair and call him or her an end-entity. Since key

pairs are the most powerful form of cryptographic data,
and since administrative entities can presumably install
their private key once on a high-performance system
and be done with it, we concur in giving key pairs to
administrative nodes. We will call those administrative
nodes that have direct trust relationships with enterprise
members DSs, and those which only have trust relation-
ships with other administrative nodes (in a bit of fore-
shadowing) CAs. As for enterprise members, we reject
PKI’s assertion that key pairs are the best form of cryp-
tographic data for them. Instead, we feel that authenti-
cation credentials such as reusable passwords, one-time
passwords, and biometrics are generally easier for the
enterprise to deploy and easier for people to use.
Moreover, authentication credentials are widely de-
ployed: password authentication systems such as Ker-
beros[28,29], RADIUS[30], LDAP[31,32], or various
other Unix and Windows logon systems exist on most
corporate networks, and a vendor recently shipped more
than ten million of their one-time password devices[33].
The DS infrastructure will thus assume only that people
have some way of authenticating themselves to a ser-
vice; we will let each enterprise, or perhaps even each
person, decide precisely which authentication method
they prefer. Since authentication credentials can only
provide point-to-point secure sessions instead of point-
to-many secure sessions or messages like asymmetric
key pairs can, this decision will have substantial ramifi-
cations. Before moving on, let’s examine it carefully.

To compare credentials against private keys
we need to consider both ease of use and security char-
acteristics, since these tend to trade off against each
other. For example, a general difference between au-
thentication credentials and private keys is that the for-
mer can only be used online and the latter can be used
offline as well. Offline support is an occasional con-
venience for the user, particularly when travelling, but
it’s an even greater convenience for attackers, since
they can steal a private key and use it without generat-
ing an audit trail or monitorable events. Since there are
ways the DS approach could allow a limited degree of
offline operation, we consider the offline exploitability
of private keys a serious deficiency. To compare cre-
dentials and private keys more closely we will examine
three dimensions: portability, universality, and vulner-
ability. By portability we mean the ease with which a
person can carry the data with him. By universality we
mean whether or not the data can be used with any
computer or whether the computer requires special
hardware. By vulnerability we mean how easily the
data can be stolen, taking into particular account active
attacks on authentication protocols and local attacks by
software or hardware on the user’s machine. We will
consider three authentication methods versus three pri-
vate key storage methods: memorized passwords, one-
time password devices, and biometrics, versus private

1st Annual PKI Research Workshop---Proceedings

102

keys stored in files, smart cards, and servers.
Memorized passwords are highly portable,

universal since their entry only requires a keyboard,
relatively invulnerable to active attacks since they can
be used with zero-knowledge password proto-
cols[5,6,24] but might be vulnerable to online guessing,
and vulnerable to local attacks since the password must
be entered and stored in memory somewhere.

One-time password devices[1,2] are reasona-
bly portable, universal since entry of the password only
requires a keyboard, invulnerable to active attacks since
they can be used with zero-knowledge password proto-
cols and have enough entropy to resist online guessing,
and invulnerable to local attacks since the device secret
is not exposed to the local computer.

Biometrics[3] are extremely portable, not uni-
versal since their entry requires special hardware, vul-
nerable to active attacks since they cannot be used with
zero-knowledge password protocols, and vulnerable to
local attacks since the biometric value is typically ex-
posed to the local computer; also, attacks are unusually
damaging since once compromised a biometric cannot
be changed.

Private keys stored in files are difficult to
transport, universal since the file could be copied to any
computer, and highly vulnerable to local attack since
the private key file can be stolen at any time, not just
when the user is performing an operation.

Private keys stored in smart cards are reasona-
bly portable, not universal since not all computers have
smart card readers, and reasonably invulnerable to local
attack since the private key is contained within the card
and probably only vulnerable to hardware attacks such
as timing or power analysis[34,35], or glitching[36]).

Private keys stored on servers and delivered to
authenticated users are as portable and universal as the
underlying authentication technique, and are vulnerable
to local attacks.

In sum: storing private keys on the file system
is inferior in our metrics to downloading private keys
from a server, assuming a universal authentication
technique is used. So with private keys, we essentially
must choose between a nonuniversal solution reasona-
bly secure against local attack (smart cards) and a uni-
versal solution vulnerable to it (server delivery). With
authentication techniques, we can choose a solution that
is both universal and secure against local attack (one-
time password devices). Since there is no single metric
or combination of our metrics in which private keys are
superior to authentication credentials, since private keys
can be exploited offline, and since authentication cre-
dentials are already widely deployed, we believe that
enterprise cryptographic infrastructures should be de-
signed for people with authentication credentials (in-
cluding private keys) instead of solely for people who
have private keys.

3.2 Delegated vs. End-to-End Derivation

Now that we’ve assigned cryptographic data
we can assume nodes distribute these data to each other
along secure channels. In the PKI case that means all
nodes share their public keys with those whom they
want to be trusted by and then construct primary trust
relationships: CAs will trust end-entity keys completely
for the end-entity’s name, and all nodes will trust CA
keys partially for the set of end-entity names over
which they consider each CA authoritative. In the DS
case the only differences are that people share their
credentials-verifying data with their DS instead of shar-
ing their public keys; that if the authentication protocol
for a given credential provides mutual authentication,
then the person constructs their trust relationship with
the DS in terms of that credential instead of the DS’s
public key; and that all trust extended to DSs is com-
plete instead of partial.

Now that we have a structure of primary trust
relationships, we must specify the mechanisms whereby
this structure is used to secure communications. In a
PKI system CAs publish their primary trust relation-
ships as certificates, then do nothing further. End-
entities retrieve these certificates and use them to derive
trust relationships with other end-entities’ public keys
which are then used as inputs to cryptographic algo-
rithms and protocols. We earlier criticized this ap-
proach because it exposes end-entity software to the
specifics of all the PKI systems and data formats in a
potentially large and heterogenous infrastructure, and
because it requires the distribution of significant
amounts of certificates and revocation data, and redun-
dant path computations upon these; below we elaborate
on these points:

To address the first point: a network of pri-
mary trust relationships is similar to a routing network,
in that each link (i.e. cryptographic datum) is labelled
with the addresses (i.e. names) which can be reached
through it. The requirement that end-user software
must construct a complete trust path is analogous to a
requirement that each host network card not only com-
pute the entire route for its packets, but understand each
link-layer protocol along that route. This violates
modularity by making every point on the edge of a net-
work dependent upon every link in the network. The
result is either going to be that new PKIs are prevented
from joining the system and changes are not made in an
effort to keep the system homogenous so that end-user
software will continue to function, or alternatively
every modification will force painful software upgrades
on the user population; we earlier called this situation
one of rigidity and brittleness. We will enumerate the
dependencies that cause this brittleness below:

To construct a certificate path requires retriev-
ing certificates from one or various directories, com-

1st Annual PKI Research Workshop---Proceedings

103

prehending the syntax and semantics of each certificate,
applying a search algorithm appropriate to the PKI’s
trust topology to these certificates to determine candi-
date or partial paths, applying a revocation or validity-
checking method to each certificate along such a path to
determine its validity, and iterating the above processes
until a complete and valid path has been built. This
process is thus dependent upon knowledge of directo-
ries and directory protocols (such as X.500[37],
LDAPv2[31], LDAPv3[32], or various proprietary pro-
tocols); certificate formats (such as X.509[25],
OpenPGP[18], or SPKI[38]) and their semantics (how
they express identities, attributes, and authorizations)
and their many different versions, profiles, policies,
extensions, unique identifiers, signature algorithms,
encoding quirks, etc.[39]; trust topologies (such as bidi-
rectional hierarchies, top-down hierarchies, hybrids
such as bridge structures, meshes, etc.); and revoca-
tion/validity-checking methods (such as CRLs[25,26],
segmented CRLs[25,26], delta-CRLs[40], sliding-
window delta CRLs[41], OCSP[42], DPV/DPD[43],
etc.).

And these are only the complications that per-
tain to path construction; if we consider the manage-
ment protocols between an end-entity and CA we find a
similar raft of competing, complex, and variably-
implemented protocols[44] such as PKCS #10[45] with
SSL[4], PKCS #10 with PKCS #7[46], CMP[47],
CMC[48], and SCEP[49]. In some of the above cases
we can expect convergence and stability as winners are
chosen and interoperability is pursued, but in other
cases, particularly those involving certificate semantics
and revocation strategies, there are substantial unre-
solved theoretical issues. In an environment of such
turmoil and complexity we can’t expect end-entity
software that supports anything but the simplest or most
homogenous PKI deployments to exist for some time.

Even disregarding this complaint, end-to-end
path construction suffers from being inefficient. Many
users, particularly within an enterprise, will share the
same trust anchor points and validation policies, and
thus the certificate paths they construct will be identi-
cal. Path construction is expensive because it requires
retrieving certificates and revocation information from
a potentially wide variety of sources and performing
expensive signature verifications and revocation look-
ups (or online status checks) upon these. Performing
revocation checking on end-user certificates is particu-
larly taxing[50]: end-users generally have transient rela-
tionships with their certificate issuer (people get hired,
fired, demoted, etc.), and their private keys are highly
vulnerable to compromise or loss (people lose their
smart cards, forget their PINs, store their private keys
on unprotected computers, etc.). A large volume of
revocation information will thus be generated, and since
the costs of relying on a compromised private key are

high, end-entity software must frequently download the
latest revocation lists. In the case of a complex trust
topology, these costs are magnified: path construction is
not deterministic but requires sophisticated graph ex-
ploration algorithms that can ignore dead-ends and de-
tect cycles; even if these algorithms work flawlessly
they may have to retrieve and consider a large number
of certificates before determining a path.

So for reasons of overcoupling and ineffi-
ciency, we feel that PKI’s reliance on end-user software
which processes messages from each CA to derive end-
to-end trust relationships is a poor design choice. A
better approach would be to have administrative nodes
derive trust relationships. For one thing, an administra-
tive node could derive these relationships once and then
reuse them. For another thing, administrative nodes are
assumed to be under the control of a competent staff
who can configure them and upgrade their software
quickly, thus managing the complex coupling with the
infrastructure that trust derivation requires. Also, there
will be many fewer administrative nodes in an infra-
structure than end-user nodes, so having to configure
and maintain them is less of a burden. The administra-
tive nodes that end-users have direct access to we have
called DSs. Since end-users must have access to these
trust-derivations to make use of them, it follows that
DSs are where trust derivations should be performed, or
at least made accessible.

Now it should be noted that end-to-end deriva-
tion of trust relationships without online interaction
with intermediaries is impossible in a DS infrastructure,
because of the structure of primary trust relationships:
end-users do not have public keys which can be com-
municated widely, instead they have authentication
methods which can only be used to provide secure ses-
sions with their DS. Thus, trust derivation will not only
begin at DSs, it must terminate at them as well, since it
is impossible to construct a path all the way to an enter-
prise member.

So we have located trust derivation; now the
question is how to perform it. Obviously we should use
PKI! Our criticisms of PKI are that it requires private
keys, that it requires a tight coupling between end-
entities and infrastructure, and that it is inefficient when
deployed to a large community of users with a high
revocation rate. But these criticisms don’t apply to
DSs: for one, DSs already have key pairs, and they are
maintained by a staff which can manage the challenges
involved in software that is tightly coupled to an infra-
structure. Also, there are many fewer DSs then there
are end-users, and DSs are much less likely to be com-
promised than end-users, or to have a volatile relation-
ship with the enterprise, so revocation rates will be
lower. Path construction will thus occur in a much
smaller and more stable environment, and in this envi-
ronment the advantages of PKI come to the fore:

1st Annual PKI Research Workshop---Proceedings

104

namely, communication with and trust in intermediaries
is minimized. Given that cross-enterprise trust relation-
ships will span the public Internet, where traffic analyz-
ers and denial of service attackers may be lurking and
where occasional traffic outages and performance lags
occur; and given that cross-enterprise trust paths might
involve any number of intermediaries (governments,
industry consortiums, public CA maintainers, etc.),
there is clearly value in reducing communication with
these nodes and trust exposure to them.

Within the enterprise, it’s a completely differ-
ent story. Private keys are burdensome for people,
desktop software is so widely deployed that complex
configurations and upgrades are difficult, enterprise
networks are reliable, high speed, and sheltered from
grosser forms of abuse, and though DS involvement
adds a new point of attack and failure to the infrastruc-
ture, it also adds a point of monitoring for the first point
of attack (the user’s credentials). Under the reasonable
assumptions that DSs are highly trusted, that credentials
are highly vulnerable, and that monitoring substantially
increases the ability to detect compromises, determine
their extent, and trace their source, this results in a net
increase in security.

3.3 Delegate Server Infrastructure

Pulling this all together: we are proposing that
DSs should possess key pairs and function as end-
entities in a PKI, and that enterprise members should
authenticate to DSs to secure their communications.
An efficient way to do this is for enterprise members to
perform bulk cryptographic operations involving sym-
metric keys and hash values, then call out to DSs only
to perform asymmetric cryptography upon these. We
will discuss protocol details in the next section. For
now, we should view the result as simply PKI applied
at the granularity of enterprises instead of individuals:
since functioning as a PKI end-entity is difficult for
both the user and his software, and since PKIs with
large numbers of volatile and vulnerable end-entities
have performance problems, we are applying PKI only
at a high level, and extending security down to the user
level with simpler and more user-friendly authentica-
tion mechanisms. Alternatively, we can view DSs as
simply an aggregation technique: a DS allows us to
treat a group of user nodes as a higher-level enterprise
node from the perspective of a higher-level crypto-
graphic infrastructure. Though we’ve claimed this
higher-level infrastructure should be PKI, this is by no

CA

Enterprise Network 1

C1 C2 C3

Enterprise Network 2

C4 C6C5

Derived Trust
DS1 DS2

Internet

Primary Trust Primary Trust

Enterprise 1 Enterprise 2

PKI

Diagram. An example infrastructure showing two enterprises, each with a single DS and three clients. The thick gray lines represent trust rela-
tionships: primary trust relationships link DSs and clients, and DSs and CAs. The DSs construct paths to each other to establish a derived trust
relationship, shown as a broken gray line. The thin black lines represent network communication channels. Clients communicate with their DS
and with other clients in the same enterprise using the enterprise network. Clients communicate across enterprise boundaries using the Internet.

1st Annual PKI Research Workshop---Proceedings

105

means a foregone conclusion, and by no means the only
way we could knit DSs together. If end-user software
treats DS messages as opaque blobs of data, then we
can retain some flexibility for DSs to support whichever
algorithms, formats, and alternative infrastructure
strategies they desire. For example, when asked to en-
crypt a symmetric key to another DS, a DS could in-
stead add a unique identifier to the key and forward it
over a secure channel to the other DS, then return this
identifier to the client as if it was the encrypted key.

From a user’s point of view, a DS infrastruc-
ture would be simple yet effective. Alice could sit
down at any computer that was inside her enterprise’s
network (or perhaps even outside it), configure the
computer with the address of her DS, and then, with
nothing more than her password, achieve confidential
and mutually authenticated communications using
email, file transfers, instant messaging, remote login,
web browsing, videoconferencing, etc.. From an ad-
ministrator’s perspective a DS would be reasonably
easy to manage. The chief task would be to set up pri-
mary trust relationships with users, CAs, and other DSs,
and to configure the DS with whatever knowledge of
PKI systems was necessary to compute paths to other
DSs and end-entities (perhaps knowledge of remote
directories, certification policies, etc.). The chief ongo-
ing maintenance would be the periodic replacement of
DS key pairs and user credentials, and detecting and
responding to credentials compromises.

3.4 Security Criticisms

Several criticisms could be directed against
DSs. For one, authentication methods like passwords
are generally considered much weaker than private
keys[51,52], but DSs would use strong authentication
protocols[5,6,24], forcing attackers to contact the DS to
verify each guess. A DS could detect and rebuff
guesses by slowdown or lockout mechanisms, and
could deter them by attempting to trace the attacker and
respond. Using randomly assigned passwords or en-
forcing a password-strength requirement should give
adequate security for many scenarios. For high secu-
rity, one-time password devices can be used. Since
authentication credentials are easier to use than private
keys and thus easier to deploy widely and since abuse
can be detected and monitored, we believe that in most
scenarios our approach is more secure than giving users
private keys.

We have made much of the ability of DSs to
detect and manage compromises. We will give an ex-
ample of how this might work: Alice would receive a
weekly usage statement from her DS. For each private
key operation Alice had performed, the statement
would list the date, time, IP address of the requestor,
and perhaps a plaintext string generated by Alice’s end-

user software saying things like “Signing document
ContractForBob” or “Decrypting message from Charlie
with subject ‘Meeting notes’”. Alice would review this
usage statement and compare it against a local log of
her activities; if she noticed illicit uses she would con-
tact the DS and repudiate them, then cancel her creden-
tial and begin the process of getting a new one. Alice’s
DS could proactively notify the DSs that were on the
other end of any forged message authentication codes,
faked sessions, or illicitly decrypted messages, or per-
haps could publish a revocation list containing these
which other DSs could check, and if one of them no-
ticed that one of its users’ communications was af-
fected, then this DS would notify the relevant user by
email or phone that certain of his communications had
been compromised. A DS could also monitor requests
in real time to detect suspicious patterns of activity such
as users performing operations during nonbusiness
hours or when on vacation, or the decryption of a trip-
wire message or authentication with a duress code;
when suspicious activity was detected the DS could
prompt the user for a backup password, lock him out,
pretend to be unreachable, trigger an alarm, generate a
warning message to the user’s email address, etc..

This should be contrasted to how a PKI han-
dles compromise or loss of a private key. If Alice’s
private key is stolen covertly, the attacker could decrypt
all messages encrypted to her and could authenticate or
forge her signature without her receiving any indication
that this is occurring. If she does begin to suspect
something, she will have no way of knowing when the
attack occurred and how much data was compromised.
To be safe, she might have to repudiate everything ever
signed under the private key, and consider all messages
encrypted to it as compromised. Since PKI users typi-
cally have long-lived key pairs, this compromise could
affect a year or two’s worth of data. In sum, compro-
mise of a private key is catastrophic in PKI; when using
DSs, compromise of a credential can be quickly de-
tected, limited, and recovered from.

Another security criticism is that DSs provide
a high-value target for attacks. This is true: DSs are
completely trusted, not partially trusted like CAs. If a
DS was compromised, its private key could be used to
decrypt any messages encrypted to its users, forge any
of their signatures, or fake any of their authentications.
To reduce the risk of cryptanalytic attack, DSs should
be given large key pairs[53], and should change them
frequently. DSs should also destroy old private keys
once these reach a certain age, so a compromise of the
entire DS will only expose a limited amount of traffic;
this policy could impact the availability to users of their
own data; we will look at ways to mitigate this shortly.
The impact of compromise would also be lessened if
users availed themselves of protocols with perfect for-
ward secrecy[54,55] when possible.

1st Annual PKI Research Workshop---Proceedings

106

As a matter of prudence DSs should be kept in
a physically secure location, and their private keys and
credentials-verifying data should only be handled
within a tamper-resistant secure coprocessor[21]. This
may not keep them safe from someone willing to take
the DS offline and who has the technical resources and
time to dissect the module and defeat its safeguards, but
it should prevent covert theft of cryptographic data by
attackers with intermittent physical access. When all
these steps are taken (large keys with short lifetimes
that are deleted at a certain age, physical protection of
DSs, hardware protection of cryptographic data), we
believe the security advantages offered by DSs out-
weigh their disadvantages. We also believe that it is
not possible to significantly reduce trust in a DS while
preserving its advantages; some private key delivery
servers store private keys encrypted by user passwords
so as to hide these keys from the server itself, but the
server could always launch an offline attack and proba-
bly recover any user’s password and private key.

3.5 Performance and Privacy Criticisms

A third criticism is that DSs are a potential
performance bottleneck because of the computational
cost of asymmetric cryptography. Given that com-
puters are fast and getting faster, and that accelerator
cards costing less than two-thousand dollars currently
measure their speed in thousands of 1024-bit operations
per second[56], we think DSs could offer adequate per-
formance for a reasonable price. Moreover, centraliz-
ing computation has the advantage that weak client
devices such as PDAs, cellphones, chat devices, web
appliances, etc., would not have to perform the calcula-
tions themselves; they could authenticate once to the
DS using lower bit length or elliptic curve calcula-
tions[57,58], then request multiple different operations
in a single DS session (decrypting dozens of messages,
encrypting and signing others, etc.).

Regardless, if the cost of constantly perform-
ing asymmetric operations was deemed too high, a
community of DSs could use Diffie-Hellman key pairs.
These key pairs would allow each DS in every pair to
perform a single asymmetric calculation to determine
the shared symmetric key it has with its partner, which
it could then cache and reuse. With the appropriate
protocols and data formats these symmetric keys could
be used for point-to-point security; they could not be
used for signatures (i.e. point-to-many message authen-
tication) or anonymous encryption, but in a community
not requiring these operations the use of Diffie-Hellman
key pairs could eliminate asymmetric operations except
for periodic key agreements.

A fourth criticism is privacy. A DS can moni-
tor all operations performed by its users, and thus can
harvest data about whom users communicate with and

when, what their work habits are, etc.. This is unavoid-
able; we can only hope the security benefits of monitor-
ing and the ease of use benefits of DSs overwhelm this
deficiency. Theoretically, users could contact DSs us-
ing pseudonyms and untraceable channels, and could
distribute their operations under multiple different
names and DSs, and perhaps even blind[59,60] the data
they send to a DS so that it could not correlate user op-
erations with intercepted communications, but users
capable of all this probably don’t need DSs in the first
place. A more feasible approach to privacy might be
for a secure coprocessor at the DS to encrypt audit trail
records so as to keep them hidden even from the DS
administrator, and only make the relevant records avail-
able to authenticated users[22].

3.6 Communications Criticisms

The most serious criticisms involve the online
communications required between users and DSs. The
channel between a user and DS may be subject to denial
of service attacks or traffic analysis[20], and may suffer
performance or availability problems. Inside an enter-
prise network we believe these are minor issues. On
the Internet, DSs should not be used for important time-
critical communications, since an attacker or transient
network failure could render the DS unreachable for a
period of time. Internet DSs should also not be used
when extremely high performance is required, or when
the mere fact that a communication is occurring needs
to be hidden. Anyone designing DSs for Internet use
should take extreme care that the protocols are not ex-
ploitable and that they offer a measure of resistance to
denial of service attempts (by using stateless cookies,
for example[61]). Anyone deploying DSs on the Inter-
net should take measures such as deploying redundant
DSs in separate locations with high-speed network ac-
cess and ensuring a competent staff is on hand to ward
off crises.

Another concern with online communications
is that users cannot secure new communications or read
encrypted old ones when they are in environments
without network access. One partial solution to this,
and to the latency DSs introduce into asymmetric op-
erations, is a persistent cache of symmetric keys and
hash values stored on the user’s machine. Whenever a
DS is contacted to perform a decryption or verification,
the result would be stored in this cache, and from then
on every time the user opened the same file or read the
same email these values would be fetched locally. The
cache would be encrypted, so that whenever a user
logged onto his computer he would have to contact the
DS to decrypt it. This would keep data in a stolen
computer secure and help detect illicit access (for ex-
ample, by a coworker who knew your password and
read your emails while you were at lunch).

1st Annual PKI Research Workshop---Proceedings

107

If you knew you were going to be offline for a
period of time, you could leave the cache in a decrypted
state so that you could continue to access secure emails
and files without DS contact. Another benefit of this
cache is that it would keep alive messages that were
encrypted to private keys that the DS had expired. To
ensure that the cache itself does not expire, it could be
encrypted at the DS under a special long-term key, or
alternatively, every time the user contacted the DS the
cache could be re-encrypted under the DS’s current
private key. To reduce the dangers of cache compro-
mise, users should be able to review and purge the con-
tents of their cache. This cache would not allow users
to perform new operations when offline, but since the
user is offline and thus presumably not in a position to
communicate anyways, we consider this acceptable.

3.7 Delegate Server Interoperability

Despite all our arguments, DSs are inappropri-
ate for some environments. If a user does not com-
pletely trust anyone but himself, if offline operation is
important or constant contact with a DS is too vulner-
able, inefficient, or unreliable, or if no administrators
are willing to maintain a DS for this user, then he will
have to possess his own key pair and interact with PKI
on his own. Interoperability between non-DS and DS
users is assured because a non-DS user can be viewed
as merely a special-case DS: a DS’s key pair is used on
behalf of many people; a non-DS user’s key pair is used
on behalf of only one (himself).

In some environments, users may wish to use
DSs for some operations but not all. For example, a
user may wish to manage his own key pair but use a DS
for public key operations (i.e. encrypting and verify-
ing), thus freeing himself from the burden of path com-
putation. Alternatively, he might feel more secure us-
ing the DS’s key pair, but prefer to establish trust rela-
tionships with others himself.

3.8 Alternatives

Our criticisms of PKI are not novel. Various
proposals have attempted to address the vulnerability
and inconvenience of private key transport and the dif-
ficulty and expense of path construction. One approach
is not to use PKI at all, but to use an infrastructure like
Kerberos[28,29], which is entirely based around sym-
metric key trust relationships. We feel asymmetric
cryptography has significant advantages in minimizing
the trust and availability requirements placed on infra-
structure nodes. However, there is a proposal to use
asymmetric cryptography for cross-realm authentica-
tion[62] in Kerberos which would realize these advan-
tages but still allow users to authenticate to their local
server using passwords. The resulting hybrid infra-

structure is quite similar to what we are proposing. The
difference is that Kerberos only supports the establish-
ment of symmetric keys between clients, whereas DSs
allow clients to perform asymmetric operations such as
signatures or anonymous encryptions. Also, whereas
Kerberos requires users to operate under an online
server, DSs are optional, and DS clients could seam-
lessly interoperate with conventional PKI users.

Turning now to proposals for improving PKI,
one approach to private key transport that we have al-
ready mentioned is the use of private key delivery serv-
ers[16], which make the private key more transportable
but leave it vulnerable to theft and offline abuse. An-
other approach is to use proxy certificates[63], which
are issued under a user’s regular certificate or under
another proxy certificate but are only valid for a limited
period of time and for a restricted set of uses. The gen-
eration of proxy certificates could be performed by the
user on his local machine or by an online service that
issues proxy certificates to users under proxy certifi-
cates that users had previously issued to it[64]. The
advantage of the proxy certificate approach is that long-
lived end-entity private keys can be kept in a highly
secure environment while the more exposed proxy cer-
tificate private keys are given limited validity periods
and privileges so as to minimize the damage done by a
compromise. Nonetheless, like any approach that gives
users control of private keys, the security benefits of
auditing and instant revocation are not available; in
addition, the transient nature of proxy certificates
makes them unsuitable for message confidentiality.
Short-lived certificates issued by online CAs[65] have
the same disadvantages, but eliminate the need for
long-lived end-entity certificates, while requiring
greater trust in the online service since it possesses a
long-lived CA private key instead of short-lived proxy
keys issued to it by various users.

An approach more like ours is the use of vir-
tual smart card servers[66], where each user’s private
key is stored at a server which the user authenticates to
and requests operations from. These servers provide
the same portability, auditing, and message confidenti-
ality benefits as DSs. As for path construction, proto-
cols like DPV/DPD[43] and XKMS[67] have been pro-
posed to allow clients to offload path construction to
servers, and we will assume that these work adequately.

Now if virtual smart card servers in conjunc-
tion with path construction servers accomplish the same
things as DSs but work with current PKI protocols and
data formats, isn’t that good enough? Why bother to
add explicit support for DSs? For a few reasons: For
one, storing end-entity private keys on a server abuses
certificate semantics: someone verifying an end-entity
signature will have no way of knowing that the corre-
sponding private key was actually in the possession of a
third party. This is a significant fact and should be

1st Annual PKI Research Workshop---Proceedings

108

somehow represented. For another, a virtual smart card
server requires a separate certificate for each user; ex-
changing and updating these is inefficient and will re-
veal much information about enterprise members, in-
cluding their affiliation with the enterprise, their contact
information, and the revocation status of their private
keys (which an attacker can check to determine whether
his compromise of a private key has been detected, for
example). A DS would need only a single certificate to
represent an entire enterprise, and wildcards within the
name forms (such as DNS names, IP addresses, tele-
phone numbers, etc.) would not reveal anything about
the enterprise’s internal structure.

Another problem with current PKI technolo-
gies is that you can only revoke keys from a particular
date and time, you cannot revoke particular operations.
A DS could allow the user to sift through audit trails
after a compromise and revoke private key operations
on a fine-grained basis. Another advantage of DSs is
that if DS messages are treated as opaque by clients,
then DSs acquire significant flexibility in terms of algo-
rithms, certificate formats, etc., and clients are shielded
from these details. For all these reasons (improved
semantics, fewer certificates, fine-grained revocation,
shielding client software from infrastructure), we be-
lieve that it is worthwhile to insert DS support into cur-
rent PKI protocols and data formats. We will turn our
attention to this in the next section.

4 Protocols and Data Formats

Below is an example protocol demonstrating
DS-secured messages. We assume all communications
between clients and DSs are mutually authenticated and
confidential.

C1, C2: end-users
S1, S2: Delegate Servers for the respective end-users
D1, D2: Delegate Servers' private keys (RSA-like)
E1, E2: Delegate Servers' public keys (RSA-like)
k: symmetric encryption key
m: message
h(): hash function
k(): symmetric encryption function
D1(): asymmetric signature function
E2(): asymmetric encryption function

Signed Message
C1 → S1: h(m),C1
C1 ← S1: D1(h(m),C1)
C1 → C2: m,D1(h(m),C1)
C2 → S2: h(m),C1,D1(h(m),C1)
C2 ← S2: true|false

Encrypted Message
C1 → S1: k,C2
C1 ← S1: E2(k,C2)
C1 → C2: k(m),E2(k,C2)
C2 → S2: C2,E2(k,C2)
C2 ← S2: k

Signed and Encrypted Message
C1 → S1: h(m),C1,k,C2
C1 ← S1: D1(h(m),C1),E2(k,C2)
C1 → C2: k(m,D1(h(m),C1)),E2(k,C2)
C2 → S2: C2,E2(k,C2)
C2 ← S2: k
C2 → S2: h(m),C1,D1(h(m),C1)
C2 ← S2: true|false

If the sending and/or receiving clients were not
using DSs, the messages sent between clients would be
the same but the asymmetric keys D1 and E2 might
refer to the sender’s private key or the receiver’s public
key instead of to the corresponding DS keys, and clients
could perform the processing themselves without en-
gaging DSs. In fact, clients could always perform pub-
lic key operations (i.e. encrypting and verifying) with-
out engaging their DSs, so we should be very clear that
only private key operations are rigorously auditable.

When DSs are employed, clients need only a
minimal understanding of the DS data blocks. From the
perspective of client software, the protocol looks like:

Signed and Encrypted Message (client perspective)
C1 → S1: h(m),C1,k,C2
C1 ← S1: X,Y
C1 → C2: k(m,X),Y
C2 → S2: C2,Y
C2 ← S2: k
C2 → S2: h(m),C1,X
C2 ← S2: true|false

This gives the protocol a pluggable structure,

allowing the DS blocks to change without affecting
client software (to incorporate a new asymmetric algo-
rithm or data format, for example).

4.1 Operation Certificates

To emphasize the differences between the DS
and non-DS approaches, consider what a non-DS
signed and encrypted message would look like:

Signed and Encrypted Message (without DSs)
C1 → C2: k(m,D1(h(m)),E2(k)

1st Annual PKI Research Workshop---Proceedings

109

First, since the asymmetric keys uniquely
identify end-entities, there is no need to bind sender or
receiver names into the data format. Second, there are
obviously no sideband protocol exchanges with DSs.
When retrofitting DS support, then, we must determine
some standard representation of the DS signature and
encryption blocks X and Y which will allow us to rep-
resent operations and the names they apply to in a
packaged format whose processing can be delegated to
DSs.

One way to address these tasks is to embed
names into the data structures used to represent signed
hashes or encrypted keys. A name that was bound to a
signature would be a declarative statement from the
signer about whom the signature was produced on be-
half of. A name that was bound to an encryption would
be an imperative statement to the encryptee about
whom the encrypted data is destined for.

For example, to produce a delegated XML
Signature[68], a client could authenticate to his DS and
forward it a ds:SignedInfo containing the hash values
the client would like signed. The DS would add a
SAML[9] Authentication Assertion as a
ds:SignatureProperty, then sign the resultant
ds:SignedInfo and return a ds:Signature to the client.
The Authentication Assertion would name the client,
the authentication method he used, and advice or condi-
tions relating to these. To validate an XML Signature
using a DS, a client could validate each hash within the
ds:SignedInfo himself, then forward the ds:Signature
structure to his DS and receive back a boolean.

To produce an XML Encryption[69] targeted
to a DS client, one would encrypt some data with a
symmetric content encryption key, then generate an
XACML[70] xacml:policyStatement that expresses to
whom you would like the content encryption key deliv-
ered, and encrypt this xacml:policyStatement with a
symmetric policy encrytion key. Then one would gen-
erate a symmetric key encryption key and encrypt both
the content and policy encryption keys with it, and fi-
nally encrypt the key encryption key with the DS’s pub-
lic key. The client who received all these data would
authenticate to his DS and forward them to it. The DS
would recover the content encryption key and the
xacml:policyStatement, then evaluate the policy state-
ment against the client’s Authentication Assertion, and
return the content encryption key to the client if access
is permitted. The use of an access control language like
XACML would allow the sender to specify the intended
recipients in sophisticated terms (i.e.: “give this key to
Bob or Carol, but only if they have a Top Secret clear-
ance, and only if they authenticate with a hardware to-
ken”).

To verify a DS-produced signature, or encrypt
to a DS client, one must be capable of determining the
DS public key. We could incorporate a flag into a

ds:KeyInfo to represent DS public keys, and perhaps
even add an xacml:policyStatement into a ds:KeyInfo
to express to whom and for what the key should be used
for. Someone wanting to encrypt a message to Bob
could perform an XKMS[67] query and receive back an
explicitly flagged DS key, and would thus know to em-
bed an xacml:policyStatement into the encryption to
represent the intended final recipient.

But XKMS is only intended as an interface to
PKI, so this raises the question of how we can represent
DSs within PKI data formats. For example, we would
need to modify the X.509 certificate format to support
DS certificates as opposed to CA or end-entity certifi-
cates. DS certificates would be like CA certificates in
that they are authoritative over some group of users
(they should support the name constraints extension to
express which group), but like end-entity certificates in
that the corresponding private key can perform signa-
tures or be encrypted to directly. We could add a boo-
lean into the basic contraints extension to identify DS
certificates (which might also be CA certificates, allow-
ing a DS to not only perform operations for clients, but
perhaps issue these clients short-lived certificates).

We might also wish to retrofit DS support into
PKI protocols that don’t use XML, such as SSL[4] or
S/MIME[71]. As we recall, adding DS support requires
a standard format for representing signature and
encryption operations with names bound into them. In
XML there are standard formats for representing signa-
tures and encryptions which we could easily add names
into. In the X.509 PKI world there are not; however,
instead of binding names into operations, we can add
operations into bound names. In other words, we can
generalize the notion of certificates so that instead of
only binding names to public keys, certificates can bind
names to hashes as well, and thus represent delegated
signatures, and we can also invert the notion of signed
certificates to yield encrypted certificates, which are
imperative requests that a binding should be made to
exist in the future, instead of declarative assertions that
a binding did exist in the past.

In more detail, consider an X.509 end-entity
certificate. Typically such a certificate is said to bind a
name to a key. In truth, it binds not only a name, but
also a serial number so the certificate can be referred to
later and possibly revoked, a validity interval which
delimits the binding in time, and a policy which clari-
fies the binding’s semantics. And when we say that
these things are bound to a key, we really mean that
they are bound to the particular operations performed
by this key: that is, that they are attributes of the signa-
tures which it verifies and the encryptions it can be used
to produce. In other words, an X.509 certificate is a
mechanism for binding (within the limits of a validity
period and policy) an end-user name and a serial num-
ber to operations as expressed through the indirection of

1st Annual PKI Research Workshop---Proceedings

110

a public key.
It seems logical, then, to use certificates to

bind these same attributes directly to particular opera-
tions. For example, consider an end-entity who wants
to sign a document with his private key. He could hash
the document and then collect this hash along with a
serial number, a validity interval, and a policy, and then
use his private key to sign these, producing a signature
operation certificate (OC). The serial number would
allow him to later revoke this particular signature by
including its number in a revocation list. The validity
interval would allow him to represent the time period
over which he is asserting this binding. The policy
would allow him to express the particular semantics of
his signature on this document. Someone verifying this
signature should validate the entire certificate chain,
including first the CA certificates, then the end-entity
certificate, and finally the OC, before extracting and
checking the hash value inside the OC.

An encryption OC would be similar to a signa-
ture OC but would contain a symmetric encryption key
instead of a hash value, and would be encrypted to the
target’s public key, instead of signed by the issuer’s
private key. The policy identifier would identify a re-
quest instead of a statement: that is, instead of a state-
ment from the signer saying “I authenticated Alice to
degree X and assume liability Y for the assertion that
this data is associated with her”, it would say “Please
authenticate Bob to degree X and only deliver this data
to him if you are willing to assume liability Y”. One
difference between signature and encryption OCs is that
signature OCs represent past occurrences, whereas en-
cryption OCs represent conditions on future occurences
(mirroring the distinction between SAML assertions
and XACML policies). Thus while signature OCs
would be similar to end-entity certificates in that they
bind a particular name, encryption OCs would be like
CA certificates in that they might bind a range of names
(using the name constraints extension), representing all
the users who would be allowed to decrypt this data.

Looking back at our protocol diagrams, the
D1(h(m),C1) blocks represent signature OCs, and the
E2(k,C2) blocks represent encryption OCs. The chief
problem with OCs is that they don’t yet exist: current
cryptographic protocols and data formats such as
CMS[72] (used by the S/MIME email security stan-
dard) or TLS[73] (derived from SSL) would need sur-
gery to support them. Below we will consider exactly
what this entails.

A signature OC will be mostly identical to an
end-entity OC except that the issuer field will refer to
the end-entity certificate or DS certificate that issued it,
and the subjectPublicKeyInfo field will be replaced by
digestAlgorithm and digestValue fields. An encryption
OC will be a little different; in particular, its top-level
structure will be something like this:

EncryptionOperationCertificate ::= Sequence{
 encryptedCertificate EncryptedCertificate
 encryptionAlgorithm AlgorithmIdentifier
 encryptedKey BIT STRING
 target TargetIdentifier }

Instead of this:

Certificate ::= Sequence{
 tbsCertificate TBSCertificate
 signatureAlgorithm AlgorithmIdentifier
 signatureValue BIT STRING}

 It may be desirable to support signature and
encryption OCs that have both an issuer and a target, so
that hash values and encryption keys could be transmit-
ted securely using key agreement algorithms, and this
could be done with straightforward extensions to the
EncryptionOperationCertificate.

Clients could create and process OCs on their
own or by authenticating to DSs and engaging in a re-
quest/response protocol. We could use TLS for confi-
dential and authenticated session establishment, and
modify it to support SRP for mutual authentication[74]
between the client and server. The request/response
protocol would allow clients to request signature OCs
along with the certificate chains leading up to them by
sending hash values and to-be-signed attributes to DSs,
and to request encryption OCs by sending symmetric
encryption keys and the names of intended recipients to
DSs. We would also want to allow clients some input
into the validity and policy fields of the OCs, and allow
clients to retrieve the certificate chain up to their DS in
a separate step from procuring an OC, for use in proto-
cols where one party sends a certificate chain to a sec-
ond who then encrypts something to the first’s certifi-
cate (such as TLS). To process OCs (i.e. to verify sig-
natures and extract symmetric encryption keys) would
involve similar protocol exchanges.

OCs would work with revocation-checking
mechanisms such as CRLs and OCSP. The issuer
(whether an end-entity or DS) would be capable of re-
voking signature OCs, and the target (whether an end-
entity or DS) would be capable of revoking encryption
OCs. Reason codes should be added that are suitable
for use by DSs and end-entities. For example, DSs
should be able to specify that an operation was revoked
because it was accessed using stolen credentials. Revo-
cation-checking of OCs would not need to take place
for online operations where timeliness was guaranteed
(such as verifying a signature OC on a nonce). For
operations where the overhead of retrieving and check-
ing CRLs is too great, revocation-checking can be de-
ferred and done periodically: for example, a DS might
download all CRLs only at midnight every day and then

1st Annual PKI Research Workshop---Proceedings

111

compare them against its audit logs to determine if any
of its users were affected. For point-to-point operations
(i.e. operations involving key agreement, or where sig-
nature and encryption OCs have been cryptographically
linked in some way), the DSs can notify only the af-
fected parties instead of having to make the revocation
public.

4.2 Using Operation Certificates

Finally, we need to add OCs into application
protocols and data formats. These formats already have
ways of representing signed hashes and encrypted keys,
and we will simply replace these older representations
with the corresponding OCs. For example, a CMS
SignerInfo could be changed from something like this:

SignerInfo ::= Sequence{
 version CMSVersion
 sid SignerIdentifier
 digestAlgorithm DigestAlgorithmIdentifier
 signedAttrs SignedAttributes
 signatureAlgorithm SignatureAlgorithmIdentifier
 signature SignatureValue
 unsignedAttrs UnsignedAttributes}

To this:

NewSignerInfo ::= Choice{
 oldSignerInfo SignerInfo
 opSignerInfo OperationSignerInfo}

OperationSignerInfo ::= Sequence {
 version CMSVersion
 signOpCert SignatureOperationCertificate
 unsignedAttrs UnsignedAttributes}

The sid, digestAlgorithm, signatureAlgorithm,

and signature fields would all be replaced by the signa-
ture OC, and the signed attributes could be incorporated
into the OC as extensions. To add DS-based encryption
to CMS, we could extend the RecipientInfo type with:

OperationRecipientInfo ::= Sequence{
 version CMSVersion
 encryptOpCert EncryptionOperationCertificate}

 To add DS support to TLS we could similarly
replace the Signature structure with a signature OC and
replace the EncryptedPreMasterSecret with an encryp-
tion OC. On these lines, we believe any public key
protocol or format (such as ssh[75], IPsec[76],
OpenPGP[18], etc.) could be retrofitted to use OCs.

In sum, OCs are a powerful primitive even
apart from DSs. OCs extend certificate validation to
the level of particular operations, allowing policies and

validity periods to be bound to operations, signed and
encrypted attributes to be incorporated into them, and
revocation-checking to occur upon them. By defining a
standard structure that uses asymmetric keys to secure
this information and bind it to hash values and symmet-
ric keys, protocol designers are given a higher-level
building block that makes their job easier. With DSs,
OCs become even more valuable, since OCs allow the
binding of names to particular operations and can be
easily passed back and forth between clients and DSs
and embedded in protocols.

It may be objected that we are abusing the no-
tion of certificates, but we feel that we are generalizing
it in a coherent way. A conventional certificate authen-
ticates a binding between attributes such as names and a
public key and qualifies this binding via policies, valid-
ity periods, etc.. This public key can then be used to
produce authenticated or confidential bindings between
these attributes (or some subset of them) and further
data. In the case where an authenticated binding is pro-
duced between attributes and another public key, this is
called a certificate.

In our opinion, this is a restrictive notion of
certificates: the idea of a qualified binding between
attributes and data is sufficiently important and general
that the same data format and terminology should be
used when binding attributes to data that are not public
keys (i.e. OCs) and when producing confidential in-
stead of authenticated bindings (i.e. encryption OCs
versus signature OCs). By treating all such bindings
consistently, the scope of concepts such as revocation-
checking, policies, and validity intervals is increased,
and the bindings are packaged into a standard format
which makes it easy to reuse them in the context of
different protocols and easy to delegate their processing
to DSs. This approach seems promising, but it clearly
needs a much more thorough analysis and explication
then we have provided here.

5 Conclusion

Delegated cryptography splits the problem of
end-to-end security into an intra-enterprise portion that
can be addressed with authentication techniques and an
inter-enterprise portion that can be addressed with PKI.
This exploits the strengths and avoids the weaknesses
of both technologies: Authentication techniques are
easy to use and widely deployed, but can only secure
interactive sessions between two parties. PKI can se-
cure sessions or messages between a large number of
parties, but imposes complex and difficult burdens on
these parties. By using authentication techniques to
access a PKI-enabled server we can confine the burdens
of PKI to a single point within an enterprise while mak-
ing its benefits available throughout.

1st Annual PKI Research Workshop---Proceedings

112

There are proposals to improve authentication
techniques by having one authentication stand in for
several (single sign-on), and to improve PKI through
piecemeal delegation of various functions (private key
storage, path construction, etc.). We believe these pro-
posals are in the right direction but don’t go far enough.
We think authentication should be used to access more
than simply further authentications, and that delegation
should be pushed to its logical extreme. Taken to-
gether, these points indicate an infrastructure that would
be easy to use, easy to write software for, full-featured,
highly secure, and efficient, and could be built on top of
the data formats and protocols in use today. We en-
courage and hope to participate in further research in
this direction.

Acknowledgements

 We thank Sayan Chakraborty and the anony-
mous reviewers for their encouragement and helpful
comments on the ideas and organization of this paper.

Notes

1 Actually, we could expect much more from a crypto-
graphic infrastructure, and from cryptography in gen-
eral: we might want notary, timestamping, and nonre-
pudiation services, protocol support for things like vot-
ing, simultaneous contract signing, and digital cash,
steganography and watermarking functionality, anony-
mous communications, etc.[77]. Here we focus on the
more prosaic objectives of confidentiality and authenti-
cation, but it would be interesting to explore more ex-
otic uses of DSs.

2 Much of our argument against conventional PKI, and
our proposed solution, was anticipated by Don Davis’
paper “Compliance Defects in Public-Key Cryptogra-
phy”[78]. In particular, after reviewing PKI’s advan-
tages in reducing trust, availability, performance, and
reliability demands on the infrastructure, he points out
that “these attractive features come at the cost of trans-
ferring corresponding burdens onto users”. His sugges-
tion, similar to ours, is a hybrid system: “We can com-
bine both cryptosystems’ administrative benefits, by
restricting public-key deployment to servers, and by
using symmetric-key protocols for desktop clients”.
This paper is highly worth reading, and provides further
evidence for many of our arguments.

3 Here as elsewhere we assume that principals possess
global names and form their trust relationships in terms
of these. This approach has been criticized: often the
name of some party to a communication is less relevant

than some attribute of this party (such as his organiza-
tional affiliation, security clearance, credit rating,
etc.)[38]. If trust relationships are expressed and calcu-
lated in terms of names then some other mechanism
(such as an access control list) must be used to map
identities to these authorizations or attributes, which is
both clumsy and a threat to privacy since user identities
are exposed in situations where they are not strictly
necessary. We agree with this criticism, but we believe
the debate is orthogonal to our approach: DSs could
wield attribute or authorization certificates just as easily
as identity certificates. For simplicity of presentation
we will continue to speak in terms of names but no loss
of generality should be assumed.

References

[1] R. Owens, One-Time Passwords: Functionality and
Analysis, October 2000
http://rr.sans.org/authentic/onetime2.php

[2] N. Haller, C. Mertz, P. Nesser, and M. Straw, RFC
2289: A One-Time Password System, February 1998
http://www.ietf.org/rfc/rfc2289.txt

[3] A.K. Jain, R. Bolle, and S. Pankanti, Biometrics:
Personal Identification in Networked Society, Kluwer,
1991
http://www.wkap.nl/prod/b/0-7923-8345-1

[4] A.O. Freier, P. Karlton, and P.C. Kocher, The SSL
Protocol Version 3.0, November 1996
http://www.netscape.com/eng/ssl3/draft302.txt

[5] T. Wu, The Secure Remote Password Protocol,
Proceedings of the 1998 Internet Society Network and
Distributed System Security Symposium, March 1998
http://www-cs-students.stanford.edu/~tjw/srp/ndss.html

[6] T. Wu, RFC 2495: The SRP Authentication and
Key Exchange System, September 2000
http://www.ietf.org/rfc/rfc2945.txt

[7] Microsoft .NET Passport
http://www.microsoft.com/myservices/passport/security.doc

[8] The Liberty Alliance Project
http://www.projectliberty.org/

[9] P.H. Baker, E. Maler, et. al, Assertions and Proto-
col for the OASIS Security Assertion Markup Language
(SAML)
http://www.oasis-open.org/committees/security/docs/

[10] W. Diffie and M.E. Hellman, New Directions in
Cryptography, IEEE Transactions on Information The-

1st Annual PKI Research Workshop---Proceedings

113

ory, 22, 1976
http://citeseer.nj.nec.com/diffie76new.html

[11] L.M. Kohnfelder, “Toward a Practical Public-Key
Cryptosystem”, B.Sc. thesis, MIT Department of Elec-
trical Engineering, 1978

[12] C. Daniel, Internet Security cannot be left to tech-
nologists alone, Financial Times, September 2001
http://specials.ft.com/ftit/FT34WRFC6RC.html

[13] J. Lewis, PKI Won’t Hit The Mainstream Until
Vendors Reduce Complexity, InternetWeek, January
2001
http://www.internetweek.com/columns01/lewis010801.htm

[14] B.D. Reimers, PKI’s Are Still Tough To Deploy,
InternetWeek, April 2001
http://www.internetweek.com/security/secure040901-1.htm

[15] GAO, Information Security: Advances and Re-
maining Challenges to Adoption of Public Key Infra-
structure Technology, Item No. 0546-D; SuDocs No.
GA 1.13:GAO-01-277, February 2001
http://www.gao.gov/new.items/d01277.pdf

[16] A. Arsenault and S. Farrell, RFC 3157: Securely
Available Credentials – Requirements, August 2001
http://www.ietf.org/rfc/rfc3157.txt

[17] S. Garfinkel, PGP: Pretty Good Privacy, O’Reilly
& Associates, 1995
http://www.oreilly.com/catalog/pgp/

[18] J. Callas, L. Donnerhacke, H. Finney, and R.
Thayer, RFC 2440: OpenPGP Message Format, No-
vember 1998
http://www.ietf.org/rfc/rfc2440.txt

[19] A. Whitten and J.D. Tygar, Why Johnny Can’t
Encrypt: A Usability Evaluation of PGP 5.0, Proceed-
ings of 8th USENIX Security Symposium, August 1999
http://www-2.cs.cmu.edu/~alma/johnny.pdf

[20] J. Raymon, Traffic Analysis: Protocols, Attacks,
Design Issues, and Open Problems, Workshop on De-
sign Issues in Anonymity and Unobservability, 2000
http://citeseer.nj.nec.com/454354.html

[21] S.W. Smith and S.H. Weingart, Building a High-
Performance, Programmable Secure Coprocessor,
Computer Networks (Special Issue on Computer Net-
work Security), 31, pp. 831-860, April 1999
http://www.research.ibm.com/secure_systems/papers/arch.pdf

[22] S.W. Smith and D. Safford, Practical Private In-
formation Retrieval with Secure Coprocessors, IBM
Research Report RC-21806, July 2000

http://www.research.ibm.com/secure_systems/papers/rc21806.pdf

[23] J. Daugman, High Confidence Visual Recognition
of Persons by a Test of Statistical Independence, IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, v. 15 no. 11, pp. 1148-1161, November 1993

[24] S.M. Bellovin and M. Merritt, Encrypted Key Ex-
change: Password-Based Protocols Secure Against
Dictionary Attacks, Proceedings of the IEEE Sympo-
sium on Research in Security and Privacy, May 1992
http://www.research.att.com/~smb/papers/neke.ps

[25] ITU-T Rec. X.509, The Directory: Public-key and
attribute certificate frameworks, March 2000
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&pa
rent=T-REC-X.509

[26] R. Housley, W. Ford, W. Polk, and D. Solo, Inter-
net X.509 Public Key Infrastructure Certificate and
CRL Profile, January 1999
http://www.ietf.org/rfc/rfc2459.txt

[27] R. Housley and Tim Polk, Planning for PKI, John
Wiley & Sons, Inc., 2001
http://www.wiley.com/cda/product/0,,0471397024,00.html

[28] J.G. Steiner, B.C. Neuman, and J.I. Schiller, Ker-
beros: An Authentication Service for Open Network
Systems, Proceedings of the Winter 1988 Usenix Con-
ference, pp. 191-202, February 1988
ftp://athena-dist-mit.edu/pub/kerberos/doc/usenix.ps

[29] J. Kohl and B.C. Neuman, RFC 1510: The Kerbe-
ros Network Authentication Service (V5), September
1993
http://www.ietf.org/rfc/rfc1510.txt

[30] C. Rigney et. al, RFC 2865: Remote Authentica-
tion Dial In User Service, June 2000
http://www.ietf.org/rfc/rfc2865.txt

[31] W. Yeong, T. Howes, and S. Kille, RFC 1777:
Lightweight Directory Access Protocol, March 1995
http://www.ietf.org/rfc/rfc1777.txt

[32] M. Wahl, T. Howes, and S. Kille, RFC 2251:
Lightweight Directory Access Protocol (v3), December
1997
http://www.ietf.org/rfc/rfc2251.txt

[33] RSA Security Inc., Delivery of Ten Millionth RSA
SecurID Authenticator, Press Release, December 2001
http://www.rsasecurity.com/news/pr/011212.html

[34] P. Kocher, Timing Attacks on Implementations of
Diffie-Hellman, RSA, DSS, and Other Systems, Ad-
vances in Cryptology–CRYPTO ’96, Springer LNCS

1st Annual PKI Research Workshop---Proceedings

114

1109, pp. 104-113, 1996
http://www.cryptography.com/resources/whitepapers/TimingAttacks.
pdf

[35] P. Kocher, Differential Power Analysis, Advances
in Cryptology-CRYPTO ’99, Springer LNCS 1666, pp.
388-397, 1999
http://www.cryptography.com/resources/whitepapers/DPA.pdf

[36] R.J. Anderson and M.G. Kuhn, Tamper Resis-
tance – A Cautionary Note, Proceedings of the Second
Usenix Workshop on Electronic Commerce, pp. 1-11,
November 1996
http://www.cl.cam.ac.uk/~mgk25/tamper.html

[37] ITU-T Rec. X.500, The Directory: Overview of
concepts, models and services, February 2001
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&pa
rent=T-REC-X.500

[38] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B.
Thomas, and T. Ylonen, RFC 2693: SPKI Certificate
Theory, September 1999
http://www.ietf.org/rfc/rfc2693.txt

[39] P. Gutmann, X.509 Style Guide, October 2000
http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt

[40] P.C. Van Oorschot, W.S. Ford, S.W. Hillier, and
J. Otway, Method for efficient management of certifi-
cate revocation lists and update information, U.S. Pat-
ent 5,699,431, December 1997
http://www.uspto.gov/

[41] D.A. Cooper, A More Efficient Use of Delta-
CRLs, Proceedings of the 2000 IEEE Symposium on
Security and Privacy, pp. 190-202, May 2000
http://csrc.nist.gov/pki/documents/sliding_window.pdf

[42] M. Myers, R. Ankney, A. Malpani, S. Galperin,
and C. Adams, RFC 2560: X.509 Internet Public Key
Infrastructure Online Certificate Status Protocol –
OCSP, June 1999
http://www.ietf.org/rfc/rfc2560.txt

[43] D. Pinkas, Internet Draft: Delegated Path Valida-
tion and Delegated Path Discovery Protocols, work in
progress, July 2001
http://www.ietf.org/internet-drafts/draft-ietf-pkix-dpv-dpd-00.txt

[44] R. Housley and T. Polk, Planning for PKI, John
Wiley & Sons, Inc., chapter 11, 2001
http://www.wiley.com/cda/product/0,,0471397024,00.html

[45] B. Kaliski, RFC 2314: PKCS #10: Certificate
Request Syntax Version 1.5, March 1998
http://www.ietf.org/rfc/rfc2314.txt

[46] B. Kaliski, RFC 2315: PKCS #7: Cryptographic
Message Syntax Version 1.5, March 1998
http://www.ietf.org/rfc/rfc2315.txt

[47] C. Adams and S. Farrell, RFC 2510: Internet
X.509 Public Key Infrastructure Certificate Manage-
ment Protocols, March 1999
http://www.ietf.org/rfc/rfc2510.txt

[48] M. Myers, X. Liu, J. Schaad, and J. Weinstein,
RFC 2797: Certificate Management Messages over
CMS, April 2000
http://www.ietf.org/rfc/rfc2797.txt

[49] X. Liu, C. Madson, D. McGrew, and A. Nourse,
Cisco System’s Simple Certificate Enrollment Profile,
2000
http://www.cisco.com/warp/public/cc/pd/sqsw/tech/scep_wp.htm

[50] S. Berkovits, S. Chokhani, J.A. Furlong, J.A.
Geiter, and J.C. Guild, Public Key Infrastructure study:
Final Report, MITRE Corporation, April 1994
http://csrc.nist.gov/pki/documents/mitre.ps

[51] D.C. Feldmeier and P.R. Karn, Unix Password
security – ten years later, CRYPTO Proceedings, 1989
http://www.ja.net/CERT/JANET-CERT/../Feldmeier_and_Karn/
crypto_89.ps

[52] T. Wu, A Real-World Analysis of Kerberos Pass-
word Security, Proceedings of the 1999 Network and
Distributed System Security Symposium, 1999
http://www.isoc.org/isoc/conferences/ndss/99/proceedings/papers/wu.
pdf

[53] A.K. Lenstra and E.R. Verheul, Selecting Crypto-
graphic Key Sizes, to appear in The Journal of Cryptol-
ogy, Springer-Verlag
http://www.cryptosavvy.com/Joc.pdf

[54] C.G. Günther, An identity-based key-exchange
protocol, Advances in Cryptology-EUROCRYPT ’89,
Springer LNCS 434, pp. 29-37, 1990

[55] R. Shirey, RFC 2828: Internet Security Glossary,
May 2000
http://www.ietf.org/rfc/rfc2828.txt

[56] Cryptographic Appliances, Cryptographic Appli-
ances Releases Two PCI Accelerators, Press Release,
August 2001
http://www.cryptoapps.com/press08072001.html

[57] V. Miller, Uses of elliptic curves in cryptography,
Advances in Cryptology: proceedings of Crypto ’85,
LNCS 218, pp. 417-426, 1986

[58] N. Koblitz, Elliptic curve cryptosystems, Mathe-

1st Annual PKI Research Workshop---Proceedings

115

matics of Computation, 48, pp. 203-209, 1981

[59] D. Chaum, Blind Signatures for Untraceable
Payments, Advances in Cryptology: Proceedings of
Crypto 82, Plenum Press, pp. 199-203, 1983

[60] D. Chaum, Security without Identification: Trans-
action Systems to Make Big Brother Obsolete, Commu-
nications of the ACM, v. 28, n. 10, pp. 1030-1044, Oc-
tober 1985
http://www.chaum.com/articles/Security_Wthout_Identification.htm

[61] P. Karn and W. Simpson, RFC 2522: Photuris:
Session-Key Management Protocol, March 1999
http://www.ietf.org/rfc/rfc2522.txt

[62] M. Hur, B. Tung, T. Ryutov, C. Neuman, A.
Medvinsky, G. Tsudik, B. Sommerfeld, Internet Draft:
Public Key Cryptography for Cross-Realm Authentica-
tion in Kerberos, work in progress, November 2001
http://www.ietf.org/internet-drafts/draft-ietf-cat-kerberos-pk-cross-
08.txt

[63] S. Tuecke, D. Engert, I. Foster, V. Welch, M.
Thompson, L. Pearlman, and C. Kesselman, Internet
Draft: Internet X.509 Public Key Infrastructure Proxy
Certificate Profile, work in progress, February 2002
http://www.ietf.org/internet-drafts/draft-ietf-pkix-proxy-02.txt

[64] J. Novotny, S. Tuecke, and V. Welch, An Online
Credentials Repository for the Grid: MyProxy, Pro-
ceedings of the Tenth International Symposium on
High Performance Distributed Computing (HPDC-10),
IEEE Press, August 20001
http://www.globus.org/research/papers/myproxy.pdf

[65] Y. Hsu and S.P. Seymour, An Intranet Security
Framework Based on Short-Lived Certificates, Pro-
ceedings of the 6th workshop on Enabling Technologies
Infrastructure for Collaborative Enterprises, 1997
http://www.computer.org/internet/ic1998/w2073abs.htm

[66] Secure Computing Corporation, Virtual Smart
Card Server Solution, July 2000
http://www.securecomputing.com/pdf/safeword_plus_wp_vscs.pdf

[67] W. Ford, P.H. Baker, B. Fox, B. Dillaway, B.
LaMacchia, J. Epstein, and J. Lapp, XML Key Man-
agement Specification (XKMS), March 2001
http://www.w3.org/TR/xkms/

[68] D. Eastlake, J. Reagle, and D. Solo, RFC 3275:
(Extensible Markup Language) XML-Signature Syntax
and Processing, March 2002
http://www.ietf.org/rfc/rfc3275.txt

[69] D. Eastlake, J. Reagle, T. Imamura, B. Dillaway,
and E. Simon, XML Encryption Syntax and Processing,

W3C Candidate Recommendation, March 2002
http://www.w3.org/TR/xmlenc-core/

[70] S. Godik and T. Moses, OASIS eXtensible Access
Control Markup Language, Committee Draft, April
2002
http://www.oasis-open.org/committees/xacml/docs/

[71] B. Ramsdell, RFC 2633: S/MIME Version 3 Mes-
sage Specification, June 1999
http://www.ietf.org/rfc/rfc2633.txt

[72] R. Housley, RFC 2630: Cryptographic Message
Syntax, June 1999
http://www.ietf.org/rfc/rfc2630.txt

[73] T. Dierks and C. Allen, RFC 2246:The TLS Pro-
tocol Version 1.0, January 1999
http://www.ietf.org/rfc/rfc2246.txt

[74] D. Taylor, Internet Draft: Using SRP for TLS Au-
thentication, work in progress, June 2001
http://www.ietf.org/internet-drafts/draft-ietf-tls-srp-01.txt

[75] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and
S. Lehtinen, Internet Draft: SSH Protocol Architecture,
work in progress, January 2002
http://www.ietf.org/internet-drafts/draft-ietf-secsh-architecture-12.txt

[76] R. Thayer, N. Doraswamy, and R. Glenn, RFC
2411: IP Security Document Roadmap, November 1998
http://www.ietf.org/rfc/rfc2411.txt

[77] B. Schneier, Applied Cryptography, Second Edi-
tion, John Wiley & Sons, chapters 2-6, 1996
http://www.counterpane.com/applied.html

[78] D. Davis, Compliance Defects in Public-Key
Cryptography, Proceedings of the 6th USENIX UNIX
Security Symposium, July 1996
http://world.std.com/~dtd/compliance/compliance.ps

1st Annual PKI Research Workshop---Proceedings

116

Security Characteristics of Cryptographic Mobility Solutions

Sarbari Gupta
Electrosoft Services, Inc.

sarbari@electrosoft-inc.com

Abstract

This paper focuses upon the security characteristics of
cryptographic mobility (CM) solutions. CM solutions
allow the roaming user to make use of their
cryptographic credentials from any workstation or
system that has network connectivity to the appropriate
credential server(s), without the need to carry portable
software or hardware tokens. While CM
implementations have a greater potential for security
vulnerabilities than traditional (non-mobile)
cryptographic implementations, it is anticipated that
the demand for products in this technology category
will continue to grow in the future.

1 OVERVIEW
Traditionally, systems that use public-private key pairs
for user authentication, digital signature or message
confidentiality protection store the user’s private keys
and private user data in encrypted form on the client
system’s hard drive. However, this mechanism does not
allow the user to roam, that is, to access the private key
information from any generic client terminal, in order
to digitally sign or encrypt material from that terminal.

Within a public key infrastructure (PKI), a user
credential is a cryptographically protected object, that
may contain the owner’s private key(s), public key
certificate(s), certificates for CAs within the owner’s
PKI hierarchy, trust roots relevant to the user, and other
domain-specific parameters such as user IDs,
cryptographic algorithm names, salt values, etc. PKI
credentials may reside in hardware or software tokens.

Cryptographic roaming is highly advantageous for
many business and consumer applications. Such
solutions make cryptography accessible from a wide
variety of client systems, including public kiosks and
terminals. Currently, there are two fundamental
mechanisms for providing roaming access to public key
credentials – these are described below.

• Portable credentials – the user carries their

cryptographic credentials in a portable format

(which may be hardware or software). Smart cards
and other types of hardware tokens, and software
credentials stored on portable media such as
floppies are examples of portable credentials.
While the portable hardware token approach is
sound from the security perspective, it often
requires special hardware at the client workstation,
and is often cumbersome, impractical or cost-
prohibitive for most roaming scenarios.
Conversely, software portable tokens are cheap and
easy to deploy. However, very often, software
portable tokens are protected using password-based
encryption techniques (such as PKCS#5 [P1]).
Within a roaming environment, where public
terminals and kiosks may be used for secure
transactions, such a software portable token may
easily be subjected to offline brute-force password
guessing attacks, against a reasonably small
password space.

• Credential Servers – this approach makes use of

online Credentials Server(s), which allows the
credential owner to make use of their private key
material after they have successfully authenticated
themselves to one or more online Authentication
Servers. In this approach, all or portions of the
user’s private key material and private data are
stored, in a protected form, on a system that is
accessible to the online authentication and
credential servers.

In this paper, we will focus on the latter approach for
mobility, and analyze the generic security
characteristics. We will refer to such solutions as
Cryptographic Mobility (CM) solutions. There are
several CM products and techniques that are currently
available. References to some of the major schemes are
listed at the end of this paper. This paper is organized
as follows. Section 2 defines a generic architecture for
CM systems, while Section 3 describes the generic
operational phases. Section 4 discusses some of the
attributes that characterize a CM solution, while Section
5 describes the security issues that are more likely to
arise in CM implementations. Section 6 analyzes the
applicability of a CM solution, Section 7 provides brief,

1st Annual PKI Research Workshop---Proceedings

117

mailto:sarbari@electrosoft-inc.com

high-level descriptions of some of the currently
available CM products, and Section 8 presents some
conclusions.

2 ARCHITECTURE OF A
CRYPTOGRAPHIC MOBILITY
SOLUTION
A generic CM system comprises several functional
components as illustrated in Figure 1. Each of the
components is further described below. It may be noted
that although the functional components are shown as
distinct boxes the figure, two or more of the
components may be instantiated on the same physical
system for a given CM implementation.

Client Station: This component represents various
shared workstations and/or public kiosks that may be
utilized by a CM user to interact with the CM system.
The Client Station can be used to initialize a roaming
credential through interactions with the Initialization
Server. The Client Station can also be used to activate
and use the roaming credential for secure data
exchange. The CM user is required to authenticate to
one or more Authentication Servers, following which,
the user’s credentials are made available with the
cooperation of the Credential Server(s). The Client

Station may run some kind of GUI-based client
software that is provided as a part of the specific
mobility solution.

Initialization Server: The Initialization Server is
responsible for the creation of roaming credentials, and
the establishment of the authentication information for
the roaming user. If new certificates need to be issued
to the user during the creation of the roaming
credentials, this component may interact with a
Certification Authority. The Initialization Server will
also typically interact with the Authentication and
Credential Servers to populate their databases with the
appropriate data for the user.

Authentication Server(s): This is the component that is
responsible for authenticating the roaming user before
they are allowed access to their credentials. The
Authentication Server may need to maintain an
authentication database that allows it to determine
whether a given user’s authentication attempt was
successful.

Credential Server(s): This component may hold all or
portions of the user’s cryptographic credentials. The
held credentials may be stored in a backend data store.

Figure 1. Generic Functional Architecture of a Cryptographic Mobility Solution

credential

initialization

Certification
Authority

Initialization
Server

credential
download or
usage

user

authentication

Secure interactions
with PKI peers

Client

Software

Credential

Server(s)

Authentication

Server(s)

Client
Station

1st Annual PKI Research Workshop---Proceedings

118

Certification Authority (CA): The CA component is
responsible for the generation of signed certificates for
roaming credential use, if that is necessary to the CM
solution. The Initialization Server interacts with the CA
component to create and initialize special roaming
credentials.

3 OPERATIONAL PHASES OF
A CRYPTOGRAPHIC MOBILITY
SOLUTION

The user provided account name, password, and
perhaps other user secrets that are required, may be
used in a variety of ways to authenticate to the remote
Authentication Server(s). Some schemes use a
challenge-response protocol using the user-provided
password, others use the password for a local operation
(at the Client Station) to unlock private key functions to
authenticate to the Authentication Server(s). Yet other
schemes use some form of strong password schemes
using strong secrets that are provided by remote, online
server(s).

Although there are varied schemes for implementing a
CM solution, the majority of the schemes can be broken
down into some generic operational phases. These are
described below.

The frequency of the authentication phase during a user
session, and the ability to invoke multiple uses of the
user’s private roaming credentials, varies considerably
with the particular scheme under consideration. For
ease of use, some schemes allow caching of the user
provided authentication information so that the user is
only required to provide this information once during
the course of a session regardless of the number of
times the roaming credential is used and the variety of
applications that invoke the user private key. While
very convenient for the user, this approach of single
sign-on is fraught with risk in terms of credential hijack
by subsequent users of the Client Station. Other CM
schemes take the conservative approach of necessitating
a user authentication to the Authentication Server(s)
each time the user private key is used. This approach
provides much greater security for the roaming
credential and supports other associated security
functions, such as auditing the use of the private keys
for purposes of fraud detection and non-repudiation;
however, the user’s convenience factor is greatly
reduced.

Credential Initialization Phase - During this phase, the
user’s PKI credentials may be created and/or packaged
to accommodate roaming usage. The Client Station
component interacts with the CM Initialization Server
to perform the steps needed to establish a set of
roaming-capable credentials, and make them accessible
to the user. Some CM solutions can package existing
user credentials into a roaming accessible form, while
others require the generation of specially-crafted
credentials to support roaming usage. In the latter type,
the CM solution will typically require generation of
new key pairs, and the issuance of new certificates. In
some cases, the CM solution may provide its own
Certification Authority or certificate generation
function. In other cases, the CM solution can pass the
certificate signing request to an external Certification
Authority.

During the Initialization Phase, information is collected
for the authentication of the roaming user. This
information is used to populate the Authentication
Server database. Additionally, the roaming credential
package is handed to the Credential Server for access
over the Internet.

Credential Download Phase - Many of the CM
technologies involve an intermediate phase of
credential download to the Client Station. The
credential download follows the authentication phase
and precedes the credential usage phase. The
downloaded material may be part or all of the user’s
credentials and other private user data, and is always
protected with additional layer(s) of cryptography to
prevent credential misuse at or to the Client Station.
The additional layer(s) of cryptographic protection may
be unlocked using a session authentication key or
through user provided secrets.

Authentication Phase - This phase of the roaming
protocol occurs each time the user wishes to establish
their connection to their online credential server to
download or make use of their roaming credentials.
During this phase, the online user operating from a
generic workstation or terminal authenticates to the
Authentication Server to assert and establish their
identity. Although there are wide variations in the
technologies and protocols used between the Client
Station and the Authentication Server, the human user
at the Client session almost uniformly is required to
provide an account identity and a password. The user
may also be required to provide answers to one or more
questions to provide restricted, personal, information.

Credential Usage Phase - The most significant
operational phase of a CM solution is the actual use of
the user’s private key for authentication, digital
signature, or message decryption functions. During this
phase, the user has the ability to make use of their
credentials, either by unlocking a local copy of their

1st Annual PKI Research Workshop---Proceedings

119

credentials, or by availing of online services that assist
in completing the usage of the credentials.

Some CM schemes allow the download of a copy of the
user’s credentials to the local client station. This copy is
cryptographically protected and may be unlocked for
use after the user provides a PIN or passphrase. The
user is able to make repeated use of the local copy of
the credential without involving the remote
Authentication or Credential Servers. This type of
scheme is typically faster and easier to use. However,
the local copy of the user’s credentials on the Client
Station may be subjected to offline attacks and
unauthorized reuse.

In certain CM schemes, the user’s credentials or key
material is never actually downloaded to the local
Client Station. Each use of the roaming credential
requires the involvement of one or both of the
Authentication and Credential Servers. This type of
scheme, though possibly slower and more tedious to
use, has the benefit that it never exposes the user’s
credentials at the Client Station or allows its copy or
reuse by an attacker.

Credential Release Phase - The final phase of a CM
scheme is the Credential Release Phase, during which
the Client Station scrubs any downloaded key material
and authentication information from memory and
magnetic storage, and formally ends the current user
session. This phase may be implemented unilaterally
within the Client Station, or it may require the Client
Station to interact with the Credential and/or
Authentication Servers to inform them about the
termination of the roaming user session.

4 CHARACTERISTICS OF CM
SOLUTIONS
There are some common characteristics in nearly all of
the cryptographic mobility solutions that are available.
These are enumerated below.

• Client Station does not need special hardware such

as token readers – The fundamental reason to seek
out a CM solution is to avoid the use of special
hardware tokens and token readers. Thus all CM
implementations share this common attribute.

• Client Station needs vendor-specific CM client

software that has to be either downloaded or
installed in a trusted manner – In all of the CM
products studied, there is a need for a vendor-
specific client software module that performs the
needed operations (such as authenticating the user,

downloading and storing a local copy of the
credentials or key materials, and enabling the use
of the user’s PKI credentials for private key
operations. Since this piece of software collects the
user’s authentication information as well as
handles the user’s private key usage, the assurance
level for the software has to be fairly high.

• User needs to remember authentication

information, whether it is a password, or answers
to a series of personal questions – The roaming
user has to authenticate to an online server to
acquire the ability to use public key credentials for
subsequent authentication operations. However, the
user cannot use public key operations during the
initial authentication phase for obvious reasons.
The user also cannot typically use other strong
mechanisms such as hardware One-Time-Password
generators (e.g. SecurID cards) since that would
involve the usage of hardware tokens. Thus, most
CM implementations make use of secret sharing
schemes, such as passwords or answers to personal
questions for the initial authentication phase.

• Users interact with remote Authentication Servers

to authenticate themselves to the system – Since
the user is assumed to be working from a Client
Stations that does not have a local copy of their
credentials, all roaming solutions necessarily
involve a remote authentication function where the
authentication information supplied by the human
user is transported through some means to a remote
server which verifies them to identify and
authenticate the user.

• An authenticated user is able to perform

cryptographic operations using their private key –
The fundamental goal of a roaming PKI user is to
ultimately use their private key for digital signature
or data decryption operations. All CM
implementations provide this facility through
different mechanisms.

• Credential is unusable after the end of the user’s

session – The premise of a roaming user is that
they avail of a shared Client Station when
attempting to use their PKI credentials. Thus, it is
very important that upon the last user leaving the
Client Station, there be no residual ability to make
use of the last user’s credentials by the subsequent
user. All CM implementations use this as a
common functional goal.

• Part or all of a user’s PKI credentials are stored on

an online remote credential server -The user’s

1st Annual PKI Research Workshop---Proceedings

120

POTENTIAL SECURITY
VULNERABILITIES

authentication information is stored on a database
accessible to an online authentication server.

5 SECURITY ISSUES WITH CM
SOLUTIONS

When evaluating the security of a CM solution, a
number of questions should be asked. The answers
must then be taken collectively to determine the
specific security vulnerabilities that exist for a given
system. The security relevant questions to be asked
include: CHARACTERISTICS THAT ADD

SECURITY VULNERABILITIES • How and where are client key pairs generated?
Depending upon whether the user’s key pair is
generated at the Client Station or on a server, the
non-repudiation claims of a private key may be
stronger or weaker. To support a strong case for
non-repudiation, the server system must never
handle the unencrypted private keys or private key
material for a user.

Due to the fundamental nature of a cryptographic
mobility solution, in that it makes use of remote
authentication and credential servers, there are a
number of additional security issues that may arise.
Depending upon the particular implementation of CM,
some or many of these issues may be sidestepped
through the use of novel schemes. This section will
describe some of the security issues that are particularly
relevant when assessing a CM implementation. The
various architectural components of a CM system have
their own characteristics that may introduce additional
security vulnerabilities. Some of these characteristics
are described below.

• Where is the user’s private key actually used – at
the Client Station or on a remote server
component? The location of “usage” of the private
key has an impact on the non-repudiation
properties of the CM implementation.

• How is the client private key deposited at the
Credential Server? The Credential Server must
hold all or part of the user’s private key in order to
allow the user to have roaming access to the private
key. However, the mechanism for protecting the
private key while the credential server holds it is
very significant in determining whether a capture
of the protected private key container, leads to the
ability to use that private key.

• The Client Station is assumed to be a shared access

workstation or kiosk that has network connectivity
to the CM Server entities, possible over the
Internet. The Client Station is also assumed to use
some form of CM client software that has to be
installed.

• How is the client private key protected at the

Credential Server? • The Authentication Server(s) are assumed to be
available online, possibly over the Internet, for
access by Client Stations. The Authentication
Server is also expected to have some form of
database (possibly on a backend system,) that holds
user data that can be used to complete the
authentication step.

• What are the security characteristics of the
authentication protocol between the Client Station
and the Authentication Server(s)? Are the protocols
susceptible to man-in-the-middle and
eavesdropping attacks? Does the scheme reveal the
CM user’s authentication information to the
Authentication Server?

• The Credential Server(s) are also assumed to be
online and available for network-based attacks. The
Credential Server has to ascertain that the user has
been properly authenticated before allowing the
download or use of their private keys. The private
key material for CM users is typically held in some
kind of database at the backend of the Credential
Server.

• How is the client private key made available for
use at the Client Station?

• Can the user’s private key be compromised at the
Client Station?

• How is the client private key disabled at the end of
the user’s session?

• How does the user establish trust in the Client
Software? How does the user know the source of
the Client Software and establish trust in its
integrity?

• The three primary architectural components of a

CM system interact with each other using online
protocols over shared and (often) untrusted
networks. Thus, these protocols may be attacked by
network intruders.

• How does the Client Module handle the sensitive
authentication information that is collected from
the user – is it held in memory or is it cleared after
each use?

1st Annual PKI Research Workshop---Proceedings

121

• How does the Client Module handle the local copy
of the user’s credentials that is obtained from the
Credential Server – is it held in memory for ease of
use or is it cleared after each use?

• Simple user interface is required – user only needs
to provide user ID and password, and answer
simple personal questions

• User or application requires strong authentication,
and/or message encryption • How does the Client Module establish trust in the

Authentication and Credential Servers? If SSL is
used, how are the PKI trust roots established in the
Client Station? CONTRAINDICATIONS FOR

SELECTION OF CM SOLUTIONS • Can the Authentication Server(s) be compromised
such that the authentication database becomes
available to the attacker? If so, what can the
attacker do with the captured information?

Some environments and user populations exhibit
requirements that are contraindications for certain types
of CM products. When these requirements exist within
an environment, extra caution must be exercised in
selecting a CM product that meets these requirements.
These include:

• Can the Credential Server be compromised such
that the Credential Database becomes accessible to
the attacker? If so, what can the attacker achieve
with the captured information?

 • Can the CM user be subjected to Denial-of-Service
attacks through the compromise or disablement of
the Authentication and Credential Servers?

• Strong, legally binding non-repudiation of
electronic transactions is an absolute must

• Recovery of encryption keys is essential

6 APPLICABILITY OF CM
SOLUTIONS

• Long term archival and possible usage of the
protected data

• Guaranteed access to credentials for decryption and
signatures – zero tolerance for denial-of-service
situations In this section, the major issues that affect the decision

to deploy a CM solution are briefly explored. While
CM solutions may be recommended in certain usage
scenarios, they are definitely not advisable in others.
This section attempts to clarify some of the issues that
should be considered before adopting a CM product.

7 A SAMPLING OF CM
TECHNOLOGIES AND
PRODUCTS
In this section, several of the leading products and
technologies that provide CM solutions are identified
and described very briefly. It should be mentioned that
the information contained in this section is based upon
data collected from the vendor websites and dialogue
with vendor personnel. The goal was to develop a brief,
high-level description of each product, rather than to
provide detailed technical coverage of each product.
These descriptions should not be used to evaluate the
products – the interested reader is directed to contact
the vendor directly to obtain more technically accurate
and up to date information on each product.

REQUIREMENTS THAT DRIVE
THE SELECTION OF A CM
SOLUTION
The decision to deploy a cryptographic mobility
solution is usually made because of some requirements
that are levied due to the characteristics of the user, the
user’s IT environment, or the secure application. Some
of the typical requirements that drive an organization to
consider a CM implementation are:

• Users are highly mobile, and need to use variety of

systems/workstations, operated and controlled
(possibly) by various organizations ENTRUST ROAMING PKI

• Hardware cryptographic tokens too expensive or
cumbersome or infeasible due to requirement to
have compatible readers

Entrust has been providing a PKI mobility solution
within Entrust/Roaming™, a complementary product to
Entrust/PKI® 5.0 [E1]. Entrust/Roaming™ makes use
of a public Directory Server to store the cryptographic
profiles for users, encrypted with a strong symmetric
key. A strong password authentication mechanism
named SPEKE is used to securely download the strong
keys that can decrypt the user’s protected cryptographic

• Users are in an IT environment where dedicated
workstations are infeasible or prohibitively
expensive

• Software cryptographic tokens not practical or
secure enough

1st Annual PKI Research Workshop---Proceedings

122

profiles, and hence make use of the private key material
held inside.

SPEKE stands for Simple Password-authenticated
Exponential Key Exchange [E2]. It provides strong
password authentication to prove knowledge of a small
secret (namely, a password) without revealing it to
anyone.

An Entrust profile contains the PKI credentials for a
given user. Typically, the profile is stored locally on the
hard drive in a form that is protected with a user-chosen
password. This protection format provides very little
resistance against a concerted offline dictionary-based
attack. Hence, in the Entrust Roaming solution, the
standard user profile is further encrypted with a strong
symmetric key K (K ≥ 128 bits) and stored on a
Directory Server. The Entrust solution also makes use
of an online Roaming Server that authenticates the user
using the SPEKE protocol, establishes a shared strong
key S based upon the authentication, and provides the
user with ES(K) such that the user is then able to
retrieve K and hence unlock and use their cryptographic
profile. The downloaded roaming profile can then be
used similar to a local Entrust profile stored on the local
hard drive.

VERISIGN ROAMING
The VeriSign PKI roaming solution is a part of the
VeriSign OnSite PKI offering [V1, V2, V3, V4]. It
uses multiple, independent Roaming servers, each of
which provides a component of the key that the user
employs to retrieve and decrypt his or her roaming
credentials from the Storage Server. The
technique for utilizing multiple Roaming Servers, to
recreate the strong key that can be used to decrypt the
protected roaming credentials, is based upon the
password-hardening protocol published by Warwick
Ford and Burt Kaliski. In the Ford-Kaliski scheme, a
user interacts with two or more Roaming Servers to
harden the user’s password into a strong secret, without
revealing the user’s password or the derived strong
secret to any of the Roaming Servers. The user’s
roaming credentials are held on an online Storage
Server in a strongly encrypted form. The user may
download the protected credentials from the Storage
Server, and unlock them using the strong secret that is
derived with the assistance of the Roaming Servers.

ARCOT ID MOBILITY
Arcot has a patented cryptographic camouflaging
scheme that it uses as the cornerstone of its ArcotID
mobility solution [A1, A2, A3, A4]. In this solution,

multiple PKI credentials for a user may be bundled into
a protective package called a “key bag”, encrypted with
a strong symmetric key. Each user also possesses an
ArcotID, which comprises the Arcot certificate, and the
camouflaged Arcot private key. The user may
download his or her “key bag” and ArcotID from an
online Card Server, after authenticating to it using
shared secrets. The user then supplies a PIN to the
ArcotID allowing the de-camouflaging and use of the
Arcot private key for authenticating to an Arcot
Authentication Server (AS). [It may be noted that the
unique feature of the cryptographically camouflaged
Arcot private key is that it can only be unlocked with
the correct PIN – however, many incorrect PINs will
also yield a plausible private key to attackers, who now
have to use the candidate key to authenticate to the AS.
The AS is configured to lock out a user after a certain
number of failed attempts.] Upon successful
authentication to the Authentication Server, the user is
able to retrieve a portion of the symmetric key that
protects the user’s “key bag”. The user’s supplied PIN
is used to generate the other portion to recreate the key
that may be used to decrypt the “key bag” to allow
access to the contained credentials for normal PKI
based operations.

SINGLESIGNON.NET APPLIANCE
SingleSignon.Net’s Secure Identity ApplianceTM is at
the heart of its Practical PKI offering [S1, S2, S3]. The
Secure Identity Appliance is a hardened “black box”
that can be connected to a corporate network, and store
sensitive information for users. In this scheme, each
user’s private key is split into two components, one of
which is held by the appliance, and the other is derived
from the user’s password. When a roaming user needs
to make use of their PKI credentials for secure
transactions, they authenticate to the appliance using a
password-based strong mechanism to establish a secure
channel. A digest of the data to be signed is then
transported to the appliance over the secure,
authenticated channel, and the appliance generates a
partial signature using the component of the user’s
private key that is held by the appliance. The user then
performs another partial signature operation on the
returned data using the other component of the private
key (that is derived from the user’s password) to
complete the signature on the target data. The final
signature may be validated using the user’s public key
using the normal mechanisms. Since the appliance has
to participate in every invocation of the user’s private
key, it can perform other operations as well, such as
revocation checking, usage analysis, auditing, etc.

1st Annual PKI Research Workshop---Proceedings

123

MICROSOFT ROAMING
PROFILES
In recent versions of its operating systems, Microsoft
provides a roaming profile scheme that allows the
profile to be a container of PKI credentials for a user
[M1, M2]. A properly authenticated domain user is able
to download their profile from a central server to the
local workstation. The user profile is protected using
the MS Data Protection API (DPAPI). Under the MS
DPAPI scheme, a master key is created for each user at
first logon. Two copies of the master key are stored in
the user’s profile. The first is copy is protected using a
160-bit RC4 key that is derived from the user’s logon
password. The second copy is protected using a
derivative of the Domain Controller’s master key. In
order to use the encrypted profile that is downloaded to
the local workstation, the user’s password is used to
unlock the user’s master key. The master key is used to
retrieve the key that protects the private keys in the
user’s key store.

RSA SECURITY KEON
WEBPASSORT
RSA Security’s Web Passport offering is primarily for
organizations that require the use of PKI credentials
with Web Applications that provide security services
such as digital signatures, VPN access or secure email
[R1, R2, R3]. The product has two main components,
the Web Passport Server and the Web Passport Plug-in.
The former resides on a web server and is used to
enforce authentication and authorization policies that
determine the authorizations that users have to web
resources.

Users can authenticate to the Web Passport Server
using a variety of mechanisms, including passwords
and SecurID authenticators. Once authenticated, the
user’s virtual (smart) card is downloaded from a LDAP
directory to the Web Passport Plug-in on the Client
Station. The virtual card is a protected container for the
user’s PKI certificates and private keys. Once
downloaded, the virtual card can be accessed through
the Microsoft Cryptographic API or the PKCS#11
interface from any application that has the capability to
invoke these APIs.

The Web Passport Client Plug-in may be installed on
the Client Station manually. If it is not present when the
user tries to access a Web Passport protected resource,
the plug-in is automatically downloaded from the web.
The Web Passport virtual card contains up to two user
certificates as well as the corresponding private key(s).
The private key(s) are encrypted with 112-bit

3DES2EDE-CBC secret key, while the secret key is
protected using a PIN Unlock Key (PUK). The PUK is
a random 128-bit RC4 key. Web Passport uses cookies
to keep track of authentication state, PKI credential
state, key contained names, etc.

The Web Passport product supports PKI credentials
from any of the industry leading CAs. It allows users to
have multiple virtual cards (possibly issued by different
CAs and different organizations) and allows the user to
have simultaneous access to multiple sets of virtual
cards.

BALTIMORE UNICERT OPTION
FOR ROAMING
The UniCERT PKI product offers an optional
component for roaming credential usage [B1, B2, B3].
It allows subscribers to digitally sign transactions and
participate in secure online applications from a web
browser without requiring the use of hardware tokens.
The Baltimore CM product comprises a number of
components. The Roaming Server coordinates the
operation of the UNICERT roaming facility. The
Roaming Administrator component allows system
administrators to initialize and manage the UniCERT
Roaming system by creating and updating roaming
users. The Protected Encryption Key (PEK) Server
deals with roaming user authentication before allowing
them access to their signing key, and comprises
hardware cryptographic modules. In order to insulate
the Roaming and PEK Servers from direct network-
based attacks from the Internet, a Proxy Server is used.
There are two kinds of applets that are used within the
UniCERT roaming system: a Signing Applet that can
download and make use of roaming credentials to sign
web data, and a Change Passphrase Applet which
allows the passphrase protecting the user’s signing key
to be changed.

The use of two dedicated servers (Roaming and PEK)
implies that both servers need to be successfully
attacked in order to compromise the system. The PEK
Server stores double encrypted end-user keys, while
internal sequence numbers protect against brute force
attacks. If fault-tolerance and high availability is
required, or high volume is anticipated, multiple PEK
and Roaming Servers may be deployed. The Baltimore
roaming solution will work with certificates issued by
any standards-compliant CA including Baltimore’s
UniCERT.

1st Annual PKI Research Workshop---Proceedings

124

HUSH COMMUNICATIONS
ROAMING SOLUTION
The Hush Key Server Network provides outsourced
management and hosting of PKI credentials [H1, H2].
The Hush Key Server stores and manages the
subscriber public and private keys through the use of a
Private Key Database and a Public Key Database. The
former holds the user private keys, protecting them with
a “private alias” derived from a user-generated
passphrase that the user never shares with any other
entity. The User ID and passphrase are passed through a
message digest repeatedly to generate over 1 million
characters that comprise the “private alias” for the user.
The “private alias” is used as a means of anonymizing
and strengthening the storage of user private keys on
remote servers. The private alias is used as an index
into the Hush Key Private Key Database such that the
private keys are nearly anonymous. The private alias is
also used to authenticate the user within the Hush
system.

The Public Key Database stores the corresponding user
public keys. It is indexed by the user’s email address
and contains the user’s public key certificate and
revocation status. The Hush Encryption Engine
facilitates public key exchange between two parties in a
transparent fashion – when needed, a connection is
automatically made between the first party and the
Hush Key Server to retrieve the public key of the
second party. The Hush Key Server also supports user
key pair generation and registration with a CA. Hush
offers a secure email solution using this roaming PKI
scheme.

8 CONCLUSIONS
In studying various technologies and products that are
currently available to support cryptographic mobility, it
is clear that some areas of vulnerability remain as
common elements to most available solutions. It is
interesting to note that all of the systems referenced in
this paper, offer strong mechanisms for user
authentication, and use strong protocols for
authentication and credential download that are not
susceptible to active or passive man-in-the-middle
attacks. All of the systems use Client Station modules
that store password and key information in volatile
memory only, depending upon operating system
facilities to keep the information from being copied to
disk. However, some of the common vulnerabilities are
discussed below.

Most of the techniques described above, rely upon the
use of downloaded software that comprise the Client

Station Module. The downloaded module is a signed
component, in most cases. However, when used from a
shared workstation or public kiosk, it is difficult to have
assurance regarding the trust roots that are configured
into the web browsers and other PKI applications. It is
also possible that rogue software implanted on these
workstations captures the users keystrokes, (and hence
their passwords and other authentication information,)
and transfers them to some configured location. The
rogue software may also affect the entropy of the
random numbers generated on the workstation and
hence adversely influence key pair generation,
symmetric session key generation, etc.

Another area of vulnerability of roaming solutions is
the susceptibility to denial-of-service attacks. A
roaming solution implicitly requires the availability of
one or more online servers. If any of these servers are
made unavailable, the user will not have access to their
cryptographic credentials, and may have to settle for
unsecured interactions to meet their functional
objectives. All roaming solutions should therefore
address this problem by providing a high degree of
redundancy to ensure that the roaming user is able to
access their credentials.

Many of the solutions described above, store the user
credentials on a single online server, in such a way, that
the password-protected version of the credentials are
available to an attacker that compromises that online
server. It is well known that credentials protected by
PKCS#5 type password-based cryptography are
susceptible to offline password cracking attacks. Thus,
the solutions that employ two or more servers in a way
that the compromise of one server does not allow
password-protected credentials to fall into the hands of
an attacker are inherently more secure than solutions
that employ a single server.

Additionally, online servers that hold credential or
authentication information are high value targets for
attackers. Hence, these systems must be implemented to
use various types of available protections to lessen their
vulnerability to such attacks. The use of proxy servers,
firewalls, FIPS 140-1 approved hardware cryptographic
devices, hardened operating systems, physical,
personnel and operational security measures, should be
employed to strengthen the security of these systems.

Some of the solutions studied cause the user’s private
keys, and/or the passwords that provide access to
private keys, to be available to a roaming server system
at some point during the initialization process. If these
private keys are used for authentication or digital
signature operations, the non-repudiation claims of the
system are intrinsically weakened in such situations.

1st Annual PKI Research Workshop---Proceedings

125

Despite these common weaknesses and potential
vulnerabilities, it is our belief that cryptographic
mobility solutions will continue to see greater adoption
in the future. Due to the intrinsic nature of our current
lifestyle, the user will necessarily be away from their
home/office/workstation, but will continue to require
access to high-grade cryptography as they pursue their
personal and work-related goals. Thus, it is anticipated
that the security issues with mobility solutions will be
resolved with the help of innovative engineering skills,
and CM implementations of PKI will gain rapid
acceptance.

9 FURTHER INFORMATION
Further information about the analysis of cryptographic
mobility solutions may be obtained by contacting the
author, Sarbari Gupta at sarbari@electrosoft-inc.com.

10 REFERENCES
[A1] “Securing Digital Identities,” Presentation to the
Federal PKI TWG, September 2000.

[A2] “Arcot Key Authority: Solution for controlled
access to Conventional Private Keys,” Arcot Systems
White Paper.

[A3] D. Hoover, B. Kausik, “Software smart cards via
cryptographic camouflage," IEEE Symposium on
Security and Privacy, 1999.

[A4] “Arcot WebFort™ Overview: Strong
Authentication and Secure Signing Using Software,”
Arcot System White Paper.

[B1] “Roaming: Secure Electronic Transactions
Without Boundaries”,
http://www.baltimore.com/unicert/unicert/roaming.html

[B2] UniCERT Roaming UniCERT Extended
Technology” Baltimore White Paper.

[B3] “UniCERT Extended Technology – Roaming
Version 1.0 Administrator's Guide,” Baltimore
UniCERT documentation.

[E1] “Secure Roaming with Software Tokens,”
Presentation to the Federal PKI TWG, September 2000.

[E2] Jablon, David, “Strong Password-Only
Authenticated Key Exchange,” ACM Computer
Communication Review, vol. 26, no. 5, Oct. 1996.

[H1] “Hush Encryption Engine™ White Paper Version
2.0,” Hush White Paper, July 2001.

[H2] “Services: Hush Key Server Network”
http://www.hush.com/services/key_server_network/.

[M1] Finnegan, Sean, “Crypto, Key Protection, and
Crypto, Key Protection, and Mobility in Windows
Mobility in Windows,” Microsoft Presentation.

[M2] Guttman, Peter, “How to recover private keys for
Microsoft Internet Explorer, Internet Information
Server, Outlook Express, and many others,” White
paper available at
http://www.cs.auckland.ac.nz/~pgut001/pubs/breakms.t
xt.

[P1] “PKCS#5 v2.0 - Password-Based Cryptography
Standard,” RSA Laboratories, March 1999.

[R1] Carboni, E., “RSA Keon Mobile Credentials,”
Presentation to the Federal PKI TWG.

[R2] “RSA Keon Web PassPort: Technical Overview,”
A white paper from RSA Security.

[R3] Mark Diodati, “Frequently Asked Questions, RSA
Keon Web PassPort, RSA Security Paper, May 2001.

[S1] “The SingleSignon.Net Difference,”
SingleSignOn.Net White Paper.

[S2] Bhatt, Harish, “Towards Practical PKI,”
SingleSignOn.Net White Paper.

[S3] Boyd, Colin, “Digital Multisignatures,”
Cryptography and Coding, Oxford University Press,
1989, pp 241-246.

 [V1] Ford, Warwick, “Server- Assisted Generation of a
Strong Secret from a Password,” Presentation to the
Federal PKI TWG.

[V2] Ford, W. and Kaliski, B., “Server-Assisted
Generation of a Strong Secret from a Password,”
Proceedings of the IEEE Fifth International Workshop
on Enterprise Security, 2000.

[V3] “VeriSign Personal Trust Service,” VeriSign
Product Literature.

[V4] “Administrator’s Guide: ROAMING SERVICE,”
VeriSign Product documentation.

1st Annual PKI Research Workshop---Proceedings

126

mailto:sarbari@electrosoft-inc.com
http://www.baltimore.com/unicert/unicert/roaming.html
http://www.hush.com/services/key_server_network/
http://www.cs.auckland.ac.nz/~pgut001/pubs/breakms.txt
http://www.cs.auckland.ac.nz/~pgut001/pubs/breakms.txt

A Note On SPKI’s Authorisation Syntax

Olav Bandmann∗

Industrilogik L4i AB
Odengatan 87, SE–113 22 Stockholm, Sweden

olav@L4i.se

Mads Dam†

LECS/IMIT, Royal Institute of Technology (KTH)
KTH Electrum 229, SE–164 40 Kista, Sweden

mfd@kth.se

Abstract

Tuple reduction is the basic mechanism
used in SPKI to make authorisation decisions.
A basic problem with the SPKI authorisation
syntax is that straightforward implementa-
tions of tuple reduction are quadratic in both
time and space. In the paper we introduce
a restricted version of the SPKI authorisa-
tion syntax, which appears to conform well
with practice, and for which authorisation de-
cisions can be made in nearly linear time.

1 Introduction

SPKI [3, 4] is a framework for authori-
sation intended particularly for networked
applications. In SPKI, authority is bound
to principals primarily identified by pub-
lic keys. An SPKI authorisation certificate
<I,S,D,A,V > specifies the following items
of information:

• I: An issuer as a public key.

• S: A subject which is identified primar-
ily through a public key.

∗Work done while at SICS, Swedish Institute of
Computer Science. Project at SICS supported by a
grant from Microsoft Research, Cambridge, U.K.

†Partially supported by the Swedish Agency for
Innovation Systems, project “Policy-Based Network
Management”, and by the Swedish Research Council
grant 621-2001-2637, “Semantics and Proof of Pro-
gramming Languages”

• D: A delegation flag, indicating whether
or not the authorisation at hand is dele-
gable.

• A: A “tag”, or authorisation, determin-
ing the authority assigned to the subject
by the certificate.

• V : A validity field determining optional
intervals and online conditions for valid-
ity.

Authorisations are given in the form of S-
expressions, following on from the work of
Rivest [8]. S-expressions are essentially
parenthesized list expressions in the style of
LISP. To give an example, the right for sub-
jects in the group admin, belonging to unit
finance, to read the income attribute of all
objects of type person might be given as a
nested list structure

X : (obj person
(conds (grp admin)

(unit finance))
(op income read))

Authorisations and requests are given in the
same syntax. If we consider X as a request
a corresponding authorisation might have the
shape e.g.

Y : (obj person
(conds (grp admin))
(op income read))

meaning that all members of the group admin
are permitted read access, not only members

1st Annual PKI Research Workshop---Proceedings

127

of the finance unit. Or, as another example,
the authorisation might have the shape:

Z : (obj person
(conds (grp admin)

(unit finance))
(op income))

intended to be interpreted such that now the
income attribute can be read and written. In
both cases X should be granted, since, in an
intuitive sense which we make precise in the
paper, X is “more specific than”, or, “autho-
rised by”, both Y and Z. The example gives
the game away: An authorisation expression
becomes more specific by extending lists to
the right.

In order to be able to specify more complex
authorisations in a concise manner, SPKI
adds a number of auxillary constructions to
be interpreted, essentially, as abbreviating
sets of basic S-expressions. The following ex-
tensions are considered:

• (*) is the wildcard.

• (* set X1 · · · Xn) is the union of the
sets X1, . . . , Xn, n ≥ 1.

• (* range R l u) is the set of all X in
the interval determined by the ordering
R, lower limit l and upper limit u.

• (* prefix w) is the set of all strings
having w as prefix.

Thus, to give an example, the authorisation

X ′ : (obj person
(conds (grp admin)

(* set (unit finance)
(unit personnel)))

(op income (* set read write)))

is just an abbreviation for the obvious size 4
set.

In SPKI, authorisation decisions are
made through a process of “tuple reduc-
tion”. Authorisations and requests are
compared by computing their intersection
using the operation AIntersect. As an

example, with X and X ′ as defined above,
AIntersect(X ′,X) = X. The intersec-
tion of X ′ and X is the most permissive
authorisation granted by both X ′ and X.
If AIntersect(X ′,X) = X then the most
permissive authorisation granted by both
X ′ and X is X itself, or in other words, all
authorisation granted by X is also granted
by X ′, i.e. X is authorised by X ′.

Computation of the AIntersect function
is in many cases quite unproblematic, in
particular when one of the arguments lack
one of the special * forms. In general,
however, AIntersect may cause a quadratic
blowup, and this is the basic problem we
address in this note.

The problem arises when comparing * set
forms. The naive algorithm simply expands
an S-expression involving * set forms to
one without them. In many applications
this procedure is in fact quite adequate.
First, it will often be the case that one of the
arguments to AIntersect is without * forms.
Second, requests will often be small, and
a quadratic blow-up will be without much
consequence. The SPKI standard opens
up for implementors to provide set-to-set
transformations to alleviate the problems
that may remain, but no concrete suggestions
are given.

On the other hand one will in fact some-
times want to compute using complex autho-
risations. For instance, one will want to sub-
ject authorisations to simple analyses of the
type:

Q: Is authorisation X stronger than
authorisation Y ?

where X and Y are general S-expressions.
Observe that Q is just a different way
of saying that AIntersect(X,Y) = X.
Secondly, simply by providing the tools to
describe complex authorisations, users may
eventually want to use them, for instance
to precompute sets of authorisations, or to
use the * set notation as a macro facility.

1st Annual PKI Research Workshop---Proceedings

128

This is discussed in slightly more detail in
section 9. As another example we have, in
the Amanda project at SICS, been exploring
a general mechanism for delegation based on
a modelling of delegation as the constrained
issuance of new authorisations [6, 1]. The
resulting S-expression can become quite
complex, and furthermore the need arises,
in the decision making process, to compare
authorisations of a general shape.

For these reasons we have found a need to
subject the SPKI authorisation syntax to a
deeper analysis. In the paper we obtain the
following main results:

1. A characterisation of the SPKI entail-
ment relation in terms of a partial or-
dering ≤

S
.

2. A weak version of �
S
, which is sound,

so that x �
S

y implies x ≤
S

y.

3. A restricted S-expression syntax for
which the weak relation �

S
is complete,

i.e. coincides with ≤
S
.

4. An efficient algorithm to compute
AIntersect, and a proof that
AIntersect is the greatest lower
bound with respect to the ≤

S
ordering.

The key idea for the restricted S-expression
syntax is simply to require that non-atomic
elements of * set expressions are tagged
with a unique tag (or, in SPKI terminol-
ogy, type). On the evidence we have so
far gathered this is nothing more than a
formalisation of existing SPKI practice, and
all examples in the SPKI documents [3, 4, 5]
stay within the restricted syntax.

The paper is organised in the following
way: In the first sections we describe au-
thorisation trees as the basic form of *-free
S-expressions, and then the syntax and se-
mantics of S-expressions is given as sets of
authorisation trees. The syntax is given in
slightly abstract terms; instead of the con-
crete range and prefix constructions we just
assume a set of primitive set constants, as
this makes the presention less cluttered. In

section 5 we proceed to introduce the partial
orders ≤

S
and �

S
, and in section 6 we relate

≤
S

and �
S

by showing first soundness, and
then pinpointing the condition in the defini-
tion of the weak partial order which causes
completeness to fail for general expressions.
Then, in section 7 we turn to AIntersect, to
establish the results (4) above.

2 Authorisation Trees

We start by defining authorisation trees,
used to give semantics to the complete SPKI
authorisation element. Let A be a denumer-
able set of “atomic” elements ranged over by
a of one or several data types such as strings
or integers. The set T of authorisation trees,
ranged over by t, is determined by the follow-
ing BNF style grammar:

t ::= a | (a t1 · · · tn)

where n ≥ 0.

The intention is that authorisation trees
are positional. Types, in particular the type
of an atom a′ appearing as a subtree ti of
the tree (a t1 · · · tn), are determined by two
pieces of information:

• The position i

• The label a

Types are determined by some external
means; here it suffices to assume some fixed
binding of types to labelled tuple positions.
We define a partial order ≤

T
on T induc-

tively as follows. Let x, y ∈ T .

1. If x ∈ A or y ∈ A then x ≤
T

y if and
only if x = y.

2. If x = (x1 · · · xm) ∈ T and y =
(y1 . . . yn) ∈ T , then x ≤

T
y if and

only if m ≥ n and xi ≤
T

yi for i =
1, . . . , n.

A simple proof by induction shows that ≤
T

is indeed a partial order.

1st Annual PKI Research Workshop---Proceedings

129

Elements in T represent authorisations,
and the partial order ≤

T
represents the

“is authorised by” relation, which in SPKI
normally is represented in terms of the
AIntersect operation.

Example 1 Consider the authorisation trees
X, Y , and Z of section 1. We obtain that
X ≤

T
Y and X ≤

T
Z, but not Y ≤

T
Z and

neither Z ≤
T

Y . If we let

U : (obj person
(conds (grp admin))
(op income))

then Y ≤
T

U and Z ≤
T

U .

In terms of the partial ordering ≤
T
, the

intended use of authorisation trees is as
follows. Assume that a certain principal
p wants to perform an action a requiring
the authorisation x. Then p has the autho-
risation for a if (and only if) p has some
authorisation y satisfying x ≤

T
y.

A problem here is that the language is too
restricted to be very useful. The solution
is to use sets of authorisation trees instead
of singletons. In the example above, p
has the authorisation for a if p has some
authorisation Y (a set of authorisation trees)
such that there exists a y ∈ Y satisfying
x ≤

T
y.

For this reason SPKI extends the basic S-
expression syntax by notation for sets of au-
thorisation trees.

3 Syntax of S–expressions

S–expressions represent sets of authorisa-
tion trees. Essentially, authorisation trees
are extended with notation for set unions, in
addition to primitive range and prefix con-
structions. To cater for these primitives we
assume a denumerable set B of set constants,
and a mapping Val : B → 2A \ {∅} assigning
to each constant in B the nonempty set of

atoms it represents.

Definition 1 (S–expressions) The set S
of S–expressions, ranged over by X,Y , is de-
termined as follows:

X ::= (*) | a | b | (a X1 · · · Xn) |
(* set X1 · · · Xm)

where a ∈ A, b ∈ B, and n ≥ 0, m ≥ 1.

So, an S-expression can be either an atom (in
A), a primitive set of atoms, a tuple, or a (*
set ...) form, used to denote unions. We
assume, of course, that A does not contain the
special wildcard symbol (*). S-expressions
of the form either a ∈ A or b ∈ B are called
atomic. In SPKI, two types of set constants
are considered:

1. Elements representing ranges of ele-
ments in A. E.g. all strings in A be-
tween “bird” and “fish”, alphabetically,
or all integers in A greater than 5. There
are many options here including type of
interval and type of order. Note that,
by the definition of Val above, we do not
allow empty ranges.

2. Elements representing sets of strings in
A which have a certain strings as pre-
fixes. E.g. all strings in A beginning with
“/pub/”.

4 Semantics of S–expressions

An element X of S represents a non empty
subset of T : the set of trees that are autho-
rised by X.

Definition 2 (S–expression Semantics)
We define the function ‖·‖ : S → 2T \ {∅} as
follows:

1. ‖(*)‖ = T

2. ‖a‖ = {a} for all a ∈ A

1st Annual PKI Research Workshop---Proceedings

130

3. ‖b‖ = Val(b) for all b ∈ B

4. ‖(X1 · · · Xm)‖ = {(t1 · · · tl) | l ≥
m,∀i:1≤i≤m ti ∈ ‖Xi‖}

5. ‖(* set X1 · · · Xm)‖ = ‖X1‖ ∪ . . . ∪
‖Xm‖

Note that, in (4), X1 and t1 are constrained
to be atoms, by definition 1. We expect ‖X‖
to be lower closed, so that if t ∈ ‖X‖ and
t′ ≤

T
t then also t′ ∈ ‖X‖, or in other words,

if t is authorised by X and t′ is authorised by
t then t′ should be authorised by X as well.
This property is easily verified.

Proposition 1 For all X ∈ S, ‖X‖ is lower
closed.

Proof A trivial induction. �

The naive way of deciding whether or not
t ∈ ‖X‖ is to rewrite X to a normal form
where all occurrences of the * set construc-
tion are pushed to the outermost level, thus
reducing questions of the form t ∈ ‖X‖ to the
case where X does not have occurrences of
the * set construction. To make this clear,
say that X1 and X2 are equivalent, X1

∼= X2,
if ‖X1‖ = ‖X2‖.

Proposition 2

(X1 · · · (* set Xi,1 · · · Xi,n) · · ·Xm) ∼=
(* set (X1 · · ·Xi,1 · · ·Xm)) · · ·

(X1 · · ·Xi,n · · ·Xm))

Example 2 Let

X = (a (* set b (c (* set d e))))

where all a, b, etc. are atoms in A. This rep-
resents the set of authorisation trees which
are lists of length at least two beginning with
a and having either b or another list t of
length at least two as its second element,
where t begins with c and has d or e as its
second component. Using (2) along with the
obvious idempotency law we obtain:

X ∼= (* set (a (* set b (c d)))

(a (* set b (c e))))
∼= (* set (a b) (a (c d))

(a b) (a (c e)))
∼= (* set (a b) (a (c d))

(a (c e)))

Note that, according to def. 2, the set ‖X‖
includes not only a list such as t = (a (c e)),
but also any authorisation tree t′ for which
t′ ≤

T
t. As an example, t′ can have the shape

(a (c e f) g h).

5 Preorder on S–expressions

Clearly, calculations like the one in exam-
ple 2 are not very efficient. To circumvent
this, we need to be able to decide the follow-
ing problems without actually calculating ‖·‖:

1. Given t ∈ T (an authorisation request)
and an S-expression X (stored, perhaps,
as the authorisation element of some cer-
tificate), does t ∈ ‖X‖ hold?

2. Given S-expressions X and Y , is every
authorisation request granted by X also
granted by Y ?

Observe that both questions can be put in
the same form, since t is trivially represented
as an S-expression denoting the lower closure
of {t}. We thus define a preorder, ≤

S
, on

S-expressions to reflect the semantics of 2.
above:

Definition 3 (S–expression Preorder)
The preorder ≤

S
on S is defined by

X ≤
S

Y ⇐⇒ ‖X‖ ⊆ ‖Y ‖

In other words, whatever is authorised by
X is also authorised by Y . The difficulty in
computing ≤

S
is illustrated by the following

example, which also shows why ≤
S

is not a
partial order.

1st Annual PKI Research Workshop---Proceedings

131

Example 3 Let X = (a (* set b c)) and
Y = (* set (a b) (a c)). By definition 3,
X ≤

S
Y and Y ≤

S
X, even though X �= Y

(X and Y are syntactically different). It is
easy to deduce that Y ≤

S
X since (a b) ≤

S

X and (a c) ≤
S

X both hold. To verify
X ≤

S
Y , on the other hand, essentially re-

quires the computation of ‖X‖, to realize that
‖X‖ is the lower closure of the set containing
(a b) and (a c).

This example shows the case which is to be
avoided, namely where the right hand side
of the equality is a set expression with at
least two elements. In order to ameliorate
the worst case behaviour we propose a
weaker preorder on S, which is reasonably
efficient to compute, and which does not rely
on computing ‖·‖ (but it does rely on the
computation of Val, since this function has
not been explicitly defined).

The definition of the weak preorder uses
the operation flt, which uses the equivalences
such as

(* set X1 (* set X2,1 X2,2) X3) ∼=
(* set X1 X2,1 X2,2 X3)

to flatten all immediate nestings of the * set
constructor.

Definition 4 (Weak Preorder) Define
the preorder �

S
on S by induction in the

following way. Let X,Y ∈ S. Then X �
S

Y
if and only if one of the following cases hold:

1. Y = (∗)
2. X,Y ∈ A and X = Y

3. X = a ∈ A, Y = b ∈ B, and a ∈ Val(b)

4. X = b ∈ B, Y = a ∈ A, and Val(b) =
{a} (a rather unusual situation)

5. X,Y ∈ B and Val(X) ⊆ Val(Y)

6. X = (X1 · · · Xm), Y = (Y1 · · · Yn),
m ≥ n, and Xi �

S
Yi for i = 1, . . . , n

7. X = (* set X1 · · · Xm) and Xi �
S

Y for i = 1, . . . ,m

8. X = b∈B,flt(Y) = (* set Y1 · · · Yn),
and Val(X) ⊆ ⋃{‖Yi‖ | 1≤i≤n and Yi

is either atomic, or Yi = (*)}.
9. X is of the form neither b nor * set, Y =

(* set Y1 . . . Yn), and ∃i X �
S

Yi

Referring to example 3 note that Y �
S

X
holds, but X �

S
Y does not. The clause

4.9 is the cause of incompleteness. The
problematic case is when X is a list and
Y a * set expression, as in example 3.
Observe also that 4.8 does in fact appeal
to the function ‖·‖. However this is only a
convenience, and does not introduce extra
computational overhead, since all Yi in
that case are either atoms or sets of atoms.
The reason for using the flt operation is to
avoid otherwise pathological cases such as
b �

S
(* set (* set b)).

Since this is not completely apparent we
check that �

S
indeed defines a preorder.

Theorem 1 The relation �
S

is a preorder.

Proof We must prove that

1. X �
S

X for all X ∈ S, and

2. X �
S

Y and Y �
S

Z implies X �
S

Z
for all X,Y,Z ∈ S.

The first part is proved by a simple induction
over the definition of �

S
. We’ll skip the de-

tails.
The second part is a rather tedious induc-
tion over the structure of first Y , and then X
and Z, as needed. So, assume X �

S
Y and

Y �
S

Z:
Y = (*): Since Y �

S
Z the only cases that

can apply are Z = (*) (which is trivial) and
Z = (* set Z1 · · · Zm) such that, in the
latter case, Y �

S
Zi for some i : 1 ≤ i ≤

m. By the induction hypothesis, X �
S

Zi

whence X �
S

Z as well, completing the case.
Y = (Y1 · · · Yn): In this case Z has one of
the forms Z = (*), Z = (Z1 · · · Zm), or
Z = (* set Z1 · · · Zm). In each case the
proof is easily completed.

1st Annual PKI Research Workshop---Proceedings

132

Y = (* set Y1 · · · Yn): We may assume
that flt(Y) = Y . One of the following sub-
cases apply:

• X = (* set X1 · · · Xl) and Xi �
S

Y
for all i : 1 ≤ i ≤ l.

• X = b and Val(X) ⊆ ∪{‖Yi‖ | 1 ≤ i ≤
n, Yi atomic, or Yi = (*)}

• X �
S

Yi for some i : 1 ≤ i ≤ n

The first and third subcases are immediately
dismissed by the induction hypothesis. For
the second subcase we know that Yi �

S
Z

for each i : 1 ≤ i ≤ n. We proceed then
by cases on Z, noting that we need only
consider the case of Yi atomic or Yi = (*).
Thus, flt(Z) has one of the forms a, b, (*),
or (* set Z1 · · · Zm) such that, for each
choice of i we find a j such that Yi �

S
Zj .

The former three cases are resolved by a little
calculation. For the latter we may assume
that Zj is either atomic, or Zj = (*). Thus,
since �

S
is sound for atomic expressions,

we know that ‖Yi‖ ⊆ ‖Zj‖. This suffices to
establish the conclusion.
The remaining cases for Y atomic are quite
simple and left to the reader. �

6 Soundness and Completeness

In this section we relate the definitions of
≤

S
and �

S
. First we show soundness.

Theorem 2 (Soundness of �
S
) For all

X,Y ∈ S

X �
S

Y =⇒ X ≤
S

Y . (1)

Proof By induction over the definition of �
S

(def. 4). We begin with the base cases 1–5.
Assume that X �

S
Y and that one of the

cases 1–5 in definition 4 applies. We want
to show that ‖X‖ ⊆ ‖Y ‖. Consider the five
cases:

1. Y = (*):
‖X‖ ⊆ T = ‖Y ‖

2. X = Y = a ∈ A:
‖X‖ = ‖Y ‖

3. X = a ∈ A, Y = b ∈ B, and a ∈ Val(b):
‖X‖ = ‖a‖ = {a} ⊆ Val(b) = ‖b‖ = ‖Y ‖

4. X = b ∈ B, Y = a ∈ A, and Val(b) =
{a}:
‖X‖ = Val(b) = {a} = ‖a‖ = ‖Y ‖

5. X = b1 ∈ B, Y = b2 ∈ B, and Val(b1) ⊆
Val(b2):
‖X‖ = Val(b1) ⊆ Val(b2) = ‖Y ‖

Hence, cases 1 to 5 are proved. We continue
with the inductive step in cases 6–9:

6. X = (X1 · · · Xm), Y = (Y1 · · · Yn),
m ≥ n, and Xi �

S
Yi for i = 1, . . . , n:

Let t ∈ ‖X‖. Then t has the shape

t = (t1 · · · tl)

l ≥ m, and ti ∈ ‖Xi‖ for all i : 1 ≤ i ≤
m. By the induction hypothesis, tj ∈
‖Yj‖ whenever 1 ≤ j ≤ n and it follows
that t ∈ ‖Y ‖.

7. X = (* set X1 · · · Xm), Y �= (*),
and Xi �

S
Y for all i : 1 ≤ i ≤ m.

By the induction hypothesis, Xi ≤
S

Y
as well, so X ≤

S
Y follows.

8. X = b∈B, flt(Y) = (* set Y1 · · · Yn),
and Val(X) ⊆ ⋃{‖Yi‖ | 1 ≤ i ≤ n and
Yi is atomic, or Yi = (*)}. By calcula-
tion.

9. X is of the form neither b nor * set,
Y = (* set Y1 . . . Yn), and ∃i X �

S

Yi. By the induction hypothesis, X ≤
S

Yi hence also X ≤
S

Y . �

As we have pointed out, �
S

is incomplete
in general. To attain completeness the only
change required is to make the final clause of
4 more inclusive.

Definition 5 Define the preorder �′
S

on S

by replacing the clause 9 of def. 4 by the fol-
lowing condition:

9′. X is of the form neither b nor * set,
Y = (* set Y1 . . . Yn), and ‖X‖ ⊆
‖Y ‖.

1st Annual PKI Research Workshop---Proceedings

133

So, the source of incompleteness is clause 9,
i.e. that there should exists a universal i such
that every element in ‖X‖ is bounded from
above by some element from ‖Yi‖. The result
is that this completely explains the difference
between ≤

S
and �

S
.

Theorem 3 (Soundness and Complete-
ness for �′

S
)

For all X,Y ∈ S

X �′
S

Y ⇐⇒ X ≤
S

Y . (2)

Proof The implication =⇒ is a simple exten-
sion of the soundness proof, taking the mod-
ified clause 9’ into account. This is an easy
exercise.
The completeness argument hinges on the fol-
lowing auxillary observation, namely that if
Y = (* set Y1 · · · Yn) and (*) ≤

S
Y then

(*) ≤
S

Yi for some i : 1 . . . n. For a con-
tradiction suppose that for all i, (*) ≤

S
Yi

does not hold. We may assume that Y is flat-
tened. Each Yi will be either atomic or have
the shape (ai . . .). Pick some a distinct from
all the ai. No authorisation tree of the shape
(a t1 · · · tl) is in ‖Y ‖, so (*) ≤

S
Y cannot

hold.
We now assume X ≤

S
Y and proceed by in-

duction over the structure of Y . First, how-
ever, note using clause 7 of def. 4 we may
assume that X is not a set expression.

1. Y = (*): Since ‖(*)‖ = T the result is
immediate.

2. Y = a. Either X = a as well, or X =
b and Val(b) = {a}. In either case the
proof is complete.

3. Y = b. Either X = a and a ∈ Val(b) or
else X = b′ and Val(b′) ⊆ Val(b). Either
cases are immediate.

4. Y = (Y1 · · · Yn). The only possibil-
ity is X = (X1 · · · Xm), m ≥ n, and
Xi ≤

S
Yi for all i : 1 ≤ i ≤ n. The

result then follows directly from the in-
duction hypothesis.

5. Y = (* set Y1 · · · Yn). By the above
observation we can assume that X �=
(*). If X = a then X �

S
Yi for some i

and we are done. If X = b then clause 8
can be seen to hold. The final case, then,
is for X of the shape (X1 · · · Xm), and
in this case the modified clause 9’ ap-
plies. The proof is thus completed. �

7 Restricted S-Expressions

We then turn to the identification of a
syntax fragment for which the weak preorder,
even without the modification of Theorem
3, is complete. The idea is to use tagging:
Every authorisation tree appearing in a set
expression must contain a leading a, making
it distinct from trees appearing in other
elements of that set. Formally, the restricted
syntax can be defined thus:

Definition 6 (Restricted S-expressions)
The set R of restricted S-expressions, ranged
over by r, along with the set of a-restricted
S-expressions, ranged over by ra, a ∈ A, is
defined by the following grammar:

r ::= (*) | a | b | (a r1 · · · rn) |
(* set ra1 . . . ram)

ra ::= a′ | b | (a r1 · · · rn)

where a, a′ ∈ A, b ∈ B, n ≥ 0, m ≥ 1, and
where all ai, 1 ≤ i ≤ m are distinct.

The purpose of the ra form is to ensure that
if ra is actually a list then it is tagged by a.
Choices of ra as atoms or set constants can
be done freely.

Example 4 The S-expression

r = (a1 (* set (a2 c) (a2 d) a2))

is not restricted. The S-expression

s = (a1 (* set (a2 c) (a3 d) a2)),

on the other hand, is restricted, as is the S-
expression

r′ = (a1 (* set (a2 (* set c d)) a2)).

Note that r ∼= r′.

1st Annual PKI Research Workshop---Proceedings

134

In fact, the restriction appears to merely
codify existing SPKI practice. All the exam-
ples of [3, 4, 5] fit the restricted syntax, and
indeed it is not hard to show that that any
S-expression can be rewritten into restricted
form, by flattening nested * set’s and
pushing tags out of * set’s, as in example
4. Thus, whenever a “real” set union (as
opposed to the disjoint union provided by
the restricted syntax) is needed, it suffices
to use atomic S-expressions only, which is
permitted.

We obtain that the weak preorder is actu-
ally complete for the restricted fragment.

Theorem 4 (Completeness, Restricted
S-expressions)
For all restricted S-expressions r1, r2 ∈ R,

r1 ≤
S

r2 =⇒ r1 �
S

r2

Proof By 3 it suffices to show r1 �′
S

r2 =⇒
r1 �

S
r2. To establish this by induction

it is sufficient to show that, for restricted
expressions, condition 3.9’ implies condition
4.8. We may thus assume that r2 has the
form (* set ra1 · · · ram), and for r1 there
are three cases to consider:

• r1 = (*). Since r2 is restricted the only
possibility is that rai = (*) as well for
some i.

• r1 = a′. Either rai = a′ for some i, or
else rai = b for some i and b ∈ B such
that a′ ∈ Val(b). In either case we are
done.

• r1 = (a r1,1 · · · r1,n), n ≥ 0. Since
all ai are distinct, we can infer that
(a,r1,1,. . .,r1,n) ≤

S
rai for some i :

1 ≤ i ≤ m, and we are done by 4.9. �

8 SPKI’s AIntersect

In this section we show that SPKI’s
AIntersect behaves as we expect when ≤

S

is interpreted as set containment, and when

applied to the restricted syntax.

Since AIntersect is not completely
defined in the SPKI documents we define
this operation ourselves below. It is quite
straigthforward to verify that our version
fits the examples given in the draft standards.

To define AIntersect in the present
slightly abstracted setting we need to assume
that intersections exist at least on the level
of set constants b ∈ B. That is, for all
b1, b2 ∈ B there is a b, denoted b1 ∩ b2, such
that Val(b) = Val(b1) ∩ Val(b2). We assume
that b1 ∩ b2 can be computed in time linear
in the size of representation of b1 and b2.

Now, to define the AIntersect operation
the set S is extended by the special constant
⊥, denoting failure. For lists, if one of the
argument positions is ⊥, the entire list is ⊥.
For unions, if one of the argument positions
is ⊥ that argument is ignored. With these
comments, the definition is given on fig. 1.
In the figure a few symmetric cases are left
out, in order not to clutter up the picture un-
necessarily. Note that AIntersect is indeed
well-defined as an operation on S ∪ ⊥. For
time complexity we obtain:

Proposition 3 AIntersect(r1,r2) is com-
putable in time O(n log n) where n is the sum
of the lengths of r1 and r2.

Proof Start by sorting the input such that
elements of set expressions appear in order.
This can be done in time O(n log n). Once
ordered, the computation of AIntersect is
linear. �

Observe that proposition 3 applies to the
restricted syntax only. Notice also that if
authorisations can be assumed to be already
sorted, a linear scan of the expressions
suffices.

Finally we need to show that AIntersect is
indeed the greatest lower bound with respect

1st Annual PKI Research Workshop---Proceedings

135

AIntersect((*),r) = r

AIntersect(r,(*)) = r

AIntersect(⊥,r) = ⊥
AIntersect(r,⊥) = ⊥
AIntersect(a,a) = a

AIntersect(a,b) = a, if a ∈ Val(b)
AIntersect(a,b) = ⊥, if a �∈ Val(b)
AIntersect(a,(a′ r1 · · · rn)) = ⊥
AIntersect(a,(* set r1 · · · ri = a · · · rn)) = a

AIntersect(a,(* set r1 · · · ri = b · · · rn)) = a, if a ∈ Val(b)
AIntersect(a,(* set r1 · · · ri · · · rn)) = ⊥, if none of above two cases apply
AIntersect(b,b′) = b ∩ b′

AIntersect(b,(a,r1 · · · rn)) = ⊥
AIntersect(b,(* set r1 · · · rn))

= (* set AIntersect(b,r′1) · · · AIntersect(b,r′m)),

where r′1, . . . , r
′
m is the sequence of atomic elements in r1, . . . , rn

AIntersect((a r1 · · · rn),(a r′1 · · · r′n r′n+1 · · · r′m))

= (a AIntersect(r1,r′1) · · · AIntersect(rn,r′n) r′n+1 · · · r′m),

where m ≥ n

AIntersect((a r1 · · · rn),(a′ r′1 · · · r′m)) = ⊥, if a �= a′

AIntersect((a r1 · · · rn),(* set r′1 · · · r′i · · · r′k))
= AIntersect((a r1 · · · rn),r′i), if r′i has tag a

AIntersect((a r1 · · · rn),(* set r′1 · · · r′m)) = ⊥,

if no r′i has tag a

AIntersect((* set r1 · · · rn), r as (* set r′1 · · · r′m))

= (* set AIntersect(r1,r) · · · AIntersect(rn,r))

Figure 1: Definition of AIntersect

1st Annual PKI Research Workshop---Proceedings

136

to ≤
S

for the restricted syntax. This verifies
that

• The operation AIntersect behaves as
we expect of an intersection operation

• The preorder ≤
S

behaves as we expect
with respect to AIntersect

For this purpose recall that a semilattice is
a structure with a binary operation which is
idempotent, commutative, and associative.
Further, we extend ‖·‖ to the domain S ∪ ⊥
by ‖⊥‖ = ∅.

Theorem 5 (Correctness of AIntersect)

1. (S, AIntersect) is a semilattice.

2. For all r1, r2 ∈ R,
‖AIntersect(r1, r2)‖ = ‖r1‖ iff
r1 ≤

S
r2.

Proof Both proofs are routine inductions.
We leave out the proof of (1) altogether. For
(2) we proceed by induction on the structure
of r1. We cover a couple of representative
cases:
r1 = (a r1,1 · · · r1,n): We proceed by cases
in r2. The cases where r2 is one of (*), ⊥,
or atomic are resolved by symmetric counter-
parts of equations in fig. 1. Remaining are:

• r2 = (a′ r2,1 · · · r2,m): If a �= a′ then
‖AIntersect(r1, r2)‖ = ∅ �= ‖r1‖ and
‖r1‖ �⊆ ‖r2‖. If a = a′ we can assume
that m ≥ n the case otherwise is sym-
metric. The conclusion now follows di-
rectly by the induction hypothesis.

• r2 = (* set r2,1 · · · r2,m): We obtain
‖AIntersect(r1, r2)‖ �= ∅ just in case ex-
actly one r2,i has tag a, which is sufficient
to establish the case. �

9 Conclusion

We have shown how a restricted syntax
for the SPKI authorisation element can be

defined such that general authorisations and
entailments between authorisations can be
decided in almost linear time. Moreover, the
restricted syntax appears to follow existing
SPKI practice, so no real restriction in
expressive power or usage is incurred.

To which extent our results are important
in practice can be discussed. The computa-
tion of AIntersect is simplified when queries
do not involve unions, i.e. the * set con-
struct. This is the assumption made, for in-
stance, in the Pisces implementation (see url:
www.cnri.reston.va.us/software/pisces/). At
any rate, as long as authorisation expres-
sions and certificate chains remain small,
the overhead may be negligible. More-
over, SPKI’s simple delegation model enables
chaining to be decided in polynomial time [2].

So one may argue that the problem is in
practice negligible. We do not think this
point of view is necessarily valid. First,
we have not found such a thing as a clear
and well-established SPKI practice. Nothing
in the draft standards prohibits the use of
unions in requests, and this capability might
very well be used in practice. Several exam-
ples can be given. For instance, an applica-
tion programmer might wish to exploit the
revocation predictability built into the SPKI
framework by computing a set of requests in
advance. Or, as another example, it might be
deemed useful to use the union construction
to introduce macros. For instance, USLocs,
MidWestLocs, etc., might be introduced as
macros (at the application level) representing
S-expressions of the form e.g.

MidWestLocs =
(* set
...
(location Nebraska Lincoln)
(location Kansas Topeka Centre)
(location Kansas Topeka North)
(location Kansas Wichita)
...)

There is no prior reason why such a macro
might not appear as part of a request, say,
to determine whether access to Midwestern
branch office sales statistics is permitted or
not. The result, however, can be serious per-

1st Annual PKI Research Workshop---Proceedings

137

formance degradation at request time.

Going beyond SPKI as it currently stands
there is also the possibility that new mecha-
nisms, for instance for delegation (cf. [1, 6,
7]), will be introduced which require compar-
isons to be made between authorisations of a
general shape. An important purpose of the
present paper is to set the stage for further
studies in this direction, in terms of an eval-
uation model with good computational prop-
erties.

Acknowledgements Thanks to Dieter Goll-
mann, Microsoft Research, Cambridge, also
to Babak Sadighi and Roland Hedberg, SICS,
and to Thom Birkeland at IMIT/KTH.

References

[1] O. Bandmann, M. Dam, and B. Sadighi
Firozabadi. Constrained delegation. In
Proc. 23rd Annual Symp. on Security and
Privacy, 2002. To appear.

[2] Dwaine Clarke, Jean-Emile Elien, Carl
Ellison, Matt Fredette, Alexander Mor-
cos, and Ronald L. Rivest. Certificate
chain discovery in SPKI/SDSI, 1999.

[3] Carl M. Ellison, Bill Frantz, Butler Lamp-
son, Ron Rivest, Brian M. Thomas, and
Tatu Ylonen. SPKI Certificate Theory,
May 1999. RFC 2693, expired. URL:
ftp://ftp.isi.edu/in-notes/rfc2693.txt.

[4] Carl M. Ellison, Bill Frantz, But-
ler Lampson, Ron Rivest, Brian M.
Thomas, and Tatu Ylonen. Sim-
ple public key certificate, July
1999. Internet Draft, expired. URL:
http://world.std.com/ cme/spki.txt.

[5] Carl M. Ellison, Bill Frantz, Butler Lamp-
son, Ron Rivest, Brian M. Thomas, and
Tatu Ylonen. SPKI examples, March
1998. Internet Draft, expired. URL:
http://world.std.com/ cme/examples.txt.

[6] B. Sadighi Firozabadi, M. Sergot, and
O. Bandmann. Using Authority Certifi-
cates to Create Management Structures.
To appear in Proc. 9th Security Protocols
Workshop, Cambridge, UK, April 2001.

[7] Jon Howell and David Kotz. A formal se-
mantics for SPKI. In Proc. 6th European
Symposium on Research in Computer Se-
curity, 2000.

[8] Ron Rivest. S-expressions, May
1997. Internet Draft, expired. URL:
http://theory.lcs.mit.edu/ rivest/sexp.txt.

1st Annual PKI Research Workshop---Proceedings

138

Public-key Support for Collaborative Groups
Steve Dohrmann, Carl Ellison

steve.dohrmann@intel.com, cme@jf.intel.com

Intel Labs

Abstract: In this paper, we describe a use of public-key
cryptography to achieve access control over
communication and data transfers in order to support
the work of collaborative groups. The participants
form themselves into groups and access is granted to
group members. The use of cryptography in this
project is exceptional only in the care with which we
designed the protocols for identity establishment. Our
goal is to produce a working application that has the
potential to be more secure than earlier alternatives,
because it is easier to use correctly. This paper
compares our identity establishment process, along the
lines of SDSI, to that of an X.509 PKI or PGP, and
shows the security advantages of the process we use.
We also describe an experimental method for key
verification intended to make strong key verification
both easy and enjoyable for the average user.

1 Introduction
This paper describes a project to build and run
collaborative groups over ad hoc networks with strong
access control for communications and data transfers,
strong encryption for the privacy of those interactions
and strong but easy to use administration of access
control. It was our initial premise that cryptography
and protocol development had achieved adequate
security long ago, and yet weaknesses remained in
fielded implementations that came primarily from
human mistakes attributable to user interface elements

[6], such as

1. confusion when the user is forced to deal with
unfamiliar concepts,

2. mistaken identity when referring to people by
name, or

3. the simple refusal to employ security features
because of a distasteful user interface.

It was our intention to address these issues and thus
make a family of devices that improve on the security
offered by PKI-based mechanisms, such as PGP,
S/MIME, and SSL. We want to handle corporate
sensitive data with improved security while simplifying
the user interface to the extent that an untrained user at
home would use the system correctly. We stop short of
implementing MAC (Mandatory Access Control) and
labeling of data, although that is an area for future
development.

The devices we use are PDAs and laptops. These are
mobile computing platforms, and in our prototype
implementation they are connected by wireless
networking, although nothing in this design rules out
interoperating with wired devices. Because we are
using wireless networks, we have no control over who
might connect to that network. We have no secure
perimeter and therefore do not rely on one. In
retrospect, this appears to be a good design choice even
for wired networks, since it is becoming difficult, if not
impossible, to establish a secure perimeter in wired
networks as well.
We take as our paradigm of collaborative group the
pattern we experience at Intel, where groups are formed
to address tasks, perform their function and then
dissolve when the function is complete. Such groups
remain active anywhere from a half hour to years.
These groups are formed via personal invitation
(sometimes indirectly, via a referral from an invitee)
and are constructed based on availability and needed
skills without any special regard to the corporate
organization chart. As a result, it is not uncommon for
an individual to be a member of multiple groups and be
the only participant in common among those groups. It
is also not uncommon to meet more than one new
person in each new group a person joins. These groups
might address extremely sensitive matters, such as
designs for new features for future microprocessors, but
they might also address non-sensitive matters, such as
planning an annual departmental party or raising money
for a needy family. We assume that this model covers
more than just Intel. It applies clearly to people’s
behavior at home. If there is a more structured work
environment where task groups are constrained by an
organization chart, such constrained groups can still fit
into our model.
Although we envision creating small collaborative
groups, typically the size of a group one would find in a
conference room, the mechanism defined here scales
easily to a community of any size. Meanwhile, even
though the group may be small, the population from
which we choose that group is large, up to the size of
the global Internet. This introduces a naming problem,
discussed in more detail below. It is that naming
problem that would make a global PKI unacceptable for
our purposes, even if such a PKI were to exist.
Fortunately, from our experience there is no need for
such a global PKI. Instead, we expect to see a

1st Annual PKI Research Workshop---Proceedings

139

proliferation of the kind of public key authentication
and authorization mechanism that we have
implemented and that we describe in this paper.
This paper describes the full process of achieving
strong authorization of communication and file access.
In section 2, we cover physical discovery of other
devices. In section 3 we cover the process of
establishing identity of other participants, specifically
of linking their identities as established biometrically
with their keys as provided over the network. That
section is perhaps the most controversial and
accordingly occupies the bulk of this paper. In section
4, we describe the process of group formation, based on
identities that have been established by the methods of
section 3. In section 5, we list some of the uses to
which these groups can be put. In section 6, we
consider some user interface issues, especially the issue
of key verification – something vitally important for
security but something that most users find annoying
and wish to skip entirely. In section 7, we give our
conclusions and in section 8 we consider areas for
future research.

2 Discovery
In our current implementation, we use laptops or PDAs
with dual networks, one local-area (802.11 ad hoc) and
one wide-area (GPRS). The discovery mechanism is
different for the two, not merely because the underlying
hardware is different but because the population size is
radically different. Under 802.11, one would expect
fewer than 200 machines within range. Under GPRS,
there might be millions of users online (just as there
would be on the whole Internet). In neither case do we
trust information obtained by discovery without the
further proof that is provided during the identity
establishment phase, but in both cases we need to find
the party with whom we intend to do that identity
establishment.

2.1 GPRS Discovery
Discovery here is by sign-on name, a name
programmed into the cellular card at time of service
activation. It is by these names that the cellular
provider identifies and catalogs subscribers. These
names are arbitrarily chosen and not necessarily known
by the person encountering the name, so they are not
necessarily meaningful to users. They are used as
indexes into a database, typically under verbal
instruction.

As part of our project, we have created a directory to be
operated by the cellular provider, in which we record
presence information: whether a given subscriber is
online at the moment and the current IP address of that

subscriber. Discovery over GPRS is achieved by
consultation of that directory. Write-access to that
directory is authenticated strongly, via public key
operations, using a key installed during provisioning
and bound to the user’s sign-on name. This key is
empowered only to give directory access and is not
used for other access control.

2.2 802.11 Discovery
With 802.11, there is no need for a sign-on name, but in
order to be consistent across networks, we invent and
use a sign-on name for the 802.11 discovery process as
well. This is a potential weakness. There is a certain
level of security provided by the GPRS discovery
mechanism, since one must be strongly authenticated to
place an entry in the presence directory. When the
directory under GPRS returns an IP address for a given
sign-on name, one can rely on the fact that the binding
of name to IP address was strongly authenticated and
was provided by the holder of that sign-on name.
However, under 802.11, there is no authentication of
the sign-on name. It is merely a claim. If the user had
been trained by GPRS experience to rely on the validity
of this name binding, this is not safe. We do not rely on
our users to keep that distinction between GPRS and
802.11 in mind. As a result, a machine that has been
freshly discovered over either network is assumed by
our system not to have been authenticated at all and is
not granted any restricted access until after Identity
Establishment and Authorization.

3 Identity Establishment
During the introduction phase, we establish the
identity of correspondents. The identifier we use is not
the sign-on name, for two reasons.

1. We allow a user to generate multiple personae
and use them as she sees fit, choosing which
one to use in introducing herself, just as a user
chooses which business card to beam from a
PDA.

2. We do not believe in one-name-fits-all-uses.
The login name, introduced in the 1960’s (or
even earlier), is a good method of identifying a
person to a computer, but we have seen
numerous failures in attempts to use such
names to specify a person, through a
computer, to another person.

The description of introduction , which follows, may
seem pedantic and perhaps elementary. However, we
have tried to show all our steps so that we can compare
this process to that used by a more traditional global-
name PKI such as X.509 or PGP.

1st Annual PKI Research Workshop---Proceedings

140

Within the computers and over the network, nodes in
our networks are known by various transitory
addresses, such as an IP address, but also by a
permanent, globally unique ID: a public key associated
with the user’s chosen persona. The introduction job
is therefore to establish the identity of that key.
By “establishing identity of a key”, we mean
establishing that the key belongs to the person you
think it does . The phrase “the person you think it
does” implies that you have some concept of the
person. If you have never met the person, and therefore
have no concept of him or her, the phrase has no
meaning and you cannot establish identity. The most
you can do in that case is to learn facts about that
keyholder based on statements by some other party.
However, here we are interested in establishing
identity.

In our analysis of the introduction process, we look at
three slices of reality:

1. Digital: things that reside in and happen
inside computers and networks (keys)

2. Physical: people and things that have physical
existence (people, computer screens), and

3. Mental: thoughts and memories inside a
person’s mind (knowledge about a person,
biometric matching procedures, decision
making, etc.).

“The person you think it does” exists in the mental
slice of reality. It is a body of memories about the
person in question. The purpose of introduction is
therefore to establish a binding between a body of

memo ries and a public key. This implies that the
introduction phase requires personal acquaintanceship.
Our system does not limit all system use to personal
acquaintances of one person. Non-acquaintances are
made accessible during the invitation phase. But, we
do block system use by complete strangers (those not
known to anyone in the collaboration group).

3.1 The Identity Establishment Process
Each person who is party to an introduction operates in
three different spaces: one physical, one digital and one
mental. For mutually establishing identity between two
parties, there are then six spaces involved, and steps in
the process used to establish identity must cross from
one space to another. The boundary crossings must be
considered carefully because they offer increased
likelihood of errors.
In Figure 1 we show the process of introduction from
Frances Chamish to John Wilson. Ms. Chamish does
not use the name Frances, except on official documents,
like her driver’s license, passport and income tax return.
With everyone else, she uses the name Leanna. So, we
will refer to her by the name Leanna, unless we are
being formal.

The process described in Figure 1 might be mistaken
for the PGP key signing ritual, but it is different in that
it does not assume knowledge or relationships that are
not actually present. [The comparison to the process
used by a traditional PKI like PGP or X.509 is given in
section 3.2.]

03 5b 97 83
6e 04 2c 04
2a c9 b5 22
14 3b c6 42

03 5b 97 83
6e 04 2c 04
2a c9 b5 22
14 3b c6 42

Figure 1: The Process of Establishing Identity

Frances John

D
ig

ita
l

P
hy

si
ca

l
M

en
ta

l

Leanna

AAAAB3NzaC1kc3MAAACBAPJQkdHPKOgrjxD55GQUJmo
m3Je8/Up9XPeczYHG6089V16ToSyTr2BUVulcP92i05
DFMxUlu1RraKVwiV38sg67UPcCUPYsRMmP6ASrTQyNg
eZXcyPkv9+30V97BH86UA8ctn8k+Dhc0zZuo+kkTvGc
8pPYHpIPDguKrrQwbNHAAAAFQDHmD6d/aXIFLm+/cp+
6wyhx3KXnQAAAIEA7v+J71XMN7X/DQ6JEunGMapaQXg
. . .

AAAAB3NzaC1kc3MAAACBAPJQkdHPKOgrjxD55GQUJmo
m3Je8/Up9XPeczYHG6089V16ToSyTr2BUVulcP92i05
DFMxUlu1RraKVwiV38sg67UPcCUPYsRMmP6ASrTQyNg
eZXcyPkv9+30V97BH86UA8ctn8k+Dhc0zZuo+kkTvGc
8pPYHpIPDguKrrQwbNHAAAAFQDHmD6d/aXIFLm+/cp+
6wyhx3KXnQAAAIEA7v+J71XMN7X/DQ6JEunGMapaQXg
. . .

Leanna

2

3 4

1

1

5 5

6

=

=

1st Annual PKI Research Workshop---Proceedings

141

The identity establishment process of Figure 1 has six
steps.

1. John sees Leanna and since he knows her
already, he compares the person he sees before
him to a template stored in his memory. This
is a biometric comparison, based on face or
voice recognition and possibly other
characteristics, processed by John’s senses and
brain, rather than some hardware biometric
sensor. A similar biometric comparison would
happen if the encounter between them were by
telephone or videoconference.

2. As part of normal background activity,
Leanna’s and John’s PDAs broadcast
discovery messages containing their sign-on
names and IP addresses. By mutual
agreement, Leanna and John start the
introduction phase by releasing their public
keys and associated information to each
other’s PDAs, using the IP addresses learned
during the discovery phase. [Figure 1 shows
only one half of this exchange.]

3. John wants to change Leanna’s key (an entry
in his Contact List) from anonymous to
known. This requires a verification phase.
For Leanna’s part of that phase, she displays
verification graphics of her public key, on her
PDA. [In Figure 1, this is shown as a key hash,
but it could be any appropriate display
carrying enough entropy to verify the key.]

4. John’s computer simultaneously displays the
verification graphics of the newly arrived key.

5. John compares these two images, by seeing
them displayed on the two PDAs, held side by
side (or if they are connected over a telephone
connection, he listens to Leanna read
displayed data or listens to her computer and
his own simultaneously render verification
data as sounds). From this, John now knows
that the key he has selected in his PDA is the
one belonging to Leanna. He knows this in his
own brain, the same brain that established
Leanna’s biometric match in step 1.
Therefore, those two match results are
communicated to his decision-making without
having to cross reality-slice boundaries.

6. With the success of the two equality tests,
John gives a name to that selected public key
using the name “Leanna”, which is the name
he uses to index his set of memories that
include her biometric templates. This name
comes from his memory and its sole purpose is
to be a link back to his memory from his
computer display. It does not have to be a

name that anyone else would recognize as
belonging to Frances L. Chamish. This
binding of the name Leanna to her public key
must be protected from tampering. John
establishes that protection by leveraging the
protection of his own private key. He creates a
SDSI [5] name certificate binding the name
“Leanna” to her public key and signs the
certificate with his private key. After John has
accepted and labeled Leanna’s key, future
encounters with her will not require any of the
steps of this introduction process. Her key
remains marked as fully introduced.

At the conclusion of this protocol, John has a Contact
List entry that ties a public key to a body of memories,
including one or more biometric templates, that stands
for his concept of the person he calls Leanna. In other
words, he has established that the key belongs to the
person he thinks it does .
The relationship established here is immediately
between John’s mind and John’s PDA’s digital memory
(with linkage by use of the name “Leanna”). There is a
secondary linkage to Leanna’s private key, by virtue of
the fact that a given public key has only one
corresponding private key, at least in our public-key
algorithms. From there, there is a linkage to any digital
signature made by Leanna’s private key, and from there
to any message or file thus signed.
This process has been tuned to link information via
identifiers appropriate to the domain in which they are
used. Between John’s mind and his PDA’s memory, a
local name, meaningful only to him, is used. Between
John’s PDA and Leanna’s PDA, a globally unique
identifier (the public key) is used.

3.2 Establishing Identity via Traditional
PKI: X.509 or PGP

X.509, PGP and SDSI ID certificates differ in format,
process and meaning. The difference in format is
irrelevant for this paper. We focus on the difference in
process and meaning. Most especially, we note that
both X.509 and PGP deal with globally unique IDs that
are expected to be meaningful to whoever intends to
use the key. Since this ID carries a global meaning, the
binding of ID to key is an act that must be performed by
a trusted service. In X.509, that trusted service is a
specially trusted Certificate Authority (CA). In PGP,
that trusted service is a collection of less trusted key
signers who, taken together, constitute a distributed
trusted service (the web of trust). By contrast, the SDSI
(local) names we use are intended to have meaning only
for the person who creates the name and binds it to a
key. That one person is the sole authority on this name

1st Annual PKI Research Workshop---Proceedings

142

binding and therefore the only one who can bind that
name to a key.

In Figure 2 the “person” labeled “TTP” stands for a
Trusted Third Party and can be either an X.509 CA or a
set of PGP trusted introducers.

3.2.1 TTP Process: Leanna to John
The process of Figure 2 appears simpler than the
process of Figure 1, because it omits the detail effort
involved in creating a certificate. In the case of PGP,
for example, that effort often involves the hash
computation and comparison steps shown in Figure 1.

The process shown in Figure 2 is:
1. Leanna takes various credentials and a copy of

her public key to the TTP. At PGP key
signing parties, those credentials might include
a driver’s license or passport. By means of
these credentials, Frances lays claim to her
true name. That is, she demonstrates to the
TTP that she is not impersonating someone
else. These official credentials all list Leanna
as “Frances Chamish”, some using the middle
initial “L”.

2. The TTP instructs his or her computer to
generate a certificate binding Leanna’s name,
“Frances Chamish”, to her public key. In the
case of PGP, the certificate construction will
have been done already by Leanna and the
TTP(s) merely sign(s) that certificate body. In
the case of an X.509 CA, the TTP builds the

certificate and most likely chooses a name for
Leanna in the process. PGP does not require
that IDs in certificates be globally unique, but
X.509 practices often require name
uniqueness, at least over the set of individuals
certified by that CA. As a result, the X.509
certificate will bind a Distinguished Name
(DN) to the public key, where that DN may
include the name Frances Chamish but may
also include other information to make the DN
unique.

3. The certificate issued to/for Leanna is
delivered to John at a time when John is not in
direct contact with Leanna and he must make a
decision based on the information contained
within that certificate. This delivery can be
via a directory service (e.g., the PGP key
server or some directory of X.509 certificates)
or from Leanna as part of a communication
(e.g., via S/MIME). If he is acting properly,
he will fail to make any connection between
the certificate and his memory of Leanna,
since the two have too little information in
common to confirm with high probability that
they refer to the same physical person.

Note that PGP has a slight advantage here. Under PGP,
Leanna chooses the name she wants bound to her public
key and needs only to convince some number of key
signers to sign that association. On the other hand, a
high quality PGP key signer should refuse to sign a key
with a name not backed up by official documents.

Figure 2: Establishing Identity via PKI

Frances John

D
ig

ita
l

P
hy

si
ca

l
M

en
ta

l

Leanna

TTP

{credentials for
Frances …}

<certificate for
Frances Chamish>

<certificate for
Frances Chamish>

Assemble
certificate

1
1

1

2

3
AAAAB3NzaC1kc3MAAACBAPJQk
dHPKOgrjxD55GQUJmom3Je8/Up9
XPeczYHG6089V16ToSyTr2BUVul
cP92i05DFMxUlu1RraKVwiV38sg6
7UPcCUPYsRMmP6ASrTQyNgeZX
cyPkv9+30V97BH86UA8ctn8k+Dhc
0zZuo+kkTvGc8pPYHpIPDguKrrQw
bNHAAAAFQDHmD6d/aXIFLm+/cp
+6wyhx3KXnQAAAIEA7v+J71XMN
7X/DQ6JEunGMapaQXg. . .

?

1st Annual PKI Research Workshop---Proceedings

143

3.2.2 TTP Process: John to Leanna
In the other direction, there is a different problem. John
Wilson uses the same, true name in all his official
credentials, on all his documents and with all people.
But, in Figure 3 we see that Leanna is still unable to
connect his certificate to his identity in her mind.
Although the names compare between the certificate
and Leanna’s memory, Leanna does not know which of
the TTP’s John Wilsons this certificate corresponds to.
She knows only one John Wilson, but the TTP might
know and have certified hundreds. It is true that a good
CA will make the certificates for each John Wilson
different, by including additional information beyond
the common name “John Wilson”. (That information is
shown in Figure 3 as serial numbers.) However, if
Leanna does not know this additional information about
John, then all of these certificates would equally match
Leanna’s memory of John and therefore the certificate
in Leanna’s computer could be for any of those John
Wilsons. In the best case, she will discount the
certificate as worthless to her because she knows she
doesn’t know which John Wilson it belongs to, but
there is a more serious threat. She does not get all of
the certificates issued to all the John Wilsons. She gets
only one, especially if it is delivered (e.g., by S/MIME
or SSL) from someone claiming to be John Wilson. If
she were a naïve user, she might not think about the
hundreds of other John Wilsons that the TTP could
have certified and, since she knows only one John
Wilson, accept the offered certificate as referring to the
John Wilson she knows. That is, she might assume that

she has verified John’s identity via that certificate when
she hasn’t.

By contrast, when Leanna creates a SDSI name
certificate with the name “John Wilson” by the process
of Figure 1, since she knows only one John Wilson she
knows to which John Wilson her certificate refers. If
she knows more than one John Wilson, then she must
choose additional information to append to the name to
make it unique for her, just as a CA needs to do.
However, she will choose information that she knows
and that should therefore be meaningful to her when
she gets around to using that certificate in the future.

3.3 Security of Private Keys
There may be suspicion of the personal introduction
processes we use for their lack of use of a CA. As we
have shown above, the use of global names that comes
along with using a CA adds substantial insecurity to the
introduction process. However, an X.509 CA is
expected to be very good at protecting its own keys. In
our mechanism, by contrast, certificates are generated
by keys that are not specially protected. In PGP, the
key signers do not specially protect their keys, but the
fact that a key is supposed to be signed by multiple
signers (the web of trust) implies that any attacker must
have compromised all of those keys. PGP aims to
achieve through redundancy what an X.509 CA tries to
achieve through a guarded vault. At some number of
signatures, the attack effort required becomes greater
for PGP than for an X.509 CA and therefore the
strength of PGP would be greater. Our certificates have
neither form of protection.

Figure 3: Second PKI Example

John Frances

D
ig

ita
l

P
hy

si
ca

l
M

en
ta

l

John Wilson

TTP

V8DzXtpunisGd6iHmlmxAk2m7F0tc
M8QN+yryelzob2ZQt2lWi+67ZYQB
n0MTMOIWXeVUxiSSLPwtp8l2G13
F2LvvbajaBABviycV7wzHaKadVy1i
S/X/tmjzHMGK2B2KG6Kf3aaqBStC
xI2uc+SHyDBN3tYxivqWS+tNfCWrI
uc3nlNeU7T1Ld3jx29YrBHtFwnlbb/
KwZ1eu3LPTlXlylIkuRqHEbAh+Wx
mV3akQs0auWUi9NY0hfCO/e1U99
JubET90JE428A. . .

{credentials for
John Wilson}

<certificate
for John Wilson 4>

<certificate
for John Wilson 4>

Assemble
certificate

1

1

2

3

<certificate
for John Wilson 1>

<certificate
for John Wilson 2>

<certificate
for John Wilson 3>

?

1st Annual PKI Research Workshop---Proceedings

144

In spite of the relatively unprotected signing keys in our
mechanism, we can show that we have lost no security
for lack of the TTP. At the same time, as shown in the
previous sections, we would have lost security via
naming had we used either of the global-name ID
mechanisms.
Our argument is that if an attacker can steal (or operate
at will) a user’s private key, that attacker can
impersonate the user as well as generate certificates.
Since confidentiality keys are established in our system
by signed Diffie-Hellman key agreement[3], forward
secrecy is maintained and the attacker does not gain
access to any past (recorded) messages or file transfers.
This is not to deny the severity of theft of a private key.
The ability to impersonate the attacked user is a wide
security breach. The ability to generate certificates as
that attacked user, however, does not give any extra
access. No user in our system is in the role of a TTP –
certifying memberships, IDs or authorizations that the
attacked party does not herself possess and therefore
that the attacker does not himself possess after theft of
her key.
If the attacker chooses to use the stolen key to generate
a certificate for his own key, to invite it to join a group
(see section 4, below), then the attacker would have
access to activities of that group as a full participant
without continued use of the stolen key. However, he
would also leave a trail of use of his own key. That
key, although not tied to any locator information, is an
identifier and has forensic value. Therefore, a savvy
attacker would continue to impersonate the attacked
person by using her stolen key, rather than generate a
certificate giving group membership to his key.
In summary, the theft of a private key is undesirable,
but the ability of the thief to generate certificates gives
the thief no powers beyond those already gained just by
possession of the private key and might, in fact, work
against the attacker. A TTP would not increase private
key security on an individual node. It would only
increase certificate-issuing security, and therefore is of
no benefit to us.

4 Group Formation
We start with the concept of a secured collaboration, or
collaboration for short. A collaboration is a group of
principals, known as members , who are permitted to
share messages and files as part of that collaboration.
Some of these members also have the permission to add
new members to the collaboration.
A collaboration starts out as a name in the namespace
of the creator of the collaboration. It is expressed as an
SPKI/SDSI name: “(name <public key> <ASCII name
of collaboration>)”. [4]

The creator of a collaboration might be a private
individual, creating a set of friends, or a project leader
in a corporation, creating a digital reflection of her
project team. The official or unofficial nature of a
collaboration is a function of the intention of the creator
and does not show up in any difference in the software
used.
Given correspondents who are known with assurance,
the process of Invitation is that of granting
authorization to those known correspondents to
participate in a secure collaboration. An invitee can be
granted membership in the collaboration and might also
be granted the right to invite others into that
collaboration.

We grant membership without permission to add new
members by creating an SPKI/SDSI ID certificate:
(cert
 (issuer (name <public key> <ASCII
name of collaboration>))
 (subject <public key of invitee>)
 (valid (not-after <end date>))
)
We grant the ability to add new members as well by
issuing the certificate:
(cert
 (issuer (name <public key> <ASCII
name of collaboration>))
 (subject (name <public key of
invitee> <large random value>))
 (valid (not-after <end date>))
)
That is, we create a named group in the grantee’s
namespace and add that named group to the
collaboration. That grantee then adds individual
members to that new named group, via certificate:
(cert
 (issuer (name <public key of
invitee> <large random value>))
 (subject <public key of next
invitee>)
 (valid (not-after <end date>))
)
The members of a collaboration are those public keys
that are direct members of the top level named group or
of some named group contained within that top level
group, at whatever nesting depth.

4.1 Cross-corporate Invitations
In our system, invitations are issued only to
acquaintances, but these do not have to be close

1st Annual PKI Research Workshop---Proceedings

145

personal friends. These can be people one had met for
the first time just prior to issuing the invitation.

Such might be the case with cross-corporate working
groups, such as standards bodies, corporate acquisitions
or venture capital funding activities.

The invitation process does not require an act of the IT
departments of the various corporations involved. It
does not give any access into any of the corporations by
members of the other except for the strictly limited
functionality of the collaboration for which the
invitation was issued. In this way, it models current
business practices.
Other PKI mechanisms for permitting cross-corporate
interactions do not share this attribute. A bridge CA
[1], for example, effectively merges the certificate
space of the two bridged corporations. The very
exis tence of the bridge CA might, in fact, leak sensitive
information (for example, evidence that an acquisition
or merger is in the secret negotiation stage).
By contrast, with the invitation process, corporation A
learns nothing about the employee database of
corporation B. Members of corporation B are
represented in the group as public keys. No names of
keyholders are exchanged as part of the invitation. One
does not know if a second key invited by someone in
corporation B was that of another employee or was a
second key of the original employee. Therefore, one
does not even learn anything about the headcount of
corporation B beyond that which was learned during the
in-person negotiation meeting(s) during which the
introduction phase crossed the inter-corporate
boundary.

5 Use
From the point of view of the user, the collaboration
tool is just another instant messaging tool that happens
to operate over dual networks and offers peer-to-peer
file sharing. It happens to have a peculiarly rigid
introduction process, but we are tuning the prototype to
make sure that that process is not onerous.
The user has no choice over whether or not to use
cryptography and, if so, how strong. User keys are all
1024-bit DSA. All messages and file transfers are
encrypted with 168-bit triple-DES CBC, with session
keys and IVs derived from 1024-bit D-H key
agreement. All messages and file transfers are digitally
signed. This use of cryptography is transparent to the
user.

Full details of the features of this prototype belong in a
product data sheet rather than this paper, but that data
sheet has not been written yet. In summary, then:

1. Users can send messages to
a. an entire named group,

b. a set of members of a named group,
or

c. a single member of a named group
2. Users can make files available to a named

group

3. Users can fetch a file that is available to a
named group from the machine that holds it

4. Users can send files as if attached to a message
(i.e., addressed the same way)

With every operation, a group must be specified. It is
the named collaboration group that constitutes the only
access control at this time. That is, in order to keep the
UI simple, we provide for only one level of access
control. If you are in the group, you can read any
message or file made available to that group.
Each computer in a group maintains state for that
group, including the list of group member keys and the
list of any files that have been made available to the
group. Whenever two group members regain contact,
they synchronize this group state. The synchronization
is automatic and gives users the impression of common
state, although at times of network partition, that
common state loses consistency.

The resulting use model is very basic and we hope easy
to understand. Wider trials of the prototype will let us
confirm that hope or give us information with which to
improve the user’s experience.

6 User Interface issues
It is essential to do proper cryptographic engineering,
both in writing code and in designing protocols.
However, that careful engineering is not sufficient to
achieve security in an end-user product [6]. The user
interface needs to be designed in such a way that the
user would naturally do the correct thing and avoid
doing the wrong thing.

We must assume that there is always an attacker trying
to gain access to our collaborations, even though we
realize that in most cases there will be no attackers.
This lack of evidence of attack makes motivation of the
user especially difficult. It is therefore incumbent upon
us to make the user interface as pleasant and simple as
possible
Computer software engineers, no matter how well
meaning, cannot be expected to get a user interface
right. There must be extensive testing, with real users.
We have just started that extended testing and cannot
report full results at the time of this writing. However,
we have learned a number of things that are worth
reporting here. These are cases where lessons we
learned go against the inclination of our own
developers.

1st Annual PKI Research Workshop---Proceedings

146

6.1 Minimizing Choices
We have found that we need to minimize choices and
options, especially when there might be a bad choice.
Our initial users are more comfortable when given
fewer options.

We have limited options by defining a Contact (a Java
Object) that goes through state changes. It starts out,
after discovery, as an anonymous, non-trusted thing. It
has a sign-on name and may have an IP address. The
only thing that can be done with this non-trusted object
is to engage in introduction.

After introduction, the Contact has a public key that has
been verified and named by the user. An introduced
Contact is only then available to participate in
invitations to join one or more named collaboration
groups.
All message traffic and file transfers are associated with
a named group and are limited to members of that
group. It is not possible to engage in messaging or file
sharing outside a named group.

Groups and Contacts are shown to the user as names,
but the state of a Contact is shown by color and icon so
that the user does not need to look beyond the top-level
screen to tell what can be done with the Contact.
One invites a Contact to join a group by dragging and
dropping the Contact name onto the group.

6.2 Sign-on Names
For security purposes, it is best not to display sign-on
names to the user at all. These names are weak
identifiers at best and are subject to the John Wilson
problem, described in section 3.2.2.
On the other hand, both developers and experienced
users have been well trained to use sign-on names.
Many users view sign-on names as a way to deliver a
message – e.g., the name “fundude”, or the name
“fund00d” that conveys a slightly different message.
In the prototype, we have compromised. We use sign-
on names during discovery, but have the person who is
building a personal Contact List choose a name for each
entry in that list. This name will probably turn out to be
the original offered sign-on name most of the time and
we expect that to be a potential weakness, due to the
John Wilson problem, with or without actual attacks.
We take it as ongoing work to look for a solution to this
problem that is acceptable to users.

6.3 Key Verification
We recognized early in the development process that
key verification (e.g., the comparison of hex key
fingerprints) is the geekiest, slowest, most painful and
most cumbersome part of the introduction process.

This can be made a little easier by converting key
hashes to lists of words to be read aloud, as PGP did
several versions back. However, the task is still time
consuming. The list of words from a SHA-1 hash on a
PGP key takes on the order of 24 seconds to read. The
hex version of the hash takes about the same length of
time.
When keys are verified over a telephone connection, in
our prototype, we currently have the two parties read
words alternately to each other, to achieve mutual
verification of the hash. However, when keys are
verified by placing two mobile computers next to each
other, so that the person receiving the key can verify
correct receipt, we can use a graphical mechanism that
permits entropy comparisons to be much faster.

Figure 4: Verification graphic

Figure 4 shows a PDA screen displaying a graphic that
we call a “flag”. Preliminary experiments show that
people can compare a time sequence of these apparently
random graphics on two side-by-side screens, at a rate
of 2 per second, with comfort. Assuming the verifier is
not color-blind, each flag carries 25 bits: 1 for
horizontal vs. vertical orientation; 6 for the color of
each rectangle. This rate needs to be confirmed by
more extensive testing, but assuming it is confirmed,
this permits a key hash comparison at 50 bits per
second. One can then compare a full 160-bit hash in
just over 3 seconds, for a speed-up of a factor of 8.
If the graphic is black and white, e.g., for fully color-
blind users, we expect to get at least 10 bits/second of
comparison, for a full 160-bit hash in 16 seconds, but
we have not yet experimented with shapes to see how
much more rapidly we can do comfortable entropy
comparison.
It is our goal to get the verification time low enough
that a user would verify the correctness of a key’s hash
in the time it takes to move a stylus or mouse to accept
a key as valid. This does not eliminate the verification

1st Annual PKI Research Workshop---Proceedings

147

step, but does permit it not to add time to the user’s
process.

7 Conclusions
The problem of making sure that only those who truly
should be authorized to access some data actually end
up with access to that data is a very hard problem in
general. We have addressed a subset of the family of
security policies that have this requirement. We
provide for policies in which every member of a
defined group is permitted the same access as every
other member, but we allow for the definition of an
arbitrary number of groups. We have been very careful
to make sure that groups are made up only of
individuals known personally by someone with the
authority to add to the group membership. This does
not cover all possible groups, in theory, but does cover
all groups we encounter in practice, both at work and at
home.
Prior to this work, we had observed that the greatest
leakage of confidential information came from
misdirection of communication, through name
confusion, and only secondly from a failure to employ
security mechanisms to protect data. To respond to
those problems, we have been careful to keep the
named people and groups that any individual must deal
with down to the personal acquaintances and group
memberships of that individual. No choices are made
from a larger namespace. We allow the individual to
choose his or her own names for these individuals and
groups, to minimize confusion of names. We have
made all communications encrypted and digitally
signed, with no user choice, so that all accesses to data
handled by this system must be via the access control
mechanisms we have defined.
This system is doubtless not perfect. However, it has
addressed the greatest needs we have identified and
further improvements can follow as we gain experience
with use of this system.

8 Future Work
We have chosen not to deal with revocation of keys or
of authorizations (group memberships). The underlying
SPKI mechanism supports a variety of revocation
methods, but the complication of the user interface did
not seem warranted for what are almost always short-
lived groups of long-lived keys.
The limitation of operations to group members, and the
labeling of files as available to a group, can be thought
of as a poor man’s MAC/DAC architecture. We could
possibly improve the security of our mechanism by
implementing it on top of an operating system that
supports data labeling and mandatory access controls.

We need to continue our user trials of key hash
comparison mechanisms, including audio trials
alongside graphical ones, in order to determine the
actual number of bits being compared per second by the
user.

Because our underlying engine is the AuthCompute
library from CDSA [2], we have the full power of SPKI
and SDSI at our command. However, we have not
found a reason to use all that power. It is still an open
question whether the refinement of access controls full
SPKI would make possible would be of use to a naïve
user base or whether it would add an unacceptable
amount of confusion. For example, it is possible to use
the SPKI threshold subject mechanism to have more
elaborate security policies – such as permitting access
only if a group member is also still employed and has a
non-revoked key. However, this functionality would
require a complication of the user interface and might
lead to more errors than the extra refinement of
authorization would prevent.

9 Acknowledgements
We want to thank Leanna Chamish and John Wilson for
granting permission to use their names, stories and
images in this paper. We especially want to thank the
many engineers within Intel Labs who collaborated in
producing the prototype whose characteristics we report
here.

10 References
[1] Bridge-CA: for one discussion of a bridge CA, see
http://www.bridge-ca.org/english/index.html
[2] CDSA: http://developer.intel.com/ial/security/
[3] Whitfield Diffie and Martin Hellman, "New
Directions in Cryptography", IEEE Transactions on
Information Theory, November 1976, pp. 644-654.
 [4] Ellison, Frantz, Lampson, Rivest, Thomas, and
Ylonen, “SPKI Certificate Theory”, RFC2693,
September 1999.
[5] Ronald L. Rivest and Butler Lampson, “SDSI - A
Simple Distributed Security Infrastructure”, September
1996, http://theory.lcs.mit.edu/~rivest/sdsi10.html
[6] Alma Whitten and J.D. Tygar, Why Johnny Can't
Encrypt: A Usability Evaluation of PGP 5.0 .
Proceedings of the 8th USENIX Security Symposium,
August 1999,
http://www.usenix.org/publications/library/proceedings/
sec99/whitten.html

1st Annual PKI Research Workshop---Proceedings

148

Authorization Policy in a PKI Environment

Mary R. Thompson, Srilekha Mudumbai, Abdelilah Essiari, Willie Chin

National Energy Research Scientific Computing Division
Ernest Orlando Lawrence Berkeley National Laboratory

Berkeley, CA, 94720
pkidev@george.lbl.gov

s
of
r

m
d
ed
.
d
an
n
nd
n

es
a
le
of
d
m
ur
o-
is
-
a

i-

-
rce
iza
-

n

ms

za-
to

is
om
r-
a
tes
I.
e
en-
is-
er
a

ch
le
’s

l
a

us

o
run
r-
g
o-
ids
ve
ch-
rs.

1st Annual PKI Research Workshop---Proceedings
Abstract
The major emphasis of Public Key Infrastructure ha
been to provide a cryptographically secure means
authenticating identities. However, procedures fo
authorizing the holders of these identities to perfor
specific actions still needs additional research an
development. While there are a number of propos
standards for authorization structures and protocols
[17, 5, 22, 10, 6] based on X.509 or other key-base
identities, none have been widely adopted. As part of
effort to use X.509 identities to provide authorization i
highly distributed environments, we have developed a
deployed an authorization service based on X.509 ide
tified users and access policy contained in certificat
signed by X.509 identified stakeholders. The major go
of this system, called Akenti, is to produce a usab
authorization system for an environment consisting
distributed resources used by geographically an
administratively distributed users. Akenti assumes co
munication between users and resources over a sec
protocol such as secure socket layer (TLS) which pr
vides mutual authentication with X.509 certificates. Th
paper explains the authorization model and policy lan
guage used by Akenti, and how we have implemented
Apache authorization module to provide Akenti author
zation.

Background
There is significant and growing set of distributed com
puting environments where the resources, resou
stakeholders and users are geographically and organ
tionally distributed. The DOE sponsored Collaborato
ries [1] and various “Computational Grids” [13] are
examples of these as well as the ubiquitous Web-co
es
za-
i-

This work is supported by the U. S. Department of Energy, Office of
Science, Office of Advanced Scientific Computing Research, Mathe-
matical, Information and Computation Sciences office (http://
www.er.doe.gov/production/octr/mics), under contract DE-AC03-
76SF00098 with the University of California.See the disclaimer
at http://www-library.lbl.gov/teid/tmRco/howto/RcoBerkeley-
LabDisclaimer.htm.This document is report LBNL-49512.

149
-

l

-
e

n

-

-

trolled sets of documents and services. These syste
effectively define aVirtual Organizationwhose mem-
bers and resources span many different real organi
tions. These virtual organizations need a way
authenticate and then authorize their users.

One of the characteristics of a collaboratory or Grid
that both the stakeholders and users may come fr
many different administrative domains. Thus the vi
tual organization needs to identify its users in
domain neutral manner. The most common candida
for cross-domain identities are Kerberos and PK
Kerberos is mostly used within a single administrativ
domain, but there are many examples of cross-auth
ticated Kerberos realms, where the Kerberos admin
trators have agreed to accept tokens from anoth
realm. Negotiating cross-realm agreements is often
lengthy and complex process. Some examples of su
domains are universities where there may be multip
Kerberos realms within the university, and the DOE

ASCI-DisCom2 program [9] that connects Lawrence
Livermore National Laboratory, Los Alamos Nationa
Laboratory and Sandia National Laboratories in
computational Grid.

Looser collaborations, such as Grids based on Glob
[14] middleware, [24,27] Collaboratories [8,25] and
portals [20] have chosen to use PKI identities t
authenticate members. These organizations either
a Certificate Authority of their own and/or accept ce
tificates from a set of trusted CAs. Establishin
trusted CA relationships can also be a lengthy pr
cess, but since many current collaboratories and gr
are experimental in nature, the trust relations ha
been established on an informal basis by the resear
ers, rather than the system security administrato
Once a collaboration has decided to use PKI identiti
to authenticate users, it needs to develop an authori
tion system using those identities plus some add
tional access policy information for each of its
resources.

nd-
ity

e
rce
d
a

a
on
At
per

s to
r-

pt-
ed

rol
el,
per
d
ility
nts
te-
pa-
e
d-

on

1st Annual PKI Research Workshop---Proceedings
Another characteristic of collaboratories and Grids is
that their resources, such large scientific instruments,
computing resources and data stores, may have more
than one person (called a stakeholder) who needs to
control access to the resource. For example, when
remote control of an instrument is allowed the instru-
ment administration may want assurance that any user
who can control the instrument has passed a local train-
ing course, while the principal investigator may be
mostly concerned that the person controlling the instru-
ment during his allowed time is a member of his
research group. An authorization system that allows
access policy to be defined independently and remotely
from the resource gateway is needed.

However, standard access control methods typically
require that the stakeholder has privileged access to the
machine on which the resource resides to set the access
control. Also such systems, to the extent that they use
the underlying operating system for actual access con-
trol, require that all users of a shared resource must have
a local account on the system. The requirement for indi-
vidual system accounts on the resource machine does
not scale well.

We have developed the Akenti [32] authorization system
to meet these two needs: to use a virtual organization-
wide user identity (in our case an X.509 identity certifi-
cate); and to facilitate setting access policy by multiple
independent stakeholders remote from the actual
resource gateway.

This paper explains the authorization model and policy
language that we use, and how we have implemented an
Apache authorization module to provide the same
authorization policy and mechanism for resources
accessed via a Web browser as accessed by other remote
methods such as Globus job submission [14] or CORBA
object invocation.

Akenti
Akenti is built using X.509 identity certificates [18] and
the SSL/TLS [7] connection protocols to securely iden-
tify a user that is requesting access to a resource. It rep-
resents the authorization policy for a resource as a set of
(possibly) distributed digitally signed certificates. These
policy certificates are independently created by autho-
rized stakeholders. When an authorization decision
needs to be made, the Akenti policy engine gathers up
all the relevant certificates for the user and the resource,
validates them, and determines the users rights with
respect to the resource.

Authorization model

The Akenti model consists ofresourcesthat are being
accessed via aresource gatewayby users. These users
connect to the resource gateway using the SSL ha
shake protocol to present authenticated X.509 ident
certificates. Thestakeholdersfor the resources express
access constraintson the resources as a set ofsigned
certificates, a few of which are self-signed and must b
stored on a known secure host (probably the resou
gateway machine), but most of which can be store
remotely. These certificates express what attributes
user must have in order to get specific rights to
resource, who is trusted to make such Use-conditi
statements and who can attest to a user’s attributes.
the time of the resource access, the resource gatekee
asks a trusted Akenti server, what access the user ha
the resource. The Akenti server finds all the relevant ce
tificates, verifies that each one is signed by an acce
able issuer, evaluates them, and returns the allow
access. See Figure 1.

There are several models for arriving at access cont
decisions. One is the classical access control list mod
where the user just presents an identity to the gatekee
who finds the policy information for the resource an
evaluates the users access. Another is the capab
model, where the user presents a capability which gra
the holder specific rights to the resource, and the ga
keeper has to verify that the user has come by the ca
bility legitimately and then interpret the rights that hav
been presented. There are also hybrids of the two mo
els, where a user may present some identity informati
and possibly a restricted set of his full rights.

Client
Resource
Gateway Akenti

Resources

policy
certificates

Figure 1. Akenti Authorization Model
150

to
.
at
ign
on-
e

on
ig-
d

rs
s.
to
te
nti
n

1st Annual PKI Research Workshop---Proceedings
We have mostly concentrated on the first model in order
to allow applications to use Akenti authorization over
standard SSL connections which can transport and ver-
ify X.509 identity certificates. We have also experi-
mented with s capability model where Akenti will return
a signed capability certificate containing a subject’s Dis-
tinguished Name (DN), public key, the Certificate
Authority (CA) that signed for this name, the name of
the resource and the subject’s rights. If this is presented
to a resource gatekeeper, along with an authenticated
identity certificate, the gatekeeper need only verify the
signature of the certificate by using its copy of the
Akenti server’s public key, and verify that the subject
named in the capability is the same as that in the identity
certificate. These capability certificates are short-lived in
order to avoid the problems of revocation.

Akenti policy language

Akenti policy is expressed in XML and stored in three
types of signed certificates:Policy certificates, Use-con-

dition certificatesandAttribute certificates. Policy cer-
tificates are self-signed, co-located with the resources
which they apply and contain only minimal information
Use-condition certificates contain the constraints th
control access to a resource. Attribute certificates ass
attributes to users that are needed to satisfy the use c
straints. Akenti attribute certificates are simpler than th
proposed IETF Attribute certificates. See the section
Related Work for a more detailed comparison. See F
ure 2 for an example of a Use-condition certificate an
Appendix A for the DTD definition of the complete
Akenti Certificate schema.

Policy certificates specify who the resource stakeholde
are, and thus who may sign Use-condition certificate
The Use-condition certificates specify who can attest
the required attributes and thus who may sign Attribu
certificates. Whenever a certificate is used, the Ake
policy engine will check that it has been signed by a
acceptable issuer, and that the signature verifies.
<?xml version=”1.0” encoding=”US-ASCII”?>
<!DOCTYPE AkentiCertificate SYSTEM “/home/g1/proj/akenti/release/common/AkentiCertificate.dtd”>

<AkentiCertificate>
 <SignablePart>
 <Header Type=”useCondCertificate” SignatureDigestAlg=”RSA-MD5” CanonAlg=”AkentiV1”>
 <Version ver=”V1”/>
 <ID id=”griffy.lbl.gov#4e6ba338#Mon Mar 01 10:56:51 PST 1999”/>
 <Issuer>
 <UserDN> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=Mary R. Thompson </UserDN>
 <CADN> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA </CADN>
 </Issuer>
 <ValidityPeriod start=”981224003646Z” end=”020123003646Z”/>
 </Header>
 <UseConditionCert scope=”local” enable=”false”>
 <ResourceName> LBL </ResourceName>
 <Condition>
 <Constraint>(o=Lawrence Berkeley National Laboratory | (group = distrib)) </Constraint>
 <AttributeInfo type=”X509”>

 <AttrName> o </AttrName>
 <AttrValue> Lawrence Berkeley National Laboratory </AttrValue>
 <CADN> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA </CADN>

 </AttributeInfo>
 <AttributeInfo type=”AKENTI”>

 <AttrName> group </AttrName>
 <AttrValue> distrib </AttrValue>
 <Principal>
 <UserDN> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=Srilekha Issuer </UserDN>
 <CADN> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA </CADN>
 </Principal>

 </AttributeInfo>
 </Condition>
 <Rights> read, write </Rights>
 <SubjectCA> /C=US/O=Lawrence Berkeley National Laboratory/OU=ICSD/CN=IDCG-CA </SubjectCA>
 </UseConditionCert>
 </SignablePart>
</AkentiCertificate>

Figure 2. UseCondition Certificate

151

ch
e-
n

in
to

m
e-

is
ly
tif-
r

d
re

ed
o
be

s
me
by
e
st
the
e
r-

on
e-
o,
.
el
,

ces

m-

of
-
n-
rce

for
or
,
ere
pt
ra-
-
s
s,

1st Annual PKI Research Workshop---Proceedings
Resources controlled by Akenti authorization may be
grouped into aresource realm.A resource realm can be
organized as a flat structure of resources such as instru-
ments or compute platforms, or a hierarchical structure
such as a file system or set of Web documents. Each
resource realm has at least one Policy certificate which
must be stored in a known and secure place. Normally it
is on the same machine that controls access to the
resource, but it could also be on the platform where the
Akenti server is running, if they are different. Since a
Policy certificate is centrally stored and may be admin-
istratively difficult to update there is a minimal amount
of information in it. It contains information about the
Certificate Authorities that are trusted to sign identity
certificates, including a copy of their public keys and
information about where they publish certificates and
certificate revocation lists. It also lists the stakeholders
(or stakeholder groups) for the resource and where they
store the Use-condition certificates that they issue. It
may optionally store URLs in which to search for
Attribute certificates.

In the case of hierarchical resources, there must be at
least one Policy certificate at the top of the tree (some-
times referred to as the root policy). Then there may be a
Policy certificate at any level where there are new stake-
holders, or restrictions on the allowed CAs. Levels with-
out their own Policy certificates inherit policy from
higher levels. Policy certificates are signed by one of the
stakeholders listed in the certificate, making them self-
signed certificates. As such they must be uploaded by a
trusted method and kept in a secure location.

Each stakeholder group for a resource must create at
least one and possibly more Use-condition certificates
for its resource. A Use-condition certificate consists of a
constraint which is a relational expression of the
attributes a user must have to get a certain set of rights
with respect to the resource. Components of the X.509
distinguished name can be used such as CN=Mary R.
Thompson, or O=Diesel Combustion Collaboratory, or
values of attributes that are defined in the context of the
resource. For example, role = researcher or group =
accounting. These attribute requirements can be com-
bined with the boolean operators && or ||. It is also pos-
sible to specify real-time or system parameters such as
time<=5PM && time>=9AM, or system_load < 2. If
Akenti is unable to evaluate such system parameters it
may pass them back to the resource gateway for evalua-
tion. An attribute authority (consisting of an issuer and
its CA) is specified as the signing authority for each
attribute-value pair. Thus the stakeholder for a resource
must specify who is trusted to attest to the attributes that
are required.

The Policy certificate contains URLs to search for ea
stakeholder group’s Use-condition certificates. A stak
holder may put Use-condition certificates in more tha
one place for reliability, but each directory must conta
the complete set. Since Use-conditions restrict access
a resource, it is essential that either all or none of the
are found. If no Use-conditions are found for a stak
holder group, all access to the resource is denied. This
not the case with Attribute certificates since they on
serve to increase access. Thus a missing Attribute cer
icate may limit or deny a user’s access, but will neve
allow an access that should be denied.

Attribute certificates contain an attribute-value pair an
the subject name and issuer to whom it applies. They a
signed by attribute authorities that have been specifi
in a Use-condition certificate. Attributes can apply t
more than one resource, although they are likely to
applicable in only a single resource realm.

Creating policy

Since policy is contained in signed XML certificate
which are interdependent, a stakeholder needs so
tools to assist in their creation. A stakeholder starts
creating the root Policy certificate for the resourc
realm. The X.509 certificates of all the trusted CAs mu
be available from a trusted source and are placed in
root Policy certificate. This certificate also contains th
URLs of the locations where these CAs publish the ce
tificates that they issue and their certificate revocati
lists. The first stakeholder must decide if other stak
holders for the resource are to be allowed and, if s
include their DNs and CAs in the root Policy certificate
In a hierarchical set of resources, only the top lev
stakeholders need to be known initially. They in turn
can delegate control to other stakeholders for resour
lower in the hierarchy.

Akenti certificates can be created either by using a co
mand line tool to sign an XML input certificate, or by a
GUI program that steps a stakeholder though a menu
choices for each field in the certificate. The GUI pro
gram is supported by a Resource Definition Server ru
ning on the resource host which in turn reads a Resou
Definition File and any existing Policy files to find
stakeholder names, acceptable attributes and actions
a resource realm. The command line method is fine f
very simple policy, and for the root Policy certificate
but as soon as the policy becomes hierarchical, or th
are many stakeholders, the GUI interfaces which prom
the stakeholder with acceptable choices become prefe
ble. The Resource Definitions File is only used to pro
vide suggestions to the policy creation GUIs. It include
the names of the CAs, and their publishing directorie
152

-
Web
he
d

ral
e-
r. It
oto-
e
le

a
e a

e
e

a
he
e
on
g

te
l
e
lu-

he

y
e

g
on-
er
ifi-
l-
er
a-
e
If
P
e
ifi-
eb

ve
s
of
ci-

ve
to

1st Annual PKI Research Workshop---Proceedings
principals that are acceptable for issuing specific
attribute and values, and a list of actions that are relevant
to the resource realm. Information that is used at access
decision making time, such as the certificates of the
CAs, must be stored in the root Policy certificate, since
it is a signed document. In summary the two methods of
getting started are:

• Create an XML version of a root Policy certificate,
following one of the templates provided by the
Akenti distribution, sign it using CertGen with the
stakeholder’s private key contained in a pkcs12 for-
mat file, and store it in the resource tree

• Create a Resource Definition File, start the
Resource Definition Server, and then use the GUI,
PolicyCert.shto create, sign and store a Policy cer-
tificate.

The stakeholder must now create at least one Use-condi-
tion certificate for the resource. Anyone can create a
Use-condition certificate, but it will only be used during
the access control decision if it is issued and signed by
one of the stakeholders currently listed in the resource’s
Policy certificate. As in the case of the Policy certificate,
a Use-condition certificate can either be created by
inputting an XML version of the certificate and private
key to CertGen or can be generated and signed by a GUI
program,UseCondition.sh.The GUI program uses the
Policy certificate to determine the allowed stakeholders,
and the Resource Definitions File to determine what
attributes, values and actions have been defined for this
resource realm. The stakeholder is led through a process
to specify who he is, where his private key is, what
resource the certificate applies to, what attributes and
values are required, which attribute authorities should
vouch for them, and what actions are to be granted. It
also asks about such details as the length of time for
which this certificate should be valid, the scope of the
Use-condition (does it just apply to the one resource or
to a hierarchy of resources), whether it is a critical Use-
condition (it must be satisfied or the user gets no access
to the resource even if he satisfies other Use-conditions).
The Use-condition certificates must be stored in a direc-
tory that is specified in the Policy certificate.

Attribute certificates can also be created by either Cert-
Gen or a GUI programAttribute.sh. Attribute certifi-
cates are actually independent of a particular resource,
but the GUI program will look at the Resource Defini-
tions File associated with a particular resource to get a
list of attribute names. Resource Policy certificates, and
Use-condition certificates may specify where the
Attribute certificates should be stored.

Once a set of Policy, Use-condition and Attribute certifi
cates have been stored, the stakeholder can use a
based interface to see what access they provide. T
Resource Definition Server will execute the require
CGI script.

Checking access

The Akenti authorization service can be called in seve
ways: It can be invoked as a function call by a gat
keeper program and thus run as part of the gatekeepe
can be contacted as a server through an insecure pr
col such a TCP. If the akenti server is running on th
gatekeeper host, it can return the rights as a simp
string. If it is running on another host, it can return
signed certificate. The gatekeeper process must hav
copy of the Akenti servers’s public key and verify th
certificate, before it can trust the information. Or th
Akenti server can be contacted as a server through
secure protocol such as SSL and the protocol will do t
authentication of the Akenti server and encrypt th
returned access string. Akenti returns an authorizati
answer in one of two ways: a list of strings representin
unconditional actions; or a signed capability certifica
which may include both conditional and unconditiona
rights. Conditional rights are rights that may have som
conditions attached that only the gatekeeper can eva
ate, such as current machine load, disk availability or t
state of some related systems.

As has been mentioned previously, the Akenti polic
engine finds all the Use-conditions by searching in th
URLs specified in the Policy certificates and verifyin
the issuer and signature on each certificate. If a Use-c
dition certificate cannot be found for each stakehold
group, access to the resource is denied. Attribute cert
cates are searched by following URLs in either the Po
icy certificates and/or Use-conditions. Again, the issu
and signature of each certificate is verified. This sign
ture verification requires that the Akenti policy engin
be able to find the X.509 certificates for each issuer.
the CAs who issue certificates publish them in an LDA
server, Akenti will look there. Otherwise there must b
some setup actions taken to put all the expected cert
cate issuers’ X.509 certificates in a file system or a w
browser where they can be found.

Mod_akenti module for Apache web server
Web-controlled sets of documents and services ha
rapidly grown from collections of read-only document
that are centrally administered to a vast array
remotely managed documents and services. In the s
entific community such Web based systems ha
become known as portals, and are increasingly used
153

c
id
urn
e a
ts.
ion
of
l-
L

o-
-

he
c-

e
an
er,
-

u-
),
d,

be
n
ir-
ec-
d
c-

re

1st Annual PKI Research Workshop---Proceedings
provide a common interface to static documents, to
allow shared authoring of documents, to allow access to
legacy data bases, to allow execution of codes on shared
server machines, and practically anything else an inven-
tive scientist can think of. Authorization to perform such
access is usually implemented by the httpBasic Authen-
tication mechanisms, (e.g. user/password or domain
based) or by ad-hoc scripts based on the username.
These passwords are passed across the internet in clear
text and are thus deemed insecure.

In order to make Akenti authorization available for the
widest range of distributed resources, we wanted to
make it available to Web-accessed resources. There
were several ways to accomplish this: referencing
resources through CGI scripts that called Akenti, refer-
encing resources through Java servlets or JSPs that
called Akenti, or building Akenti authorization into a
Web server. The first two methods, involve an indirec-
tion between the request and response which is both less
efficient and requires more complicated URLs to refer to
documents. Since the Apache Web server makes it
straightforward to include new functionality, we decided
to build a Akenti module for Apache.

The Apache [2] web server is a widely-used, high-per-
formance freeware server which is built around an API
[30] which allows third-party programmers to add new
server functionality. Indeed, most of the server’s visible
features (logging, authentication, access control, CGI,
and so forth) are implemented as one of several mod-
ules, using the same extension API available to third
parties. The modules can be statically or dynamically
linked to the server. [33]

How apache modules work

Apache divides the handling of requests into different
phases:

• URI to file name translation
• Authentication and access checking
• Determining theMIMEtypeof therequestedentity
• Returning data to the client
• Logging the request

Each module can contribute to any of these phases. For
each phase, a module can completely replace an existing
module or can be added to a list of existing modules.
The list of modules acts as a queue in which control is
passed from one module to another. Each module can
return one of three values: OK, DECLINE and FOR-
BID. If a module returns OK, then the server passes the
request on to other modules in the queue. A module

returns DECLINE when it wishes to ignore a specifi
request. A FORBID return causes the server to forb
access to the resource requested. The FORBID ret
veto’s other modules replies. Each module can declar
set of handlers to handle specific types of URI reques
The interface between the server core and the extens
modules is through a module structure which consists
vector of callback routines. A module provides a cal
back for each phase that it wishes to handle and NUL
for the rest. The module structure for Apache 1.3.x pr
vides the option of defining one or more of the follow
ing callback routines.

module MODULE_NAME = {

STANDARD_MODULE_STUFF,
<module initializer routine>,
<per-directory config creator routine>,
<merge routine for directory config>,
<server config creator routine>,
<server config merge routine>,
<command table for defining directives>,
<list of handlers to handle specific requests>,
<filename-to-URI translation routine>,
 <check/validate user_id routine>,
<check user_id is valid *here* routine>,
<check access routine>,
<MIME type checker/setter routine>,
<module specific fixup of header fields routine>,
<module specific logging activities routine>,
<header parser routine>,
<process initializerroutine>,
< process exit/cleanup routine>,
<post read_request handling routine>
};

Apache allows each module to read directives from t
configuration file by specifying a command table stru
ture. The entries in the command table include the nam
of the command, a pointer to the command handler,
argument which is passed to the command handl
items which tell the server core code where the com
mand may appear (RSRC_CONF), what sort of arg
ments it takes (TAKE2 means two string arguments
and a description of what arguments should be supplie
in case of syntax errors.

There are three major classes of directives that can
defined in Apache. First Global directives which ca
occur inside server config files but must be outside v
tual host sections. The second class is per-server dir
tives which occur within the context of server config an
the virtual host sections. The third class is the per-dire
tory directives which can pretty much occur anywhe
154

sed
or

eb
the
les
is
ith

d-
ide
e.

ng
es,
ser
ain
n

a
of
the

te
rver
nd
ly
nd
m-
ch
can
ifi-
is
the

f
. If
te
er

er

ral

’s
eds
ve
n-

ily

1st Annual PKI Research Workshop---Proceedings
(server config, virtual host, directory,.htaccess). These
three classes are subsets of each other.

How mod_akenti works

Mod_akenti is an Apache module that provides Akenti
authorization capabilities for the Apache web server.
Mod_akenti is implemented as a Dynamic Shared
Object module which can be loaded into the server at
start-up or restart time. It currently works in Apache
1.3.x. Mod_akenti does not define any handlers as it
serves as an access control mechanism for all requests to
the web server unless otherwise specified.

Mod_akenti defines two global directives inside the
server configuration, and defines a check access call-
back. So its interface consists of a call for per-directory
configuration, a command table, and a callback for the
check access routine.

The two Akenti directives are: AkentiConf, which sup-
plies the name of the configuration file used to configure
Akenti policy engine; and AkentiResources, which is
used to specify what part of the document tree should be
controlled by Akenti. The second directive is of interest
as it allows other authorization mechanisms to coexist
with that of mod_akenti. It accepts a set of resource
names to be controlled, or ‘ALL’ to control the whole
hierarchy or an empty argument to control none of the
resources.

Configuration and installation

Mod_akenti is a C++ module, while the core Apache
server is written in C. Hence the shared object standard
C++ library (ex. libstdc++.so) must be linked at server
start-up. This is done through the LoadFile command in
httpd.conf. The other shared object libraries can be
either in LD_LIBRARY_PATH or defined in the
httpd.conf similar to standard c++ library. The Akenti
module requires a secure Apache web server (Apache +
mod_ssl., which in turn requires that the server be built
with the Extended API), the OpenSSL libraries (an open
source toolkit that implements SSL and TLS as well as
general cryptography), the OpenLDAP libraries (open
source library for LDAP suite of applications) and the
Akenti suite of libraries. A special program apxs
(APache eXtenSion) is used to insert mod_akenti into
the web server before start-up. The mod_akenti distribu-
tion package [23] provides detailed information about
how to build and configure the Akenti module.

Web authentication and authorization
methods
Standard Web authentication and access control is ba
either on the domain in which the request originated,
something calledBasic Authentication[15] where the
user provides a user name and password which the W
browser matches against user information stored on
server machine. There are many authentication modu
for Apache based on this mechanism [3]. Mod_auth
the basic module that matches a user and password w
an entry in Web specific password and group files. Mo
ules such as mod_auth_dbm and mod_auth_db prov
greater scalability by looking up users in a data bas
There are also modules available for authenticati
users in ldap directories, Oracle, and msql data-bas
and Kerberos users. In all of these schemes the u
name and password is passed over the network in pl
text. There is one other form of user authenticatio
which is not supported by many browsers calledDigest
Authentication which is implemented by
mod_auth_digest. This protocol has the server send
nonce to the browser who then returns an MD5 hash
the nonce, the user name, password, http request and
URI. Thus the password is not sent in the clear.

Mod_ssl [21] which uses X.509 certificates to crea
encrypted channels between the browser and the se
adds a whole new dimension to authentication a
authorization. In the typical commercial use of SSL on
the server is required to have an identity certificate a
private key. This key is used to establish encrypted co
munication between the browser and server over whi
passwords can be passed securely. However, SSL
run in a mode that requires the browser to have a cert
cate and private key for the client. When this mode
used mod_ssl can provide access control based on
client certificate.

The mod_ssl directive SSLVerifiyClient can hold one o
the three possible values: none, optional and require
it is set to require, the browser must provide a certifica
that identifies the user. If it is set to optional, the brows
will look for a user certificate, but if none exists will
attempt the access anyway. If it is set to none, no us
certificate is sent.

Once mod_ssl has a client certificate, it provides seve
more types of access control. It can implement aFake-
BasicAuthoption where it uses the subject of the client
X.509 certificate as a user name, but no password ne
to be obtained from the user. It also provides a directi
called SSLRequire (see Figure 3.) which specifies co
straints which need to be fulfilled in order to allow
access. The requirement specification is an arbitrar
155

ifi-
s a
a
me

trol
n

ns
,

e

g
to-
ed.
e
ty
if-
if-
n
al

so
s
s
d

the
int
d
ct

o-
t-
-

-

h

ed
als
ge.
I
to
s

e

ay

1st Annual PKI Research Workshop---Proceedings
complex boolean expression containing any number of
access checks. The variables used in the expression
include all the standard CGI/1.0 and Apache variables,
plus a large number of variables defined by mod_ssl that
refer to parts of both the server and client certificates:
e.g. client subject’s DN, the client issuer’s DN and most
components of the client’s certificate. The syntax also
allows an expression to be used from an arbitrary file.
This method is used to match portions of distinguished
name compared to the FakeBasicAuth where the whole
DN is used.

While the SSLRequire directive is very powerful its
main limitation is that the constraints are specified as
part of server’s configuration file. If many resources
need to be controlled, the server configuration will
expand to the point where it becomes difficult to man-
age. In distributed environments where policies for
resource access are managed by multiple owners, a cen-
tralized access control list does not scale well. For
example, WebDAV [16] has been implemented as
Apache module, mod_dav, which allows extensions to
HTTP protocol in order to provide a shared file system.

If several projects need to be managed by one server,
there should be a a way tolimit the writing of access
policy for a set of resources to the project manager. But
since all the policy is in one file, this is not possible.

Mod_akenti, on the other hand, stores all of its policy
information outside of the Web server configuration file.
The only information in the configuration file is the
name of the resources which mod_akenti wishes to con-
trol and a pointer to Akenti’s own configuration file. The
Akenti configuration file points to where the root Policy
certificate for each resource tree is. Akenti policy
defines who the resource owners are and allows resource
owners to express use-conditions on each resource. The
use-conditions are signed and stored in a distributed
fashion at the owner’s convenience. The variables used
in the use-conditions are defined by the stakeholder,
rather than the Web server. Thus the same access policy
can be used for resource referenced via the Web or by
another remote method. At run-time Akenti collects all
the use-conditions applicable for a certain resource in

order to make access decisions. Akenti caches cert
cates in order to reduce search time. It also cache
Capability which has the access rights of a user for
resource, so that subsequent requests for the sa
resource require no decision making.

mod_akenti could also be used to provide access con
for mod_dav which currently uses basic authorizatio
provided by Apache. In this case, the use-conditio
have to be specified for WebDAV methods (MOVE
COPY, PROPFIND, DELETE etc.). In addition, a few
additional directives are required for mod_akenti insid
the per-directory configuration.

Related Work

Policy representations

While there has been a great deal of work in formulatin
use requirements and standards for authorization pro
cols or data structures, no single standard has emerg
There is an IETF proposed Attribute Certificate profil
[12] to carry attributes associated with an X.509 identi
certificate. While the contents and purpose of this cert
icate are basically the same as an Akenti Attribute cert
icate, we chose not to use it in our implementatio
because it is difficult for users and applications to de
with ASN.1 structures. A major goal of Akenti was to
make the policy as easy to understand as possible,
using ASCII files to represent policy and principal
names consisting of a CA’s DN and the user’s DN wa
preferable to using a an ASN.1 structure that identifie
the holder as a CA and serial number. To understand
meaning of such a certificate, requires a program to pr
the contents in a readable form, and the ability to fin
the holder’s X.509 certificate and extract the subje
name.

KeyNote [5] is a trust management system, which pr
vides a simple language for describing and implemen
ing security policies, trust relationships, and digitally
signed credentials. The KeyNote definesprincipal as
any convenient string which may include a crypto
graphic public key. Authorization policy is contained in
assertionswhich consist of a sequence of fields. Eac
field is represented by a keyword and value. Acreden-
tial asserts some attribute about a principal and is sign
by a trusted authority. Both assertions and credenti
are represented by the same keyword policy langua
Akenti and KeyNote both provide a function call AP
for compliance-checking for a resource gatekeeper
call when making an access decision. Both system
return list of trusted actions. KeyNote is less tied to on
form of authentication than Akenti. A KeyNote princi-
pal may be represented by a cryptographic key, or it m

<Directory /foo>
SSLRequireSSL
SSLRequire %{SSL_CLIENT_S_DN_O} eq

“LBNL” and
 %{SSL_CLIENT_S_DN_OU}

in {“DSD”, “ICSD”, “NERSC”}

 Figure 3 Example of SSLRequire
156

di-
ur-
te
er-
a
the
m

ity
d

ut
o-
ay

lly
t to
at
n

of
ori-
e.
ts

d
e
a-

n
b-
et2
e
e
a
e
o
n
ver
-
r
tes
er
se
ne
by
s
t
th
at
ss
d.

1st Annual PKI Research Workshop---Proceedings
just be an opaque string. They deliberately did not
require X.509 certificates in order to separate the issues
of secure naming and authorization. While this removes
the need for maintaining a PKI, it means that the princi-
pals named in the authorization policy may be opaque
making it harder for a stakeholder to read and evaluate
the policy of a resource.

The mechanisms for creating and storing policy asser-
tions and storing and marshaling certificates are left up
to the installer of a KeyNote system. In contrast, one of
the emphases of the Akenti system is to support remote
creation and storage of policy certificates. It thus pro-
vides several tools to help in their creation and signing,
while the policy engine supports gathering certificates
from file systems, LDAP servers or Web servers. Other
systems rely on the user being able to edit policy files on
the resource gateway machine which does not meet our
goal of accommodating distributed stakeholders.

In our original implementation of Akenti, we chose a
simple keyword language for our certificates similar to
that used by KeyNote. Eventually, expressing the con-
straints and trust relationships for all the attributes
became increasingly awkward, with too much informa-
tion being implicit in the ordering of fields or in rela-
tionships between fields. For our second implementation
we switched to XML for greater flexibility and more
precise definition of the semantics. We were also
encouraged by the availability of XML parsing tools in a
variety of languages and have made use of the Xerces
parsers from the Apache XML Project [4]

A recent XML standard specification for security asser-
tions named Security Assertion Markup Language
(SAML) [17] has been published by the OASIS [29]
consortium. This standard defines both XML protocols
and assertion structures. Assertions come in three types:
Authentication: the specified subject was authenticated
by a particular means at a particular time; Authorization
Decision: a request to allow the specified subject to
access the specified resource has been granted or
denied; Attribute: the specified subject is associated
with the supplied attributes. Since Akenti is only sup-
porting X.509 authentication, it does not need a general
purpose Authentication structure. It just uses the X.509
certificate (or chain of certificates if delegation is
involved) and assumes that the resource gateway has
authenticated the certificate. Akenti will check for revo-
cation, since the current implementations of SSL do not
do this. The capability certificate returned by the Akenti
server differs from the Authorization Decision assertion
in that it does not contain the reasons (evidence) of why

it made the decision, but may contain unresolved con
tions on the actions, so that the gatekeeper can do f
ther checks. Again the attribute assertion/certifica
covers has the same purpose as the PKIX Attribute C
tificate and the Akenti Attribute certificate: namely,
subject name, an associated attribute-value pair and
authority that attests to this. The SAML standards see
to be focused on letting various peers report secur
decisions. The focus in Akenti, is more on gathering an
interpreting of policy (Use-condition) statements abo
the resource. The only real communication is the auth
rization request and reply between the resource gatew
and the Akenti server.

Authorization models

The authorization model used by KeyNote is essentia
the same as Akenti uses. A principal makes a reques
a resource gateway, handing it an identity credential th
can be authenticated. In Akenti this is normally just a
X.509 certificate, while KeyNote supports other types
credentials. Then the gateway server makes an auth
zation request to the authorizer, e.g. Akenti or KeyNot
The current implementation of KeyNote only suppor
function calls, where Akenti will support function or
server calls. The authorizer returns a list of allowe
actions to the gate keeper for its interpretation or in th
case of Akenti being called as a server, it returns a cap
bility certificate signed by Akenti.

Shibboleth [11] is a cross-institutional authenticatio
and authorization service for access control to We
accessed resources. It is being specified by the InterN
middleware architecture committee. It has many of th
standard goals of distributed authorization with on
additional twist. It wants to be able to grant access to
user who can still maintain anonymity at the resourc
site. The major motivation for this goal is access t
library materials by academics. Their authorizatio
model entails a user making a request to a web ser
and providing a identity handle back to his home institu
tion. The Web server then asks that institution fo
attributes about the user. It then checks those attribu
against its local policy to allow or deny access. The us
need only authenticate to his host site and may u
whatever type of credentials that site recognizes. O
difference between this trust model and that used
Akenti, is that in Akenti, the resource provider specifie
a limited number of trusted authorities that it will accep
for authenticating users and attributes. In the Shibbole
case, each member institute must trust all the sites
which any of its user’s reside. So for a user to get acce
to a remote resource, its whole site must be truste
157

ti-
y
ss
ho-
ed
pa-
y
to
le-
he
to
ssed
a

e
cy
by
e

th-
r at
so
d
-

ol-
u-
ted
cy

or
/

al

e-

1st Annual PKI Research Workshop---Proceedings
While in a more traditional PKI environment, a user
only needs to get a credential for himself from an
authority that the resource site trusts.

The Community Authorization Server (CAS) [28] is a
new authorization service being developed by the Glo-
bus Project [13] for Grid environments. Their authoriza-
tion model allows a resource site to grant a community
access to resources and the authorization server for that
community to grant access to the community members.
This is implemented by having the user go to the CAS
server and get a delegated proxy certificate [31] with the
CAS server’s identity, which includes a rights restriction
extension that limits what resources can be accessed.
The resource gatekeeper must interpret the restricted
rights extension and verify that the community has such
rights to the resource. Since the delegated proxy is a
short-lived X.509 identity certificate it gets passed
between the user and the resource gateway as part of the
SSL connection. There is no additional information that
needs to conveyed, as is the case when a user needs to
hand attribute certificates to the gatekeeper. CAS differs
from Akenti in that the examination of policy and grant-
ing of rights is done before the gatekeeper is contacted.
This means the user must ask for all the rights he will
need in advance of referencing the resource. In Akenti,
all the gathering and checking of policy is done after the
call to the gatekeeper to perform a certain action. Akenti
does cache the rights that the user was granted, to deal
with the common case of several calls in rapid succes-
sion for resources in the same realm.

Policy about resources is stored and managed by the
CAS servers and so far mainly consists of lists of
objects and allowed rights. This information is included
in the rights restriction extension of the delegated proxy.
The intent of the CAS project is to extend the policy lan-
guage as the need arises. The CAS administrator is
responsible for adding each community member to the
appropriate groups. The CAS administrator may also
delegate administration of subsets of the objects to addi-
tional people. In contrast, in Akenti, a new user would
need to contact the stakeholder for the resource to be
added to the policy files.

Conclusions
Akenti is an authorization service that uses authen
cated X.509 identity certificates and distributed digitall
signed authorization policy certificates to make acce
decisions about distributed resources. It supports aut
rization decisions based either on policy that is gather
by the resource gatekeeper, or on a rights-granting ca
bility presented by the user. It supports Globus prox
identity certificates, and could be easily extended
handle restricted delegation credentials. We have imp
mented an Apache Web server module which allows t
same authorization policy to be used to control access
Web accessed resources as well as resources acce
by other remote methods. Thus all the resources in
portal can use the same authorization mechanism.

Akenti differs from most of the other work that we hav
surveyed in the emphasis on using easily read poli
statements that are independently created and signed
multiple stakeholders. This policy can be stored on th
resource host or locally to the stakeholder and be ga
ered and evaluated by the trusted authorization serve
the time of resource access. The Akenti distribution al
includes several tools for displaying the combine
authorization policy for a given resource and for track
ing the steps in a user’s authorization or rejection.

It has been used as part of the Diesel Combustion C
laboratory [26] to control access to Web-based doc
ments and remote execution and is now being integra
with the Globus job manager to control access to lega
applications in the National Fusion Grid [19].

The code is freely available as C++ source code,
Linux and Solaris executables. (http://www-itg.lbl.gov
Akenti)

Acknowledgments
The original idea for Akenti came from William
Johnston. Case Larsen did a large part of the origin
implementation. Maria Kulick, Guillaume Farret and
Xiang Sun have also contributed to the current impl
mentation.
158

1st Annual PKI Research Workshop---Proceedings
Appendix A: XML definition for the Akenti policy language
<?xml version=”1.0” encoding=”US-ASCII”?>
<!-- This DTD is intended to define all the Akenti Policy elements:
 Policy Certificates, UseCondition Certificates, Attribute Certificates,
 Capability/Authorization Certificates, and Cache Certificates
 -->
<!-- Note: one or more (+), zero or more (*), or zero or one times (?)-->

<!ELEMENT AkentiCertificate (SignablePart, Signature)>

<!ELEMENT SignablePart (Header, (PolicyCert | UseConditionCert | AttributeCert | CapabilityCert))>

<!ELEMENT Header (Version, ID, Issuer, ValidityPeriod) >
 <!ATTLIST Header

Type (attributeCertificate | cacheCertificate |capabilityCertificate | policyCertificate | useCondCertificate) #REQUIRED
SignatureDigestAlg (RSA-MD5 | RSA-SHA1 | DSA-MD5) #REQUIRED
CanonAlg (AkentiV1) #REQUIRED >

<!ELEMENT PolicyCert (ResourceName, CAInfo*, UseCondIssuerGroup+, AttrDirs*, CacheTime)>
<--

ResourceName Name of the resouce to which this policy applies
CAInfo The DN and X509 identity certificates of all the CAs we will trust.

May include pointers places where it publishes CRL’s and identity certificates
UseCondIssuerGroups Stakeholders and their Certificate directories

At least one UseCondCert must be found from
each group.

AttrDirs optional list of URLs in which to search for Attribute certificates
CacheTime Maximum time in seconds that certificates relevant to this resource may be cached

-->
<!ELEMENT UseConditionCert (ResourceName, Condition, Rights, SubjectCA*)>
<!--

ResourceName name of the resource to which the useCondition applies
Condition A boolean expression stating what attributes a user needs to satisfy the UseCondition and what users

and CAs are trusted to attest to specified attribute
Rights An opaque list of actions known to the stakeholder and the resource gateway

 -->
 <!ATTLIST UseConditionCert

enable (true | false) #REQUIRED >
<!--

scope if sub-tree the UseCondCertificate applies to all the resources that are in the sub-tree named by the resource
if local, it applies just to the one resource named

enable if true, this UseCondition must be satisfied by anyone wanting to use the resource, if false it need not be satisfied
if a user satisfies other UseConditions.

-->
<!ELEMENT AttributeCert (SubjectAndCA, AttrName, AttrValue, Condition*)>
<!--

SubjectAndCA Subject to which this attribute applies
AttrName name of attribute
AttrValue value of attribute
Condition An optional Constraint that is placed on how or when the attribute should apply

-->
<!ELEMENT CapabilityCert (ResourceName, SubjectAndCA, Actions*, ConditionalActions*)>
<!--

ResourceName name of the resource to which the rights apply
SubjectAndCA user who has the rights
UnConditionalActionsthe actions that have been authorized
ConditionalActions actions that still have some unevaluated constraints.

 -->
<!ELEMENT ConditionalActions (Condition, Actions)>
 <!ATTLIST ConditionalActions

critical (true | false) #REQUIRED >
<!--

Condition Constraint that is placed on how or when the attribute should apply
159

1st Annual PKI Research Workshop---Proceedings
Actions The access rights that are allowed if the condition is true
Critical If this is false, the Condition must evaluate to true, or even the UnConditionalActions do not apply

-->

<!ELEMENT CAInfo (CADN, X509Certificate+, IdDirs*, CRLDirs*)>
<!--

CADN the distinguished name of the CA
X509Certificate A chain of the X509 identity certificates of the CA, includes its public key.
IdDirs an optional list of directories in which the CA stores the certs it issues
CRLDirs a list of 0 or more URLs to directory services in which to search for certificate revocation lists

-->

<!ELEMENT Condition (Constraint, AttributeInfo+)>
<!-- A Condition contains a boolean expression stating what attributes a user needs to satisfy the UseCondition and

what users and CA are trusted to attest to what attribute/value pairs.
-->
<!ELEMENT CRLDirs (URL+)><!-- list of 0 or more URLs to directory services in which to search for certificate revocation lists-->
<!ELEMENT AttrDirs (URL+)> <!-- AttrDirs list of 0 or more URLs to directory services in which to search for attribute certificates.-->
<!ELEMENT IdDirs (URL+)> <!-- list of 0 or more URLs to a directory services in which to search for identity certificates.-->
<!ELEMENT UseCondIssuerGroup (Principal+,URL+)> <!-- group of stakeholder and their certificate directories. -->
<!ELEMENT AttributeInfo (AttrName, AttrValue, (CADN | Principal), AttrDirs*, ExtArgs*) >
 <!ATTLIST AttributeInfo type (STANDARD | X509 | AKENTI | EXT_AUTH) #REQUIRED>
<!--

STANDARD attributes if they are evaluated by some system call
X509 attributes if they are part of an X509 Identity certificate, e.g. O, OU, CN;
AKENTI attributes if there is an Attribute certificate to attest to a user’s possession of the attribute
 EXT_AUTH if some external authority is called to evaluate them

AttrName name of attribute used in constraint
AttrValue name of value required by constraint
CADN name of CA that issues the identity certificate that contains the x509 attribute we need.
Principal the name of the attribute issuer and CA for Akenti attr

or the name of an external authority that can evaluate an attribute
 AttrDirs an optional list of directories in which to search for Attribute Certificates
 ExtArgs optional list of arguments that may be handed to an external authority.

-->

<!ELEMENT ValidityPeriod EMPTY><!-- Beginning and End date in UCTime of when the certificate is valid -->
 <!ATTLIST ValidityPeriod
 start CDATA #REQUIRED
 end CDATA #REQUIRED
 >
<!ELEMENT ExtArgs (String+)>
<!ELEMENT ID EMPTY> <!--A unique ID assigned to every certificate when it is created -->

<!ATTLIST ID id CDATA #REQUIRED >
<!ELEMENT Version EMPTY> <!-- Certificate format version -->

<!ATTLIST Version ver CDATA #REQUIRED >
<!ELEMENT Issuer (UserDN,CADN,URL*)>
<!ELEMENT Principal (UserDN,CADN)>
<!ELEMENT SubjectAndCA (UserDN,CADN)>
<!ELEMENT URL (#PCDATA)> <!-- protocol, host, port and file name -->
<!ELEMENT CADN (#PCDATA)>
<!ELEMENT SubjectCA (#PCDATA)>
<!ELEMENT X509Certificate (#PCDATA)>
<!ELEMENT UserDN (#PCDATA)>
<!ELEMENT ResourceName (#PCDATA)>
160

://

r

.

-

-

1st Annual PKI Research Workshop---Proceedings
References
1. D. A.Agarwal, S. R. Sachs, W.E.JohnstonThe Real-

ity of CollaboratoriesComputer Physics Communi-
cations, 1998, vol. 110, p. 134-141

2. Apache Software Foundation
http://www.apache.org

3. Apache Module Registry,
http://modules.apache.org/

4. Apache XML Project; http://xml.apache.org/
5. M. Blaze, J. Feigenbaum, J. Ioannidis, A. Keromy-

tis.The KeyNote Trust Management System, Version
2. RFC-2704. IETF,September 1999.
http://www.crypto.com/papers/rfc2704.txt

6. N. Damianou, N. Dulay, E. Lupu, M Sloman,:The
Ponder Specification Language Workshop on Poli-
cies for Distributed Systems and Networks
(Policy2001), HP Labs Bristol, 29-31 Jan 2001

7. T. Dierks, C. Allen,The TLS Protocol, Version 1
IETF RFC 2246; http://www.ietf.org/rfc/rfc2246.txt

8. Diesel Combustion Collaboratory (DCC), http://
www-collab.ca.sandia.gov/dcc/

9. DisCom2, http://www.llnl.gov/asci/discom/
10. C. EllisonSPKI Requirements,IETF RFC 2692

1999, http://www.ietf.org/rfc/rfc2692.txt
11. M. Erdos, S. Cantor,Shibboleth-Architecture

DRAFT v04, http://middleware.internet2.edu/shib-
boleth/docs/raft-internet2-shibboleth-architecture-
04.pdf

12. S. Farrell, R. Housley,An Internet Attribute Certifi-
cate Profile for Authorization, <draft-ietf-pkix-
ac509prof-09.txt>, June, 2001 http://www.ietf.org/
internet-drafts/draft-ietf-pkix-ac509prof-09.txt

13. I. Foster, C. Kesselman, eds.The Grid: Blueprint
for a New Computing Infrastructure,1999, Morgan
Kaufmann

14. I. Foster, C. Kesselman, S. Tuecke, The Anatomy of
the Grid: Enabling Scalable Virtual Organizations.
International J. Supercomputer Applications, 15(3),
2001. http://www.globus.org/

15. J. Franks, et.al.HTTP Authentication: Basic and
Digest Access Authentication, IETF RFC 2617,
http://www1.ics.uci.edu/pub/ietf/http/rfc2617.txt

16. Y. Goland, et al.,HTTP Extensions for Distributed
Authoring-- WEBDAV, IETF RFC2518
http://www.ietf.org/rfc/rfc2518.txt

17. P. Hallam-Baker, E. Maler, eds. Assertions and Pro-
tocol for the OASIS Security Assertion Markup
Language (SAML),draft-sat-core-25, http://
www.oasis-open.org/committees/security/docs

18. R. Housley, W. Polk, W. Ford, D. Solo,Internet
X.509 Public Key Infrastructure Certificate and
CRL Profile<draft-ietf-pkix-new-part1-12.txt>,
http://www.ietf.org/internet-drafts/draft-ietf-pkix-
new-part1-12.txt

19. K. Keahey, et al.,Computational Grids in Action:
The National Fusion Collaboratory, submitted to
Future Generation Computer System, 2001., http
www.fusiongrid.org

20. Launch Pad, Portal to the IPG, http://
www.ipg.nasa.gov/launchpad/servlet/launchpad

21. modssl, http://www.modssl.org/
22. J. Myers,Simple Authentication and Security Laye

(SASL), IETF RFC 2222, 1997, http://www.ietf.org/
rfc/rfc2222.txt

23. S. Mudumbai,mod_akenti: Akenti Access Control
module for Apache http://www-itg.lbl.gov/Akenti/
docs/mod_akenti.html

24. NASA’s Information Power Grid, http://
www.ipg.nasa.gov/

25. National Fusion Grid, http://www.fusiongrid.org/
26. C. Pancerella, L. Rahn, C. Yang,The Diesel Com-

bustion Collaboratory: Combustion Researchers
Collaborating over the Internet, Proceedings of
ACM/IEEE SC99 Conference, November 13-19,
1999. Portland, Oregon, USA, http://www-col-
lab.ca.sandia.gov/dcc/

27. Particle Physics Data Grid (PPDG), http://
www.ppdg.net/

28. L Pearlman, V. Welch, I. Foster, C. Kesselman, S
Tuecke.A Community Authorization Service for
Group Collaboration. Submitted to IEEE 3rd Inter-
national Workshop on Policies for Distributed Sys
tems and Networks, 2001, http://www.globus.org/
research/papers.html#CAS-2002.

29. Oasis, www.oasis-open.org
30. R. Thau , Apache API notes, http://mod-

ules.apache.org/doc/API.html
31. S. Tuecke, et al.,Internet X.509 Public Key Infra-

structure Proxy Certificate Profile , IETF draft,
http://www.ietf.org/internet-drafts/draft-ietf-pkix-
proxy-01.txt

32. M. Thompson, et.al.,Certificate-based Access Con
trol for Widely Distributed Resources, Proceedings
of the Eighth Usenix Security Symposium, Aug.
‘99

33. Wainwright P.Professional Apache,Wrox 2001,
http://www.apache.org/

161

1st Annual PKI Research Workshop---Proceedings

162

Invited Talks and Experience Reports

1st Annual PKI Research Workshop---Proceedings

163

1st Annual PKI Research Workshop---Proceedings

164

Improvements on Conventional PKI Wisdom
Carl Ellison

carl.m.ellison@intel.com

Intel Labs

Abstract: This paper contrasts the use of an ID PKI
(Public Key Infrastructure) with the use of delegatable,
direct authorization. It first addresses some commonly
held beliefs about an ID PKI – that you need a good ID
certificate to use digital signatures, that the ID
certificate should come from a CA that has especially
good private key security, that use of the ID certificate
allows you to know with whom you’re transacting and
that the combination gives you non-repudiation. It then
identifies flaws in those assumptions and addresses,
instead, the process of achieving access control – either
through an ACL plus ID, or directly. It then applies
each method of achieving access control to two
examples – one within a large company and one
between companies.
[This paper is an expanded transcript of the invited talk
of the same title prepared for the Internet-2 1st Annual
PKI Workshop, which was held at NIST at the end of
April 2002.]

1 Introduction
The thesis of this paper is that the PKI community has
accepted a number of concepts, listed here as
“Conventional PKI Wisdom” that actually get in the
way of achieving security. Some of them are false
premises. Some of them are not achievable. None of
them is necessary to achieve actual security. Instead, it
advocates paying attention to the problem of access
control and especially the determination of
authorization. Authorization usually requires the same
level of effort as ID certification. It can be used
alongside ID certification, incurring extra load and
expense, or it can be used instead of ID certification.

2 History
The concepts at issue here date back to the introduction
of public key cryptography by Diffie and Hellman.

In their 1976 paper, “New Directions in Cryptography”
[2], Diffie and Hellman postulated that the key
management problem is solved, given public key
technology, by the publication of a modified telephone
directory, which they called the Public File. Instead of
a name, address and phone number, the Public File
would contain a name, address and public key. When
you want to send me a message for my eyes only, you
turn to the Public File, find my entry and use the public
key associated with that entry to encrypt a message for

me. Only I can decrypt that message, since presumably
only I have the associated private key. Because of the
nature of public key cryptography, there is no need to
keep the public key secret, although one must still
protect that Public File from tampering.

As a demonstration of the power of public key
cryptography, this was a brilliant example. The
problem is that there are people who took this example
literally and set about creating such a directory, when as
I point out here, there is an inherent flaw in this
construction. Namely, you cannot find me in that
directory. Diffie and Hellman solved the previously
difficult key management problem by use of names, but
did not offer any solution to the even more difficult
name management problem.
In his 1978 MIT Bachelor’s thesis [5], Loren
Kohnfelder addressed the Public File proposed by
Diffie and Hellman, noting that a networked version of
this directory would have a performance problem. He
proposed instead that each line item of that directory,
which he identified as name (presumably login name)
and public key, be digitally signed and distributed to
anyone who wanted a copy, for them to hold. He
coined the name certificate for this digitally signed
directory line item. This may have avoided the problem
of loss of access to the central Public File (e.g., because
of network partition), but in fact it made the name
management problem worse. On the other hand, no one
was especially aware of that problem, so solving it was
not part of Kohnfelder’s requirement set.
In the 1980’s, the X.500 effort set about building a
directory like that envisioned by Diffie and Hellman, as
a single directory to cover the world’s devices and
people. For authentication (e.g., to provide notation of
the permission to modify an entry in the directory), that
standards effort specified the X.509 certificate format,
binding a public key to a Distinguished Name (DN),
which can be thought of as a pathname into the X.500
directory. For our purposes, it is an identifier that is
intended to refer uniquely to the person who holds the
key to which the X.509 certificate binds it.

Around 1990, the Privacy Enhanced Mail (PEM) effort
in IETF chose to use X.509 certificates to identify mail
recipients. There was a fair amount of excitement at
the time over the potential of X.500 to make sense of
what was already a bewildering set of people connected
by the various networks (now just called “the Internet”,
but still quite small at that time, before AOL

1st Annual PKI Research Workshop---Proceedings

165

experienced its user explosion). However, PEM failed
because X.509 failed. Not only were there no
Certificate Authorities (CAs) in place to issue X.509
certificates, the very process of choosing a DN and
generating an X.509 certificate appeared to have legal
connotations that at least the company where I worked
at the time was not willing to accept.
To get around this failure of X.509, there was a version
of PEM produced, called RIPEM that did not use
X.509. It allowed the use of keys that were delivered
out of band and used without certification. To provide
for certification without CAs, in 1991, PGP allowed for
any keyholder to sign the key of any other keyholder,
under the Web Of Trust assumption: that multiple
independent signatures on a certificate would be as
trustworthy as one highly trusted signature on that same
certificate, when you had exceeded some number of
independent signatures, no matter how vulnerable each
of those signers might be.
PGP succeeded where PEM failed, but there was still
something wrong with the PKI model. In 1996, three
independent efforts (SDSI, SPKI and PolicyMaker)
departed from the PKI model in the same way: using a
public key itself as the identifier of the keyholder,
rather than some name. This has the advantage that
there is no ID certificate needed to bind that key to the
ID of the keyholder since the key is the ID.

3 Conventional PKI Wisdom
There has been a great deal written and discussed about
PKI, but there are some frequently encountered items of
conventional wisdom about PKI that this paper
addresses directly:

1. that you need an ID certificate;
2. that you should get that ID certificate from a

CA that protects its signing keys well (e.g.,
uses a vault with strong physical protection
against theft or misuse of keys);

3. that with such an ID certificate, you will know
with whom you are dealing when you process
a signed message or encrypt a message to
some key; and

4. that with all of this, you get non-repudiation,
which means that the signer cannot later deny
having sent a particular signed message when
you present that signed message to a judge and
ask for it to be considered binding against the
human you have cited as the signer.

As it turns out, all four of these items of wisdom are
seriously flawed, if not completely false.

3.1 ID Certificates
The original model of an ID certificate was one that
would bind me to my entry in the X.500 directory, by
way of the DN that both identified me and uniquely
specified my entry in the directory. The assumption
was that one needed only one such entry (or perhaps
two: one at work and one at home).
By contrast, each of us has multiple identities both at
home and at work. I, for example, have five different
but equally valid IDs at work. They are used for
different functions and their format and nature was
determined by the applications in which they are used.
At home, I have even more. There are 4 credit card
numbers, 1 ATM card number, 4 bank account numbers
(all from the same bank), ISP account names, etc.
There are two problems with getting one ID certificate:

1. we would have to change all legacy software
and business processes to use that one ID or
have that one ID certificate list all of my IDs;
and

2. we would have to find one CA with the
authority to establish all of those ID to key
bindings.

We take it as impossible to change all business
processes to use one common ID. It is also a potential
privacy violation either to use a single ID or to bind all
different IDs into one credential, so that some party can
know how to link all of my transactions to one another.
More serious is the problem of finding one certificate
issuer that has the authority to do all of these ID
bindings. My company will accept only itself to bind
my key to my employee ID number. My bank will
accept only itself to bind my key to my bank account
number. The key used could be the same in both
certificates, but the binding must be performed by an
entity with the authority to perform that binding. That
authority comes from business rules and security
policy, not from some CA characteristic like strength of
protection of the CA’s own private keys.
The conclusion is that we cannot have one ID
certificate that is used for everything. We will most
likely need as many certificates as we have
relationships.

3.2 CA Key Security
It is accepted wisdom that certificates should be issued
by a Certificate Authority that operates out of a vault –
that is, that protects its signing keys very strongly, with
military grade physical and personnel security, multi-
factor authentication of people, multi-person access
controls, etc. Such a facility is extremely expensive, so
there cannot be many of them. Let us consider the use

1st Annual PKI Research Workshop---Proceedings

166

of a CA in four different ways, discussed below, and
improve on this design.

3.2.1 Client goes to the Vault
Early theoretical papers on certification assumed that
the client would go to the vault, present credentials
proving identity along with a public key and receive an
ID certificate in return. This is presumably secure, but
has the problem that it is too expensive for the user.

Meanwhile, it actually has a security problem, in that
there will be very few such vaults, so the people
running the vault have no idea who the user is. They
will never have met the user and therefore will have to
rely on other credentials to establish the identity of the
user. This weakens the overall process to something
less than the security of the credentials used and opens
the process up to traditional identity theft techniques.
Since we see identity theft increasing in frequency, it is
doubtful that we could call this mechanism secure.

3.2.2 Client Opens a Channel to the Vault
One early attempt to overcome the expense of the
previous method was to permit a client to open a
communications channel to the vault. This could be by
telephone, but more likely it is by web form over an
encrypted channel.
Let us assume for the sake of argument that the
connection is established and there is no man in the
middle. We know that if you have a confidential
channel, you can mutually authenticate the parties on
the two ends by use of a shared secret. So, it is possible
to establish identity over this channel. Once that has
been done, the CA in the vault can issue a certificate for
the public key provided by the user, and from then on,
that key pair and certificate could be used for
authentication.
The problem comes with establishing that shared secret.

At least one company considered making a business
relationship with a credit bureau and then using the
credit bureau’s body of knowledge about the user to
quiz the user and establish identity. The problem with
this mechanism is that there are no secrets shared
between the user and the credit bureau. That is because
the credit bureau’s primary business is the selling of the
information it gathers about people. Making matters
worse, even if one were to find a repository of
information about people that is not in the business of
selling that information, if it uses the same information
that some other organization makes publicly available,
then that information can still not be used as a secret
shared with the user.
So, the problem of establishing a good, high entropy,
shared secret with the user boils down to something as
expensive as the first mechanism. That is, the user can

come to the vault, prove identity to trusted employees
of the vault, get that identity recorded along with a high
entropy secret generated and shared with the user
during that visit. That high entropy secret can then be
used later, over a web connection, to get a certificate.

3.2.3 Registration Authorities
With the previous mechanism ruled out because it is
either grossly insecure or as expensive as the first
mechanism, the next step is to reduce the cost for the
user by enlisting registration authorities (RAs). For
each CA, there would be a large number of RAs, so that
any user could find an RA within easy travel distance.
The user could then prove identity to that RA. The RA
would then instruct the CA, over a mutually
authenticated, cryptographically secured channel, to
issue the desired certificate from the vault.
This allocates the cost of the first mechanism to the CA
infrastructure rather than the user. The CA has come to
the user rather than the other way around. This also
could have a security advantage. That is, if there are
enough RAs, it could be that the user would be known
personally by the RA and identity could be established
not by paper or plastic credentials but rather in person.
This would reduce the threat of standard identity theft.
Although this is far more secure than the previous
mechanism and mu ch cheaper for the user than the first
mechanism, its security can be better.

3.2.4 CA on the RA Desk
To improve the security of the previous mechanism, the
secured network connection between the RA and the
CA should be severed and the computer on the
Registration Agent’s desk should run a CA and directly
issue the user’s certificate.
This is categorically more secure than the previous
design, primarily because the network connection
between the RA and the CA has been eliminated,
depriving an attacker of one avenue for attack. There is
also a security advantage, since the CA in the vault
would now not sign individual certificates but rather
sign the certificates of the next layer of CAs – those
now on the RA desks. Because this is a much lower
volume operation, the CA could operate in a different
fashion. For example, it might use split-key
(distributed signing) technology rather than a single,
secured vault. With enough key shares, split-key
technology can be arbitrarily secure, far surpassing the
security of any vault, even with key shares held in only
moderately secure but tamper-evident storage.
Some may argue that this design exposes a valuable key
– the final CA private key – to possible theft because
the RA computer is not specially protected. However,
this could also be a security advantage. If an attacker

1st Annual PKI Research Workshop---Proceedings

167

can steal the CA key from the computer on the RA
desk, then that attacker could just as easily steal the key
by which the RA authenticates its connection to the CA,
under the previous design. Under that design, the
attacker could then get the CA to sign a false certificate
and that false certificate would have the imprimatur of
having come from the real CA in the real vault. If the
theft were discovered, then all signatures by that CA
key would be called into question and the CA key itself
might need to be revoked, along with all certificates it
had generated. Under this last design, if a leaf CA key
were stolen, then only that one key need be revoked
along with only those certificates it had generated.

3.3 Know the Other Person
The third element of conventional wisdom is that with a
proper ID certificate, you can know the person with
whom you are transacting. This idea traces back to the
1976 Diffie-Hellman paper [2], which made the
assumption that the first important job was to learn the
identity of the party on the other end of a
communications connection. The Public File and then
the ID Certificate were to achieve that by binding the
person’s name to the person’s public signature key.

This assumes that names work as identifiers.

3.3.1 The John Wilson Problem
The fact is that names do not work as identifiers. This
has come to be known as the John Wilson problem,
named after a co-worker.

3.3.1.1 E-mail
At Intel, there are (at the time of this writing) eight
employees with the name John Wilson, in some
spelling. The IT department is very careful to make
sure that each of these John Wilsons has a unique name.
That is because these names are used as e-mail
addresses and to index into the corporate employee
database.
In spite of the care with which each John Wilson has
been given a unique name (e.g., through the use of
middle initials), John keeps getting mail intended for
one of the other John Wilsons and they keep getting
mail intended for him.

3.3.1.2 Airport
This problem is n’t limited to e-mail misdirection.

In August of 2001, John was returning from a one-day
business trip to the Bay Area. He had an electronic
ticket and no luggage. It was a simple trip.

On the return leg, he went to the ticket counter, was
asked for an ID (his driver’s license) and was asked if
anyone unknown to him had given him anything to

carry, etc. The ticket agent printed out his boarding
pass and gave it to him. He was looking at it as he
started to walk away but turned back to the ticket agent
to say, “I’m not going on to Eugene. I’m just going to
Portland.”

The ticket agent took back his boarding pass, consulted
the computer, and said that he had the boarding pass for
the other John Wilson on that flight. That other John
Wilson had his boarding pass.
So, the solution was for John to go to the gate and have
them page John Wilson – and then, when the other John
Wilson appeared, trade boarding passes.
Especially in light of the post-9/11 requirement to have
luggage removed from a flight if the ticketed passenger
does not take the flight, this could have been a serious
security problem.

3.3.1.3 Ann Harrison
When I tell the John Wilson stories, instead of getting a
reaction of disbelief or scorn at my making too much of
a case out of an isolated incident, the reaction is almost
always “That’s nothing. Listen to this.”
A friend of a friend, Ann Harrison, reacted that way.
She told of sitting on the examining table in her
doctor’s office, waiting for the doctor, when the nurse
came in, carrying a syringe. The nurse said, “This will
only sting a little”. Ann asked, in shock, what the nurse
was trying to inject her with and the nurse replied that it
was Botox (botulism toxin). Ann said that she doesn’t
get Botox injections, to which the nurse replied, “but
you’re Ann Harrison, aren’t you?”

3.3.1.4 Carl Carlson
In the early 1900’s, Carl Carlson was working in a
factory in Wisconsin, in a heavily Swedish community,
and was getting annoyed that he kept getting paychecks
for another Carl Carlson, one who earned less than he
did. So, sitting in the bar after work one payday, he
decided to change his name to something really unusual
and avoid this problem. He looked across the bar and
saw a sign with a really unusual name … and that’s
how my ex-in-laws ended up with the family name
Miller.

3.3.2 Names are not IDs
These anecdotes illustrate a point that should be of
concern to us as computer scientists and especially to
those of us involved in PKI.
Human beings do not use names the way we want
them to.

The actual process by which humans use names and the
psychology behind that process deserve a great deal of
study. It is clear, even prior to that study, that computer

1st Annual PKI Research Workshop---Proceedings

168

developers and computer users deal differently with
names.

I speculate that computer developers, and especially
PKI or large directory developers, think of names the
way we do variable names or file path names. That is, a
name is some string, unique within its block or
directory or context, that unambiguously identifies
some object (value, file, person, …) – and we further
assume that the mechanism that uses this name (a
compiler, an operating system, or a human user) will
follow that unique string to the same object any other
mechanism would follow the string to.
Compilers and operating systems may behave this way,
but human users do not.

Our PKIs assume they do. Our mail agents assume
they do. Much of what we design in computer science
makes this same, false assumption. For our immediate
concern, the main impact is that PKIs are based on a
false assumption and the security of systems using
those PKIs suffers as a consequence.

In a way, however, this is good news. This means that
there are a great many fresh new research opportunities.
For example, how would you build a mail agent that
does not use names or e-mail addresses for people?

3.3.3 ID as Dossier
It is doubtful that human beings could ever be trained to
read all information offered in a certificate and verify it
against their knowledge of a person, before jumping to
a conclusion about the identified person. Even if that
training could be achieved, however, an ID certificate
usable by everyone would become a dossier.
Consider an ID cert for John Smith. The name alone
doesn’t tell you which John Smith, so you need
additional information. Andy works with John, so he
needs John’s employer (and building and mail stop) in
the ID certificate. Betty knows John only at home, so
she needs his home address in the ID certificate.
Charles knew John at work 10 years ago, so he needs
John’s work address from 10 years ago. Dan shared a
hospital room with John back in 1994, so he needs a
record of John’s hospitalization from then in order to
identify John unambiguously. This process needs to be
iterated over all possible relying parties, to make sure
the ID certificate works for all of them.

The result would be a nearly complete dossier on the
keyholder, and that dossier would almost certainly
violate privacy laws, not to mention John’s desires. As
a result, the ID certificate could not be released to the
public. That, however, violates the basic purpose of the
ID certificate. A workable alternative would be to have
different ID certificates for use by different relying
parties [6], but that violates the design goal of one ID

certificate that lets an arbitrary relying party know with
whom she is transacting.

3.4 Non-repudiation
The fourth item of common wisdom has to do with non-
repudiation, which is usually defined as the inability of
a person later to deny having digitally signed a
document.
The central idea behind the concept of non-repudiation
is deferred enforcement of security. That is, one
receives a digitally signed document (often described as
a contract, when non-repudiation is discussed) and
verifies the signature on the document and the
certificate chain that identifies the key used, and then
acts on the document. In most cases there will be no
intention of fraud and the transaction proceeds
normally. However, in case there was fraud, the
document can be produced along with its certificate
chain to present to a judge. The judge can verify those
signatures and thus establish that this document was
signed by the defendant.

There are several problems with this understanding and
this process.

3.4.1 Expense
The process described above is expensive. The digital
signature and certificates that bind the signer to a
document do not bind that signer to a location. The
signer must be located and brought to trial. The process
of location and the process of trial are both expensive.
If the amount of the loss were small enough, taking the
case to trial would not pay.

3.4.2 Not Adequate
Assuming non-repudiation was achievable, technically,
and a judge found a defendant responsible, this process
works only if the victim can be made whole. In cases
of moderate financial loss, this might be adequate.
However, if the loss were of something more valuable
than the perpetrator’s total lifetime worth, then the
victim cannot be made whole. Worse, if the loss were
of a life or of secrets, then no amount of money could
compensate the victim.

3.4.3 Not Achievable
The main problem with the theory of non-repudiation is
that it is not technically achievable. That is, the
intention is to bind a human being to a digitally signed
document. With a holographic signature on a paper
document, the human’s hand came in contact with the
paper of the document. With a digital signature there is
machinery between the human and the signed
document: at least a keyboard, software (to display the

1st Annual PKI Research Workshop---Proceedings

169

document and to drive the signature process) and a key
storage and use facility (e.g., a smart-card).

No one has demonstrated, in the normal computer for
home or office use, the prevention of introduction of
hostile software. To the contrary, we have seen a
steady increase in such incursions over the years.
There are secure facilities for key storage and use, but
no mechanism that an average home or small business
user would choose to buy has been proved secure.
Meanwhile, computers are not restricted to isolated
rooms with card access entry, raised floors, guards
outside the glass walls, etc., that they might have been
in the 1970’s when much of this thinking about public
key cryptography had its nascence. Computers are not
only everywhere; they are unprotected to a continually
increasing degree. Therefore, even if the computer has
no hostile software and its private key is kept in a truly
secure facility, access to the keyboard of that computer
is not limited to the person certified to be associated
with that private key.

What might make this process of non-repudiation work
would be hardware that would serve as a witness to a
signature, providing tamper-proof evidence of the
actions of a human being (e.g., through videotape), of
what that human was reading and of the human’s
positive action to assent to the displayed document.
Such a log of human behavior could then be presented
in court to prove the claim of non-repudiation.
Of course, if such hardware were available, then we
would not need digital signatures, much less the
assumption of non-repudiation on digital signatures.

3.4.4 Contractual Commitment
For lack of technical achievability, some people try to
legislate non-repudiation. If laws are written to
presume that the certified keyholder is responsible for
anything done by that key, then the rational thing for a
computer owner to do is to refuse to accept ownership
and use of that private key. That could bring not just
PKI but use of public keys to a screeching halt.
The good news in this is that we do not need non-
repudiation in order to do business with digital
signatures. If two parties want to do electronic business
with each other, they can sign a paper contract with one
another in which party A might declare that it would
honor any document digitally signed and verified with a
public key that is given in the contract (or whose
cryptographic hash is printed in the contract). The
party accepting that responsibility for that key could
then protect that key with mechanisms appropriate to
the way that key was empowered. If one is ordering
office supplies with that key, then maybe it is kept
encrypted by password on the hard drive of a PC on a
secretary’s desk. If one is ordering millions of dollars

worth of industrial supplies, then the key might be kept
in a locked room, under 24x7 guard, with multi-factor
authentication for people entering the room, special
computers with strong key storage facilities that erase
their keys if the mechanism is physically moved, no
network connections for the computers and strict
control over the software that is allowed to be loaded
onto the computers.

4 New PKI Wisdom
The reasoning above gives us a new list of PKI
Wisdom:

1. There is and will be no single ID, so a single
ID certificate makes no sense.

2. Discard RAs and put CAs on the RA desks.

3. Knowing a keyholder’s certified name does
not tell you who that keyholder is.

4. Non-repudiation is neither adequate for serious
problems nor achievable.

So, instead, we need to do strong access control and
that requires more than ID certification. There are
several ways to achieve access control, as outlined
below.

5 Certificate :: DB Trade-off
As we consider the various ways to do access control,
we must address the religious battle between those who
advocate certificates and those who advocate servers.
Each technology can achieve the same results, under
certain assumptions. The main difference is in their
behavior under network load or partition, but there are
security differences, discussed later in this paper,
having to do with database administration.
For example, Kohnfelder created certificates by
digitally signing a line item from a protected database:
the Public File. This has the advantage of making
verifiable data available even when the database is not,
whether by network partition or by mere performance
problem.
This process can be applied with any kind of database.
In particular, it applies to all three edges of the
credential triangle shown in Figure 1.

5.1 CAP Principle
Fox and Brewer of UC Berkeley have put forth the
CAP Principle [4], stating that it is possible to design a
distributed system that achieves any two of:

1. Consistency
2. Availability
3. tolerance of network Partitions

but it is not possible to achieve all three.

1st Annual PKI Research Workshop---Proceedings

170

The invention of certificates as signed line items from
the Public File was a choice to achieve A&P while the
Public File achieves C&A.
There are frequent attempts to criticize one or the other
of these mechanisms for not achieving the third
desirable attribute and to come up with some new
design that tries to achieve all three, but by the CAP
Principle such attempts are doomed.

One must look at the specific security requirements of a
particular application and decide which of the three
desirable attributes can be sacrificed. This choice will
be different for different applications.

6 Credential Classes

Identifier

Public KeyAuthorization

ACL (name)
Attribute

Certificate

Public File
ID

Certificate

ACL (key)
Authorization

Certificate

Figure 1: Credential Classes

Diffie and Hellman bound Identifiers to Public Keys
through the Public File. Kohnfelder took line items of
that public file and made ID certificates.
Those of us who wanted to use ID certificates as part of
implementing access control, needed to get from
Authorization to Public Key. That is, a transaction
would come over the net with a digital signature
verifiable by a public key and it would require
authorization before it could be honored.
The knee-jerk reaction, relying on time-sharing system
practice from the 1960’s, was to use an Access Control
List (ACL) binding authorization to login name. [By
the way, Kohnfelder described the names in his thesis
as login names, so this use of an ACL is not mixing
metaphors.]
By the arguments of section 5, you can also convert line
items of the ACL into certificates, and in this case, they
become what we know as attribute certificates .
In 1996, however, a number of us started developing
the third side of the triangle: authorization
certificates . That is, something directly binding an
authorization to a public key, rather than going through
an identifier.
Also, by the logic of section 5, one can have protected
database versions of the authorization certificate as we

find with X9.59 and with the SSH access control file
(.ssh/authorized_keys).

7 Authorization via ACL and ID
Figure 2 shows the use of an ACL and ID certificate to
determine authorization. The ACL could be held
locally in the machine that acts as gatekeeper for the
protected resource, or it could live in some central
authorization database that the gatekeeper queries over
the network to approve any access request.
The security perimeter shown in Figure 2 indicates that
both elements of the process – the ACL (or attribute
certificate) and the ID must be protected equally. If the
attacker can control either, then he or she can get
improper access. However, there is a third vulnerability
not immediately visible in the triangle diagram: the
name. That is, the diagram shows one “Identifier” node
at the top of the triangle, but in fact there are two
identifiers involved: one on the ACL edge and one on
the ID edge. The identifiers need to be the same, to link
these two sides together, and some mechanism has to
do the comparison to establish that.

Security PerimeterSecurity Perimeter

NN

KKAA

ACLACL IDID

Figure 2: Authorization via ACL and ID

If that mechanism is executed by a computer and the
names used are unique, then the comparison can be
done with security. If the mechanism is executed by a
human, then even if all names are unique, the John
Wilson problem shows us that there will be mistakes
made, and a clever attacker can exploit those mistakes
to gain improper access. A human might make that
comparison with each access, as we see with S/MIME
or SSL, since in those cases the ACL is kept in the
human user’s own head. Or the human might make a
name comparison when some database is administered
by a human or a certificate is issued. In general, it is
safe to assume a human will be involved at some point
in the process because it is for human use that names
are used in the first place.

1st Annual PKI Research Workshop---Proceedings

171

When the method of Figure 2 is used, there is also the
problem of administering the ACL side of the triangle.
We consider two possibilities for that, below.

7.1 Authorize Everybody
The job of building an ID PKI is difficult enough that
some people rebel against building an ACL as well.
Instead, they use a one-line ACL: (*). That is, grant
access to anyone who has an ID certificate. This isn’t
exactly the non-repudiation case, since it’s not a
question of having a signed contract. Rather, this is a
situation like that employed by browsers when they
decide whether to show the padlock icon as locked or
unlocked. The icon is shown locked if the ID
certificate is valid (and refers to the domain name from
which the web page (or part of it) came).
The problem there is that users rely on that closed
padlock rather than on a personal inspection of the ID
certificate to decide whether to trust the web page and
its server. This leads to a wonderful quote, from Matt
Blaze, in the hallways of the RSA 2000 Convention: “A
commercial PKI protects you from anyone whose
money it refuses to take.”

7.2 Authorization DB
You can, instead, build a real authorization database.
Consider the database for something the size of a large
PKI, with 6 million users.

If each user changes his or her entry in the database
every two years, then there is one change to the
database every 2.5 seconds of each normal workday.

Since this database is being kept in a central, secured
location, it is being maintained by a staff of people
cleared to enter that facility. Those people do not know
all 6 million users. So, when a request comes in to
change the authorization of some user, it must be
investigated. If that investigation were to take a man-
week, then the office would need more than 50,000
investigators, making this a very large operation.
No matter how large it is, the process begs the question
of what makes these people administering the central
database authorities on the data they are entering.

8 Direct Authorization
Another option is to go the other direction around the
credential triangle, as shown in Figure 3.
In this process, there is only one point of attack, rather
than the three of Figure 2. One would have to attack
the authorization certificate issuer (or the maintainer of
the authorization-to-key ACL).

One might ask why Figure 3 shows an ID when that ID
is not used as part of the authorization process. The
reason it is there is for forensics.

One can easily gather an audit log with entries
identified by keys used (or their hashes, as more
compact identifiers that are still globally unique). From
processing those audit logs (or other tests) one might
determine that a given keyholder (a given key) has
misbehaved and needs to be punished. As Steve Kent
quipped, during a DIMACS talk on this topic, ‘You
can’t punish a key. What would you propose doing?
Lop a bit off?’
You need to punish the keyholder. The simplest
punishment is to put that key on a local black list. That
keeps the keyholder from gaining access at the machine
where you discovered the misbehavior. However, you
might want to actually punish the keyholder, legally.
For that, you need to locate the keyholder. So, you
need a link from the key to the keyholder. This is
indicated as an ID or name, but more likely it would be
a whole file of information that would allow a security
officer, lawyer or policeman to find the keyholder.
This information could include the keyholder’s name,
address, phone numbers, bank accounts, friends, family,
employer, etc.

Security PerimeterSecurity Perimeter

N

KA
AuthorizationAuthorization

IDID

Figure 3: Direct Authorization

More interesting for those interested in PKI is the fact
that this information binding a key to ID does not need
to be either online or in certificate form. It is not used
in the authorization process. It is used only during the
manual process of punishing the errant keyholder.
Therefore, the information could be kept in a non-
networked PC in the security office. It could even be
kept in manila folders. This affords the user with a
certain amount of privacy. The user’s identifying
information need not be released to a resource guard
whenever an access is made.

9 Delegation of Authorization
SPKI [7] permits delegation of authorization. SDSI [6]
permits delegation of group membership. For some
cases, the two mechanisms can be shown to be
equivalent. The examples below can be achieved either
way, but they will be described as authorization

1st Annual PKI Research Workshop---Proceedings

172

certificate delegation – and contrasted with the use of a
corporate authorization DB together with PKI for ID,
according to the model of Figure 2.

10 Large Company VPN Example
In this example, we deal with a large company that
permits VPN access only to authorized employees. We
consider it two different ways, first via a central
authorization database and then by distributed,
delegated authorization.

10.1 VPN Access via Central DB
Figure 4 shows part of an organization chart for a large
company that has decided to give VPN access only to
approved employees. We assume that employees are
identified by some ID PKI, but authorization is
maintained by a corporate authorization database. That
database is maintained by some person or group,
labeled A in the figure. A user, U, requests access by
web page, since A and U are probably in different states
if not countries and have never met one another and are
not likely ever to meet one another.

A

U
web form

web form

ee--mail
mail

Figure 4: Central Authorization DB for VPN Access

If A were simply to enter U in the database in response
to the web form, then there is no security to speak of in
the system. So, A looks in the corporate central
employee database to find U’s manager and sends an
e-mail, asking if U should be allowed VPN access.
When the answer comes back in the affirmative, A
enters U in the authorization database and U has VPN
access.
There are at least two problems with this mechanism:

1. A sends an e-mail to someone whose name is
very much like the name listed in the
employee database as being U’s manager.
Thanks to the John Wilson problem, that does
not mean that A sends an e-mail to U’s
manager.

2. The mechanism as described above implicitly
grants every manager in the company the
power to grant VPN access. Correction of that

limitation would greatly complicate the
database administration process.

In the next section, we address these problems.

10.2 VPN Access via Delegated Direct
Authorization

In Figure 5, we accomplish the same function, but by
authorization certificate and delegation of authorization.
The organization or person, A, responsible for the ACL
of the machine(s) that enforce VPN access, enters a
public key into that ACL, as the head of a tree of
certificates to be empowered to have VPN access.
Person A then uses the matching private key to grant
authorization certificates to his or her manager. That
authorization flows, by authorization certificate, up the
organization chart to the CEO and from there down the
entire organization, but only into those groups where
VPN access makes sense. In particular, as shown by
the heavy lines, it flows from A to U and therefore has
the same effect as the process shown in Figure 4.

U

A

Figure 5: VPN Access by Direct Authorization

The process of Figure 5 has some distinct advantages
over that of Figure 4:

1. Each grant of authorization is between two
people who work together and therefore can
authenticate one another biometrically, in
person. Names are not used in the process, so
there is no security flaw from the John Wilson
problem.

2. Each grantor of authorization is in a position to
know better than anyone else whether the
grantee should receive that grant of
authorization.

3. These decisions – of authentication and
authorization – are made with almost no effort.
No investigation is required.

4. The work that used to be done by A is now
distributed around the company, although it is
miniscule at each place a decision is made.
This frees A to do other, more interesting

1st Annual PKI Research Workshop---Proceedings

173

work. That, in turn, saves mo ney for the
corporation.

So, this process both saves money and increases
security of the administration of the authorization
process.

11 Cross-company B2B P.O. Example
The example of the previous section dealt with
operations within a single company that had a single
PKI. We now address a pair of companies that want to
do electronic purchase orders, with orders automatically
processed by computers in company A when they are
signed by authorized keys (keyholders) within company
B. Each company has its own, independent PKI.

11.1 B2B via Central DB
In Figure 6, we build a structure analogous to Figure 4.
The employees of Company B that should be
authorized to sign electronic purchase orders are shown
in gray, while there is one person (or group) in
Company A that maintains the ACL on the machines
Company A uses to process purchase orders
automatically.
The purchasing agents must request, somehow, to be
added to the ACL, and the maintainer of the ACL needs
to verify the propriety of each such request. This
request goes from company B to company A. The
verification of that request is a dialog initiated by the
responsible parties in company A.

Company ACompany A Company BCompany B

request
request

approval?
approval?

Figure 6: B2B via PKI and Authorization DB

11.1.1 Bridging of PKIs
The first thing we observe is that for ID’s issued by
Company B’s PKI to be usable within Company A, we
need to bridge the two PKIs, either with a bridge CA or
by adding each PKI root to ACLs in the applications on
both sides. However, when we bridge the two PKIs, we
make the John Wilson problem worse for both.

1. It is made worse just by having more people
under the same namespace. This leads to more
name collisions and more mistakes.

2. It is possible that name uniqueness is violated.
Company A could have been very careful to
have only one “John Q. Wilson” and Company
B could have been very careful to have only
one “John Q. Wilson”, but after the bridge,
there are two. What is missing is some entity
that would control the issuing of names within
companies A and B, before they decide to
bridge their PKIs. There is no such entity
today, and the experience of ICANN (The
Internet Corporation for Assigned Names and
Numbers and other Top Level Domain efforts)
suggests that no such entity will ever exist.

11.1.2 Employee Data
In the process of Figure 4, the maintainer of the ACL
consulted the central employee database to find the
party to contact to get approval of the request for
authorization. Company A does not need the entire
employee database of Company B, but it does need
enough of that database (or remote access to a view of
that subset) to permit it to make the proper
authorization decisions.
This kind of data, especially linked to names, is
traditionally considered confidential by companies. A
special exemption would have to be made in this case.
Meanwhile, the data that company A needs would have
to be made available under strict access controls, and
the authorization database for those access controls
becomes an additional problem to address. This way
leads to uncontrolled recursion.

11.2 B2B via Delegated Authorization

Company ACompany A Company BCompany B

Figure 7: B2B by Delegated Authorization

In Figure 7, we show the same B2B process, but by
delegated authorization rather than authorization
database and ID PKI.

1st Annual PKI Research Workshop---Proceedings

174

In this figure, we introduce a new node color (darker
gray) to stand for the executives of the two companies
who meet to decide to form the business relationship.
These executives exist already and perform this
function. Two companies do not spontaneously decide
to do business with each other. There is a period of
investigation and decision-making before that decision
is made. The decision is usually sealed with a contract
and the contract is signed by individuals of the two
companies. These meetings might be electronically
intermediated, but they are meetings of people rather
than of computers.
In Figure 7, the permission to delegate the authorization
to have purchase orders accepted and processed
automatically is granted from the person or group that
maintains the gate keeping machines in Company A to
the executive in Company A who is going to sign that
B2B contract. After the signing of that contract, the
executive from A grants the executive from B the
power to authorize such purchase orders. The
executive from B takes that authorization back to
Company B and delegates it to the purchasing group
manager who certifies the individual purchasing agents
within her group.
Note that this process:

1. does not use a bridge CA, so it saves that
expense,

2. does not use names, so there is no John Wilson
problem,

3. does not require either company to access the
other company’s confidential employee data,

4. does offer improved security, just as we saw in
Figure 5.

12 The AND Effect of ID PKI
There are those who claim that doing authorization
computation via the combination of ACL and ID cert is
important because it gives you a logical AND of two
conditions: the authorization and key validity. The
assumption there is that a valid ID cert does more than
name the keyholder. It also represents certain security
conditions. It attests to the key itself not having been
revoked and might also attest to the keyholder’s
continued employment.
This is valuable functionality. However, the use of an
ID instrument for these other characteristics is not the
best system design. What if some application cares
about key compromise but not about continued
employment? This mechanism does not allow the
application designer to separate those three attributes of
a key: ID, non-revoked status and continued
employment. It also does not allow the application
designer to specify the AND of other functions, without
loading those onto the ID instrument as well.

A cleaner design is to use an explicit logical-AND and
specify the conditions individually, each with its own
certificate (chain). Each of these attributes can be
bound to a key by an authorization certificate, with the
certificate issued by the proper authority. That is, a
24x7 key loss reporting service might be in charge of
providing online validity information of the non-
revoked status of a key while a corporate HR office
might provide information about continued
employment. These attributes do not require any ID.
They can be bound directly to a key. By contrast,
loading all of these attributes into an ID certificate by
side effect requires the ID certificate issuer to be the
authority on all of those attributes – something that may
be difficult to achieve, organizationally.
[Note that SPKI/SDSI [7] includes a construct called
the “threshold subject” that permits expression of such
“AND” conditions in ACL entries or certificates. The
code that implements threshold subjects is available in
[1].]

13 Conclusions
This paper makes the case that there are fundamental
problems with the original ID-based notion of a PKI, in
that it fails to take account of certain realities (such as
human limitations). Instead, we can use delegated,
distributed authorization, which does not suffer from
those fundamental problems. Two examples of the use
of distributed authorization were given, in brief, but
there are a great many other examples. The reader is
encouraged to try applying these techniques to other
problems, as was done in [3].

14 References
[1] CDSA: http://developer.intel.com/ial/security -
source code and documentation, including a full
implementation of SPKI and SDSI certificate reduction.
This link leads to the open source repository for that
code.
[2] Whitfield Diffie and Martin E. Hellman, “New
Directions in Cryptography”, IEEE Transactions on
Information Theory, Vol. IT-22, No. 6, November
1976.

[3] Steve Dohrmann and Carl Ellison, “Public Key
Support for Collaborative Groups”, Internet2 PKI
Workshop, April 2002.

[4] Armando Fox and Eric A. Brewer, “Harvest, Yield,
and Scalable Tolerant Systems”, Proceedings HotOS-
VII, 1999

[5] Kohnfelder, Loren M., "Towards a Practical Public -
key Cryptosystem", MIT S.B. Thesis, May 1978.
[6] SDSI: http://theory.lcs.mit.edu/~cis/sdsi.html

[7] SPKI: http://TheWorld.com/~cme/html/spki.html

1st Annual PKI Research Workshop---Proceedings

175

1st Annual PKI Research Workshop---Proceedings

176

Report: EDUCAUSE – NIH PKI Interoperability Pilot Project

Peter Alterman, Russel Weiser, Michael Gettes, Kenneth Stillson, Deborah Blanchard, James
Fisher, Robert Brentrup, Eric Norman

Background A key consideration in the design was that NIH
would be a relying party with respect to the digital
credentials used to sign the electronic grant
applications. This is important for several reasons.
For privacy and resources reasons, NIH would like
to avoid issuing digital credentials to individuals and
institutions. Experience trying to maintain an up-to-
date, accurate inventory of research faculty and staff
has demonstrated to NIH the futility of a
government-centric, centralized approach to issuing
and maintaining credentials of faculty engaged in
government-sponsored biomedical and
biobehavioral research. On the other hand,
academic institutions have a much easier time of
keeping track of their faculty and graduate students
– so long as they wish to continue to receive
paychecks.

Under mandate to adopt broad electronic business
methods by October 2003, Federal Agencies are
working hard to figure out ways to put their business
on-line in a way that is secure. A leading contender
to make e-government secure and trustworthy is
public key cryptography. At the same time, far-
sighted institutions of higher education have been
busy deploying PKIs and issuing digital certificates
to their faculties and staffs to enable secure,
electronic business with the government and with
each other. These institutions wish to use their
locally-issued digital credentials to do electronic
business with the government securely. The NIH, in
turn, wishes to be able to rely on business partner-
issued digital credentials, thereby avoiding the cost
and administrative burden of issuing and managing
electronic credentials. NIH and EDUCAUSE
jointly constructed a PKI interoperability pilot
project that demonstrated the ability of the Federal
Government to receive electronic forms signed with
digital certificates issued by institutions of higher
education.

Many academic institutions are in the process of
deploying PKIs and issuing digital certificates to
faculty, staff and students to facilitate e-business on
campus, and these schools have voiced a clear desire
to use their locally issued digital credentials for
doing business with the Federal government. Thus,
the logical design plan was to encourage
deployment of institutional PKIs. Description of Project
 In order to address this situation, NIH and

EDUCAUSE conceived a research project that
would demonstrate a simplified approach to
submitting digitally signed electronic grant
applications to NIH. Although the project used an
electronic grant form, in reality any form could have
been used; the point being that the project’s
approach is applicable to any electronic form or file.
The explicit goals of the interoperability project
were to:

To support the work of the project, NIH and
EDUCAUSE contracted with Digital Signature
Trust (DST) and Mitretek Systems to complete key
portions of the work. Fundamental work resolving
directory issues was done by Georgetown
University.

NIH provided the participating institutions with a
Microsoft Word Template version of the PHS-398,
Application for Research Grant form, to be used as
the model for this pilot. The form was made
available for download at an NIH web site.
(Although not selected by any participant, a PDF
version of the PHS-398 was made available to all
institutions for the pilot.) This was done to provide
the institutions with an electronic document that
could be manipulated locally by common desktop
software applications. Desktop signing of the Word
templates was accomplished using Assured Office
(now ProSigner) software, a Microsoft Office Suite

• Receive grant applications as digital forms
signed with two different, validated, digital
certificates each (an NIH business process
requirement);

• Use digital certificates issued by three (later
changed to five) participating academic
institutions;

• Demonstrate interoperability among different
CA vendors’ products, including PKI service
providers.

1st Annual PKI Research Workshop---Proceedings

177

plug-in and standalone application developed by E-
Lock (now Lexign). ProSigner, however, only
works on the Microsoft Windows platform.

Phase One of the project incorporated the following
assumptions and features:

• A form that could be shared between the

Principal Investigator and the Authorized
Official of Record (AOR) at the research
institution. The PHS-398 is completed by PIs
and the AORs, also known as Institutional
Representatives (IR) in recognition of the fact
that NIH funds institutions, not individuals. The
form must allow for completion by multiple
users, although only one of these users will
submit the form to NIH.

• A form that could be digitally signed with

multiple digital signatures. Both the PI and an
IR sign the PHS 398. Both digital signatures
need to be validated, that is, checked to verify
they are good, when the form is submitted to
NIH. The PI is typically part of a research
operation of an organization. The institutional
representative is an administrator, typically
called the Authorized Official of Record (AOR)
or IR. The two may be hundreds or thousands
of miles apart. Bringing these people into a
room at a single moment is often not feasible.
Further, the AOR or IR may be handling
numerous forms at a single time, related to
many different investigators.

• A form that could be completed with

virtually no additional software
requirements for the PI and IR/AOR. In
order to allow for maximum scalability, the
team decided that the adopted solution should
have as small a client footprint as possible, not
only because of difficulties in downloading and
installing products, but also because
Information Technology (IT) departments are
averse to installation of software that is not part
of the standard configuration supported by the
Institution’s IT environment. This concern
arises from added cost and support (which also
translates to cost) requirements.

• A form that could utilize commercial-off-the-

shelf (COTS) digital signing products. Based
on our analysis of COTS digital signing
software, the product that we recommended, E-
Lock Web-Signer (now Lexign ProSigner),
would sign not only portable document format

(PDF) files, but also generally any other file
type. Due to the number of users participating
in this pilot, it was more cost effective to use
the per-user-priced Assured Office (ProSigner)
rather than the recommended Web-Signer,
which is priced on a server basis.

Research into the capabilities of Adobe Acrobat
reader revealed that the reader software
supported verification of signatures, but did not
support digital signing or digital certificate
validation natively. Additionally, Adobe
Acrobat software, as distributed by the
manufacturer, requires additional software plug-
ins to be added to the desktop to allow it to
function with PKI certificates that would be
applicable to the project requirements. By
using a COTS product that worked correctly
with any file format, including Word templates,
a separate plug-in for Adobe did not need to be
created.

• Form could be digitally signed and sent as an

email attachment, requiring no changes to
the NIH mail server. In order to best meet the
needs of the constituents of the pilot, e.g., the
research institutions and NIH, the Word
template needed to be completed, digitally
signed, and emailed as an attachment to the
NIH OER recipient. This allows for easier
submission of the form, requiring no changes to
the NIH email server or to current database or
web servers. Furthermore, it greatly simplified
the submission process for the institutions. The
fact that their email systems logged the sending
of the message as proof of date and time of
submission was a serendipitous extra benefit.

PKI Bridges
To allow NIH to successfully validate the digital
certificates affixed to the electronic grant
applications, EDUCAUSE deployed a Higher
Education Bridge Certification Authority (HEBCA)
prototype structurally similar to the Federal Bridge
Certification Authority (FBCA) prototype. With the
support and approval of the Federal PKI Steering
Committee, which included a generous grant, the
two bridges were cross-to-certified and currently
interoperate at the test level of assurance.
Participating institutions’ PKIs cross-certified with
the Higher Ed Bridge while a proxy NIH CA cross-
certified with the Federal Bridge. Thus, a trust path
was created between NIH and the institutions

1st Annual PKI Research Workshop---Proceedings

178

through the bridge-bridge infrastructure created to
support the project.

Trust path discovery and validation for the bridge
infrastructure model required use of specialized
software. Mitretek Systems modified the Certificate
Arbitration Module (CAM) originally created for
the GSA Access Certificates for Electronic Services
(ACES) program (an umbrella contract mechanism
allowing the Government a acquire a broad range of
PKI services) and added DAVE. The CAM/DAVE
became the validation service used by Assured
Office to validate the digital signatures affixed to
the completed MS Word templates. How this
worked will be explained further on in this paper.

Significant issues were encountered in attempting to
link the different directories that supported the
institutional PKIs. To resolve them successfully, the
team found it necessary to use an Internet 2-
supported “registry of directories,” described below,
developed by Michael Gettes of Georgetown
University.

Interoperability
In addition to brokering trust among discrete PKIs,
the Federal and Higher Education bridges also
supported Certificate Authority (CA) product
interoperability. The University of Alabama at
Birmingham used the DST TrustID certificate
service (RSA technology); the University of
Wisconsin-Madison used the Netscape iPlanet CA
and Dartmouth College used the Entrust CA. The
University of California Office of the President and
the University of Texas – Houston Health Science
Center used the VeriSign On-Site CA service. (The
latter has not yet been demonstrated to operate
successfully in the pilot, but is expected to be
operational shortly.)

By using interoperating bridges, the overall number
of cross-certifications required within the
community of interest was reduced. Policy mapping
decisions were offloaded to the Bridge policy
authorities. This model allowed disparate PKI
communities to be “bridged” together. Its
disadvantages were also evident: liability issues
arose by offloading policy mapping functions to a
Bridge policy authority; it was heavily dependent on
a distributed directory system that was vulnerable to
failure in a number of locations. Certificate path
construction was complex, and there were
disparities between the underlying directories, e.g.,

X.500 vs. LDAP. If proper certificate constraints
were not used, then security issues were destined to
erode the trust in the infrastructure. Depending on
the policies of the Bridge Policy Authority, peer-to-
peer cross-certification of CAs still could be
required.

University CA Issues
As part of this project, university participants
utilized their own CA software. The University of
Wisconsin, for one, utilized the iPlanet CMS as its
CA for university personnel certificates. This was
one of the most challenging experiences – especially
for the directory services. Their CA came integrated
with the iPlanet LDAP directory in its default
configuration, which assumed the CA would be
used for an enterprise PKI in which users existed
within the directory prior to obtaining the end entity
certificate.

Because of this assumption, cross certifying with the
HEBCA took some effort, specifically obtaining a
PKCS#10 certificate request of the University of
Wisconsin’s root. This was found to be written as a
file, instead of provided to the administrator. The
publication of the cross certificate pair to the iPlanet
directory had to be performed manually. The
iPlanet software came with the
CertificationAuthority object class and included
CrossCertificatePair as one of the attributes. Using
the LDAPModify command from the command line,
the CrossCertificatePair could be published the
directory

The Certificate Arbitration
Module (CAM)
The CAM is an application-level router that
efficiently and consistently routes certificates from
relying party programs to the issuing certificate
authorities (CAs) for validation. By interfacing
directly with the CAM, a relying party application
can interact seamlessly with multiple CAs. CAM is
also flexible; it allows RSA-based certificates to be
validated with the Certification Authority. The
CAM runs as a separate process within the agency’s
security domain, allowing the agency to manage the
resources and controls necessary to support the
validation processing at the enterprise level.
Applications interact with the CAM through a
simple validation API that communicates over
TCP/IP or by using a Microsoft ActiveX control.

1st Annual PKI Research Workshop---Proceedings

179

Phase 2 of the NIH-EDUCAUSE Interoperability Pilot Project with FBCA and HEBCA

When a digital signature and the corresponding
signer’s certificate are presented to a PKI-aware
application and the application does not recognize it,
the application submits the certificate to the CAM.
The CAM parses the certificate, verifies that it has
not expired and checks to see that the certificate
issuer trusted by the application. The CAM then
either uses stored instructions or looks at the
Authority Information Access (AIA) extension
within the certificate to obtain the location of the
OCSP validation service cited by the issuing CA.
The CAM then builds an OCSP request, digitally
signs it with a certificate issued to the CAM, and
submits it to the OCSP server for validation.

When DAVE is incorporated, the issuing CA no
longer needs to be known a priori (via
configuration) and trusted by the CAM. Instead,
DAVE’s trust anchor is known a priori, and DAVE
performs the steps of trust path discovery and
validation, the latter typically via Certificate
Revocation Lists (CRLs).

The CAM Validate Request message contains three
parameters: a message type, an Application ID
string, and the DER-encoded certificate to validate.
CAM then performs certificate validation on behalf

of the application and returns a response message
back to the application. The Validation Response
message contains five parameters: message type,
certificate status, an ACES profile check code (not
used in this project), an ASCII representation of the
parsed certificate, and the binary digitally-signed
validation response message received by the CAM
from the CA’s validation service.

As the application-to-CAM communication utilizes
TCP/IP, an Intranet (or Internet) connection must
exist between the application and the CAM. The
validation request response messages are transmitted
in “Little Endian” byte order, so applications
integrating with the CAM must take this into
account and translate the messages if they are not
running on a non-Intel platform. The NIH and many
of the academic institutions used Intel platforms, so
this was not an issue for them during the pilot
project, but it was noted that a significant Macintosh
users are part of the NIH client base.

The CAM receives the signed OCSP response from
the issuing CA’s Responder, verifies the signature,
and parses the response to obtain the certificate
status. The CAM logs the response (providing an
audit trail) and packages the status along with
additional information in the Validation Response
message, as discussed above. While the

1st Annual PKI Research Workshop---Proceedings

180

functionality of each CAM is limited to a single
security domain, it is also ideal for a one-stop
gateway or portal architecture.

Enabling applications to utilize the CAM for
validation is a fairly straightforward task. Several
key points must be taken into consideration, though
(See CAM Communications Specifications -
Version 3.1.0 at http://cam.mitretek.org/cam):

The original design requirements assumed that the
CAM and the application are running in the same
security domain, that is, the protocol between the
application and the CAM itself were not currently
authenticated:
• The CAM server runs on a Microsoft NT 4.0 or

Windows 2000 platform;
• The CAM utilizes TCP/IP to transport the

validation request, responses to and from the
CAM;

• The CAM trust model, when not extended by
DAVE, is that the CAM is authoritative; only
certificates issued from a CA explicitly trusted
by the CAM are validated, hence applications
have no need for further validation.

CAM Implementation
To date, the CAM has been deployed successfully in
a number of instances within the Federal
Government. Although not in broad use today, this
growth trend should continue over time. Examples:

1. The SSA is in the third year of its “Annual

Wage Reporting” (AWR) pilot and the second
year of utilizing the CAM as a signature
validation service for electronic AWR filings.
This year’s pilot includes the use of a simplified
signing control, “simple sign” to calculate the
signature hash, sign the signature hash, and
submit the filing to the SSA services. There,
the signature is validated through the CAM
validation server. Not only is SSA accepting
signatures through the ACES program, it has
added the State of Washington PKI as a trusted
issuer within their CAM trust list;

2. FEMA utilizes the CAM validation service in
several programs; first, to provide certificate-
based access control to several critical
databases available to emergency personal
during disasters; second (deployed since the
September 11th attacks), a government
assistance program for local government
agencies that are applying for FEMA assistance.
This application allows electronic submission of

grant applications as well as certificate-based
access to check on the status of the application
by the applicant;

3. NIST has developed an electronic grant
application submission and review workflow to
support its research grants program. This
program utilizes both ACES and NIST-issued
certificates and handles signature validation via
the CAM;

4. NTIS has enabled its labor union wage
reporting system, utilizing CAM for signature
validation of union officials when union wage
reports are filed with the NTIS servers. The
reports are then accepted and the information
fields verified and fed into the Agency’s back-
end workflow system;

5. The EPA ran a pilot, “CDX,” that enabled
digital signing of pollution reports by reporting
agencies and businesses. The program has
recently incorporated a full-blown reporting
exchange that includes the digital signatures,
submitted reports, and their validation at the
point of acceptance.

Discovery And Validation
Engine (DAVE)
DAVE is an open-source software package that
provides X.509 certificate trust path discovery and
validation services as a TCP/IP accessible Microsoft
Windows NT/2000 service. DAVE may be used as
an add-on to the CAM, extending CAM-enabled
applications to hierarchical and cross-certified PKI
domains.

Configuration settings for DAVE include:
• A certificate corresponding to the “trust

anchor.” All trust-paths end at this “most
trusted CA;”

• An LDAP server name and port to use for
retrieval of certificates and
CRLs and/or ARLs.

The incoming request protocol used by DAVE is the
same as that used by the CAM. Starting with CAM
version 3.6a, the “CAM-linking” and “default CA”
capabilities may be used to defer validation to
DAVE for CAs not specifically listed on the CAM
trust list. The outgoing request protocol for
certificate path discovery and for CRL retrieval is
LDAP, both for certificate path discovery and CRL
retrieval. OCSP-based validation may be added at a
later time. CAM already provides OCSP support,
but only for directly trusted CAs, not ones located
by path discovery.

1st Annual PKI Research Workshop---Proceedings

181

DAVE applies multiple techniques to construct the
certificate path. When the location of the issuer’s
certificate is given in the AIA field of the certificate
in question, DAVE contacts that specified LDAP or
X.500 directory directly. When explicit locations
are not conveyed in the AIA field, or when a
complete trust path has not yet been constructed,
DAVE switches to a second technique, issuing
LDAP “read” requests to its default LDAP server
which, in turn, discovers and queries the correct
directories. Such discovery is made by way of
hierarchical CA certificates and cross-certificates.
The explicit steps taken are: (1) read the issuer field
from the certificate in question and call this the
target domain name (DN), and (2) do an LDAP read
for the target DN, asking for the return of both all
cACertificate and crossCertificatPair attribute
values.

This places two requirements on the directory
infrastructure DAVE utilizes:
1. PKI objects (certificates, cross-certificates, and

CRLs / ARLs) must be properly stored in a part
of the Directory Information Tree (DIT) with a
DN equal to the subject field of the object(s);

2. The LDAP server to which DAVE connects
must know of and be able to retrieve any
intermediate certificates or CRLs / ARLs along
the constructible paths. This generally implies
directory chaining agreements or an LDAP
referral arrangement.

Internally, much of DAVE’s functionality is
provided by other open-source packages:
• The Certificate Management Library (CML) v2

provides path construction logic and certificate
validation functions;

• Crypto++ provides cryptographic functions for
signature verification;

• Netscape LDAP SDK DLL (in object form; no
source available) provides referral-enabled
LDAP client functions;

• S/MIME Freeware Library (SFL) provides
MIME processing functions, and an abstraction
for Crypto++;

• Certificate Arbitrator Module (CAM) code is
taken from CAM for NT service abstraction and

basic core library functions that provide thread
safety, safe memory allocation, logging, etc.

DAVE Status
Initial development of DAVE is completed, and the
source-code will be freely available shortly. DAVE
has been tested in a number of trust topologies, with
a variety of certificates issued by different CA
product vendors.

Interoperability Pilot Test
Environment
NIH is a participant in the Federal Bridge CA
(FBCA) prototype and has a CA cross-certified with
the FBCA prototype. The universities are
participants in the Higher Education Bridge CA
(HEBCA) prototype and their CAs are cross-
certified with HEBCA. When a certificate is
validated in this test environment, it demonstrates a
trust path that traverses hierarchical and cross-
certificate-based PKI domains, multiple bridges,
multiple CA product vendors, and both LDAP
networking mechanisms, directory chaining
agreements for the FBCA, and an LDAP referral-
based directory networking for the universities.

The pilot project test environment pictured above
involved two users at three of the universities
sending “dual signed” grant request forms using
certificates issued by their respective CAs
(DST/RSA, iPlanet, Entrust). The digitally signed
forms were sent as attachments via standard e-mail
to a user at the National Institutes of Health (NIH).

The NIH user received the e-mail message and used
the CAM-enabled Lexign ProSigner application to
validate the attached, signed form. ProSigner was
configured to contact NIH’s CAM, which contained
a single-item trust list, deferring validation to
DAVE. DAVE was configured with NIH’s self-
signed CA as it’s trust anchor, and an LDAP meta-
directory (referral-based) as its LDAP starting-point.
On an initial run, this system was able to validate
both signatures on the form within 20 seconds. On a
second test run, when DAVE had automatically
cached the certificates of the path, validation took
place in under 5 seconds.

1st Annual PKI Research Workshop---Proceedings

182

Pilot Project Description, highlighting positioning of CAM and DAVE in the trust discovery path

Directory Issues
Directory Overview The FBCA model presents two fundamental

challenges to the development of a HEBCA world.
First, the FBCA was constructed under the
assumption that X.500 directory services would be
used for both the bridge and the agency directories,
and the location for publishing certificates
(including objects containing client, CA, CRL and
ARL information) would be known a priori.
Second, using directory request chaining to resolve
requests for X.509 objects which the X.500 standard
supports presents difficulties for LDAP
implementations, since LDAP does not have a
uniform mechanism for chaining requests and not all
LDAP clients understand LDAP referrals. In the
Higher Education computing environment, as in the
marketplace, the use of X.500 directory servers is
quite limited and LDAP is the predominant
directory server technology employed for enterprise-
class directory-enabled services. Since directory
chaining is not one of the X.500 capabilities brought
forward into the LDAP specification, the project
team developed techniques for getting around these
limitations.

Currently, the FBCA environment relies heavily on
the use of X.500 directory standards to facilitate
path discovery and path processing. This is partially
due to the Federal Government’s extensive
experience with X.500 directories. Although the
FBCA does utilized the LDAP v3 protocol as the
primary protocol to the bridge directory, another
X.500 based protocol is utilized to connect
transparently to a distributed mesh of directories.
Certificates that make up a full path may reside in
external directories that are connected to the bridge
directory transparently. The FBCA environment
relies on the X.500 DSP protocol to chain
automatically to the external distributed directories
to retrieve the CA certificates, CRLs, and ARLs that
are needed to perform path processing. The DSP
protocol is managed through the use of ‘Chaining
Agreements’ that manage authentication and
retrieval of attributes and values that reside on these
external directories. This environment has been
tested in small scale by the FBCA with several
directory and CA products.

1st Annual PKI Research Workshop---Proceedings

183

Fundamental to the Federal BCA model is the
notion that a request for an object associated with a
SubjectName (Subject or Signer) is performed
directly and not by issuing search requests. An
application simply calls the “getDN” function and
the directory infrastructure resolves the DN for the
application.

It is also important to note that without an AIA
extension in the certificate, the issues related to
chaining and locating objects become significant.
Very little software makes use of AIA, however,
DAVE and CAM both use the AIA extension if it is
present. If an HTTP URL form is present, DAVE
will bypass directory lookups and use HTTP
directly. If an LDAP URI form is presented to
DAVE, the module directly queries the given LDAP
server for the given DN; if it is a DN-only form,
DAVE queries the default LDAP server using the
DN from the AIA field, not the DN from the
issuer/subject fields. The same logic applies for
CDP fields when getting CRLs.

Chaining
This paper does not attempt to describe all aspects
of chaining per the X.500 specification, but simply
makes note of some of the reasons for choosing the
X.500 chaining methodology and presents
challenges for an LDAP equivalent methodology.

What typically transpires in the BCA model is that
an application receives a form or document with an
affixed certificate. To validate that certificate, the
CRL associated with the issuer of the certificate
must be queried to see if the received certificate is
still valid. The application (or an associated
certificate-handling module) extracts the Issuer
Subject Name from the certificate and requests the
DN that is the Issuer SubjectName from a locally
defined and -configured directory service. In the
X.500 context, the DSA has the responsibility for
performing any name mapping and for chasing
down the DSA that houses the object associated
with the DN. Since this involves accessing other
directories, the authentication credentials are
appropriately passed to other directories for proper
access control to required information. This places
the burden of translation and location on the DSA,
and the application has to know little of the “magic
behind the curtain.” This “magic” is commonly
referred to as “knowledge references” and there are
various types to describe and implement different
behaviors. One reference describes a chaining
agreement between two DSAs. Another reference
describes a referral, which is returned to the

application to be handled as the application sees fit.
From an application perspective, this is a reasonable
mechanism.

In the LDAP world, however, chaining doesn’t exist
formally. It is relatively easy to implement a
simplified version of chaining using LDAP, but
there is no standard defined for the activity. In the
pilot project, the application has to chase the DSA
associated with an issuer DN. While applications
usually call library functions, this model potentially
increases the complexity for the applications,
depending upon which LDAP libraries are used. In
the case of the open-source OpenLDAP
implementation, a derivative of the University of
Michigan SLAPD implementation, the libraries
handle referral chasing rather well. Nevertheless,
for both referral and chaining, there is still work that
must be done at the DSA to define knowledge
references (and, of course, to test those references).
Thus, in LDAP-based models, applications must
know more about the process of certificate
validation, calling library functions and performing
the work, but this type of activity is commonplace
for LDAP-enabled applications. If handled
properly, the X.500 model and the LDAP model are
equally transparent to the application.

One important lesson from the FBCA work is that
chaining agreements between different vendors of
X.500 DSAs is quite problematic - to the point that
a workaround was required for successful
demonstration of the project proof of concept. Not
every institution has the same Certificate Authority
product or directory service product, and if they do
have the same products, they might be different
versions that are incompatible. This last situation
particularly caused problems at the Dartmouth
College PKI Lab, both with the CA and the
directory (which had to be upgraded to the latest
version, and even then had numerous directory
chaining issues though it was an X.500 directory).
Finally, the DSP protocol is time-dependent and
hence two directories that are tied by chaining
agreements require time synchronization in order to
operate correctly.

Resolving Objects via LDAP:
Registry of Directories
Given that LDAP has no inherent chaining
capability, a knowledge reference service was
developed that the LDAP-enabled, BCA-aware
applications utilized. This service is a Registry of
Directories (RoD). The RoD is an LDAP directory

1st Annual PKI Research Workshop---Proceedings

184

utilized to provide “smart referrals” for CAs which
are cross certified with the HEBCA, but which do
not have X.500 directories that support the DSP
chaining protocol. The RoD provides DN entries
for the organization CA and an LDAP-based URI
referral to the organization’s directory, where the
CA certificate, CRLs and ARLs actually reside. This
allows DAVE to access the directory of the
institution quickly and to retrieve the CA certificate,
CRLs and ARLs in order to perform the path
development and processing needed to bridge a
trusted path with generic LDAP read and LDAP
search operations. This is not much different from
the FBCA concept, except that multiple directories
are accessed via LDAP by the path processing
software as opposed to being accessed by a single
bridge directory, which then chains to the
distributed directories of the participating CAs. The
advantage of this is the simplicity of management of
the RoD, as opposed to establishing separate
chaining agreements across numerous distributed
directories. This is particularly important given the

sheer number of institutions, and the diversity of
their infrastructures and needs.

The project created the RoD on a test system
(dodhe.internet2.edu) using different ports to
simulate a federated administration model of this
registry. Our first implementation required the
application be configured with the top of the registry
service defined - or pointed to - any DSA associated
with the RoD service. Each RoD DSA was
configured with a superior reference, which implied
that any DN requested that was not managed by the
current DSA yielded a referral to the top of the RoD.
The RoD figure below shows an expansion of the
RoD hierarchy for this phase of the project. For
each root, we configured a new RoD hierarchy. We
defined two roots for this part of the project, one for
c=US and one for dc=edu. Only the c=US branch is
shown below, since this presents the FBCA test
environment, as well as the HEBCA test
environment.

Registry of Directory hierarchy for Phase Two of the pilot

1st Annual PKI Research Workshop---Proceedings

185

Note the referrals shown in the above figure at:

c=US
o=U.S. Government
ou=NIH
ou=FBCA
o=University of Wisconsin
o-dartmouth college pki lab

The RSA_FBCA Certificate Authority was also
selected in the above figure and shows the object
contents to the right, revealing the CRL,
crossCertificatePair, and caCertificate attributes
that would be utilized in path validation and
discovery. An application requesting the associated
data with this object would, starting at the top,
receive one referral for c=US, then another referral
for o=U.S. Government, then one more referral for
ou=fbca. The DN of this object is: cn=RSA_FBCA,
ou=fbca, o=U.S. Government, c=US.
Referrals within the RoD service may exist at any
level as appropriate for the administration of the
namespace being referred. This offers flexibility to
delegate administration out to the true owners of the
namespace in the "global" DIT space.

Open Issues for the Registry of
Directories
• Resource discovery seems to be a daunting and,

as of yet, unsolved problem. Configuring client
software (email clients, web servers and so on)
with a local (or remote) DSA that is part of the
RoD service is not desirable. Software should
have a mechanism for locating the global
service only if there is not a locally defined
service. Using DNS SRV records and even
poking at the DNS hierarchy within the local
domain seem appropriate until an RoD Service
SRV record is located. This will allow the
starting point to be locally defined and will
provide an escape route from the global
hierarchy for special arrangements or
alternative hierarchies depending on the
commercial climate of namespace providers.
DNS security is not an issue here since the
objects being located will be digitally signed
and will be, therefore, “self-secure” with
respect to the certificate being validated.

• It is not clear which approach is better: getting

an object or searching for an object. If
certificates contain AIA extensions that lead
directly to the object associated with the issuer,
this is clearly the best approach. However, not
all methodologies associated with AIA are

understood by all software. If one has to locate
the issuer object, then how is that
accomplished? Do we search on the DN in
question or simply get it? Currently, there is
quite a bit of discussion within the IETF-PKIX
community as to which approach is best, and
even discussions regarding the representation of
a certificate in a directory. Do we provide new
attributes that represent the contents of
certificates and search those attributes (since
X.509 certificates are stored as binary blobs) or
do we search using special filters and matching
items that allow for searching inside the binary
X.509 blobs? These questions are not yet
resolved, but the FBCA model will likely have
to incorporate some new set of techniques to
work with new, PKI-aware applications
developed in response to the results of the IETF
deliberations.

• The referral URI used in the smart referrals of

the RoD must be pre-escaped, meaning the URI
definition rules must be adhered to such that
space characters must be translated to the %20
in the URI.

• Utilizing the LDAP standard port definitions of

389 or 636 simplifies the setup, since the
firewalls usually are already open for other
LDAP services. The X.500 chaining agreement
setup requires special ports to be opened, which
can lead to time delays and further security
concerns by IT staff.

• In the case of X.500 directory chaining,

chaining agreements are required in both
directories. This requires a coordinated effort
and substantial amount of administrative time to
initially setup, and test proper chaining. The
LDAP referral method was found to be easily
set up and tested without the need for tightly
coordinated effort and without the number of
schema restrictions of chaining.

• Directory availability and security are critical

issues associated with the deployment of this
type of PKI. There exist many issues and
solutions to yield high levels of both
availability and security. The Federal model
advocates use of a "border directory" which is
essentially a public view of data originating
from internal directories or databases that likely
reside behind a firewall. There are other issues
associated with directory-enabled applications
that also require consideration that we will not
attempt to discuss here. For more information,

1st Annual PKI Research Workshop---Proceedings

186

refer to the Internet2 Middleware Initiative web
site and the LDAP-Recipe at
http://middleware.internet2.edu.

Border directories are specialized directories
exposed to the world that contain a partial
replica of proprietary information in the
enterprise directory information tree of an
institution or enterprise. This allows the border
directory to supply public information to the
bridge environment, thereby reducing the need
for directory access controls and simplifying
directory administration. The concept of the
border directory is part of the FBCA
architectural design to provide agency-based
directories that expose only information needed
for the FBCA to perform the path discovery and
path processing. Institutions participating in the
HEBCA will probably find this same concept to
be a useful data security measure. Within the
FBCA, the directories and border directories
may be considered critical infrastructure
systems and therefore require redundancy. This
adds to the setup time and testing of the X.500
chaining agreements for both the bridge
directory and the border directories. The
HEBCA and the participating institutions could
also be considered critical systems, but it is
much easier to set up and test the smart referrals
in the RoD than it is to ensure redundancy on
all parts of the directory architecture.

• Firewalls and access controls to the directories
within the institutions and the HEBCA will
always need to be considered, although the
referral mechanisms of the RoD simplify these
issues because of LDAP’s use of standard ports
389 or 636, as mentioned above.

• Anywhere that X.500 DSP is utilized, the

administration of chaining agreements will
require continuous checking, as well as
synchronized time supplied, adding complexity
to the infrastructure.

• Referral management will require institutional

administrators to be aware of changes to the
local directory tree that could affect RoD smart
referrals. The LDAP Browser/Editor version
2.8.2 by Jarek Gawor was utilized for the
creation of the smart referrals in the RoD as the
native administration interface of the directory
server was found to be cumbersome.

• Dartmouth College cross certified an Entrust

Authority CA with the HEBCA. The Critical

Path (previously PeerLogic) X.500 directory
product was used with the Entrust Authority
CA in this installation. The X.500 product
needed to be upgraded to version 8A3 to
resolve problems with directory chaining. The
cross-certification exchange of certificates did
not complete properly because of a still-
unresolved incompatibility in the RSA product's
response to the Entrust product. This issue was
worked around by manually installing the cross
certificates in the Dartmouth directory. A
shadow DSA was created to avoid potential
issues resulting from the manual certificate
storage operation. Since additional hardware
was not readily available to support the shadow
DSA at Dartmouth, the team initially attempted
to use a non-standard port for the shadow
directory's LDAP connection. The Mitretek
firewall, however, was only open for port 389
traffic. To work around this issue, the shadow
directory was subsequently hosted on a server
inside the Mitretek firewall. In addition, the
update frequency for the CRL was extended to
simplify synchronization with the shadow
directory.

Desktop Service – Lexign
ProSigner (E-Lock Assured
Office)
ProSigner is a Public Key Enabled (PKE)
application, allowing any PC-based documents to be
digitally signed and encrypted. ProSigner is fully
integrated with Microsoft Word, Microsoft Excel,
and Adobe PDF enabling users to sign and encrypt
documents quickly.

• Provides ease of use through a point-and-click

tool bar that integrates with Microsoft Word,
Excel, and Adobe Acrobat;

• Enables document encryption, so only specified
people can view the content of a document;

• Provides centralized security including signing,
encryption, verification, and certificate
validation;

• Manages multiple signatures and creates an
audit trail of documents as they flow through
the signature cycle;

• Supports any X.509 digital certificate and
works seamlessly with certificates issued by
Digital Signature Trust, Entrust, RSA Security,
VeriSign and others;

• Policy definition, enforcement and auditing
insure simple workflow requirements.

1st Annual PKI Research Workshop---Proceedings

187

http://middleware.internet2.edu/

Usage
ProSigner version 4.2 was utilized as a desktop
service enabling the university partners to sign the
Microsoft Word template PHS-398 form. To enable
the signing, NIH translated its research grant
workflow rules into Lexign signing policy that
defines the two signatures be applied to the PHS-
398 form.

The use of ProSigner, Microsoft Word and the PHS-
398 allowed the researchers to fill out the electronic
grant application form offline, wherever they were
located. The researchers simply utilized Word to
add the pertinent information into the PHS-398
document. Once all the information was completed,
the researchers used the ProSigner controls in
Microsoft Word to select their personal signing
certificate to sign the application, then they attached
it to an email to the institutional signing authority.
The signing authority then reviewed the document,
verified that it was signed by the researcher, and
digitally signed it with his/her own signing
certificate. Once both signatures were attached to
the PHS-398, it was submitted to NIH simply by
attaching it to an email and sending it to the OER
email server.

The NIH recipient then opened the email and
opened the attached PHS-398 with WORD and
ProSigner. The NIH officer’s ProSigner was
configured to validate all certificates against a local
CAM/DAVE validation service. When the PHS-398
was opened, signature validation was requested via
the Validate API. If the certificate was within the
trust list of the CAM, then standard ACES-level
OCSP validation was performed. Since the
certificates were issued from CAs not in the CAM
trust list, validation was passed to DAVE and its
configured default CA, the FBCA - HEBCA bridge
infrastructure, to perform path discovery and path
processing. When both certificates were verified
through the CAM/DAVE service, the NIH officer
then verified all the proper information was
completed for the applications and disseminated it to
referral and data entry.

As mentioned before, currently, ProSigner users
must mange participating institutions’ root
certificates since the application still needs to see
them in the Microsoft certificate store as trusted CA
issuers in order to operate properly, even though it is
CAM-aware.

Since Entrust software uses a proprietary client-side
certificate store, it was necessary for Dartmouth’s

PKI Lab to use the Entrust-specific version of
ProSigner to sign the sample NIH PHS-398 form
with Entrust-generated certificates. Other pilot
project participants used the Internet Explorer
version. The now-current version of Entrust
supports key/certificate export to the Microsoft
Crypto-API, which should allow use of the IE
version of ProSigner in the future. With these issues
resolved, signatures and remote verification at NIH
were successful.

Outstanding Desktop
Application Issues To Be
Resolved
The ProSigner version 4.2 utilized in the pilot
project contained several problems that were
worked around and should be fixed in later versions.
Following is a brief list of these problems, followed
by further explanation.

1. Explicit Trust in the CAM/DAVE validation

without attempting to verify the CA within the
local browser root store: ProSigner has been
designed so that its certificate validation
supported CRLs, OCSP, and CAM validation.
In the case of CRL and OCSP based
validations, the explicit validation of the CA
required that the issuing CA root certificate was
in the local browser root store and that the
certificate being validated was valid within the
validity period of the issuing CA’s certificate.

2. The CAM response interpretation: Currently,

the CAM validation API utilized by ProSigner
returns several components to the validate API
response message. Two of these parameters are
important to the operation of the bridge-bridge
model: the first is the CAM status code, which
is the authoritative status of the certificate being
validated and the second is the binary response
message received by the CAM from the CA.
Traditionally, this has been an OCSP response
message from the issuing CAs validation
service that may be used for long-term
validation or archival proof of the certificate
validation.

The addition of DAVE means that an OCSP
response message is not sufficient to contain the
path information and its validation response to
be stored with the document, allowing for the
long-term interpretation of the document
signatures. The addition of another signed
binary response is an issue. Also, the signed

1st Annual PKI Research Workshop---Proceedings

188

binary response from DAVE that encapsulates
the path and validation information has not been
standardized to provide a clear standard for
developers to utilize. Although several IETF
drafts provide options into which this
information may be put, they are still subject to
change. This is an area that needs further
development. The first viable IETF Standard
RFC to defined response information that
includes path and validation information should
be incorporated into DAVE. Of course,
determining which IETF standard is viable can
be problematic.

3. The CAM’s application-to-CAM API has no

security provisioning built into the validate
API. This may be a limiting factor of the
CAM’s acceptance as a general validation
service. An unexpected finding of the
interoperability pilot project was the desire of
researchers to use ProSigner and the
CAM/DAVE validation service across
institutional boundaries. This could allow a
researcher to share critical research information
securely utilizing ProSigner. The recipients
then would need to verify the source of the
signed documents electronically and would
require that a public validation service such as
CAM be deployed with new APIs providing
security to the educational institutions.

4. Verification and Timestamp Issues. ProSigner

stores audit information along with the signed
document as signatures are verified. The
timestamp of the verification is associated with
the signature and with the document. However,
if a document is signed and verified on
4/1/2002 at 12:01AM and then again on
4/15/2002 at11: 59PM, the timestamp is set to
4/15/2002 and not the original signing and
validation date o 4/1/2002. Although not a
direct issue for the pilot project, long-term audit
information is highly important as proof of
when a valid signature is applied to a document
over time. It has been suggested that an initial
validation timestamp and last validated
timestamp should both be associated with
digitally signed documents. This would
facilitate creation of a minimal long-term
archive of signed documents like the PHS-398.

5. When a document that has been signed and

validated with the validation response stored
with the document, then the document’s
signature hash is broken with a debugger,
ProSigner does not report a invalid hash when

using offline validation. This problem was
reported as a defect to Lexign and should be
fixed in the next release of ProSigner.

Policy Issues
The CAs that are part of the Interoperability Project
issued certificates at the test level of assurance. To
do business electronically, some form of policy
needs to be created that addresses trust. Within the
commercial X.509 PKI community, this is
understood to require creation of a Certificate Policy
(CP) in RFC2527 format that formulates the policies
and procedures for issuing X.509 certificates at
stated levels of assertion of identity and security. It
also requires creation of a Certification Practices
Statement (CPS) that describes in detail how the CA
is to be operated to comply with the Certificate
Policy. The degree to which a certificate user can
trust the binding embodied in a certificate depends
on several factors. These factors include the
practices followed by the certification authority
(CA) in authenticating the subject; the CA's
operating policy, procedures, and security controls;
the subject's obligations (for example, in protecting
the private key); and the stated undertakings and
legal obligations of the CA (for example, warranties
and limitations on liability).

Beyond the strictly formal policy and procedures
requirement, however, the organization issuing
digital credentials needs to develop trust policies
that address the questions implicit in establishing
secure electronic business processes, for example:
which credentials are good enough to satisfy trust
requirements for a given transaction? What must be
done to satisfy the business objectives, legal
requirements, and culture of the organization issuing
digital certificates?

Lessons Learned
Client Applications Client applications that rely on
a Bridge CA have to know how to handle the
certificate of each CA in the Bridge or to rely on the
server-based certificate validation. Certificate
repositories may not be accessible to the client
applications. Client applications tend to not be able
to handle complicated certificate hierarchies that
may use cross certificates. Finally, client
applications must be able to utilize the policy
mappings of the different CAs in the bridge. This
tends to be too much processing for client
applications to handle.

1st Annual PKI Research Workshop---Proceedings

189

Applications and Certificate Path Processing
Server- based applications need to be able to handle
the complexities involved to support certificate path
processing and validation of the trust domains. In
the implementation of the HEBCA, the CAM was
enhanced to use an add-on discovery and validation
engine (DAVE) module to facilitate certificate path
processing and to validate the trust domains.

Trusted Servers Organizations are moving towards
solutions that leverage trusted servers to do the hard
work associated with certificate processing, rather
than have the client do all the work. Hence
solutions like CAM and OCSP or even plug-in
modules such as DAVE are designed to perform
discovery of a certificate path for processing to be
used for validation.

Cross Certification In the Bridge approaches
previously mentioned, cross certification can only
be obtained with self-signed root certificates.
Numerous commercial PKIs are designed such that
subordinate CAs within the hierarchy are designated
as the trust anchor for specific policies. This leads to
the need to cross certify subordinate CAs with the
bridge environment.

Directory Implementations In the Bridge
approaches previously mentioned X.500 directory
and border directory implementations need to
further embrace LDAP. As mentioned in the
implementation of the HEBCA, a registry of
directories and smart referrals were utilized to
address interoperability across a diverse community
of directory technologies.

Using a Bridge CA The cost for many agencies or
institutions to operate and run their own PKI is more
than these organizations can budget or afford.
These organizations need to consider that in order
to use a BCA, the agency or institution must have
their own PKI. An organization is oftentimes best
served to utilize a trust model or PKI that is already
in existence, such as ACES or a trusted third party
(TTP).

Areas for improvement in the current
application-to-CAM communications protocol:
first, the lack of security within the protocol.
Although not an original design requirement of the
CAM, there are now use cases where the CAM and
PKI implementation would benefit by the addition
of authentication and confidentiality features to
allow validation of the messages sent and received
across the Internet. This would protect the

transactions against denial of service (DOS) attacks
and against replay attacks. Second, as noted above,
the TCP/IP messages between the application and
CAM utilize a nonstandard packet byte ordering,
that is, Microsoft byte ordering instead of standard
network byte ordering. Special attention should be
paid to this when integrating applications to the
CAM. The CAM source AA_TEST application,
which is used for initial testing of a CAM
installation, is a good starting point for integrators
implementing the validate API.

Continuing Work
As more agencies and organizations adopt and
participate in the BCA approach, more work needs
to be done to ensure their success. Some of the
immediate needs are identified below.

• Create a cookbook or document that identifies

the minimal requirements and contents of the
cross certificates and the directories; Given the
lessons learned and discoveries made for all the
components, a cookbook or document needs to
be formally written that identifies the minimal
requirements for certificates, directories and
applications.

• Complete the cross-certification of Dartmouth
by resolving the incompatibility with the RSA
Keon CA product and Entrust;

• Continue to work with Verisign to complete the
cross-certification of the University of
California-Office of the President and
University of Texas-Houston Health Science
Center;

• Split the registry of directories to enhance
performance across the infrastructure;

• Analyze and determine a more general solution
for DAVE to perform directory discovery. It
may be advantageous for DAVE to speak
OCSP, for example;

• An investigation into multiple smart referrals to
provide two different URIs to verify the
enablement of redundancy for critical
infrastructure cases. This would include
teaching DAVE to try a secondary URI if the
first did not return a response. If the AIA
extension were mandated for any CA that wants
to operate in a bridge environment, that would
be a good beginning. Then, require an RoD
entry for all participants of a bridge
environment so the software would look at the
AIA extension or the RoD to locate the issuer.

1st Annual PKI Research Workshop---Proceedings

190

Summary/Conclusions
Given the disparate and many PKIs that are in use
within the Federal Government and within other
communities of interest, research institutions and
Federal Government need to begin understanding
how they can best leverage and work with the PKI
environments that are underway. We need to come
to an understanding and agreement that there will
never be a single open PKI for everything. Rather,
each major industry will determine its own solution,
and the other industries that have a requirement to
interoperate with other industries will need to figure
out how to interoperate. An example is in the credit
card world. The Federal Government did not define
its own credit card standard. Rather, it evolved its
payment processes to include the use American
Express (AMEX) cards by Federal employees. The
same is true for PKI. As an example, the higher
education community will define its solution, and if
the higher education community and the Federal
Government want to interoperate, these two diverse
communities will need to determine the best method
of interoperability or continue to participate in the
development of the infrastructure for each
community.

Acknowledgements
Grateful appreciation for their participation in the
pilot project and in the preparation of this
manuscript is acknowledged to: Clair Goldsmith,
University of Alabama at Birmingham; Jill
Gemmill, University of Alabama at Birmingham;
Keith Hazelton, University of Wisconsin-Madison;
Eric Norman, University of Wisconsin-Madison
Robert Brentrup, Dartmouth College; Ed Feustel,
Dartmouth College; Michael Gettes, Georgetown
University; David Wasley, University of California
Office of the President; Bill Weems, University of
Texas – Houston Health Science Center; Mark
Luker, EDUCAUSE; Steve Worona, EDUCAUSE;
Deb Blanchard, Digital Signature Trust; Monette
Respress, Mitretek Systems; Jim Fisher, Mitretek
Systems; Ken Stillson, Mitretek Systems; Russ
Weiser, Digital Signature Trust; Jack Kirivong,
Lexign; Andrew Lehfeldt, RSA Security; Andrew
Lins, Mitretek Systems; Cheryl Jenkins, Federal
Bridge Certification Authority; Judy Spencer, Chair,
Federal PKI Steering Committee.

References
LDAP-Recipe: A Recipe for Configuring and
Operating LDAP Directories, Michael R Gettes,
Georgetown University, February 2001 & April
2002

Bridge Validation Authority, Ambarish Malpani,
ValiCert, Inc., December 2001

Planning for PKI, Best Practices Guide for
Deploying Public Key Infrastructure, Russ Housley,
Tim Polk, John Wiley and Sons, Inc., 2001

Federal Grant Streamlining Program, Department of
Health and Human Services Response to RFI-4-02-
HHS-OS, Digital Signature Trust, February 2002

Final Report – Phase 1, Prepared for National
Institutes of Health (NIH) Office of Extramural
Research (OER), Under Contract No.
GS00T99ALD0006, Digital Signature Trust,
February 2002

Report of Federal Bridge Certification Authority
Initiative and Demonstration Electronic Messaging
Association Challenge 2000, October 2000,
Mitretek Systems

PKI, Implementing and Managing E-Security, Nash,
Duane, Joseph, and Brink, RSA Press, McGraw
Hill, 2001

Educause Review, “A “Bridge” for Trusted
Electronic Commerce,” Mark A. Luker,
January/February, 2002, Volume 37, Number 1

The Evolving Federal Public Key Infrastructure,
Federal Public Key Infrastructure Steering
Committee and Federal Chief Information Officers
Council, June, 2000

Internet2 Middleware Initiative Web Site,
http://middleware.internet2.edu, Middleware
Architecture Committee for Education (MACE), et.
al.

1st Annual PKI Research Workshop---Proceedings

191

http://middleware.internet2.edu/

1st Annual PKI Research Workshop---Proceedings

192

Experiences Establishing an Experimental International Coalition Public
Key Infrastructure

By Glenn Fink (Naval Surface Warfare Center, Dahlgren VA, finkga@nswc.navy.mil),
Shawn Raiszadeh (Lockheed Martin Corporation, Fairfax VA, US,

shawn.s.raiszadeh@lmco.com), and Timothy Dean (QinetiQ, Ltd., Malvern,
Worcestershire, UK, tbdean@qinetiq.com)

Abstract
Research and testing teams from the US and UK
participated in joint design and testing of a Public Key
Infrastructure (PKI) for international military coalition
operations. We planned the design and testing in five
phases from an initial PKI interoperability study
through design of a second-generation PKI based on
web services. Each design phase is followed by a
testing and demonstration event to verify and
recommend improvements to the system designed.
The paper opens with a description of the unique set of
requirements an international military coalition must
levy on its PKI. Next, we briefly describe each design
and testing phase to give the reader a sense of context.
This paper documents experiences with PKI technology
that our research group had during the two most recent
testing phases, II and III. We have included design and
test-structure information for these two phases and
highlighted our lessons-learned. We conclude with our
current plans for future phases of the study. The
intended audience for this paper is experienced PKI
users, vendors, and researchers. We hope our findings
and recommendations will be useful to the scientific
community as we attempt to enable solutions complex
problems through technology.

Keywords: Public Key Infrastructure, PKI, Security,
International Military Coalition, Authentication,
Nonrepudiation.

1.0 Introduction
The Virtual Operations Network (VON) project is an
international military effort to facilitate management of
naval coalitions involving forces from many nations.
Teams of researchers from the UK (QinetiQ in Malvern
and Portsdown West) and the US (Lockheed Martin
(LM) in Fairfax, Virginia, and Naval Surface Warfare
Center (NSWC) in Dahlgren, Virginia)i joined together
to form our VON PKI research group.

1.1 Unique Requirements of Coalitions
Coalitions in operations like Desert Storm and East
Timor have demonstrated that traditional solutions for
communications among a diverse group of coalition
partners require an unsatisfactory amount of time and
effort to establish and maintain. Some of the
communication problems arise from equipment and
software incompatibilities. Other communication
issues come from the inability to trust once
communications are established. Part of the VON
effort involves establishing a degree of trust to facilitate
information-sharing among coalition partners that are
not traditional allies or may even be traditional
adversaries. This project is complicated by the
dynamic nature of modern coalitions where members
may join for a relatively short period of the overall
operation and may change roles during the operation.
Nations participating in international coalitions come
from a broad spectrum of technological ability—from
low-tech, third world nation-states to technological
superpowers. To level the playing field, nations with
technology advantages may have to provide “throw-
away” PKI components and services to their
disadvantaged partners. While it is likely that the US or
one of its high-tech allies would host some of the
coalition PKI, it is essential that any nation, including
the PKI hosting nation, be able to walk away from the
coalition at any time without leaving indispensable
personnel or sensitive equipment behind to maintain the
PKI. Any equipment that must be left behind must be
highly tamper-resistant to prevent technological
espionage.
The coalition PKI should be accreditable by various
nations. This implies that nations can be assured that
none of their national secrets will be released into any
associated coalition without the nation’s explicit
consent. Accreditation generally requires presenting
evidence that the risk is sufficiently low to make it
worth the information gained. Accreditation also
influences the amount of time taken to establish a
coalition. The coalition PKI may be able to reduce this

1st Annual PKI Research Workshop---Proceedings

193

delay by selecting standard or pre-approved hardware
and software packages.
Because the partner nations are quite independent, a
coalition PKI must have decentralized management of
trust. Some partners may already have national PKIs,
and most have national secret networks. Each of these
partner-nations will want full access to information
from the coalition PKI but tightly control the flow of
national data into the coalition.
In military operations of all sorts, timely authentication
and nonrepudiation are mission-critical requirements.
PKI clients must be able to determine the validity of
digital signatures quickly with a high degree of
certainty that the status is up to date. Hardware tokens
are envisioned for this application so that
nonrepudiation may be more reliably achieved. For
timeliness, we plan to require revocation windows of
less than an hour.
The planned coalition PKI will run on shipboard
platforms communicating over High Frequency (HF) or
Ultra-High Frequency (UHF) radio links with
extremely limited bandwidth and intermittent
connectivity. In each battle group there will be one or
more “gateway” ship(s) with satellite communications
(SatCom) capability that will connect battle groups to
the shore-based Network Operations Centers (NOCs).
The NOCs may be nationally or internationally owned
and will interconnect via secure, fixed links. PKI
applications that cannot operate correctly under
circumstances of intermittent connectivity and low
bandwidth need not apply. Figure 1 is an overview of
the communications concept used by VON.

NOC to NOC
Secure
landline or
encrypted
tunnel over
the internet

US HF
Subnet

“Gateway”
ship

“Leaf” ship

UK Ship(s)

SatCom

SatCom

Figure 1: VON Communications Concept

1.2 The Experiments
Our research group conducted experiments with two
separate PKIs during Fall 2000 and Summer 2001.
During the test periods, laboratories at four

geographically separated sites hosted simulated tactical
platforms (ships and NOCs). The platforms were
interconnected by dial-up ISDN lines simulating radio
frequency (RF) transmission speeds. This effort was a
step towards deploying PKI technology in a multi-
national at-sea trial in 2002.
The VON PKI effort can be divided into five phases of
experimentation leading toward eventual deployment in
operational environments:

Phase I Lockheed PKI Interoperability Study
Phase II UK-US Joint PKI Interoperability Test
Phase III UK-US Joint Proof of Concept
Phase IV Multinational At-Sea Prototype Trial
Phase V 2nd Generation PKI: Web Services

Currently the project has completed Phase III and some
initial testing for Phase IV. We will complete Phase IV
during Summer 2002. This report documents
experiences our joint research group had while fielding
experimental PKIs during Phases II and III and will
outline plans for the following phases.
Phase I was conducted by the LM team according to
requirements defined by NSWC and the Office of
Naval Research (ONR). LM evaluated five PKI
certificate management systems (CMSs) and two
Lightweight Directory Access Protocol (LDAP)
directory-server products, given the requirements we
had defined. The team simulated a three-nation
coalition PKI using three different PKI vendors. This
study is documented in [1] and is not further expanded
upon here, but findings from it form the basis for the
phases that followed.
Phase II testing occurred in the Fall of 2000 (September
through early December), with the focal testing events
conducted 13-17 November. The purpose of Phase II
was to test the work done in [1] in a truly international
setting. This was our first bilateral experiment in the
PKI school of hard knocks. Two Certification
Authorities (CAs) were set up, Netscape Certificate
Management System in the US and Baltimore UniCert
in the UK. We achieved limited PKI interoperability by
maintaining a trusted lists of CAs in the clients. Parties
successfully exchanged and verified signed and
encrypted e-mail (sans attachments), and, with mixed
success, visited each others’ SSL-secured web pages.
We also established secure network tunnels (via
Internet Protocol Security (IPSec)) but used only static
keying without automated enrollment via PKI.
Phase III testing was conducted in late summer of 2001
(July through August). The purpose was threefold:

1. To centralize trust management at the national
level (as opposed to each user managing trust
lists individually),

1st Annual PKI Research Workshop---Proceedings

194

2. To reduce risk of component or system failure
during the planned at-sea trial during Phase
IV, and

3. To incorporate hardware tokens (smartcards,
etc.) for end user credential storage.

Phase III testing was focused on cross-certification,
exchange of S/MIME e-mail with attachments, and
revocation testing. Both nations setup their own root
CA (the US used Entrust, and the UK used Baltimore)
and the teams cross-certified the two PKI domains. The
2001 testing period is believed to have been the first
time that government/military organizations from
different countries successfully established trust
between independent national PKI domains using
different vendor products. Participants at four separate
sites exchanged, validated, and read digitally signed
and encrypted email messages, proving the
interoperability afforded by the coalition PKI.
The Phase IV at-sea trial will exercise the PKI
configuration established and refined in earlier phases.
This phase may involve more nations and will be on
actual rather than simulated shipboard platforms. This
phase should be completed by the end of this summer.
Phase V will incorporate the knowledge gained during
the at-sea trial and attempt to define a middleware
prototype that will standardize the application program
interface to the coalition PKI regardless of the
underlying PKI structure. This phase will rely heavily
on Extensible Markup Language (XML) technologies,
especially XML Key Management Specification
(XKMS) and Security Assertion Markup Language
(SAML). Work beyond this phase will probably
involve further interfacing the coalition PKI with
national PKIs and the multitudes of policy issues that
arise from these interfaces.

2.0 Phase II Experiments

2.1 Objectives of Phase II
The overall objective was to set up a simulated
coalition communications infrastructure and PKI to test
interoperability results obtained during the study done
in the previous phase. The supporting objectives of this
experiment were:

1. Build a simulated RF shipboard network using
ISDN links and RF simulators.

2. Establish TCP/IP (e-mail) connectivity.
3. Standup national PKIs and establish coalition

trust via trust list.
4. Exchange signed and encrypted e-mail.
5. Test mutual web-server access and SSL.
6. Test publishing certificates to an LDAP

directory and test remote LDAP replication.

7. Experiment with certificate issue, revocation,
reissue, and CRL distribution.

2.2 Testbed Configuration for Phase II
The testbed for Phase II consisted of a wide area
network (WAN) of computers using ISDN as the
backbone. Figure 2 shows the coalition communication
concept for this phase. Four simulated ship platforms
from fictional countries: Green (San Francisco, CA,
US), Red (Portsdown, UK), Blue (Dahlgren, VA, US),
and Orange (Malvern, UK) communicated over
simulated radio links.

Blue Blue
CountryCountry

Green Green
CountryCountry

Red Red
CountryCountry

Orange Orange
CountryCountry

US
UK

Figure 2: Phase II Coalition Structure

No NOC was used although network operations were
concentrated in Red and Green. Blue and Orange were
the PKI providers for the exercise. The US hosted the
following services:
• CA/RA: Netscape Certificate Management System

v4.1.5 (NT)

• LDAP Directory: Netscape Directory Server v4.1.5
(NT)

• SSL-compliant Web Server: iPlanet Web Server
v1.0 (Solaris)

• Web Clients: Netscape Navigator Clients v4.7.5
(NT/Solaris)

• Mail Server: Netscape Messaging Server v4.1
(Solaris)

• S/MIME-compliant Mail Client: Netscape
Communicator Messenger v4.7.5 (NT/Solaris)

The UK hosted the following services:

• CA/RA: Baltimore UniCERT Certificate
Management System v3.0.5 (NT)

• LDAP Directory: ISOCOR Directory Server v2.3r1
(LDAP)

1st Annual PKI Research Workshop---Proceedings

195

• SSL-compliant Web Server: MS Internet
Information server v4.0 (NT)

• Role-Based Access Control: WebMACE v1.1 (NT)

• Web Clients: MS Internet Explorer v5.5 (NT)
• Mail Server: MS Exchange v5.5sp2 (NT)

• S/MIME-compliant Mail Client: MS Outlook 98
(NT)

• Firewall/Mail Guard: SWIPSY (Trusted Solaris)

2.3 Testing Conducted and Results from
Phase II
We followed a pseudo-military scenario that involved a
coalition forming, performing a mission, evolving, and
disbanding. From the scenario and the objectives we
derived the following our technical PKI events of
interest. Each national CA sent the other CA its self-
signed certificate for the end users to add to their
trusted list. Then US CA issued “coalition” certificates
to UK users and vice versa. We tested these certificates
by exchanging signed and/or encrypted email and by
visiting each other’s secure web sites (via Secure
Sockets Layer (SSL) v2.0 using both server-side and
client-side authentication). After using the certificates
we revoked them and attempted the same tests with the
revoked certificates to make sure that revocation ended
the trust relationship.
Overall success was achieved in most areas. The most
notable deficiencies were caused by incomplete
implementation of PKI awareness in the client
applications.

2.3.1 Problems Encountered in Phase II
There were numerous bumps along the way and a few
failures of minor objectives. This section is a collection
of our problems grouped according to the software unit
where the problems were manifested.
iPlanet Directory Server—We learned that the
Directory Information Tree (DIT) structure is tightly
coupled with working of the CA and other PKI servers.
We originally underestimated the degree of coupling
and could not publish certificates to the directory. We
were forced to do several directory naming scheme
reworks to make certificate publishing work.
Even after fixing the directory problems, we were
unable to publish certificates from Netscape CMS via
SSL to the iPlanet directory consistently. Either the
directory or the CA seemed very buggy on this point.
Once we got it working we dared not touch it. This
behavior would not be acceptable in an operational
environment.
Netscape Certificate Management System (CMS)—

SSL server-to-server communications never worked for
the Netscape Messaging server. Although certificate
enrollment for the Messaging Server seemed to work
well, the subsequent use of the certificates in SSL
communications did not work. This implied no secure
transfer of e-mail from one mail server to another, no
secure Internet Mail Access Protocol (IMAP), and no
secure access to directory data from the directory
server. We were however using IPSec to bulk-encrypt
all traffic so these issues were not immediate problems.
Netscape CMS seemed to be quite brittle requiring
reinstallation numerous times. Simple changes (e.g., IP
addresses of servers, etc) could render CMS useless
until it was re-installed.
Netscape Communicator clients in general—The
inability of client software to reliably check certificate
status was a major problem. In Netscape
Communicator’s web and e-mail clients, revoked SSL
server certificates would not raise any alarm until a
CRL was explicitly downloaded into Communicator
from Netscape CMS’s end-user web interface. The
button used to download a CRL to Communicator
apparently is only available when visiting the client
web portal of Netscape CMS. Once a CRL was
downloaded into the client, revoked web site
certificates generated the appropriate warning, and mail
users could not use expired certificates for signing
messages. All this was expected and proper, but after
downloading a CRL, the client must manually reload a
new CRL before the old one expires or be unable to use
any SSL or S/MIME facilities. This then prevents the
user from downloading a new CRL! This behavior is
clearly counter-productive. Some flexibility to allow a
user to participate in SSL transactions even if the local
CRL has expired would be helpful. Another possibility
would be to automate the CRL download process. For
our application, CRL lifetimes were very short (fifteen
minutes) so we were forced to ignore CRLs altogether
to avoid the continual annoyance of downloading new
CRLs manually.
Netscape did provide a Personal Security Manager
(PSM) plug-in for its Communicator 4.73 client. This
plug-in would allow the use of Online Certificate Status
Protocol (OCSP) to verify certificates presented to the
client. However, PSM was so buggy and caused so
many crashes that we decided not to use it. Since there
were at that time no other freely available OCSP-aware
clients we elected not to use OCSP.
Netscape Navigator web client—Users of both
national PKIs were able to register for and receive
certificates from the web portal of the foreign CA, but
US users were inexplicably unable to import the UK’s
CA chain into Navigator’s trust list. Numerous creative
attempts failed, although the UK was unable to
duplicate the incompatibility. The reason for this

1st Annual PKI Research Workshop---Proceedings

196

problem was never discovered and may have been
caused by influences outside either the Baltimore CA or
Navigator.
By default, Navigator expects the Distinguished Name
(DN) of an SSL server’s certificate to follow a specific
format. A certificate’s DN must have the common
name (CN) of the server as its first element, and the CN
must match the server’s Domain Name System (DNS)
name exactly. Using a more human-readable CN (e.g.,
“CN=Stanleys Web SSL Cert”) in the certificate
generated name mismatch errors in the browser every
time the web site was visited. This makes maintaining a
large number of certificates unwieldy because they are
not readily identifiable by humans. Supporting the
Subject Unique Identifier field or allowing the CN to be
free form would help.
The UK certificates generated by Baltimore CA and
issued to US users could not be used to sign messages
or validate signatures. The problem appeared to stem
from the inability of the US’s Netscape clients to
import the UK’s trust chain. Reasons for this inability
are unknown.
Role-Based Access Control (RBAC)—Hosts at all
sites were able to access the native web interface of
NSWC’s Netscape CMS CA using SSL with mutual
authentication. US users with certificates issued by the
UK were able to access UK home-grown websites
requiring presentation of a client certificate. But US
Netscape users were unable to properly access UK
pages controlled by the RBAC software, WebMACE.
The reasons for this are not known. The US did not
attempt to protect any of its home-grown websites via
PKI because it was not immediately apparent how to
implement this and testing time was limited.
Firewall and Guards—The UK deployed a coalition
guard on the periphery of its national network. The
purpose of the guard was to prevent leakage of sensitive
information from the national network into the
coalition. Unfortunately, the guard did leak e-mail
addresses with names that revealed the underlying
structure of the UK network (e.g., the domain name
indicated which platform the user was located on).
Eventually this guard would also be a PKI signature
proxy. The guard would replace the signatures of
individual UK users with the guard’s signature so that
the internals of the national PKI would be shielded
from the coalition. This feature has not yet been
implemented.
General PKI Instability—The US lab at SPAWAR
Systems Center—SanDiego, California (SSC-SD)
provided Radio Frequency (RF) link simulation for the
exercise via AdTech SX-12 RF simulators installed at
their site. The RF simulators were intended to provide
realistic bandwidth limitations and error characteristics
to emulate the HF radio and Satellite communication

links that will be used in at-sea scenarios.
Unfortunately, we were unable to simulate RF links in
Phase II because the PKI was never stable enough to be
stress tested.

2.3.2 Accomplishments of Phase II
Out-of-band resources were established for exchange of
administrative data among experimenters. These
resources included ftp, web, and chat servers, Voice-
over-IP (both in the clear and over IPSec), and
teleconference phone calls. The latter two were
indispensable in overcoming the PKI and networking
obstacles we encountered.
We used an IPSec encryption mesh between each of the
four sites using pre-shared keys and 56 bit DES. This
allowed us to assure the security of the experiments
without relying exclusively on PKI.
We published certificate and user information to US
and UK LDAP directories accessible to all. There were
no problems with users registering or retrieving
certificates, except for the US’s problem attempting to
import the UK’s trust chain. Thus, users at all sites were
able to exchange signed and encrypted email using at
least US-issued certificates.
The US deployed a Network Time Protocol (NTP)
server for eventual use as a trusted time server for non-
repudiation. The NTP server was, however, only used
to synchronize clocks in order to preserve the correct
order of receipt of mail messages from all sites.

2.4 Lessons Learned in Phase II
Many general lessons were learned about the issues of
PKI deployment:

• PKI interoperability was, at that time, an
afterthought among vendor products we tested.

• PKI-enabled applications were rare and
limited in their implementation of PKI features
such as certificate status checking.

• PKI was much harder than we thought, and
implementations were not at all robust. The
brittleness of all the PKI implementations
tested meant that they could not be relied upon
for operational use at that time. We learned
that the foundation of workable PKI is the
directory. The format of information stored in
national border directories is crucial for all
parties to agree upon.

• Constant coordination was required to bring up
a coalition PKI.

The state of PKI technology did improve over time as
did our understanding of it. We had much more
success in the next phase of experimentation.

1st Annual PKI Research Workshop---Proceedings

197

3.0 Phase III Experiments

3.1 Objectives of Phase III
The goals of VON Phase III were threefold:

1. To centralize trust management at the national
level,

2. To reduce risk of PKI component or system
failure during the at-sea trial (Phase IV) by
defining common minimum architecture
requirements and baselining the configuration
for the at-sea trial, and

3. To incorporate hardware tokens for end
entities’ certificate storage and presentation.

Testing was focused on cross-certification, exchange of
S/MIME e-mail with attachments, and revocation
testing (both end-entity and cross-certificate). Web and
other services were de-emphasized in favor of
solidifying the PKI itself. As the PKI evolves, we
anticipate adding other services.

3.2 Testbed Configuration for Phase III
The testbed for Phase III (shown in Figure 3) simulated
five platforms located at four geographically separate
sites: two national NOCs, one in the US and the other in
the UK, a US gateway ship and two US leaf nodes. The
US NOC was physically split between two locations.
The LM site provided the PKI servers in its half and
NSWC provided DNS and mail servers and served as a
network hub. Both US sites hosted LDAP servers for
performance, redundancy, and fail-over reasons.

Legend:
 Leaf #1

SD

RS CS TD RD CD T R SR

ISU 2X64

CANCEL * 0 #

7 8 9

4 5 6

ENT ER 1 2 3

Coalition
Shadow
LDAP

SMTP
DNS

RF Simulator

SD

RS CS T D RD CD TR SR

ISU 2X64

CANCEL * 0 #

7 8 9

4 5 6

ENTER 1 2 3

ISDN TAs

Client

Gateway

Client 1

CISCO SYSTEMS

Router
CISCO SYSTEM S

Router
CISCO SYSTEMS

Router

Dahlgren, VA, US

Client 2

CISCOSYSTE M S

Router

CISCOSYSTE MS

UK CA UK Master LDAP
Mail Client

QuinetiQ, Malvern, UK

ClientUS Master LDAPUS CA

Client 1 Client 2

Lockheed Martin, VA, US

 US Leaf #2

US NOC at Lockheed

CIS CO SYSTEM S

Router

CIS COSY STE MS

Router

UK NOC

QuinetiQ,
Portsdowne, UK

Platform

Site

US NOC at
NSWC

Figure 3: Testbed Configuration for Phase III

The US team developed a proposed coalition PKI
architecture document [2] that specified interface
standards that PKI products used in the demonstration
must support to achieve the minimum acceptable level
of interoperability. Only commercial PKI products
were used in the demonstration. The proposal was

accepted by the UK with minor changes. In particular,
it was agreed that secure and trusted collaboration
would be achieved by cross-certification between the
US and UK CAs over a single ISDN 64 Kbps channel
that emulated throughput expected during the at-sea
trial in the following phase.
The configuration below was outlined in the proposal to
achieve secure communications and mutual trust
between US and UK systems. The boldface items
represent changes from the Phase II configuration. The
results of the testing confirmed this as the baseline
configuration for Phase IV.
The US hosted the following services:
• CA/RA: Entrust v5.1.1 (NT)

• LDAP Directory: Netscape Directory Server v4.1.5
(NT)

• Mail Server: Netscape Messaging Server v4.1
(Solaris)

• S/MIME-compliant Mail Client: MS Outlook
2000 (NT) with Entrust Express plug-in

The UK hosted the following services:

• CA/RA: Baltimore UniCERT Certificate
Management System v3.5 (NT)

• LDAP Directory: Border: iPlanet Directory
Server v4.1.5 (NT); Internal: Novell DirXML
1.0 and eDirectory.

• Mail Server: MS Exchange v5.5sp2 (NT)
• S/MIME-compliant Mail Client: MS Outlook 2000

(NT) with Baltimore MailSecure.

• Mail Guard: SWIPSY (Trusted Solaris)

3.2.1 Certification Authorities
Both fielded CA products supported cross-certification
as defined in RFC 2587 [3]. To ensure the security of
the certificate exchange, an “out-of-band” process
(voice telephone) was used to verify the thumbprint of a
cross-certificate request.
Scalability problems arise when establishing and
maintaining trust relationships solely via cross-
certification. A total cross-certification trust model
implies a mesh topology with O(n2) cross-certificates to
be issued and maintained. However, we assumed that
the number of relationships is manageable given our
small demonstration coalition. We chose cross-
certification as a potential step toward an bridge CA
trust model that would require only O(n) cross-
certificates.
To avoid the undesirable side-effects of transitive trust,
we specified that the pathLenConstraint field of the
Basic Constraints extension would be set to zero as
described in RFC 2459 [3]. Transitive trust is indirect

1st Annual PKI Research Workshop---Proceedings

198

trust between PKI domains that can be established
either knowingly or inadvertently. For example,
suppose CA1 trusts CA2 and CA2 trusts CA3. If after
this CA1 now trusts CA3 then transitive trust exists.
Transitive trust management via name constraints, etc.
was not used.
Risk reduction tests conducted prior to Phase III found
that a number of CA configuration options had to be
agreed upon in order to ensure client application
interoperability. Therefore, the CA products for both
countries were required to support the following
configuration:

• 160-bit SHA-1 hash for authority and subject
key identifiers

• X.509v3 certificates with the following
standard extensions:
o keyUsage
o authorityKeyIdentifier
o subjectKeyIdentifier
o cRLDistributionPoints
o subjectAltName (containing the subject’s

email address per RFC 822), and
o basicConstraints.

• All other extensions marked as non-critical.
The US installed its CA at the LM NOC site and
published CA information including CRLs, CDPs,
ARLs, and certificates to the collocated US master
directory server. Likewise, the UK installed its CA at
the UK NOC site and published CA information
including CRLs, CDPs, ARLs, and certificates to its
master directory server
The US issued two identity certificates to each US users
one for encryption and another for signing. Private keys
for the signing and encryption certificates were
generated on smart cards; but only encryption private
keys were escrowed at the CA. The UK issued
certificates to its users similarly, except that they used
soft tokens and did not escrow any keys.
The UK and US then exchanged copies of their
respective Root CA certificate both in native format and
in a PKCS #10 signing request via in-band e-mail Once
exchanged, both parties verified the thumbprints of the
PKCS #10s over the telephone. These tasks helped us to
understand the impact of the following problem-domain
issues: the effort involved in using a secure method of
exchanging the PKCS#10 requests, the amount of work
needed to configure cross-certification, and the time
required to set-up a root CA for coalition operations.

3.2.2 Directory Service
The US and the UK agreed to standardize on the iPlanet
Directory Server v4.1.5 as the border directory service
implementation. The agreement to use a common

directory product avoided several technical and
implementation issues, most notably directory
replication. Surprisingly, although iPlanet directory
server v5.0 was available to us, its replication function
is not compatible with version 4.x of the same product.
Since the US did not have the resources to test
interoperability between Entrust and the v5.0 directory,
the UK decided to use the older directory server for its
border directory. Directory interoperability is certainly
an area where standards are lacking. Emerging
standards and products for directory-to-directory
interoperability such as LDAP Duplication/-
Replication/Update Protocols (LDUP)), Directory
Services Markup Language (DSML) and Novell’s
DirXML are possible solutions. The UK demonstrated
the use of Novell’s DirXML internally as an automated
directory synchronization agent between iPlanet
Directory Server v4.1.5, Microsoft Exchange and
Novell eDirectory.
We used centralized-partitioned (a.k.a. hub and spoke
directory) topology for our directory replication
scheme. Communication between the UK and US
directories occurred through the US hub and its UK
replica. In a coalition environment where connectivity
is sporadic and throughput limited, the hub and spoke
topology was best for scalability, redundancy and
manageability. Each coalition member provided a read-
only directory replica of local security information to
the hub directory. The hub directory provided a
complete read-only replica to each spoke, thus allowing
each coalition member a complete local view of the
coalition. Figure 4 depicts an idealized hub and spoke
directory topology in a coalition environment.

Directory Updates Query/ResponseDirectory Server

Coalition CA

Green RA

Blue CA

Green User

Blue CountryBlue Country
PartitionPartition

CoalitionCoalition
PartitionPartition

OU=Blue OU=Blue
CountryCountry

Supplier

CN=Green User

O=CoalitionO=Coalition

Supplier/Consumer

Red User

Blue Users

CN=Red User

O=CoalitionO=Coalition
ConsumerGreen Green

CountryCountry
AssetsAssets

O=CoalitionO=Coalition
Consumer

Blue RA

CN=Blue User

Figure 4: Hub and spoke directory topology

In the figure, Blue country supplies its own master
directory information to the coalition and receives back
a re-mastered copy of the entire coalition directory
(including entries for Green country and the Red user).

1st Annual PKI Research Workshop---Proceedings

199

This model allows for countries to participate without
supplying a master directory or a CA/RA. Replication
agreements are minimized while redundancy is
preserved. Any country providing a master directory
server and a coalition shadow may take over as the
coalition hub in case the original hub is damaged or
lost. Note that the Coalition CA in the diagram need not
exist at all and the coalition directory may be hosted by
any partner nation.
Our implementation of hub and spoke topology is
shown in Figure 5. Both parties agreed on a directory
schema including DIT, added PKI attributes, etc. The
US configured two directory servers: one as a US
Replication Hub (US-1), one as a US master replica
(US-2). Then, the US configured a simulated gateway
ship computer (US-3) as a read-only replica of the US
Replication Hub (US-1). The US set up replication
from US-2 to US-1 (replication path RP1); and from
US-1 to US-3 (RP2)

CA

CA

US NOC

US GW1

UK NOC

RP3

RP2

RP4US-1

US-3

UK-1UK-2

US Users

Updates Queries

UK Users

UpdatesQueries

US-2

RP1

Figure 5 Coalition directory replication topology

The UK also configured two LDAP servers: one as a
UK master replica (UK-1), and one as a read-only
replica (UK-2) of the US Replication Hub (US-1). The
UK collaborated with the US to set up replication from
UK-1 to US-1 (RP3). Finally, the US collaborated with
the UK to set up replication from US-1 to UK-2 (RP4).
Replication path RP2 demonstrated replication over
intermittent links or unreliable connections as may
happen between the Gateway ships and NOCs on the
shore. Replication paths RP3 and RP4 demonstrated
replication over a reliable link, as expected between the
two NOCs in the following phase and in deployment.
Replication was achieved using LDAP bind IDs and
passwords, rather than certificates for this phase.
Replication over SSL will be used in later phases. All
replication was server-initiated (push) rather than
consumer initiated (pull).

3.2.3 Applications
Secure (S/MIME) email was the touchstone application
used to test the Phase III coalition PKI architecture.
S/MIME provides authentication and integrity via
digital signatures over message hashes, and data
confidentiality via encryption. Both the US and UK
used Microsoft Outlook 2000 for encoding and
decoding of S/MIME messages. We used plug-ins for
Microsoft Outlook 2000 to provide trusted exchange of
messages leveraging coalition cross-certificates. The
US used the Entrust Express plug-in and the UK used
Baltimore’s MailSecure product for verifying trust
between the cross-certified PKI domains. The plug-ins
enabled Microsoft Outlook 2000 to check user
certificate status by downloading Certificate
Revocation Lists (CRLs) from a local directory replica.

3.3 Testing Conducted and Results from
Phase III
As detailed above, before beginning testing in this
phase we took pains to define minimum interoperability
standards. This precaution resulted in a much smoother
testing period. We tested by transmitting unsigned,
signed, encrypted, and signed-encrypted e-mail
messages both with and without attachments during the
test phase. Our results demonstrated working path
validation and discovery. We also tested revocation by
sending signed e-mail between realms after revocation
of a user certificate or a cross-certificate.
We used network analyzers to record email and LDAP
traffic and verify system correctness. The recorded
traffic was analyzed to ensure email messages were
indeed digitally signed and/or encrypted when
applicable. The recorded traffic was also used to ensure
proper workflow for certificate validation. Figure 6
depicts the certificate validation logic the US Entrust
Express client used to validate a digitally signed email
message from a UK user.

1st Annual PKI Research Workshop---Proceedings

200

Anonymous
bind to local

directory

Get US CRL

US User
Revoked?

Get US and UK CA certs
Get US Cross-Certs

UK
trusted?

Get US ARL

UK CA on
ARL?

Invoke Revoked
User Routine

UK not a t rusted
PKI domain

UK PKI trust
revoked; not trusted

Message Trusted

Yes

Yes

Yes

No

No

No

Get UK CRL

UK User
on CRL?

UK PKI trust
revoked; not trusted

Yes

No

Figure 6: Client-Side Signed Email Validation

3.3.1 Problems Encountered in Phase III
This section presents major problems encountered
during Phase III testing. The problems are organized
according to the products where they manifested
themselves. We have explained each problem to the
extent of our forensic abilities, but because of the
inherent complexity of PKI, formal attribution of
problems is not possible. We hope these records will
be useful to the vendors and to new PKI users as they
field their own PKIs.
Entrust CA—Insufficient fields were present in the
PKCS #10 cross-certification request from the US’s
Entrust CA for a correctly formatted cross-certificate to
be produced by Baltimore's UniCERT CA. In particular
the Subject and Authority Key Identifier fields
appeared to be missing. These fields are essential in
correct trust path building. Cross certification was
successfully achieved using the US root self-signed
certificate instead of the PKCS #10 message. The
missing fields were manually added to the cross-
certificate by the UK’s CA operators.
Baltimore UniCERT CA–The UK found it difficult to
achieve reinstallation of Baltimore’s UniCERT CA

without reinstalling the machine’s entire operating
system. It is very important to establish correct CA
configuration throughout the coalition at install time.
A few other minor incompatibilities were also
discovered between MailSecure and UniCERT in trust
path building using cross-certificates.
Entrust RA – After revoking a user through Entrust
RA, the CRL must be manually created and pushed to
the directory via the Entrust RA interface in order for
the latest CRL to be immediately published to the
directory. Once again, a publish-and-subscribe CRL
mechanism would be ideal.
Entrust Express Outlook 2000 plug-in – Outlook
2000 must be installed in “Corporate Mode” in order to
support Entrust Express. Installing in “Internet Mode”
produced inconsistent results and strange errors when
doing signature validation.
When trying to add a user to the Entrust Address Book
from a Directory Search, Entrust Express generated an
errorii. Entrust assumes that the certificate being added
to the Entrust Address Book from the LDAP Directory
is an encryption certificate (e.g. the keyUsage value is
“Key Encipherment”). Entrust does not publish digital
signature certificates to the directory because they are
sent in every S/MIME of digitally signed message. If
the userCertificate attribute for a user in the directory
contains multiple certificates, the first or only certificate
must be the user’s encryption certificate. For Entrust
Express, the ideal would be for each user entry of the
directory to contain only one certificate: the users’
current encryption certificate. To avoid problems, any
revoked certificates must be manually remove from the
directory and the first certificate entry must be a valid
encryption certificate.
Entrust Express was unable to validate the certificate
chains with heterogeneous signature algorithms. VON’s
policy specified DSA key pairs, since DSA was the
preferred US and UK Government algorithm. When the
RSA algorithm became public VON’s requirement
changed to using RSA key pairs since RSA has wider
usage. The UK had installed its Baltimore CA using a
DSA self-signed certificate prior to the policy change
and preferred not to reinstall the CA in order to comply.
Instead, the UK team decided to issue all end-entity
certificates with RSA key pairs and leave the self-
signed root certificate alone. Unfortunately, we found
during testing that Entrust Express displayed an erroriii
when opening digitally signed messages received from
the UK since the sender’s CA certificate public key
algorithm was different from the public key algorithm
used by end-entity certificates. The work-around was to
ensure the same public key algorithm is used for CA
and end-entity certificates. To fix this problem during
the testing events, UK had to reinstall its entire CA to
change the CA’s self-signed certificate to use the RSA

1st Annual PKI Research Workshop---Proceedings

201

algorithm. All UK user certificates were then issued
with the RSA public key algorithm. In general we
determined that the Entrust plug-in could handle
homogeneous RSA or DSA algorithms all the way up
the chain, but cannot validate certificates whose
validation paths use mixtures of DSA and RSA signing
algorithms.
iPlanet Directory Server – Occasionally, replication
agreements did not result in automatic replications
when the directory service in question functioned as
both a supplier and a consumer of the same tree (e.g.,
coalition mirror directories that also replicated
themselves to other directories).
iPlanet Messaging Server – The Messaging Server
must be able to write to the directory root organization
(e.g. “o=coalition.mil”) where it pulls email-related
information. Otherwise the Messaging Server will fail
to start Simple Mail Transfer Protocol (SMTP) services.
The Messaging server uses the root entry to store
certain administrative data. If the root entry is not
writeable, the SMTP service cannot start, but other
services may. The US had to constrain directory
replication to its Messaging Server to the “ou=United
States, o=coalition.mil” subtree to work around this
limitation.
Entrust & Baltimore Mail Client Plug-ins—By
default, Entrust and Baltimore cache Certificate
Revocation Lists (CRLs) and Authority Revocation
Lists (ARLs). It was therefore necessary to restart the
clients to download the latest CRL from the directory
when conducting revocation tests. This is not a
shortcoming; both retrieve CRLs from the directory
when the most recent CRL expires. Unfortunately, we
found no way to push an interim CRL containing newly
revoked certificates to the clients before the next update
time. Turning caching off produced excessive CRL
network traffic, and caching time could not be set
below four hours for Entrust because that is the
minimal CRL lifetime allowed in the version of Entrust
CA we were using. Our requirement for timely
revocation drove this testing, and no suitable alternative
could be found. OCSP was not supported by either
client, and even with OCSP, our requirement to tolerate
intermittent network connectivity would have limited
OCSP’s utility. The most satisfactory arrangement
would be if there were some way to set up a CRL
publish-and-subscribe mechanism where CRLs could
be pushed asynchronously to clients.
Problems were encountered when sending e-mail
messages between Entrust Express software and
Baltimore’s MailSecure software. Entrust Express
includes the entire certificate chain with each signed
message. MailSecure used the chain included in the
message to perform validation instead of consulting the
directory. Therefore all Entrust Express-signed

messages failed to validate in MailSecure because the
US-signed-by-UK cross-certificate found in the
directory was never seen. Since the UK’s trust of the
US was documented in the cross-certificate, the US root
self-signed certificate was not trusted directly.
Individual user certificates could be validated after
opening the messages by manually resolving trust paths
back to the cross-certificate. Since it would be
impossible for Entrust Express to include the correct
validation chain for a UK user, a straight-forward
solution would be to no longer include the validation
chain in messages at all. Unfortunately, Entrust Express
did not provide such a facility. Inclusion of a proper
validation chain would help satisfy the intermittent
network connectivity requirement, but the amount of
additional data sent with each message could pose a
bandwidth problem under the strain of operational use.
A number of attributes needed to be added to the UK’s
directory entries that were mandated by Entrust: First
Name, Last Name, Common Name, User ID, Password,
mailrecipient, nsmessaginserveruser, mailbox,
Maildeliver, Mailhost to correctly process them. These
were not strictly needed by the UK, but were added for
compatibility reasons.
Baltimore MailSecure—MailSecure did not recognize
the cross-certificates we used to establish trust because
it did not use the crossCertificatePair attribute of the US
CA’s directory entry. As a workaround, the UK
obtained the US’s cross-certificate signed by the UK
(labeled <<US signed by UK>> in Figure 7) and copied
it into the cACertificate attribute of the US CA’s
directory entry. They did this in a “stub” directory
copied from the real directory so as not to modify the
original. They then pointed MailSecure to the stub
directory as the first source for certificate path
validation. When a certificate’s trust chain led
MailSecure to the US CA’s certificate in the stub
directory, the cACertificate attribute further referenced
the UK’s own CA as a superior in the trust chain. We
believe this work-around does not impact the trust
hierarchy. However, if the same modifications were
made in the master (US) directory, all PKI enabled
applications under the US’s CA that use the
cACertificate attribute would work incorrectly.
Therefore the stub directories are a necessary part of the
approach. Fortunately, MailSecure does allow the use
of multiple directories to build validation paths.
Without this capability the UK users would have had to
copy their entire directory into the stub directory to
make the process work.
Figure 7 shows how MailSecure searches the stub
directory first to find certificates. When it needs to find
the US CA certificate, it finds the appropriate entry and
looks at the cACertificate attribute. The first value in
the attribute is the <<US signed by UK>> certificate

1st Annual PKI Research Workshop---Proceedings

202

that points to the UK CA. This feature allows
MailSecure to automatically trust all US-issued
certificates. The self-signed certificate remains as the
second value of the attribute for compatibility purposes.
However, we have found, in general, that PKI path-
building clients do not look beyond the first value of an
attribute.

US CA Directory Entry

cACertificate :
• <<US signed by UK>>
• <<US CA Certificate>>

crossCertificatePair:
• <<US signed by UK>>
• <<UK signed by US>>

certificate :
• <<US CA Certificate>>

Copy

Stub
Directory

entry
entry

entry

MailSecure

UK
CA

Figure 7: Using a Stub Directory with MailSecure

General PKI Problems—Some PKI products expect a
country (C=) code to be the root element of all coalition
DNs (after the fashion of X.500). Since VON uses the
Organization (O=) code as the root, we encountered
several PKI problems. For example, with no country
code in the DN, the UK users were unable to generate
their own keys and request certification via MailSecure.
However, this was achieved at the local Registration
Authority (RA) using face-to-face certification resulting
in the manual transfer of user certificates to client
machines. This DN restriction also means that each
user may need a set of certificates for the coalition and
another set for national use. The practicality of this
must be considered.
RFC 2459 [3] is ambiguous in its specification of CRL
Distribution Points (CDPs). Although all PKI products
we used follow the standard, different legitimate
interpretations resulted in incompatibilities between
compliant products. We discovered that the UK’s
Baltimore UniCERT CDPs could be configured in a
way that made them incompatible with Entrust Express,

although both appeared to be following the standard.
The ambiguity allowed directory locations to be
resolved from UK and US certificates in incompatible
ways. In order to resolve this incompatibility, we found
the Issuing Distribution Point (IDP) must be set to non-
critical and fully qualified CDPs must be used.
We found it necessary to use third-party utilities to
confirm the correct configuration of certain pieces of
software used in the trials. For example, certificate
viewers and Base-64 decoding tools from the OpenSSL
distribution were needed to debug problems with
certificates issued by foreign CAs. We suggest that
vendors include such tools in debugging suites to
increase the interoperability of their software with
others.

3.3.2 Accomplishments of Phase III
All participants accomplished the following during the
summer 2001 test period:
1. Established network infrastructure over a
private ISDN link.
• Simulated platforms included national NOCs and

several simulated ship platforms.

• Infrastructure included both nations providing
coalition e-mail and DNS servers.

2. Established nationally supplied directory
services interconnected into a unified coalition
directory with automatic replication between sites.
3. Set up national PKIs and cross-certified them
yielding a unified coalition PKI including:

• Directory Servers

• Certification Authorities (CAs)
• Registration Authorities (RAs)

• PKI enabled e-mail clients
4. Verified the functionality of the coalition PKI
via e-mail tests.

• Conducted 48 e-mail tests (including digitally
signed and/or encrypted e-mail both with and
without attachments) with no unqualified
failures.

• Discovery of encryption certificates via
unified coalition LDAP directory worked
consistently.

5. Tested revocation of individual coalition users
and cross-certificates.

3.4 Lessons Learned in Phase III
The Phase III testing identified a number of issues with
the vendor products used. While all 48 email-exchange
tests were successfully performed, a few of the
exchanges required workarounds deemed unsuitable for

1st Annual PKI Research Workshop---Proceedings

203

a tactical environment. These workarounds were due to
PKI vendor incompatibilities. In addition a number of
issues were discovered concerning the underlying
network infrastructure (e.g. DNS, routing, etc), which
must be resolved prior to at-sea trials. The teams will
perform additional work in 2002 to get the
demonstration testbed ready for at-sea trials in 2002.
Following are some logistical lessons we learned during
the testing process:

• The conference telephone call was an invaluable
tool that allowed problems to be solved in an
efficient and timely manner. It also allowed out-of-
band verification of certificate fingerprints during
the cross certification process. We found using an
out-of-band channel for verifying certificates and
PKCS #10s to be simpler and more cost-effective
than face-to-face certificate exchange.

• Detailed configuration planning in advance avoids
unnecessary, lengthy reinstallations of software.

• Separating key server machines among several
sites makes it more difficult to locate and rectify
network configuration and other problems.

• The US found it useful to have several
administrative user accounts for each nation: echo,
record, and revocable. The echo user is configured
so that e-mail to this user is automatically echoed
to the sender. This account is useful in testing basic
e-mail connectivity so that one nation can verify
that another’s e-mail server is responding without
further coordination or specialized knowledge. The
record user was used as a repository for CCs of all
mail messages sent during the testing. This user’s
mailbox formed a complete record of all e-mail
sent during the test and often served as verification
that a nation actually sent a message when network
congestion caused delayed delivery to the recipient.
The revocable user accounts are useful for
conducting revocation testing. These user’s
certificates are intended to be revoked for testing
purposes so that other users’ accounts need not be
disturbed and no one’s feelings get hurt!

Following are some lessons we learned about planning
and managing LDAP directory servers for PKI:

• Hub and spoke replication topology worked well,
allowing access to the complete coalition directory
even when remote links were down. Further
experiments may be needed to check that this
strategy will work with high volumes of data
and/or low bandwidth links.

• The e-mail address book is often separate and
disconnected from the coalition directory because
the directories are used for different purposes.
Manually copying e-mail information into the

coalition directory is a slow and error-prone
method. Automatic replication between the e-mail
and the coalition directories is highly desirable. .
The UK successfully demonstrated Novell’s
dirXML product for this purpose in their testbed.

• Each nation needs to ensure that its users’ entries
are fully completed in the directory so that the PKI-
enabled client software in use for other nations can
process all users’ certificates.

• The directory must be a robust product. Restarting
the directory and rebooting the directory server
regularly will not be satisfactory in real-time
operations.

4.0 Conclusions and Future Work
The Phase IV at-sea trial will exercise the PKI
configuration established and refined in earlier phases.
Work is ongoing now to refine the configuration in
preparation for the testing event. Several more e-mail
exchange tests have been conducted, and the testing
methodology has been refined to a high degree of
precision. Since the test will be shipboard, a great deal
of logistical matters must be considered. It normally
takes over a year to determine the ships where an
installation will be done, schedule a time for the ship to
be in port, find a place for the installation, and verify
that the installation works without negatively impacting
any mission-critical systems. At this time, the logistics
dominate the preparation process and the exact venue is
still uncertain. This phase may involve more nations
and will involve untrained users for the first time. We
are prepared to collect data on both the functionality
and the usability of our design from a user perspective.
In Phase V, we will seek to overcome the problems of
PKI by using Extensible Markup Language (XML) and
its child technologies. XML is quickly becoming the de
facto standard for providing interoperability between
disparate systems. XML’s meteoric rise together with
the momentum of Web Services may finally push PKI
to deliver on its promise of universally defined trust and
usability. In particular, XML standards that may be
leveraged to make PKI easier to use and implement
include XML Digital Signatures, XML Encryption,
XML Key Management System (XKMS) and Security
Assertion Markup Language (SAML). These standards
may help solve problems inherent to the design of a
Coalition PKI. For example, providing PKI services for
nations that do not have a pre-existing PKI or the
technology to establish one. With a standard web-based
interface to the coalition PKI, the coalition would be
able to meet nations at their level of technology and,
with minimal provision, make it accessible. The
coalition PKI should have a common interface that is
usable in the same way by all partners regardless of the

1st Annual PKI Research Workshop---Proceedings

204

underlying PKI provider. PKI should be a transparent
part of the network infrastructure and should be usable
over low-bandwidth links and on low-end workstations
or mobile devices. It should allow for considerable
mobility by low-end clients and be easy to set up and
tear down dynamically as coalition partners come and
go. Different coalition members need different access to
the coalition PKI for the various roles they may play.
Particularly useful is the offloading of CPU intensive
PKI processes from the client to the server and making
developers job of integrating PKI into applications
easier. As a result, thin clients can take advantage of
the strong security a full-fledged PKI provides. Using
XML as a fundamental technology for PKI may allow
machines to communicate in a language they already
understand without a complex rollout of customized
hardware and software. The issues of the online nature
of these follow-on technologies will be a subject of
considerable concern in this phase. We plan to
contribute to the development of the standards to the
benefit of all those who cannot depend on continual
availability of the internet or high-bandwidth
connections.
Beyond managing a single coalition, one of VON’s
future aims is to manage interactions among multiple,
simultaneous coalitions. Each coalition must be treated
as a separate “community of interest” with
administrative and policy structures that are somewhat
independent from those of the member nations.
Additionally, there are usually multiple security levels
and compartments within each community. Given n
nations the potential number of communities is
bounded by the expression, 2n-1. The number of
security levels and compartments is completely
arbitrary and may be as complex as the coalition
administration finds useful. The picture is further
complicated when one considers the existence of
informal ties and covert channels between nations. The
rules for controlled interchange among such
communities are necessarily complex and should be
enabled/enforced by a coalition PKI.. This very difficult
problem may not be addressable by any technological
solution at all, but the goal of the VON project is to
identify and implement technology that will enable at
least a partial solution to problems of this sort.
In conclusion, we observe that military coalitions are
often formed between partners with complex political
relationships and data sharing requirements. These
requirements must be underpinned by technologies that
support individual identification, encryption of content
for privacy purposes, data separation and access
control, and non-repudiation. These will all be essential
services for future network-enabled warfare operations
between military allies. PKI has been shown to provide
the technical underpinning for such services, and is

likely to be an important part of future coalition
operations. The technologies have been demonstrated
practically, and are found to be reaching the state of
maturity where they can be used for such purposes.
Nevertheless, there are some areas where further work
is required if the military is to reap maximum benefit
from this young technology. In particular, policies on
the use of PKI must be refined, the robustness of the
technology must be determined under a variety of
circumstances, and network operators must be trained
in its use if it is to support coalitions of the future.

References
[1] NTA Coalition Information Technology

Interoperability Final Report, 5 January 2001
[2] “Proposed AUSCANNZUKUS+ Coalition PKI

Architecture for VON 2002 Pacific
Demonstration,” 26 June 2001, by NCAT/
Lockheed Martin M&DS and Glenn Fink, NSWC
Dahlgren

[3] RFC 2587 – Internet X.509 Public Key
Infrastructure LDAPv2 Schema

[4] RFC 2459 – Internet X.509 Public Key
Infrastructure Certificate and CRL Profile

Biographical Data:
Glenn Fink (MS, Comp Sci) is a member of the Information Transfer
Technology group at the Naval Surface Warfare Center (NSWC) in
Dahlgren, Virginia. He specializes in computer and network security,
especially PKI and Intrusion Detection. He has worked for the DoD
for 14 years during which time he has been associated with a variety
of projects mostly involving software development. He plans to leave
the government in Fall 2002 and pursue a doctoral degree in
Computer Science at Virginia Tech. Apart from work, his primary
interest is in his family: his beautiful and intelligent wife and two
sweet young children. He is the "principal" and occasional teacher
for his children's home-school. His family participates in a house-
based church fellowship.

Shawn Raiszadeh has worked for Lockheed Martin designing and
developing cutting-edge security systems for the past three years.
Shawn has worked on a number of research and development
programs with the goal of creating new and innovative solutions to
existing problems. Shawn has a Bachelor of Science degree in
computer science from Virginia Tech.

Tim Dean, (BSc, MSc, MBCS) leads a research team and is a
technical specialist in IT Security. His particular interest is in Public
Key Infrastructures (PKI) and the issues associated with their
practical deployment. He worked for the UK Ministry Of Defence
for 14 years during which time he led teams in a variety of defence-
related messaging and security projects. These included the design of
new security protocols and architectures, including a key
management scheme for a NATO communications network. For the
last five years he has headed a research team studying network
vulnerabilities and countermeasures in a military context. He now
works for QinetiQ, where he is continuing his research interests. In
his leisure time, he enjoys playing the piano and violin, which he uses
as part of the worship group at his local Baptist Church.

i VON is a joint Office of Naval Research (ONR, US) and Defence
Science and Technology Laboratory (DSTL, UK) In the US, ONR
subcontracted its VON work to Naval Surface Warfare Center in
Dahlgren, Virginia (NSWC, US); SPAWAR Systems Center in San

1st Annual PKI Research Workshop---Proceedings

205

Diego, California (SSC-SD, US); and Lockheed Martin, Management
and Data Systems, Integrated Solutions Center, eSecurity Center of
Excellence in Fairfax, Virginia (LM, US). On the UK side, DSTL
(formerly Defence Evaluation and Research Agency (DERA))
subcontracted work to the government-owned private company,
QinetiQ Limited (QinetiQ, UK). Of these entities, our bilateral PKI
research team was composed of members of QinetiQ, LM, and
NSWC. To reduce confusion bred of multiple acronymns QinetiQ
will be referred to as the UK team and LM and NSWC jointly will be
referred to as the US team where their separate accomplishments are
not significant to the context.
ii Entrust Express error: “(-3975) A certificate attribute for this
EntrustName does not exist.”
iii Entrust Express error:“(-4089) Signature algorithm cannot be used
with given key.”

1st Annual PKI Research Workshop---Proceedings

206

Position Papers

1st Annual PKI Research Workshop---Proceedings

207

1st Annual PKI Research Workshop---Proceedings

208

PKI Trust Models
Position Paper for PKI Research Workshop
NIST, Gaithersburg, MD – April 24-25, 2002

Yassir Elley
Internet Security Research Group
Sun Microsystems Laboratories

yassir.elley@sun.com

One of the major obstacles to the widespread
deployment of PKI is the use of poor trust models. The
advantages and disadvantages of using a particular trust
model need to be carefully considered before
deployment. Currently, PKIs commonly use either the
multi-rooted hierarchical trust model (used by web
browsers) or the anarchy trust model (used by PGP).
This position paper summarizes the drawbacks of these
two commonly deployed trust models and advocates a
third approach (known as the bottom-up trust model).
For a more complete analysis, please refer to [1],
authored by Radia Perlman, a member of the Internet
Security Research Group at Sun Labs.

In the multi-rooted hierarchical trust model, each
relying party is configured with the public keys of
several well-known trusted CAs. These trusted CAs are
typically associated with various security vendors and
are completely trusted to vouch for anyone’s public
key, or to delegate authority to another CA to vouch for
public keys. X.509 certificates are typically used in this
model. Starting with a trusted public key, a user can
attempt to build a chain (or path) of certificates to a
specific target. One of the major drawbacks of this trust
model is that if any of the private keys corresponding to
the set of trusted public keys is compromised, the
security of a vast number of entities (presumably the
majority of browsers) is compromised. Even if a trusted
key pair is changed for legitimate reasons (e.g. key
rollover), a massive world-wide reconfiguration needs
to take place. There is also the additional question of
why these CAs have been granted this universal
authority to vouch for anyone’s public key in the first
place. In the real world, trust relationships tend to be
strongest at the local level and tend to dissipate as the
distance between a certificate issuer and subject
increases. It is unclear why a user would place greater
trust in some distant CA than in a CA that is operated
locally by a competent administrator. While it is
possible for users to remove these universally trusted
public keys, ordinary users rarely do this and are more
likely to add malicious keys to this list as a result of a
message box urging them to do so.

The anarchy trust model employed by PGP also
uses pre-configured public keys that are completely
trusted to vouch for other keys. However, these trusted
public keys are typically those of close friends who the
user trusts to serve as introducers to other users. This
trust model addresses the reality that local trust is often
stronger than distant trust. However, this model
requires the user to completely trust the initial trusted
public keys AND to completely trust any public keys
vouched for by the initial public keys. The multi-rooted
hierarchical trust model is better in this regard, because
X.509 certificates allow a certificate issuer to place
various constraints (e.g. name constraints, policy
constraints, path length constraints) into the certificate
limiting the sorts of certificates the subject is trusted to
issue. Additionally, the anarchy trust model does not
scale well beyond relatively small communities. Chains
of certificates can be arbitrarily long and the absence of
constraints on certificates can make the problem of
constructing a certification path intractable.

The bottom-up trust model that we advocate
incorporates the advantages of the multi-rooted
hierarchical and anarchy trust models, while avoiding
their disadvantages. A relying party is configured with
a single trusted public key, which is usually the public
key of a local organizational CA, thus providing the
advantage of local trust. The bottom-up trust model
assumes a hierarchical namespace and uses the
properties of that namespace to efficiently construct
paths from a trusted public key to a target. Chains start
at the bottom (with your trusted CA), traverse up the
namespace as often as necessary, cross over to a
namespace ancestor of the target (if necessary) and then
down to the target. Another advantage of the bottom-up
trust model is that it can be deployed incrementally
within a workgroup or an organization and does not
require users to obtain (and pay for) certificates from an
outside organization. If the CAs in your organization
are managed well, keys of outside entities that are
compromised will have no effect on intra-
organizational security because the certificate chain
between two users within the organization will never
include a key of an entity outside the organization.

1st Annual PKI Research Workshop---Proceedings

209

Finally, if a CA’s public key is compromised, there is
no need to re-configure all the machines in the world.
Only the users who have that CA’s public key
configured (typically those in a particular workgroup or
organization) need to be re-configured.

Rather than using specific namespace heuristics, the
bottom-up trust model can be realized by using the
name constraints present in X.509 certificates to
constrain the search space when constructing paths.
This adds flexibility to the model and allows standard
X.509 certificate processing software to be employed.
One result that we reported in a paper at NDSS ’01 is
that building paths from the trust anchor to the target is
more effective for general trust models than building
from the target to the trust anchor. [2] Building from
the trust anchor allows the path to be validated while it
is being built, enabling the quick rejection of paths that
fail to validate. In addition to adopting a bottom-up
trust model, software must be deployed that can build
complex certification paths. To that end, our research
group has contributed to the development of the Java™
Certification Path API [3] and reference
implementation, which has now been released as part of
JDK 1.4.

Additional Information

[1] R. Perlman, “Overview of PKI Trust Models,” IEEE
Network, Nov/Dec 1999.
[2] Y. Elley, A. Anderson, S. Hanna, S. Mullan, R.
Perlman, S. Proctor, “Building Certification Paths:
Forward vs. Reverse,” Network and Distributed System
Security Symposium Conference Proceedings (NDSS
’01), 2001.
[3]
http://java.sun.com/j2se/1.4/docs/guide/security/certpat
h/CertPathProgGuide.html

1st Annual PKI Research Workshop---Proceedings

210

* This is an unofficial position paper submitted to the First Annual PKI Research Workshop. It
does not represent the views, policies or positions of the U.S. Department of Defense or the
Defense Security Service. The authors have a combined 6-7 years of experience in participating
in Internet standards bodies as well as in designing, building, implementing, and employing large
scale COTS-based PKIs.

PKI Position Paper: How Things Look From The Trenches*

William F. Flanigan, Jr., Ph.D. Deborah M. Mitchell
 Information Assurance Chief PKI Program Manager
 william.flanigan@mail.dss.mil deborah.mitchell@mail.dss.mil

U.S. Department of Defense
Defense Security Service

881 Elkridge Landing Road
Suite 140

Linthicum, MD 21090

As Public Key Infrastructure (PKI)
technology becomes an aging teenager,
it appears problematic that significant
stability/maturity will be achieved as it
moves into its early twenties. What
follows is a brief description of some of
the principal problems, pitfalls, and
perils of PKI as viewed from a day-to-
day operational perspective. They have
not been prioritized. We present these
issues with the hopeful expectation that
this newly-organized Workshop will
thoughtfully examine them and, where
appropriate, either provide solutions
directly or serve as a means to help
achieve attenuating processes and
mechanisms.

1. Cost. Not only are "gold-plated"
PKIs to be aggressively avoided [1], but
"brass-plated" and even "pot-metal"
PKIs often remain prohibitively
expensive to lease, buy or do-it-yourself.
Large and equity-rich organizations such
as governments and the institutions they
support (for example, college and
university systems), the financial
community, well-endowed academic
centers, and, in general, the Fortune 100
seem to be unique in their ability to
mount post-pilot PKIs. It appears that

this is because these entities can not only
afford PKI, but are not necessarily
subject to the same level of return-on-
investment (ROI) scrutiny (or any ROI
scrutiny) faced by the rest of the .com's,
.gov's, .edu's, and .org's on the planet
[2]. There are also PKI life-cycle
maintenance/technology-migration costs
(often “hidden” or not fully compre-
hended initially) that will be incurred at
the organizational-PKI level as well as
for subcomponents (such as corporate
departments and governmental
offices/agencies) utilizing the "free"
organizational PKI utility. These hidden
costs can prove to be formidable, and
may preclude the continued use of the
PKI. What can be done to mitigate this
cost problem? Are most/all PKI costs
directly related to the needless
complexity of PKI technology?

2. Needless Complexity. PKI is
anything but a simple, user-friendly
technology. Part of the complication
seems to stem from digital ancestor
worship of closed-door-generated
standards going back to at least the mid
80's. However (and ironically), the
complexity also would appear to be due
to the current open-standards process.

1st Annual PKI Research Workshop---Proceedings

211

The outputs of Internet standards bodies
are primarily generated by de facto
"professional" protocol writers. As is
the case with all professions, these
individuals speak a unique, esoteric
language. Further, protocols are usually
crafted by committees whose members
have a multiplicity of conflicting
agendas. The result seems to be
protocols so convoluted and obtuse that
vendor implementation is
difficult/impossible and costly (the latter
may discriminate against new and
emerging innovative enterprises).
Further, product protocol compliance is
no guarantee of product interoperability
(or even out-of-the-box full
functionality). What needs to be
addressed to reduce/remove this peril?
Do PKI protocols call out for a hefty
application of the KISS principal?

4. Certificate Revocation Lists
(CRLs). PKI provides level-of-
assurance trust interoperability between
end users and machines with certificate-
revocation status comprising a large part
of that trust. The CRL concept requires
the replying party to not only validate a
subscriber's signature certificate, but also
to validate the certificates of the
subscriber's signing CA plus the
signature certificates of all the
intermediaries. As to the latter (and
ignoring local caching), it's not
inconceivable that a relying party may
need to check the revocation status of
the certificate used by a validation
authority to sign a path validation
guarantee who, in turn, may need to
check the revocation status of the
certificate used by a responder to sign a
delta CRL who, in turn, may need to
check the revocation status of the
certificate used by a CRL distribution
agent to sign the latest, distributed CRL
who, in turn, may need to check the
revocation status of the certificate used
by the CA to sign the CRL. With
multiple PKIs, the process grows in
complexity. What measures and
mechanisms could/should the PKI
community be designing/testing to
mitigate/eliminate this problem? Is
certificate-revocation status based on
CRLs a needless (and expensive) digital
goat rope?

3. End-User Needless Confrontation.
End-user awareness, training and
education is unrelenting, and often self
defeating. Extensive hand holding is
required with end users to get them set
up and started using this security
mechanism. Once implemented, users
continue to find it easier to just turn PKI
off rather than to try to figure out (or
remember) what actions they need to
take to use it. This is compounded with
the roll out of new PKI releases and
versions. Virtually nothing about PKI is
totally transparent (or even opaque) to
the end user. What corrective actions
could/should the PKI community pursue
to eliminate this pitfall? Must this
situation continue unabated? Is the lack
of PK-enabled, commercial-off-the-
shelf (COTS) applications that painlessly
foster (or “force”) the utilization of PKI
part of the problem?

5. Configuration Management of Self-
Signed Certificates. Browsers now
come preloaded with up to 100 self-
signing certification authorities (CAs)
and roots which are automatically
trusted by the client. Who are these
entities? Some could be your
competitors or adversaries. Intruder
addresses and certificates inserted into a
secure message thread could be

1st Annual PKI Research Workshop---Proceedings

212

automatically trusted. The same may
hold for person-in-the-middle Web sites
exhibiting "authenticated" certificates
and running SSL/TLS. How can this
peril be countered or minimized, at what
level(s), and will it be scalable? Should
this issue be elevated to the level of a
cyber terrorist threat?

6. Key Escrow and Recovery. It is
essential for businesses and
organizations to be able to access
encrypted data in the event that
something happens to an employee or
the employee’s cryptographic module.
Some PKI products provide limited
support for key escrow and recovery, but
not (yet) for third-party certificates. It
would seem prudent that escrow and
recovery policies and practices evolve
and migrate in full and complete
synchronization with available
technologies (building a policy field is
no guarantee that the open-standards,
COTS vendors will come!). The legal
ramifications, complexities, and costs
are also directly related to what technical
procedures, processes, and devices are
available (and utilized). Further, there
are not insignificant life-cycle issues to
contend with. How will data, audit
trails, and electronic records in general
required to be retained in an encrypted
state for extended periods of time (due to
legal requirements) continue to be
protected as well as made accessible to
ever-changing parties with access rights
and privileges? Can this problem be
adequately addressed using open-
standards, COTS-based products? Like
the profiles and checklists that have been
formulated and adopted for certificates,
CRLs, policies, and practices by the PKI
community, is a key escrow and
recovery profile and checklist also called
for?

7. Registration Agent (RA) as Super-
user Inside Intruder. In most/all PKIs,
the RA would seem to have unlimited
power with unquestionable authority.
By virtue of their role, RAs must be
trusted, but what about the insider
threat? The RA is not just limited to
making changes in the organization or
business they support; they can, in fact,
effect changes for any objects under the
root and signing CAs of the PKI. How
can this peril be prevented or at least
managed effectively? Can corrective
action be expected from open-standards,
COTS-based PKIs?

8. Cross Certification (Trust Inter-
operability) In The Client. Passing the
key-management buck to the client is
probably tantamount to zero key
management. End users are likely to just
click through the manual trust sequence
when each new PKI is presented.
Checking multiple (or any) CRLs is also
pretty unlikely if not impossible both
technically (at least for now) and
psychologically (forever?). What
processes or techniques might eliminate
this pitfall for, say, S/MIME? Could a
pragmatic solution (in terms of cost and
scalability) consist of reducing the
subscriber's key management to just two
key sets, the mail-server's certificates
and the subscriber's certificates?

References

[1] T. Polk. Panel comments. COTS-
Based PKI: The Hard Questions Persist.
RSA Conference 2002, February 2002.

[2] W. Price. Panel comments. COTS-
Based PKI: The Hard Questions Persist.
RSA Conference 2002, February 2002.

1st Annual PKI Research Workshop---Proceedings

213

1st Annual PKI Research Workshop---Proceedings

214

Impediments to Deployment of PKI
from the Perspective of Grid Computing

Position Paper for PKI’02

Marty Humphrey
Department of Computer Science

University of Virginia
Charlottesville, VA 22903-2442

humphrey@cs.virginia.edu

At the University of Virginia, we have been developing Legion (http://legion.virginia.edu), which is a Grid
Computing infrastructure project. Grid computing (http://www.gridforum.org) is defined as wide-area parallel
and distributed computation across multiple administrative domains. Until recently, Grid Computing has largely
been focused on high-performance resources and users that have been traditional been the realm of national
supercomputing centers (e.g, NCSA and SDSC). Recently, there has been considerable effort in merging the
two worlds of Grid computing and Web Services.

Legion is similar in spirit to Globus (http://www.globus.org), although there are significant differences in the
architectural design. Regarding security, Globus has focused on the use of certificates/OpenSSL for its PKI ver-
sion; Legion supports the use of certificates/OpenSSL but also supports other uses of public-key cryptography,
such as with self-signed certificates and community-based (a la PGP) assertions regarding the binding between
public key and entity. A strict CA-based use of public-key technology was not used in Legion, primarily because
we did not want to mandate a trust relationship in wide-area computing across multiple administrative domains
that is imposed by the existence of CAs (i.e., users must trust the CAs). Also, Legion is designed to encompass
millions of objects spread across thousands of machines-implying that there may be difficulty scaling PKI based
on current technology to a working solution for Grid practitioners today.

Through designing/implementing/deploying Legion, and as the co-Chair of the Security Area of the Global
Grid Form (http://www.gridforum.org) with Steve Tuecke, Argonne National Lab, I have see a number of po-
tential impediments to the deployment of PKI, including (these are overlapping concerns):

1. Confusion regarding the semantics of the subject name in a certificate (also, global name-space issues).

2. General issues regarding the security of key management.

3. Lack of practical, working certificate revocation mechanisms.

4. Lack of clear consensus regarding authentication APIs (is GSS-API the solution?)

5. Lack of clear consensus regarding authorization APIs.

6. (Continuing issues regarding the) Scalability of PKI.

7. Practical concerns regarding CA interoperability, especially in the scientific and academic setting (e.g.,
who is going to pay to have audits performed? Where does the money come from?)

1st Annual PKI Research Workshop---Proceedings

215

8. Confusion between the use of certificates for authentication and/or authorization (Should certificates be
used for authorization?)

9. Difficulty of practical restricted delegation that is secure, robust, and scalable.

10. Management of time-dependent certificates/key pairs (Having every certificate time-out after either 1 year
or after 12 hours is too gross a level of control.)

11. PKI/Kerberos integration (particularly in light of MS Passport).

12. “Hassle”/Cost involved in getting a certificate.

1st Annual PKI Research Workshop---Proceedings

216

Novel Schemes for Certificate Management in Public-Key

Infrastructure1

Ravi Mukkamala
Department of Computer Science

Old Dominion University
Norfolk, Virginia 23529-0162

mukka@cs.odu.edu

Abstract

Efficient and timely distribution of certificate revocation information is the biggest challenge
currently facing the providers of Public-key Infrastructure (PKI). All of the current schemes,
including the Certificate Revocation List (CRL) and its variants, place a considerable processing,
communication, and storage overhead on the infrastructure elements (e.g., Certification
Authorities (CAs) and its repositories) as well as the relying parties. We think that the concepts of
active certificates and recertification would greatly improve the current situation. An active
certificate is one that not only contains static data but also executable code. This concept also
gives rise to several possibilities in using digital certificates for authentication, authorization,
access control, and privilege management. With recertification, a certificate needs to be
recertified periodically during its lifetime. This additional step is expected to reduce the size of
the revocation lists drastically and thereby make the process of validation more efficient. In
addition, it may make it possible to offer several qualities of service to a relying party that are not
possible in the current system. The PKI research group at the Old Dominion University is
currently investigating these concepts in much more depth to investigate their feasibility and
utility in real-world applications.

Detailed Position Statement

In PKI, a certification authority (CA) accepts requests for certificates and issues the same after
verifying the authenticity of the user provided information. Basically, it plays the role of a trusted
third party (TTP), certifying the identity of one party to another. While the primary intent of a
digital certificate is to assure a relying party that a public-key indeed belongs to the purported
owner, it is now being used for other purposes such as authenticating other attributes of a
certificate holder and even for access control.

When a PKI certificate is issued, it is expected to be in use for its entire validity period. However,
various circumstances may cause a certificate to become invalid prior to the expiration of the
validity period. Traditional method of managing certificate revocation is through CRLs as
specified in X.509. Here, a CA issues a CRL periodically and posts it to a repository (or a
directory service). The CRL includes all unexpired certificates issued by the CA that have been
revoked. Each CRL includes a nextUpdate field that specifies the time of the next CRL issuance.
A relying party requiring certificate status information, that does not already have an unexpired

1 The work is supported in part by a grant from Commonwealth Information Security Center (CISC) at the
James Madison University, Virginia, USA.

1st Annual PKI Research Workshop---Proceedings

217

CRL, retrieves current CRL from the repository. Several variants of CRL schemes have also been
suggested.

However, both PKI researchers and practitioners have identified several shortcomings of the CRL
and its variants. First, they are expensive to distribute. Second, they involve expensive storage
and validation costs at the relying parties (e.g., service providers). Third, they provide only
negative information (i.e., a certificate is not revoked) instead of positive confirmation. Fourth,
they place a considerable burden on a relying party to verify a user’s certificate. Fifth, they
contain substantial redundant information (e.g., consecutively published CRLs would have more
than 99% of redundancy).

We (myself and a group of graduate students) are currently investigating two mechanisms to
solve the current problems in certificate management: active certificates and recertification.

Active Certificates

Current digital certificates are passive---they are simply a stream of bits (or bytes) of
data. They are not executables. Whenever a certificate-holder needs a service, he/she
submits the certificate to a relying party (service provider). The relying party is now
responsible for validating the certificate. This often involves contacting a chain of
certificate authorities and processing several CRLs. This process is both resource and
time consuming. Often the relying party spends time in locating the CA or other
repositories. Some time, a relying party may not have the required bandwidth, the desired
storage, or the processing power to do such validations. Since a relying party is more
interested in expending resources for its own service rather than validation of certificates,
we need to find an alternate way.

Our solution to the problem is active certificates. This term is coined by us and is new to
the PKI world. According to our definition, an active certificate is one that contains not
only the necessary data but also an executable code. In other words, it is similar to an
applet or servlet in Java terminology. Now that a certificate is an executable, several
opportunities exist for its use. For example, we can now shift the burden of verification
and proof of validation on the certificate-holder instead of a relying party. In addition,
instead of simply using a certificate for authentication, we can extend its usage for
authorization (e.g., a line-of-credit of $4,000 granted by a certificate), access control, and
privilege management. It also may be helpful in more efficient management of certificate
revocation. In this context, we are currently investigating the following issues.

1. How should the active certificates be implemented in the current technology?
2. How can the certificates be used for authorization? How should the authorizations

change as a certificate is being used? How to prevent duplicate authorizations
being created?

3. How to revoke privileges or authorizations?
4. What security and trust concerns are introduced due to active certificates that are

capable of modifying themselves?
5. What types of newer domains of applications can the active certificates be used

that were not even considered with the current static certificates?

1st Annual PKI Research Workshop---Proceedings

218

Recertification

The primary impetus for introducing the recertification concept comes from the following
observations:

o It is more efficient for a CA to issue certificates with long validity periods. Since there is
a considerable overhead involved in issuing a certificate, it is more economical to issue
long-life certificates.

o The information about a revoked certificate needs to be maintained and distributed until
its expiration time. In other words, longer the lifetime of a revoked certificate, longer is
the period of maintaining its status by a CA or a repository. So a CRL, for example,
keeps maintaining a revoked certificate on its list until it expires. A longer CRL is
expensive (processing cost) to prepare (at CA), expensive (communication cost) to
distribute to repositories, expensive (communication cost) for relying parties to copy
from the repositories, and expensive (processing cost) for the relying parties to search
when users submit requests.

The concept of recertification aims to combine the benefits of long-life certificates for an issuer
with the benefits of short-lived certificates for revocation. The main idea is to initially issue a
certificate for the normal period of duration (e.g., 1 or 2 years) and then require the certificate-
holder (or user) to get the certificate recertified at certain intervals during its lifetime. A relying
party not only looks for the lifetime of a certificate but also for its recertification at the time of
verification. To reduce the load on the certificate issuer (e.g., CA), the recertification task is
assigned to a different entity called the recertification authority (RCA). Certainly, RCA should
have been delegated this authority by a CA, say by issuing an attribute certificate to this effect.
Typically, RCA does not have to be as trusted and secure as a CA, since it does not originate the
certificate but only recertifies it. However, the CA should certify it so the relying parties can trust
its actions.

In this context, we are currently investigating the following aspects of recertification.

1. Suggest schemes for efficient implementation of recertification concept.
2. Identify the trust and security concerns of introducing recertification.
3. Evaluate the performance improvements due to the introduction of recertification and

thereby reducing the length of Cross. Similarly, evaluate the increase in load due to
frequent renewals of certificates. A detailed cost-benefit analysis is necessary if the idea
is to be accepted by the PKI community.

4. Identify application domains where recertification would be most suitable. Identify those
where recertification would be too expensive or not appropriate.

In summary, we feel that introducing the active certificates and recertification will greatly
extend the range of applications that the PKI can be used. It will also offer several
qualities of services for both relying parties and users that are currently not possible.

1st Annual PKI Research Workshop---Proceedings

219

	Perrin.pdf
	Introduction
	Cryptographic Infrastructure
	Delegate Servers
	Protocols and Data Formats
	Signed Message
	Encrypted Message
	Signed and Encrypted Message

	Conclusion

	Gupta.pdf
	OVERVIEW
	ARCHITECTURE OF A CRYPTOGRAPHIC MOBILITY SOLUTION
	OPERATIONAL PHASES OF A CRYPTOGRAPHIC MOBILITY SOLUTION
	CHARACTERISTICS OF CM SOLUTIONS
	SECURITY ISSUES WITH CM SOLUTIONS
	CHARACTERISTICS THAT ADD SECURITY VULNERABILITIES
	POTENTIAL SECURITY VULNERABILITIES

	APPLICABILITY OF CM SOLUTIONS
	REQUIREMENTS THAT DRIVE THE SELECTION OF A CM SOLUTION
	CONTRAINDICATIONS FOR SELECTION OF CM SOLUTIONS

	A SAMPLING OF CM TECHNOLOGIES AND PRODUCTS
	ENTRUST ROAMING PKI
	VERISIGN ROAMING
	ARCOT ID MOBILITY
	SINGLESIGNON.NET APPLIANCE
	MICROSOFT ROAMING PROFILES
	RSA SECURITY KEON WEBPASSORT
	BALTIMORE UNICERT OPTION FOR ROAMING
	HUSH COMMUNICATIONS ROAMING SOLUTION

	CONCLUSIONS
	FURTHER INFORMATION
	REFERENCES

	Alterman.pdf
	Background
	Description of Project
	PKI Bridges
	Interoperability
	University CA Issues
	The Certificate Arbitration Module (CAM)
	CAM Implementation
	Discovery And Validation Engine (DAVE)
	DAVE Status
	Interoperability Pilot Test Environment
	Directory Overview
	Directory Issues
	Chaining
	Resolving Objects via LDAP: Registry of Directories
	Open Issues for the Registry of Directories
	Desktop Service – Lexign ProSigner \(E-Lock Assu
	Usage
	Outstanding Desktop Application Issues To Be Resolved
	Policy Issues
	Lessons Learned
	Continuing Work
	Summary/Conclusions
	Acknowledgements
	References

	P01.pdf
	References

	P01.pdf
	References

