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Pairwise testing has become a popular approach to software quality assurance because it often provides effective error detection 
at low cost. However, pairwise (2-way) coverage is not sufficient for assurance of mission-critical software.  Combinatorial 
testing beyond pairwise is rarely used because good algorithms have not been available for complex combinations such as 3
way, 4-way, or more.  In addition, significantly more tests are required for combinations beyond pairwise testing , and testers 
must determine expected results for each set of inputs.  This article introduces new tools for automating the production of com
plete test cases covering up to 6-way combinations. 

Many testers are familiar with the most 
basic form of combinatorial testing 

– all pairs or pairwise testing, in which all 
possible pairs of parameter values are cov
ered by at least one test [1, 2]. Pairwise 
testing uses specially constructed test sets 
that guarantee testing every parameter 
value interacting with every other parame
ter value at least once. For example, sup
pose we had an application that is intend
ed to run on a variety of platforms com
prised of five components: an operating 
system (Windows XP, Apple OS X, Red 
Hat Linux), a browser (Internet Explorer, 
Firefox), protocol stack (IPv4, IPv6), a 
processor (Intel, AMD), and a database 
(MySQL, Sybase, Oracle), a total of 3 x 2 
x 2 x 2 x 2 = 48 possible platforms. With 
only 10 tests, as shown in Figure 1, it is 
possible to test every component interact
ing with every other component at least 
once, i.e., all possible pairs of platform 
components. The effectiveness of pair-
wise testing is based on the observation 
that software faults often involve interac
tions between parameters. While some 
bugs can be detected with a single para
meter value, such as a divide-by-zero 
error, the toughest bugs often can only be 
detected when multiple conditions are 
true simultaneously. For example, a router 

may be observed to fail only for the User 
Datagram Protocol (UDP) when packet 
rate exceeds 1.3 million packets per sec
ond – a 2-way interaction between proto
col type and packet rate. An even more 
difficult bug might be one which is detect
ed only for UDP when packet volume 
exceeds 1.3 million packets per second 
and packet chaining is used – a 3-way 
interaction between protocol type, packet 
rate, and chaining option. 

Unfortunately, only a handful of tools 
can generate more complex combinations, 
such as 3-way, 4-way, or more (we refer to 
the number of variables in combinations 
as the combinatorial interaction strength, or 
simply, interaction strength, e.g., a 4-way 
combination has 4 variables and thus its 
interaction strength is 4). The few tools 
that do generate tests with interaction 
strengths higher than 2-way may require 
several days to generate tests [3] because 
the generation process is mathematically 
complex. Pairwise testing, i.e. testing 2
way combinations, has come to be accept
ed as the standard approach to combina
torial testing because it is computationally 
tractable and can effectively detect many 
faults. For example, pairwise testing could 
detect 70 percent to more than 90 percent 
of software faults for the applications 

Figure 1: Pairwise Test Configurations   
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studied in [4]. 
But if pairwise testing can detect 90 

percent of bugs, what interaction strength 
is needed to detect 100 percent? 
Surprisingly, we found no evidence that 
this question had been studied when the 
National Institute of Standards and 
Technology (NIST) began investigating 
software faults in 1996. Results showed 
that across a variety of domains, all fail
ures could be triggered by a maximum of 
4-way to 6-way interactions [5]. As shown 
in Figure 2, the detection rate increases 
rapidly with interaction strength. With the 
NASA application, for example, 67 per
cent of the failures were triggered by only 
a single parameter value, 93 percent by 2
way combinations, and 98 percent by 3
way combinations. The detection rate 
curves for the other applications are simi
lar, reaching 100 percent detection with 4
way to 6-way interactions. That is, six or 
fewer variables were involved in all failures 
for the applications studied, so 6-way test
ing could, in theory, detect all of the fail
ures. While not conclusive, these results 
suggest that combinatorial testing that 
exercises high strength interaction combi
nations can be an effective approach to 
high-integrity software assurance. 

Applying combinatorial testing to real-
world software presents a number of chal
lenges. For one of the best algorithms, 
the number of tests needed for combina
torial coverage of n parameters with v val
ues each is proportional to v t log n, where 
t is the interaction strength [3]. Unit test
ing of a small module with 12 parameters 
required only a few dozen tests for 2-way 
combinations, but approximately 12,000 
for 6-way combinations [6]. But a large 
number of test cases will not be a barrier 
if they can be produced with little human 
intervention, thus reducing cost. To apply 
combinatorial testing, it is necessary to 
find a set of test inputs that covers all t-
way combinations of parameter values, 
and to match up each set of inputs with 
the expected output for these input values. 
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These are both difficult problems, but 
they can now be solved with new algo
rithms on currently available hardware. 
We explain these two steps followed by a 
small but complete illustrative example. 

Computing T-Way 
Combinations of Input Values 
Using FireEye 
The first step in combinatorial testing is to 
find a set of tests that will cover all t-way 
combinations of parameter values for the 
desired combinatorial interaction strength t. 
This collection of tests is known as a covering 
array. The covering array specifies test data 
where each row of the array can be regard
ed as a set of parameter values for an indi
vidual test. Collectively, the rows of the 
array cover all t-way combinations of para
meter values. An example is given in Figure 
3, which shows a 3-way covering array for 
10 variables with two values each. The inter
esting property of this array is that any three 
columns contain all eight possible values for 
three binary variables. For example, taking 
columns F, G, and H, we can see that all 
eight possible 3-way combinations (000, 
001, 010, 011, 100, 101, 110, 111) occur 
somewhere in the rows of the three 
columns. In fact, this is true for any three 
columns. Collectively, therefore, this set of 
tests will exercise all 3-way combinations of 
input values in only 13 tests, as compared 
with 1,024 for exhaustive coverage. Similar 
arrays can be generated to cover up to all 6
way combinations. A non-commercial 
research tool called FireEye [3], developed 
by NIST and the University of Texas at 
Arlington1, makes this possible with much 
greater efficiency than previous tools. For 
example, a commercial tool required 5,400 
seconds to produce a less-optimal test set 
than FireEye generated in 4.2 seconds. 

Matching Combinatorial Inputs 
With Expected Outputs Using 
Nu Symbolic Model Verifier 
(SMV) 
The second step in combinatorial test devel
opment is to determine what output should 
be produced by the system under test for 
each set of input parameter values, often 
referred to as the oracle problem in testing. The 
conventional approach to this problem is 
human intervention to design tests and 
assign expected results or, in some cases, to 
use a reference implementation that is known to 
be correct (for example, in checking confor
mance of various vendor products to a pro
tocol standard). Because combinatorial test
ing can require a large number of tests, an 
automated method is needed for determin-
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Figure 2: Error Detection Rates for Interaction Strengths 1 to 6 

ing the expected results for each set of input 
data. To solve this problem, we use the 
open-source NuSMV model checker [7] (an 
enhanced version of the well-known SMV 
model checker [7]). Conceptually, the model 
checker can be viewed as exploring all states 
of a system model to determine if a prop
erty claimed in a specification statement is 
true. What makes a model checker particu
larly valuable is that if the claim is false, the 
model checker not only reports this, but also 
provides a counterexample showing how the 
claim can be shown false. As will be seen in 
the illustrative example, this gives us the 
ability to match every set of input test data 
with the result that the system should pro
duce for that input data. Figure 4 outlines 
the process. 

The model checker thus automates the 
work that normally must be done by a 
human tester – determining what the cor
rect output should be for each set of input 
data. Other approaches to determining the 
correct output for each test can also be used. 

For example, in some cases we can run a 
model checker in simulation mode, produc
ing expected results directly rather than 
through a counterexample, but the 
approach illustrated in this article is more 
general, and can be applied to non-deter
ministic systems or used with mutation-
based methods in addition to combinatorial 
testing [8]. The method chosen for resolving 
the oracle problem depends on the problem 
at hand, but model checking can be effective 
in testing protocols, access control, or other 
applications where there is a state machine, 
unified modeling language state chart, or 
other formal model available. 

Illustrative Example 
Here we present a small example of an 
access control system. The rules of the sys
tem are a simplified multi-level security sys
tem, followed by a step-by-step construc
tion of tests using an automated process. 
Each subject (user) has a clearance level u_l, 
and each file has a classification level f_l. 

Figure 3: 3-way Covering Array for 10 Parameters With Two Values Each 
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System Model 
This system is easily modeled in the lan
guage of the NuSMV model checker as a 
simple two-state finite state machine. Other 
tools could be used, but we illustrate the test 
production procedure using NuSMV 
because it is among the most widely used 
model checkers and is freely available. Our 
approach is to model the system as a simple 
state machine, then use NuSMV to evaluate 
the model and post-process the results into 
complete test cases. 

Figure 5 shows the system model 
defined in SMV. The START state initial
izes the system (line 8), with the rule noted 
previously used to evaluate access as either 
GRANT or DENY (lines 9-13). For exam
ple, line 10 represents the first line of the 
pseudo-code example: in the current state, 
(always START for this simple model), if 
u_l ≥ f_l then the next state is GRANT. 
Each line of the case statement is exam-

Figure 4: Automated Combinatorial Test Construction ined sequentially, as in a conventional pro-

Levels are given as 0, 1, or 2, which could 
represent levels such as Confidential, Secret, 
and Top Secret. A user u can read a file f if 
u_l ≥ f_l (the no read up rule), or write to a 
file if f_l ≥ u_l (the no write down rule). 

Thus, a pseudo-code representation of 
the access control policy is: 

if u_l >= f_l & act = rd then 
GRANT; 

else if f_l >= u_l & act = wr 
then GRANT; else DENY; 

Tests produced will check that these rules 
are correctly implemented in a system. 

Figure 5: SMV Model of Access Control Rules  
 

1. MODULE main  
2. VAR 

--Input parameters 
3. u_l:   0..2;  -- user level 
4. f_l:   0..2;  -- file level 
5. act:  {rd, wr};  -- action 
 

--output parameter 
6. access: {START_, GRANT,DENY}; 

 
7. ASSIGN  
8. init(access) := START_; 

--if access is allowed under rules, then next state is GRANT 
--else next state is DENY 

9. next(access) := case 
10. u_l >= f_l & act = rd : GRANT; 
11. f_l >= u_l & act = wr : GRANT; 
12. 1 : DENY; 
13. esac; 

 
14. next(u_l) := u_l; 
15. next(f_l) := f_l; 
16. next(act) := act;  

 
-- reflection of the assigns for access 
-- if user level is at or above file level then read is OK 
SPEC AG ((u_l >= f_l & act = rd ) -> AX (access = GRANT)); 
 
-- if user level is at or below file level, then write is OK 
SPEC AG ((f_l >= u_l & act = wr ) -> AX (access = GRANT)); 
 
-- if neither condition above is true, then DENY any action 
SPEC AG (!( (u_l >= f_l & act = rd ) | (f_l >= u_l & act = wr ))  
         -> AX (access = DENY)); 
 

 
u_l: 0,1,2  
f_l: 0,1,2  
act: rd, wr

 

  

 
 u_l f_l act 

1 0 0 rd 
2 0 1 wr 
3 0 2 rd 
4 1 0 wr 
5 1 1 rd 
6 1 2 wr 
7 2 0 rd 
8 2 1  wr 
9 2 2 wr 

 
 

Test

gramming language. Line 12 implements 
the else DENY rule, since the predicate 
1 is always true. SPEC clauses given at the 
end of the model define statements that 
are to be proven or disproven by the 
model checker. The SPEC statements in 
Figure 5 duplicate the access control rules 
as temporal logic statements and are, thus, 
provable. In the following sections, we 
illustrate how to combine them with input 
data values to generate complete tests with 
expected results. 

In SMV, specifications of the form AG 
(predicate 1) -> AX (predi
cate 2) indicate essentially that for all 
paths (the A in AG) for all states globally 
(the G), if predicate 1 holds then (->) 
for all paths, in the next state (the X in AX) 
predicate 2 will hold. SMV checks the 
properties in the SPEC statements and 
shows that they match the access control 
rules as implemented in the finite state 
machine, as expected. Once the model is 
correct and SPEC claims have been shown 
valid for the model, counterexamples can 
be produced that will be turned into test 
cases. 

Generating Covering Array 
We will compute covering arrays that give 
all t-way combinations, with degree of 
interaction coverage two for this example. 
If we had a larger number of parameters, 
we would produce test configurations that 
cover all 3-way, 4-way, etc., combinations. 
(With only three parameters, 3-way inter
action would be equivalent to exhaustive 
testing, so we use 2-way combinations for 
illustration purposes.)  The first step is to 
define the parameters (using the graphical 
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user interface if desired) and their values 
in a system definition file that will be used 
as input to the covering array generator 
FireEye with the following format: After 
the system definition file is saved, we run 
FireEye, in this case specifying 2-way 
interactions. FireEye produces the output 
shown in Figure 6. 

Each test configuration defines a set of 
values for the input parameters u_l, f_l, 
and act. The complete test set ensures that 
all 2-way combinations of parameter values 
have been covered 

Model Claims With Covering 
Array Values Inserted 
The next step is to assign values from the 
covering array to parameters used in the 
model. For each test, we write a claim that 
the expected result will not occur. The 
model checker determines combinations 
that would disprove these claims, out
putting these as counterexamples. Each 
counterexample can then be converted to a 
test with known expected result. For exam
ple, for Test 1 the parameter values are: 

u_l = 0 & f_l = 0 & act = rd 

For each of the nine configurations in 
the covering array (Figure 7), we create a 
SPEC claim of the form: SPEC AG( cover
ing array values ) -> AX !(access = result). 

This process is repeated for each possi
ble result, in this case either GRANT or 
DENY, so we have nine claims for each of 
the two results. The model checker is able to 
determine, using the model defined previ
ously, which result is the correct one for 
each set of input values, producing a total of 
nine tests. 

Excerpt: 

SPEC AG((u_l = 0 & f_l = 0 & act 
= rd) -> AX !(access = GRANT)); 

SPEC AG((u_l = 0 & f_l = 1 & act 
= wr) -> AX !(access = GRANT)); 

SPEC AG((u_l = 0 & f_l = 2 & act 
= rd) -> AX !(access = GRANT)); 

etc. 

SPEC AG((u_l = 0 & f_l = 0 & act 
= rd) -> AX !(access = DENY)); 

SPEC AG((u_l = 0 & f_l = 1 & act 
= wr) -> AX !(access = DENY)); 

SPEC AG((u_l = 0 & f_l = 2 & act 
= rd) -> AX !(access = DENY)); 

etc. 

Generating Counterexamples 
With Model Checker 
NuSMV produces counterexamples where 

the input values would disprove the claims 
specified in the previous section. Each of 
these counterexamples is, thus, a set of test 
data that would have the expected result of 
GRANT or DENY. For each SPEC claim, if 
this set of values cannot in fact lead to the 
particular result, the model checker indicates 
that this is true. For example, for the config
uration below, the claim that access will not 
be granted is true, because the user’s clear
ance level (u_l = 0) is below the file’s level 
(f_l = 2): 

-- specification AG (((u_l 
= 0 & f_l = 2) & act = rd) 
-> AX !(access = GRANT)) is 
true 

If the claim is false, the model checker 
indicates this and provides a trace of para
meter input values and states that will prove 
it is false. In effect, this is a complete test 
case, i.e., a set of parameter values and an 
expected result. It is then simple to map 
these values into complete test cases in the 
syntax needed for the system under test. An 
excerpt from NuSMV output is shown in 
Figure 8. 

The model checker finds that six of the 
input parameter configurations produce a 
result of GRANT and three produce a 
DENY result, so at the completion of this 
step we have successfully matched up each 
input parameter configuration with the 
result that should be produced by the sys
tem under test. 

At first, the method previously 
described may seem backward. Instead of 
negating each possible result, why not sim
ply produce tests from model checker out
put such as specification AG 
(((u_l = 0 & f_l = 2) & act = 
rd) -> AX (access = DENY)) is 
true? Such a procedure would work fine for 
this simple example, but more sophisticated 
testing may require more information. Note 
that if the claim is true, the model checker 
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Figure 6: Model Parameters and Values 
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Figure 7: FireEye Output Test Values 

simply reports the fact while if it is false, a 
trace of inputs and internal states is pro
duced to show how the claim fails. Some 
testing may require information on internal 
states or variable values, and the previous 
procedure provides this information. 

Shell Script Post-Processing to 
Produce Complete Tests 
The last step is to use a post-processing tool 
that reads the output of the model checker 
and generates a set of test inputs with 
expected results. The post-processor strips 
out the parameter names and values, giving 
tests that can be applied to the system under 
test. Simple scripts are then used to convert 
the test cases into input for a suitable test 
harness. The tests produced are shown in 
Figure 9 (see next page). 

Conclusion 
While tests for this trivial example could 
easily have been constructed manually, 
the procedures introduced in this tutorial 
can – and have – been used to produce 
tens of thousands of complete test cases 
in a few minutes once the SMV model 

Figure 8: Counterexamples (excer pt)  
 

-- specification AG (((u_l = 0 & f_l = 0) & act = rd)  
       -> AX !(access = GRANT))  is false 
-- as demonstrated by the following execution sequence 
Trace Description: CTL Counterexample  
Trace Type: Counterexample  
-> State: 1.1 <- 
  u_l = 0 
  f_l = 0 
  act = rd 
  access = START_ 
-> Input: 1.2 <-`  
-> State: 1.2 <- 
  access = GRANT 
… 
etc. 
 

 
  

 
 u_l = 0 & f_l = 0 & act = rd -> access = GRANT 
 u_l = 0 & f_l = 1 & act = wr -> access = GRANT 
 u_l = 1 & f_l = 1 & act = rd -> access = GRANT 
 u_l = 1 & f_l = 2 & act = wr -> access = GRANT 
 u_l = 2 & f_l = 0 & act = rd -> access = GRANT 
 u_l = 2 & f_l = 2 & act = rd -> access = GRANT 
u_l = 0 & f_l = 2 & act = rd -> access = DENY 
u_l = 1 & f_l = 0 & act = wr -> access = DENY 
u_l = 2 & f_l = 1 & act = wr -> access = DENY 
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-- specification AG (((u_l = 0 & f_l = 0) & act = rd)  
       -> AX !(access = GRANT))  is false 
-- as demonstrated by the following execution sequence 
Trace Description: CTL Counterexample  
Trace Type: Counterexample  
-> State: 1.1 <- 
  u_l = 0 
  f_l = 0 
  act = rd 
  access = START_ 
-> Input: 1.2 <-`  
-> State: 1.2 <- 
  access = GRANT 
… 
etc. 
 

 
  

 
 u_l = 0 & f_l = 0 & act = rd -> access = GRANT 
 u_l = 0 & f_l = 1 & act = wr -> access = GRANT 
 u_l = 1 & f_l = 1 & act = rd -> access = GRANT 
 u_l = 1 & f_l = 2 & act = wr -> access = GRANT 
 u_l = 2 & f_l = 0 & act = rd -> access = GRANT 
 u_l = 2 & f_l = 2 & act = rd -> access = GRANT 
u_l = 0 & f_l = 2 & act = rd -> access = DENY 
u_l = 1 & f_l = 0 & act = wr -> access = DENY 
u_l = 2 & f_l = 1 & act = wr -> access = DENY 

 
  

 

 

Figure 9: Test Cases 

has been defined for the system under 
test. The methods in this article still 
require human intervention and engi
neering judgment to define a for mal 
model of the system under test and for 
determining appropriate abstractions and 
equivalence classes for input parameters. 
But by automating test generation we can 
provide much more thorough testing 
than is possible with most conventional 
methods. In addition, the testing has a 
sound empirical basis in the observation 
that software failures have been shown to 
be caused by the interaction of relatively 
few variables. By testing all variable inter
actions to an appropriate strength, we 
can provide stronger assurance for criti
cal software.◆ 
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