
Automated Combinatorial Test Methods –

Beyond Pairwise Testing

D. Richard Kuhn and Dr. Raghu Kacker Dr. Yu Lei
National Institute of Standards and Technology University of Texas, Arlington

Pairwise testing has become a popular approach to software quality assurance because it often provides effective error detection
at low cost. However, pairwise (2-way) coverage is not sufficient for assurance of mission-critical software. Combinatorial
testing beyond pairwise is rarely used because good algorithms have not been available for complex combinations such as 3
way, 4-way, or more. In addition, significantly more tests are required for combinations beyond pairwise testing , and testers
must determine expected results for each set of inputs. This article introduces new tools for automating the production of com
plete test cases covering up to 6-way combinations.

Many testers are familiar with the most
basic form of combinatorial testing

– all pairs or pairwise testing, in which all
possible pairs of parameter values are cov
ered by at least one test [1, 2]. Pairwise
testing uses specially constructed test sets
that guarantee testing every parameter
value interacting with every other parame
ter value at least once. For example, sup
pose we had an application that is intend
ed to run on a variety of platforms com
prised of five components: an operating
system (Windows XP, Apple OS X, Red
Hat Linux), a browser (Internet Explorer,
Firefox), protocol stack (IPv4, IPv6), a
processor (Intel, AMD), and a database
(MySQL, Sybase, Oracle), a total of 3 x 2
x 2 x 2 x 2 = 48 possible platforms. With
only 10 tests, as shown in Figure 1, it is
possible to test every component interact
ing with every other component at least
once, i.e., all possible pairs of platform
components. The effectiveness of pair-
wise testing is based on the observation
that software faults often involve interac
tions between parameters. While some
bugs can be detected with a single para
meter value, such as a divide-by-zero
error, the toughest bugs often can only be
detected when multiple conditions are
true simultaneously. For example, a router

may be observed to fail only for the User
Datagram Protocol (UDP) when packet
rate exceeds 1.3 million packets per sec
ond – a 2-way interaction between proto
col type and packet rate. An even more
difficult bug might be one which is detect
ed only for UDP when packet volume
exceeds 1.3 million packets per second
and packet chaining is used – a 3-way
interaction between protocol type, packet
rate, and chaining option.

Unfortunately, only a handful of tools
can generate more complex combinations,
such as 3-way, 4-way, or more (we refer to
the number of variables in combinations
as the combinatorial interaction strength, or
simply, interaction strength, e.g., a 4-way
combination has 4 variables and thus its
interaction strength is 4). The few tools
that do generate tests with interaction
strengths higher than 2-way may require
several days to generate tests [3] because
the generation process is mathematically
complex. Pairwise testing, i.e. testing 2
way combinations, has come to be accept
ed as the standard approach to combina
torial testing because it is computationally
tractable and can effectively detect many
faults. For example, pairwise testing could
detect 70 percent to more than 90 percent
of software faults for the applications

Figure 1: Pairwise Test Configurations

Test OS Browser Protocol CPU DBMS

1 XP IE IPv4 Intel MySQL

2 XP Firefox IPv6 AMD Sybase

3 XP IE IPv6 Intel Oracle

4 OS X Firefox IPv4 AMD MySQL

5 OS X IE IPv4 Intel Sybase

6 OS X Firefox IPv4 Intel Oracle

7 RHL IE IPv6 AMD MySQL

8 RHL Firefox IPv4 Intel Sybase

9 RHL Firefox IPv4 AMD Oracle

10 OS X Firefox IPv6 AMD Oracle

A B C D E F G H I J

0
1
1
1
1
0
0
1
0
0
0
1
0

0
1
1
0
0
1
0
1
0
0
1
0
1

0
1
1
1
0
1
1
0
0
1
0
0
0

0
1
0
1
0
0
0
1
1
1
1
0
0

0
1
1
0
1
0
1
0
1
0
1
0
0

0
1
0
1
1
1
0
0
1
0
0
0
1

0
1
0
0
1
0
1
1
0
1
0
0
1

0
1
0
1
0
0
1
0
0
0
1
1
1

0
1
0
0
0
1
1
1
1
0
0
1
0

0
1
1
0
0
0
0
0
1
1
0
1
1

100

90

80

70

60

50

40

30

20

10

0
1 2 3 4 5 6

Interactions

C
u

m
u

la
ti

ve
 P

er
ce

n
t

Medical devices

Browser

Server

NASA-distributed database

studied in [4].
But if pairwise testing can detect 90

percent of bugs, what interaction strength
is needed to detect 100 percent?
Surprisingly, we found no evidence that
this question had been studied when the
National Institute of Standards and
Technology (NIST) began investigating
software faults in 1996. Results showed
that across a variety of domains, all fail
ures could be triggered by a maximum of
4-way to 6-way interactions [5]. As shown
in Figure 2, the detection rate increases
rapidly with interaction strength. With the
NASA application, for example, 67 per
cent of the failures were triggered by only
a single parameter value, 93 percent by 2
way combinations, and 98 percent by 3
way combinations. The detection rate
curves for the other applications are simi
lar, reaching 100 percent detection with 4
way to 6-way interactions. That is, six or
fewer variables were involved in all failures
for the applications studied, so 6-way test
ing could, in theory, detect all of the fail
ures. While not conclusive, these results
suggest that combinatorial testing that
exercises high strength interaction combi
nations can be an effective approach to
high-integrity software assurance.

Applying combinatorial testing to real-
world software presents a number of chal
lenges. For one of the best algorithms,
the number of tests needed for combina
torial coverage of n parameters with v val
ues each is proportional to v t log n, where
t is the interaction strength [3]. Unit test
ing of a small module with 12 parameters
required only a few dozen tests for 2-way
combinations, but approximately 12,000
for 6-way combinations [6]. But a large
number of test cases will not be a barrier
if they can be produced with little human
intervention, thus reducing cost. To apply
combinatorial testing, it is necessary to
find a set of test inputs that covers all t-
way combinations of parameter values,
and to match up each set of inputs with
the expected output for these input values.

22 CROSSTALK The Journal of Defense Software Engineering June 2008

Automated Combinatorial Test Methods – Beyond Pairwise Testing

These are both difficult problems, but
they can now be solved with new algo
rithms on currently available hardware.
We explain these two steps followed by a
small but complete illustrative example.

Computing T-Way
Combinations of Input Values
Using FireEye
The first step in combinatorial testing is to
find a set of tests that will cover all t-way
combinations of parameter values for the
desired combinatorial interaction strength t.
This collection of tests is known as a covering
array. The covering array specifies test data
where each row of the array can be regard
ed as a set of parameter values for an indi
vidual test. Collectively, the rows of the
array cover all t-way combinations of para
meter values. An example is given in Figure
3, which shows a 3-way covering array for
10 variables with two values each. The inter
esting property of this array is that any three
columns contain all eight possible values for
three binary variables. For example, taking
columns F, G, and H, we can see that all
eight possible 3-way combinations (000,
001, 010, 011, 100, 101, 110, 111) occur
somewhere in the rows of the three
columns. In fact, this is true for any three
columns. Collectively, therefore, this set of
tests will exercise all 3-way combinations of
input values in only 13 tests, as compared
with 1,024 for exhaustive coverage. Similar
arrays can be generated to cover up to all 6
way combinations. A non-commercial
research tool called FireEye [3], developed
by NIST and the University of Texas at
Arlington1, makes this possible with much
greater efficiency than previous tools. For
example, a commercial tool required 5,400
seconds to produce a less-optimal test set
than FireEye generated in 4.2 seconds.

Matching Combinatorial Inputs
With Expected Outputs Using
Nu Symbolic Model Verifier
(SMV)
The second step in combinatorial test devel
opment is to determine what output should
be produced by the system under test for
each set of input parameter values, often
referred to as the oracle problem in testing. The
conventional approach to this problem is
human intervention to design tests and
assign expected results or, in some cases, to
use a reference implementation that is known to
be correct (for example, in checking confor
mance of various vendor products to a pro
tocol standard). Because combinatorial test
ing can require a large number of tests, an
automated method is needed for determin-

Test OS Browser Protocol CPU DBMS

1 XP IE IPv4 Intel MySQL

2 XP Firefox IPv6 AMD Sybase

3 XP IE IPv6 Intel Oracle

4 OS X Firefox IPv4 AMD MySQL

5 OS X IE IPv4 Intel Sybase

6 OS X Firefox IPv4 Intel Oracle

7 RHL IE IPv6 AMD MySQL

8 RHL Firefox IPv4 Intel Sybase

9 RHL Firefox IPv4 AMD Oracle

10 OS X Firefox IPv6 AMD Oracle

A B C D E F G H I J

0
1
1
1
1
0
0
1
0
0
0
1
0

0
1
1
0
0
1
0
1
0
0
1
0
1

0
1
1
1
0
1
1
0
0
1
0
0
0

0
1
0
1
0
0
0
1
1
1
1
0
0

0
1
1
0
1
0
1
0
1
0
1
0
0

0
1
0
1
1
1
0
0
1
0
0
0
1

0
1
0
0
1
0
1
1
0
1
0
0
1

0
1
0
1
0
0
1
0
0
0
1
1
1

0
1
0
0
0
1
1
1
1
0
0
1
0

0
1
1
0
0
0
0
0
1
1
0
1
1

100

90

80

70

60

50

40

30

20

10

0
1 2 3 4 5 6

Interactions

C
u

m
u

la
ti

v
e
 P

e
rc

e
n

t

Medical devices

Browser

Server

NASA-distributed database

Figure 2: Error Detection Rates for Interaction Strengths 1 to 6

ing the expected results for each set of input
data. To solve this problem, we use the
open-source NuSMV model checker [7] (an
enhanced version of the well-known SMV
model checker [7]). Conceptually, the model
checker can be viewed as exploring all states
of a system model to determine if a prop
erty claimed in a specification statement is
true. What makes a model checker particu
larly valuable is that if the claim is false, the
model checker not only reports this, but also
provides a counterexample showing how the
claim can be shown false. As will be seen in
the illustrative example, this gives us the
ability to match every set of input test data
with the result that the system should pro
duce for that input data. Figure 4 outlines
the process.

The model checker thus automates the
work that normally must be done by a
human tester – determining what the cor
rect output should be for each set of input
data. Other approaches to determining the
correct output for each test can also be used.

For example, in some cases we can run a
model checker in simulation mode, produc
ing expected results directly rather than
through a counterexample, but the
approach illustrated in this article is more
general, and can be applied to non-deter
ministic systems or used with mutation-
based methods in addition to combinatorial
testing [8]. The method chosen for resolving
the oracle problem depends on the problem
at hand, but model checking can be effective
in testing protocols, access control, or other
applications where there is a state machine,
unified modeling language state chart, or
other formal model available.

Illustrative Example
Here we present a small example of an
access control system. The rules of the sys
tem are a simplified multi-level security sys
tem, followed by a step-by-step construc
tion of tests using an automated process.
Each subject (user) has a clearance level u_l,
and each file has a classification level f_l.

Figure 3: 3-way Covering Array for 10 Parameters With Two Values Each

Test OS Browser Protocol CPU DBMS

1 XP IE IPv4 Intel MySQL

2 XP Firefox IPv6 AMD Sybase

3 XP IE IPv6 Intel Oracle

4 OS X Firefox IPv4 AMD MySQL

5 OS X IE IPv4 Intel Sybase

6 OS X Firefox IPv4 Intel Oracle

7 RHL IE IPv6 AMD MySQL

8 RHL Firefox IPv4 Intel Sybase

9 RHL Firefox IPv4 AMD Oracle

10 OS X Firefox IPv6 AMD Oracle

A B C D E F G H I J

0
1
1
1
1
0
0
1
0
0
0
1
0

0
1
1
0
0
1
0
1
0
0
1
0
1

0
1
1
1
0
1
1
0
0
1
0
0
0

0
1
0
1
0
0
0
1
1
1
1
0
0

0
1
1
0
1
0
1
0
1
0
1
0
0

0
1
0
1
1
1
0
0
1
0
0
0
1

0
1
0
0
1
0
1
1
0
1
0
0
1

0
1
0
1
0
0
1
0
0
0
1
1
1

0
1
0
0
0
1
1
1
1
0
0
1
0

0
1
1
0
0
0
0
0
1
1
0
1
1

100

90

80

70

60

50

40

30

20

10

0
1 2 3 4 5 6

Interactions

C
u

m
u

la
ti

ve
 P

er
ce

n
t

Medical devices

Browser

Server

NASA-distributed database

June 2008 www.stsc.hill.af.mil 23

http:www.stsc.hill.af.mil

Software Engineering Technology

Covering
array

generator

Covering
array

System
model

Model
checker

Counter-
examples

Post -

processor

 Test
cases

System
under test

Input

values

System Model
This system is easily modeled in the lan
guage of the NuSMV model checker as a
simple two-state finite state machine. Other
tools could be used, but we illustrate the test
production procedure using NuSMV
because it is among the most widely used
model checkers and is freely available. Our
approach is to model the system as a simple
state machine, then use NuSMV to evaluate
the model and post-process the results into
complete test cases.

Figure 5 shows the system model
defined in SMV. The START state initial
izes the system (line 8), with the rule noted
previously used to evaluate access as either
GRANT or DENY (lines 9-13). For exam
ple, line 10 represents the first line of the
pseudo-code example: in the current state,
(always START for this simple model), if
u_l ≥ f_l then the next state is GRANT.
Each line of the case statement is exam-

Figure 4: Automated Combinatorial Test Construction ined sequentially, as in a conventional pro-

Levels are given as 0, 1, or 2, which could
represent levels such as Confidential, Secret,
and Top Secret. A user u can read a file f if
u_l ≥ f_l (the no read up rule), or write to a
file if f_l ≥ u_l (the no write down rule).

Thus, a pseudo-code representation of
the access control policy is:

if u_l >= f_l & act = rd then
GRANT;

else if f_l >= u_l & act = wr
then GRANT; else DENY;

Tests produced will check that these rules
are correctly implemented in a system.

Figure 5: SMV Model of Access Control Rules

1. MODULE main
2. VAR

--Input parameters
3. u_l: 0..2; -- user level
4. f_l: 0..2; -- file level
5. act: {rd, wr}; -- action

--output parameter
6. access: {START_, GRANT,DENY};

7. ASSIGN
8. init(access) := START_;

--if access is allowed under rules, then next state is GRANT
--else next state is DENY

9. next(access) := case
10. u_l >= f_l & act = rd : GRANT;
11. f_l >= u_l & act = wr : GRANT;
12. 1 : DENY;
13. esac;

14. next(u_l) := u_l;
15. next(f_l) := f_l;
16. next(act) := act;

-- reflection of the assigns for access
-- if user level is at or above file level then read is OK
SPEC AG ((u_l >= f_l & act = rd) -> AX (access = GRANT));

-- if user level is at or below file level, then write is OK
SPEC AG ((f_l >= u_l & act = wr) -> AX (access = GRANT));

-- if neither condition above is true, then DENY any action
SPEC AG (!((u_l >= f_l & act = rd) | (f_l >= u_l & act = wr))
 -> AX (access = DENY));

u_l: 0,1,2
f_l: 0,1,2
act: rd, wr

 u_l f_l act

1 0 0 rd
2 0 1 wr
3 0 2 rd
4 1 0 wr
5 1 1 rd
6 1 2 wr
7 2 0 rd
8 2 1 wr
9 2 2 wr

Test

gramming language. Line 12 implements
the else DENY rule, since the predicate
1 is always true. SPEC clauses given at the
end of the model define statements that
are to be proven or disproven by the
model checker. The SPEC statements in
Figure 5 duplicate the access control rules
as temporal logic statements and are, thus,
provable. In the following sections, we
illustrate how to combine them with input
data values to generate complete tests with
expected results.

In SMV, specifications of the form AG
(predicate 1) -> AX (predi
cate 2) indicate essentially that for all
paths (the A in AG) for all states globally
(the G), if predicate 1 holds then (->)
for all paths, in the next state (the X in AX)
predicate 2 will hold. SMV checks the
properties in the SPEC statements and
shows that they match the access control
rules as implemented in the finite state
machine, as expected. Once the model is
correct and SPEC claims have been shown
valid for the model, counterexamples can
be produced that will be turned into test
cases.

Generating Covering Array
We will compute covering arrays that give
all t-way combinations, with degree of
interaction coverage two for this example.
If we had a larger number of parameters,
we would produce test configurations that
cover all 3-way, 4-way, etc., combinations.
(With only three parameters, 3-way inter
action would be equivalent to exhaustive
testing, so we use 2-way combinations for
illustration purposes.) The first step is to
define the parameters (using the graphical

24 CROSSTALK The Journal of Defense Software Engineering June 2008

Automated Combinatorial Test Methods – Beyond Pairwise Testing

user interface if desired) and their values
in a system definition file that will be used
as input to the covering array generator
FireEye with the following format: After
the system definition file is saved, we run
FireEye, in this case specifying 2-way
interactions. FireEye produces the output
shown in Figure 6.

Each test configuration defines a set of
values for the input parameters u_l, f_l,
and act. The complete test set ensures that
all 2-way combinations of parameter values
have been covered

Model Claims With Covering
Array Values Inserted
The next step is to assign values from the
covering array to parameters used in the
model. For each test, we write a claim that
the expected result will not occur. The
model checker determines combinations
that would disprove these claims, out
putting these as counterexamples. Each
counterexample can then be converted to a
test with known expected result. For exam
ple, for Test 1 the parameter values are:

u_l = 0 & f_l = 0 & act = rd

For each of the nine configurations in
the covering array (Figure 7), we create a
SPEC claim of the form: SPEC AG(cover
ing array values) -> AX !(access = result).

This process is repeated for each possi
ble result, in this case either GRANT or
DENY, so we have nine claims for each of
the two results. The model checker is able to
determine, using the model defined previ
ously, which result is the correct one for
each set of input values, producing a total of
nine tests.

Excerpt:

SPEC AG((u_l = 0 & f_l = 0 & act
= rd) -> AX !(access = GRANT));

SPEC AG((u_l = 0 & f_l = 1 & act
= wr) -> AX !(access = GRANT));

SPEC AG((u_l = 0 & f_l = 2 & act
= rd) -> AX !(access = GRANT));

etc.

SPEC AG((u_l = 0 & f_l = 0 & act
= rd) -> AX !(access = DENY));

SPEC AG((u_l = 0 & f_l = 1 & act
= wr) -> AX !(access = DENY));

SPEC AG((u_l = 0 & f_l = 2 & act
= rd) -> AX !(access = DENY));

etc.

Generating Counterexamples
With Model Checker
NuSMV produces counterexamples where

the input values would disprove the claims
specified in the previous section. Each of
these counterexamples is, thus, a set of test
data that would have the expected result of
GRANT or DENY. For each SPEC claim, if
this set of values cannot in fact lead to the
particular result, the model checker indicates
that this is true. For example, for the config
uration below, the claim that access will not
be granted is true, because the user’s clear
ance level (u_l = 0) is below the file’s level
(f_l = 2):

-- specification AG (((u_l
= 0 & f_l = 2) & act = rd)
-> AX !(access = GRANT)) is
true

If the claim is false, the model checker
indicates this and provides a trace of para
meter input values and states that will prove
it is false. In effect, this is a complete test
case, i.e., a set of parameter values and an
expected result. It is then simple to map
these values into complete test cases in the
syntax needed for the system under test. An
excerpt from NuSMV output is shown in
Figure 8.

The model checker finds that six of the
input parameter configurations produce a
result of GRANT and three produce a
DENY result, so at the completion of this
step we have successfully matched up each
input parameter configuration with the
result that should be produced by the sys
tem under test.

At first, the method previously
described may seem backward. Instead of
negating each possible result, why not sim
ply produce tests from model checker out
put such as specification AG
(((u_l = 0 & f_l = 2) & act =
rd) -> AX (access = DENY)) is
true? Such a procedure would work fine for
this simple example, but more sophisticated
testing may require more information. Note
that if the claim is true, the model checker

1. MODULE main
2. VAR

--Input parameters
3. u_l: 0..2; -- user level
4. f_l: 0..2; -- file level
5. act: {rd, wr}; -- action

--output parameter
6. access: {START_, GRANT,DENY};

7. ASSIGN
8. init(access) := START_;

--if access is allowed under rules, then next state is GRANT
--else next state is DENY

9. next(access) := case
10. u_l >= f_l & act = rd : GRANT;
11. f_l >= u_l & act = wr : GRANT;
12. 1 : DENY;
13. esac;

14. next(u_l) := u_l;
15. next(f_l) := f_l;
16. next(act) := act;

-- reflection of the assigns for access
-- if user level is at or above file level then read is OK
SPEC AG ((u_l >= f_l & act = rd) -> AX (access = GRANT));

-- if user level is at or below file level, then write is OK
SPEC AG ((f_l >= u_l & act = wr) -> AX (access = GRANT));

-- if neither condition above is true, then DENY any action
SPEC AG (!((u_l >= f_l & act = rd) | (f_l >= u_l & act = wr))
 -> AX (access = DENY));

u_l: 0,1,2
f_l: 0,1,2
act: rd, wr

1
2
3
4
5
6
7
8
9

Test

Figure 6: Model Parameters and Values

1. MODULE main
2. VAR

--Input parameters
3. u_l: 0..2; -- user level
4. f_l: 0..2; -- file level
5. act: {rd, wr}; -- action

--output parameter
6. access: {START_, GRANT,DENY};

7. ASSIGN
8. init(access) := START_;

--if access is allowed under rules, then next state is GRANT
--else next state is DENY

9. next(access) := case
10. u_l >= f_l & act = rd : GRANT;
11. f_l >= u_l & act = wr : GRANT;
12. 1 : DENY;
13. esac;

14. next(u_l) := u_l;
15. next(f_l) := f_l;
16. next(act) := act;

-- reflection of the assigns for access
-- if user level is at or above file level then read is OK
SPEC AG ((u_l >= f_l & act = rd) -> AX (access = GRANT));

-- if user level is at or below file level, then write is OK
SPEC AG ((f_l >= u_l & act = wr) -> AX (access = GRANT));

-- if neither condition above is true, then DENY any action
SPEC AG (!((u_l >= f_l & act = rd) | (f_l >= u_l & act = wr))
 -> AX (access = DENY));

u_l: 0,1,2
f_l: 0,1,2
act: rd, wr

 u_l f_l act

1 0 0 rd
2 0 1 wr
3 0 2 rd
4 1 0 wr
5 1 1 rd
6 1 2 wr
7 2 0 rd
8 2 1 wr
9 2 2 wr

Test

Figure 7: FireEye Output Test Values

simply reports the fact while if it is false, a
trace of inputs and internal states is pro
duced to show how the claim fails. Some
testing may require information on internal
states or variable values, and the previous
procedure provides this information.

Shell Script Post-Processing to
Produce Complete Tests
The last step is to use a post-processing tool
that reads the output of the model checker
and generates a set of test inputs with
expected results. The post-processor strips
out the parameter names and values, giving
tests that can be applied to the system under
test. Simple scripts are then used to convert
the test cases into input for a suitable test
harness. The tests produced are shown in
Figure 9 (see next page).

Conclusion
While tests for this trivial example could
easily have been constructed manually,
the procedures introduced in this tutorial
can – and have – been used to produce
tens of thousands of complete test cases
in a few minutes once the SMV model

Figure 8: Counterexamples (excer pt)

-- specification AG (((u_l = 0 & f_l = 0) & act = rd)
 -> AX !(access = GRANT)) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
 u_l = 0
 f_l = 0
 act = rd
 access = START_
-> Input: 1.2 <-`
-> State: 1.2 <-
 access = GRANT
…
etc.

 u_l = 0 & f_l = 0 & act = rd -> access = GRANT
 u_l = 0 & f_l = 1 & act = wr -> access = GRANT
 u_l = 1 & f_l = 1 & act = rd -> access = GRANT
 u_l = 1 & f_l = 2 & act = wr -> access = GRANT
 u_l = 2 & f_l = 0 & act = rd -> access = GRANT
 u_l = 2 & f_l = 2 & act = rd -> access = GRANT
u_l = 0 & f_l = 2 & act = rd -> access = DENY
u_l = 1 & f_l = 0 & act = wr -> access = DENY
u_l = 2 & f_l = 1 & act = wr -> access = DENY

June 2008 www.stsc.hill.af.mil 25

http:www.stsc.hill.af.mil

Software Engineering Technology

-- specification AG (((u_l = 0 & f_l = 0) & act = rd)
 -> AX !(access = GRANT)) is false
-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
 u_l = 0
 f_l = 0
 act = rd
 access = START_
-> Input: 1.2 <-`
-> State: 1.2 <-
 access = GRANT
…
etc.

 u_l = 0 & f_l = 0 & act = rd -> access = GRANT
 u_l = 0 & f_l = 1 & act = wr -> access = GRANT
 u_l = 1 & f_l = 1 & act = rd -> access = GRANT
 u_l = 1 & f_l = 2 & act = wr -> access = GRANT
 u_l = 2 & f_l = 0 & act = rd -> access = GRANT
 u_l = 2 & f_l = 2 & act = rd -> access = GRANT
u_l = 0 & f_l = 2 & act = rd -> access = DENY
u_l = 1 & f_l = 0 & act = wr -> access = DENY
u_l = 2 & f_l = 1 & act = wr -> access = DENY

Figure 9: Test Cases

has been defined for the system under
test. The methods in this article still
require human intervention and engi
neering judgment to define a for mal
model of the system under test and for
determining appropriate abstractions and
equivalence classes for input parameters.
But by automating test generation we can
provide much more thorough testing
than is possible with most conventional
methods. In addition, the testing has a
sound empirical basis in the observation
that software failures have been shown to
be caused by the interaction of relatively
few variables. By testing all variable inter
actions to an appropriate strength, we
can provide stronger assurance for criti
cal software.◆

D. Richard Kuhn is a
computer scientist in the
computer security divi
sion of the National
Institute of Standards
and Technology (NIST).

His primary technical interests are in
information security, software assurance,
and empirical studies of software failure.
He co-developed the role based access
control model (RBAC) used throughout
industry, and led the effort to establish
RBAC as an American National
Standards Institute standard. Kuhn has
a masters degree in computer science
from the University of Maryland,
College Park, and a bachelors and master
of business administration from William
& Mary.

NIST
MS 8930
Gaithersburg, MD 20899-8930
Phone: (301) 975-3337
Fax: (301) 975-8387
E-mail: kuhn@nist.gov

References
1.	 Daich, G.T. “New Spreadsheet Tool

Helps Determine Minimal Set of Test
Parameter Combinations.” CrossTalk
Aug. 2003.

2.	 Phadke, M.S. “Planning Efficient Soft
ware Tests.” CrossTalk Oct. 1997.

3.	 Lei, Y., R. Kacker, D.R. Kuhn, V. Okun,
and J. Lawrence. “IPOG/IPOG-D:
Efficient Test Generation for Multi-Way
Combinatorial Testing.” Software
Testing, Verification, and Reliability (to
appear 2008).

4.	 Kuhn, D.R., D. Wallace, and A. Gallo.
“Software Fault Interactions and
Implications for Software Testing.”
IEEE Transactions on Software
Engineering 30(6):418-421, 2004.

About the Authors

Yu Lei, Ph.D., is an
assistant professor of
computer science at the
University of Texas,
Arlington. He was a
member of the Fujitsu

Network Communications, Inc., techni
cal staff from 1998 to 2001. Lei’s
research is in the area of automated soft
ware analysis, testing, and verification.
His current research is supported by
NIST. Lei has a bachelor’s degree from
Wuhan University, a master’s degree
from Chinese Academy of Sciences, and
a doctorate from North Carolina State
University.

The University of Texas
at Arlington
Department of Computer
Science and Engineering
P.O. Box 19015
Arlington,TX 76019-0015
Phone: (817) 272-2341
Fax: (817) 272-3784
E-mail: ylei@cse.uta.edu

5.	 Wallace, D.R., and D.R. Kuhn. “Failure
Modes in Medical Device Software: An
Analysis of 15 Years of Recall Data.”
International Journal of Reliability,
Quality and Safety Engineering 8(4):351
371, 2001.

6.	 Kuhn, D.R., and V. Okun. “Pseudo-
Exhaustive Testing for Software.” Proc.
of 30th NASA/IEEE Software Engi
neering Workshop. Apr. 2006.

7.	 Cimatti, A., E.M. Clarke, E.
Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A.
Tacchella. “NuSMV 2: An OpenSource
Tool for Symbolic Model Checking.”
Proc. of International Conference on
Computer-Aided Verification. Copen
hagen, Denmark.

8.	 Ammann, P., and P.E. Black. “Abstract
ing Formal Specifications to Generate
Software Tests via Model Checking.”
Proc. of 18th Digital Avionics Systems
Conference. St. Louis, MO. Oct. 1999.

Notes
1.	 Available on <http://csrc.nist.gov/

acts>.
2.	 The tool can be downloaded at

<http://nusmv.irst.itc.it/>. More infor
mation on SMV can be found at
<www.cs.cmu.edu/~modelcheck/>.

Raghu Kacker, Ph.D.,
is a mathematical statisti
cian in the mathematical
and computational sci
ences division of the
NIST. His current inter

ests include software testing, uncertainty
in physical and virtual measurements,
interlaboratory evaluations, and Bayesian
uncertainty in measurement. Kacker
received his doctorate in statistics from
Iowa State University.

NIST
100 Bureau DR
MS 8910
Gaithersburg, MD 20899-8910
Phone: (301) 975-2109
Fax: (301) 975-3553
E-mail: raghu.kacker@nist.gov

26 CROSSTALK The Journal of Defense Software Engineering	 June 2008

mailto:raghu.kacker@nist.gov
www.cs.cmu.edu/~modelcheck
http:http://nusmv.irst.itc.it
http:http://csrc.nist.gov
mailto:ylei@cse.uta.edu
mailto:kuhn@nist.gov

	Front Cover
	Table of Contents
	From the Publisher
	Software Quality
	The Software Quality Challenge
	Measuring Defect Potentials andDefect Removal Efficiency©
	Quality Processes Yield Quality Products

	Software Engineering Technology
	The Use and Limitations of Static-AnalysisTools to Improve Software Quality
	Automated Combinatorial Test Methods –Beyond Pairwise Testing

	Open Forum
	Software Quality Unpeeled

	Coming Events
	Web Sites
	Call For Articles
	Reader Results Request
	BackTalk
	Back Cover

