Thermal transport in stacked superconductor–normal metal–superconductor Josephson junctions

Yonuk Chong, a) P. D. Dresselhaus, and S. P. Benz
National Institute of Standards and Technology, Boulder, Colorado 80305

(Received 12 June 2003; accepted 16 July 2003)

Nb/MoSi$_2$/Nb stacked superconductor–normal metal–superconductor (SNS) Josephson junctions has proven to be a good candidate for high-density series arrays for Josephson voltage-standard applications. As the junction density increases, self-heating becomes an issue because the high power density per junction (1 W/cm2) generates significant power dissipation under typical operating conditions. In this letter, we analyze the heating effect of these sandwich-type SNS junctions using a model to quantitatively estimate and predict thermal-transport properties of the stacked structures. We describe several strategies that reduce heating and demonstrate improved properties of stacked-junction arrays with enhanced cooling capacity. [DOI: 10.1063/1.1606491]

Superconductor–normal metal–superconductor (SNS) Josephson junctions have become the dominant technology for next-generation Josephson voltage metrology because of their inherent stability. 1–3 Our goal is to increase the linear density of such junctions in order to achieve higher voltages and higher output frequencies. 4 Vertically stacked junctions have proven to be the best candidate among the various approaches for achieving this goal. 5–8 However, as the number of junctions in a stack increases, the heat generated within the stack increases and must be transferred to the substrate through the same contact area as that of a single junction. Thus, removing the heat in stacked junctions is a serious challenge because inadequate cooling will limit the ultimate performance that can be achieved in future Josephson voltage-standard systems. Similar considerations will also impact other high-power-density Josephson circuits.

In this letter, we report the use of MoSi$_2$-barrier junctions to study the heat transport in SNS junctions. MoSi$_2$ is a material with higher resistivity than that of the conventional PdAu barrier material, and has proven to be an excellent normal–metal barrier for stacked SNS Josephson junctions. 5,6 A single 5.5 μm x 5.5 μm square, 23-nm-thick MoSi$_2$-barrier junction typically has a characteristic voltage $V_c R_n \approx 55$ μV, a critical current of $I_c \approx 9$ mA, and normal resistance of $R_n \approx 4$ mΩ. The junctions are usually operated at 16 GHz, giving an output voltage of 32 μV per junction when current biased near the critical current. A single junction therefore typically dissipates ~0.3 μW, corresponding to a power density ~1 W/cm2. This is much lower than the ~5 W/cm2 for PdAu-barrier junctions with similar electrical properties because the area of MoSi$_2$ junctions is about five times larger. Regardless of barrier materials, in a stack the power density scales roughly linearly with the number N of junctions.

Figure 1 shows a schematic cross section of the planar junction geometry. Since our application focus is voltage-standard systems, we desire junctions of higher resistance that generate less power at the same voltage, and larger junctions that have smaller power density at the same power. In addition to small power density, the critical-current uniformity is better in larger junctions for a given degree of etch anisotropy.

As we increase the bias current to an array of junctions above its I_c, there is a maximum current I_{max} at which the superconducting structure goes normal and the voltage abruptly increases, as shown in Fig. 2. The value of I_{max} should be far larger than I_c in order to have a large operating-current range for voltage-standard applications. We also define the maximum power generated in the stack, $P_{\text{max}} = I_{\text{max}} V_{\text{max}}$, where V_{max} is the voltage at I_{max}. By measuring P_{max} for junctions in different array test structures on the same wafer with different dimensions of superconducting base electrode and different sizes of base-electrode-to-wiring vias, we conclude that P_{max} is limited by heating near the junction. In stacked junctions we observe that P_{max} is inversely proportional to the number of junctions in the stack, which indicates that I_{max} is directly related to the heat generated in a stack.

If the temperature rise is too great within the junction structure, the junction characteristic will change according to its temperature dependence. Hence, it is important to study the heat flow in a single junction and to adequately cool the junction at its typical operating power. We have established a very reproducible trilayer process such that run-to-run variations in I_{max} are small. 5 Equipped with this consistent “ther-

a)Electronic mail: yonuk@boulder.nist.gov

FIG. 1. Cross-sectional view of the SNS junction geometry. Heat is generated in the MoSi$_2$ barrier and assumed to be transported first through the base electrode and then into the substrate.
tional fuse” on the chip, we are able to quantitatively investigate the thermal transport properties of different junction structures by measuring \(I_{\text{max}}\).

For the purpose of modeling the heat flow, we assume that \(I_{\text{max}}\) occurs when the total power generated within the stack, \(P_{\text{max}}\), the maximum (total) heat flow out of the stack structure. Several factors affect the cooling capacity of the structure, and the nature of the heat flow determines the dependence of \(I_{\text{max}}\) on each design parameter.

Figure 3 displays a linear dependence of \(P_{\text{max}}\) on junction size in single-barrier junctions with the base electrode width fixed at 16 \(\mu\)m. Data are shown from three wafers with different interfaces between the Nb base electrode and the silicon substrate; one is fabricated on the bare silicon, another has a thin metal etch stop, and the third has thermally grown SiO\(_2\) 150 nm thick. The etch stop metals that we tested were PdAu, Al, and Ti, with thicknesses less than 50 nm. Neither the type of metal etch stop nor the thickness had any noticeable effect on \(P_{\text{max}}\). The data in Fig. 3 show that the best cooling occurs when the base electrode is grown on top of the bare silicon wafer.

We modeled the heat transport in our junctions using the results of Skocpol et al.,\(^9\) and Dieleman et al.\(^10\) The chips are immersed in liquid helium, but because the Kapitza thermal boundary resistance between Nb and liquid helium is large, this is not a dominant thermal path. We assume that the dominant thermal path progresses radially from the junction through the base electrode and then into the substrate.\(^10\) Two thermal parameters determine the heat flow, the thermal conductivity \(\kappa\) of the niobium electrode, and the thermal boundary conductance \(Y\) between Nb and the substrate. If we assume an isothermal, cylindrical junction with an infinite base electrode, the thermal profile of the base electrode is given by \(\delta\).

\[
T(r) - T_{\text{bath}} = \begin{cases}
\frac{I \cdot V \eta}{\pi \kappa d W_j K_1(W_j/2 \eta)} K_0(r/\eta) & r > W_j/2 \\
\frac{I \cdot V \eta}{\pi \kappa d W_j K_1(W_j/2 \eta)} K_0(W_j/2 \eta) & r < W_j/2
\end{cases}
\]

where \(K_0\) and \(K_1\) are modified Bessel functions, \(r\) is the distance from the center of the junction, \(d\) is the thickness of the Nb base electrode, \(\eta = (\kappa \cdot d Y)^{1/2}\) is the characteristic thermal healing length in the Nb film, \(W_j\) is the junction width, and \(T_{\text{bath}}\) is 4 K, the temperature of the liquid helium bath, which is also assumed to be the substrate temperature. The thermal healing length is a characteristic distance over which heat is transported in the film before equilibrating with the substrate. When the temperature within the cylindrical hot spot exceeds the critical temperature \(T_c\) of the superconducting lead, that is, if \(T(W_j/2) > T_c\), the junction structure becomes normal. Thus, the maximum power that the junction can dissipate without going normal is

\[
P_{\text{max}} = 2 \pi \kappa d \left(\frac{W_j K_1(W_j/2 \eta)}{2 \eta K_0(W_j/2 \eta)} \right) (T_c - T_{\text{bath}})
\]

\[
\approx 2 \pi \kappa d \left(\frac{W_j}{2 \eta} + \frac{1}{2} \right) (T_c - T_{\text{bath}}),
\]

where the modified Bessel functions are approximated as \(x K_1(x) / K_0(x) \sim x + 1/2\) if \(x \gg 1\). Because \(P_{\text{max}} \approx N P_{\text{max}}^{\text{BE}} R_n\), \(\approx W_j\) for \(W_j \gg \eta\) in stacked junctions, where \(N\) is the number of the junctions in a stack, it follows that \(I_{\text{max}} \approx W_j^{3/2} N^{-1/2}\) because \(R_n \approx W_j^{-2}\). We observe this \(N^{-1/2}\) scaling for \(I_{\text{max}}\) in our stacked junctions. From Eq. (2), the slope in Fig. 3 is proportional to the ratio of the thermal conductivity of the Nb film to the thermal healing length. The linear scaling shown in Fig. 3 is consistent with the assumption of the model that the main heat flow is radial. Therefore, the total cooling power \(P_{\text{cool}}\) will be proportional to the circumference of the junction, with a fixed large base electrode.

The model predicts that if the area of the base electrode is increased, the cooling power will increase until it saturates a few healing lengths outside the junction edge. A theoretical curve for \(P_{\text{max}}\) may be calculated by integrating the local heat flow up to the edge of the base electrode assuming the thermal profile, \(T(r)\), for an infinite base electrode,

\[
P_{\text{max}} = P_{\text{cool}}(W_{BE}) \approx \int_0^{W_{BE}/2} Y(T(r) - T_{\text{bath}})(2 \pi r) dr.
\]

Figure 4 shows the measured base-electrode size dependence of \(P_{\text{max}}\) with the junction width fixed at 4 \(\mu\)m. Lines are fit to Eq. (3) with the constraint that the junction is at
while the thermal healing length h ensured wafers. The base electrode thickness, d, is measured from the wafer, T_c, at an elevated temperature close to T_c. We note that there are two factors that may cause the values reported for polycrystalline Nb bulk samples at 4 K.12,13 We note that there are two factors that may cause errors in the estimation of the thermal conductivity values from the measurement. Because we are measuring the thermal parameters at P_{max}, the base electrode is not at the bath temperature, but at an elevated temperature close to T_c, at which there are more quasiparticles available for thermal transport. There is also some cooling that will occur through the top wiring layer, hence the Nb thickness d in Eq. (2) will be effectively larger than the actual base electrode thickness listed in Table I. Both factors would cause overestimation of the thermal conductivity.

Based on all these results, we compare these test arrays with real fabricated arrays that have a higher linear junction density, but are thermally nonideal because of the small base electrodes used in our standard design. Using our standard lithographic masks, we fabricated and measured an array of five-junction stacks on a silicon wafer with a PdAu etch stop with $I_c=7$ mA, $I_cR_{\text{ns}}=30$ μV, and $I_{\text{max}}=30$ mA with 5.5 μm stack width, on a base electrode 7 μm wide. For this device $I_{\text{max}}=4 I_c$, and thus the power generated during operation is about $1/16$ of P_{max}, which will increase the junction temperature by ~ 0.25 K. This is a significant improvement because an identical design with two-junction stacks grown on thermal oxide has similar $I_{\text{max}}=30$ mA. This result shows that even for an array with a high linear density but a small base electrode, the maximum power is increased by improving the base-to-substrate interface.

The measurements and analysis given in this letter provide a practical method for determining thermal transport properties in superconducting thin film devices. In addition, having an analytic model and inferred values of the thermal parameters allows a priori quantitative calculation of the heat transport of a structure, thus providing a method for eliminating stacked structures with poor thermal design. This quantitative measurement of thermal transport effects in SNS Josephson junctions provides a framework for future study of other superconductive circuits where thermal effects are important.

The authors thank C. Burroughs and N. Hadacek for developing numerous measurement systems and R. Kautz for helpful discussions. This research was supported by NIST and the Office of Naval Research Contract Nos. N00014-99-F-0127, 00-F-0154, 01-F-011, and 02-F-0004.

TABLE I. Summary of the thermal variables estimated from all the measured wafers. The base electrode thickness, d, is measured from the wafer, while the thermal healing length η, the thermal conductivity, κ, and the thermal boundary conductance, Y, are inferred from Figs. 3 and 4.

<table>
<thead>
<tr>
<th>Base contact</th>
<th>d (nm)</th>
<th>η (μm)</th>
<th>κ (W/mK)</th>
<th>Y (W/m2K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 nm SiO$_2$ on silicon</td>
<td>290</td>
<td>2.7</td>
<td>2.6</td>
<td>1.0×10^3</td>
</tr>
<tr>
<td>Bare silicon + metal etch stop</td>
<td>280</td>
<td>1.7</td>
<td>3.0</td>
<td>2.9×10^3</td>
</tr>
<tr>
<td>Bare silicon</td>
<td>210</td>
<td>1.5</td>
<td>4.8</td>
<td>4.5×10^3</td>
</tr>
</tbody>
</table>

$T_c \sim 9$ K.11 From this fit, we can deduce the thermal healing length in the Nb base electrode for each substrate. These values, together with the slope of P_{max} versus the junction size in Fig. 3, lead to an estimate of the thermal conductivity in the niobium film and the thermal boundary resistance between Nb and the substrate. These values are summarized in Table I.