Uncertainty Analysis for Four Terminal-Pair Capacitance and Dissipation Factor Characterization at 1 and 10 MHz

Andrew D. Koffman, Member, IEEE, Svetlana Avramov-Zamurovic, Bryan Cristopher Waltrip, Member, IEEE, and Nile M. Oldham, Fellow, IEEE

Abstract—The Electricity Division at the National Institute of Standards and Technology (NIST, formerly NBS) has developed the capability to characterize capacitance and dissipation factor for four terminal-pair (4TP) air dielectric capacitors at frequencies from 1 kHz to 10 MHz. The method, based on work by Cutkosky and Jones of NBS and recent developments by Hewlett-Packard Japan, involves single-port network analyzer impedance measurements at frequencies from 40 MHz to 200 MHz and capacitance measurements using a precision 1 kHz capacitance meter. A mathematical regression algorithm is used to extrapolate inductance and resistance measurements from the network analyzer down to 1 kHz in order to predict capacitance and dissipation factor from 1 kHz to 10 MHz. A comprehensive uncertainty analysis for the procedure is presented.

Index Terms—Capacitance, dissipation factor, four terminal pair, impedance, precision measurements, uncertainty analysis.

I. INTRODUCTION

The Electricity Division at the National Institute of Standards and Technology (NIST, formerly NBS) has implemented a system to characterize capacitance and dissipation factor for four terminal-pair (4TP) air dielectric capacitors at frequencies from 1 kHz to 10 MHz [1]. The method is based on work by Cutkosky [2], [3] and Jones [4], [5] of NBS and recent developments by Yokoi et al. [6], [7] as well as Yonekura and Wakasugi [8] of Hewlett-Packard Japan. This paper describes an extensive uncertainty analysis of the measurement system. The analysis has been divided into three areas: 1-kHz capacitance measurements; network analyzer impedance measurements (covering frequencies from 40 to 200 MHz); and a mathematical extrapolation algorithm that regresses the high-frequency characterization down to frequencies of 10 MHz and below [6], [7]. This algorithm is referred to as the capacitor frequency characteristic prediction (CFCP) method. The capacitance and dissipation factor characteristics at 1 and 10 MHz are produced by applying the CFCP algorithm to the 1-kHz as well as the high-frequency (40–200 MHz) impedance measurements.

Capacitors characterized using this technique will be used as impedance reference standards for a general-purpose digital impedance bridge recently developed at NIST to calibrate inductors and ac resistors [9]. The technique is also to be employed in a future NIST special test for 4TP capacitance and dissipation factor.

II. 1-kHZ CAPACITANCE MEASUREMENT UNCERTAINTY

Fig. 1 shows the simple 4TP capacitor circuit model, where C_{lh} is the low-to-high capacitance and C_{hg} and C_{lg} are low-to-ground and high-to-ground leakage capacitances, respectively. These capacitance components are repeatedly measured over time to establish repeatability using a 1-kHz capacitance meter. Table I presents Type A relative standard uncertainties for 1-kHz measurements of the 1-, 10-, 100-, and 1000-pF standard capacitors. The capacitance and dissipation factor characteristics are given as parts in 10^6 and labeled ppm. The Type B relative standard uncertainty for the 1-kHz capacitance meter is about 10 ppm [10].
Measurements are made from 40 to 200 MHz, depending on the CFCP method are provided by a precision network analyzer. Parameter \(S_{11} \) is converted into impedance.

The actual measured quantity is the scattering parameter \(S_{11} \), which is converted into impedance. The network analyzer contributes both Type A and B uncertainties. The Type A component of uncertainty is the standard deviation of capacitance and dissipation factors based on repeated network analyzer measurements applied to the CFCP algorithm. Note that this value also includes random variations of the capacitor.

The Type B component of uncertainty due to the network analyzer was estimated using software simulations. Again, the solution of the Yonekura circuit model [8] was used to compute the true 4TP capacitance and dissipation factor of the reference capacitor at frequencies of 1 and 10 MHz. Ideal \(S_{11} \) parameters (that would be generated by an errorless network analyzer) were also computed from the circuit equations and applied to the CFCP algorithm to predict 1- and 10-MHz capacitance and dissipation factor behavior. The calculated \(S_{11} \) values were then modified to simulate a network analyzer with offset, gain, and frequency response errors within the manufacturer's specifications [11]. \(S_{11} \) measurements of a NIST-calibrated precision 20-cm air line indicated that the network analyzer was within these specifications.

The Type A and B standard uncertainties in the 4TP characterization due to the network analyzer are reported in Section V.

IV. REGRESSION ALGORITHM UNCERTAINTY DUE TO VARIATIONS IN CAPACITATOR MANUFACTURING

Still more simulations were performed to determine the uncertainty components of the 4TP capacitance and dissipation factor introduced by the CFCP method. The regression algorithm extrapolates the network analyzer impedance measurements (made over a range of frequencies chosen somewhere between 40–200 MHz) down to 10 MHz and below using the 1-kHz capacitance measurement values, described briefly above, as references. The regression parameters were selected to optimally predict the capacitance frequency characteristic for nominal capacitor values. This test was set up to determine the sensitivity of the method to variability in manufacturing of the capacitor standards.

The circuit solution of the Yonekura model provides reference values of capacitance and dissipation factor at the frequencies of interest. It is also used to obtain high-frequency single-port values. Simulated network analyzer measurement data were used to iteratively extrapolate to the frequencies of 1 and 10 MHz with normally distributed random errors injected into the Yonekura model components according to each component's uncertainty [8]. For each reference capacitor, the exact solution and the value predicted by the CFCP method was compared. The Type B standard uncertainties attributed to this method are reported in Section V.

V. UNCERTAINTY RESULTS

Table II labels the standard uncertainty components, and Table III shows the values of the components as well as the expanded standard uncertainties for capacitance and dissipation factor characterization of the standard 4TP capacitors (1, 10, 100, and 1000 pF) at frequencies of 1 and 10 MHz. The uncertainty components are root-sum-squared and then multiplied by two to produce the expanded standard uncertainty values. All capacitance uncertainty components are given in parts in \(10^6 \), labeled as ppm, and all dissipation factor uncertainty components are given in parts in \(10^{-6} \).
components are given in microradians, labeled as μrad. These values will be refined and reevaluated as the authors gain experience with the measurement system.

VI. FUTURE WORK

The uncertainty analysis reported in this paper consists of simulations that determine the statistical variation of the components of the 4TP capacitor characterization technique. Some assumptions are made regarding the errors and the circuit model derived from measurements of a set of standard capacitors. A theoretical analysis of the network analyzer should be performed in order to compare with the simulations performed and reported upon here.

ACKNOWLEDGMENT

The authors would like to thank K. Yokoi, leader of the group at Hewlett-Packard Japan that developed this measurement system for his considerable assistance during this project. They also thank T. Aoki, also of Hewlett-Packard Japan, who traveled to NIST to provide his engineering expertise, saving them considerable time in procedural development.

REFERENCES

Andrew D. Koffman (S’86–M’90) received the B.S. degree from the University of Novi Sad, Yugoslavia, in 1986 and 1990, respectively, and the M.S. degree from Vanderbilt University, Nashville, TN, in 1990, both in electrical engineering. He joined the Electricity Division at the National Institute of Standards and Technology, Gaithersburg, MD, in 1990. He has worked to develop and apply model-based strategies for testing complex electronic systems. He currently works in the area of developing ac impedance measurement systems and impedance calibration services.

Svetlana Avramov-Zamurovic received the B.S. and M.S. degrees from the University of Novi Sad, Yugoslavia, in 1986 and 1990, respectively, and the Ph.D. degree from the University of Maryland, College Park, in 1994, all in electrical engineering. From 1990 to 1994, she was involved in developing a voltage ratio bridge for the NASA Zeno experiment. She was a Guest Researcher at the National Institute of Standards and Technology (NIST), Gaithersburg, MD, from 1990 to 1994. At present, she is an Assistant Professor at the U.S. Naval Academy, Annapolis, MD. Her recent work as a Guest Researcher at NIST involves the development of impedance bridges and measuring techniques.

Bryan Christopher Waltrip (M’87) received the B.S. degree in electrical engineering and computer science from the University of Colorado, Boulder, and the M.S. degree in electrical engineering from the Johns Hopkins University, Baltimore, MD. Since 1984, he has been an Electronics Engineer with the Electricity Division, National Institute of Standards and Technology, Gaithersburg, MD, where he is currently working on precision waveform synthesis and measurement standards in the dc to 1-GHz frequency range.

Nile M. Oldham (M’73–SM’92–F’98) received the B.S. degree from Virginia Polytechnic Institute and State University, Blacksburg, in 1966. Since then, he has been a Physicist and an Electronics Engineer in the Electricity Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD. He is currently retired and working part-time. His recent work at NIST includes the development of electrical standards of voltage, current, phase angle, power, and energy using digital synthesis techniques and the investigation of Internet-based metrology techniques.