Fiber-laser frequency combs with subhertz relative linewidths

W. C. Swann, J. J. McFerran, I. Coddington, and N. R. Newbury
National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305

I. Hartl and M. E. Fermann
IMRA America Inc., Ann Arbor, Michigan 48105-9774

P. S. Westbrook, J. W. Nicholson, and K. S. Feder
OFS Laboratories, 19 Schoolhouse Road, Somerset, New Jersey 08873

C. Langrock and M. M. Fejer
E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305

Received June 9, 2006; revised July 25, 2006; accepted July 26, 2006; posted August 8, 2006 (Doc. ID 71822); published September 25, 2006; OCIS codes: 120.3930, 320.7090, 140.3510.

We investigate the comb linewidths of self-referenced, fiber-laser-based frequency combs by measuring the heterodyne beat signal between two independent frequency combs that are phase locked to a common cw optical reference. We demonstrate that the optical comb lines can exhibit instrument-limited, subhertz relative linewidths across the comb spectra from 1200 to 1720 nm with a residual integrated optical phase jitter of $\approx 10^{-11}$ rad in a 60 mHz to 500 kHz bandwidth. The projected relative pulse timing jitter is ≈ 1 fs. This performance approaches that of Ti:sapphire frequency combs.© 2006 Optical Society of America

The output of a femtosecond fiber laser consists of a train of optical pulses at a repetition frequency f_r. In the frequency domain, this output is a comb of lines at frequencies $f_n = nf_r + f_{ceo}$, where n is the mode number and f_{ceo} is the carrier-envelope offset frequency. Following the original work with femtosecond Ti:sapphire lasers, fiber-laser combs have been stabilized by phase-locking both f_r and f_{ceo} to a microwave reference, yielding a valuable tool for frequency metrology. Fiber lasers have a number of advantages over their Ti:sapphire cousins in that they are more compact, are capable of turnkey, long-term operation, are less expensive with lower power consumption, are compatible with existing fiber optics, and cover the telecommunication window. However, while Ti:sapphire combs have exhibited subhertz linewidths, fiber-laser frequency comb linewidths until recently been at the kilohertz level or higher. There is no fundamental reason for these large linewidths, and two combs with low-phase-noise f_{ceo} beat notes have been described. Here we demonstrate that f_r can be similarly narrowed by phase locking one optical comb tooth to a cw optical reference. We find that the comb lines can exhibit low residual phase noise and subhertz relative linewidths across the comb. A narrow-linewidth fiber-laser frequency comb should find important applications in metrology for low-phase-noise cw lasers, high-precision optical spectroscopy, coherent Lidar, fiber transport of frequency standards, and optical clocks.

Following the work on Ti:sapphire combs by Bartels et al., we compare two distinct fiber laser frequency combs by phase locking a tooth of each comb to a common, narrow cw reference laser while simultaneously phase locking f_{ceo} by use of the standard f-to-$2f$ technique. Although the details are complicated, essentially the lock to the reference laser fixes a central comb tooth by stabilizing the cavity length while the offset frequency lock removes any breathing motion of the comb about that central, fixed tooth. In our experiments, two very different frequency combs are phase-locked with an 8 MHz difference in their offset frequencies and a fixed integer relationship between their repetition rates. The comb outputs are combined, optically filtered, and detected to generate an 8 MHz heterodyne beat from different

Fig. 1. (a) Schematic of the experimental setup. FC, fiber coupler. Inset, spectra of comb 1 (gray) and comb 2 (black). Arrows indicate the location of the different optical bandpass filter settings for the heterodyne measurements. (b) Comb 1 (top) and comb 2 (bottom), along with the cw reference laser at 1550 nm (194 THz). The circled pairs contribute to the beat note at 8 MHz. (The number of contributing pairs is ≈ 400–4000, depending on the filter bandwidth.)
the performance is very similar. To stabilize the remaining degree of freedom, the offset frequencies of the two combs are phase locked to $f_{\text{ceo},1} = 120$ MHz and $f_{\text{ceo},2} = 112$ MHz through feedback to the pump power.9,10 In each case, this phase lock results in a strong coherent f_{ceo} peak with a signal-to-noise ratio of 50–57 dB/Hz and a low phase noise (see Fig. 2(b)).

While Fig. 2 gives the residual, in-loop phase noise of the two phase-locked signals, we are interested in how this phase coherence is preserved across the comb. To do this we set the combs’ repetition rates to an integer ratio and compare coincident comb teeth (offset by 8 MHz) across the spectrum. The repetition rate depends on both f_{ceo} and f_{beat} as $f_{r,i} = (f_{1550} - f_{\text{beat},i} + f_{\text{ceo},i})/n_{1550,i}$, where $f_{1550} = c/1550$ nm is the frequency of the cw laser and $n_{1550,i}$ is an integer identifying the nth mode nearest to f_{1550} of the ith comb.7 Since both the f_{beat} and the f_{ceo} signals of the two combs differ by 8 MHz, with the appropriate sign choice the repetition rates of the two combs will have a fixed integer relationship. For the cavity lengths of the two combs, we can fix the repetition rates such that $2f_{r,1} = 7f_{r,2}$. Adjusting the repetition-rate phase between the two combs ensures that every second pulse of comb 1 and every seventh pulse of comb 2 arrive coincidentally at the photodetector, generating an 8 MHz heterodyne beat signal that is subsequently recorded with a digital fast Fourier transform instrument. This beat signal represents the average relative linewidth of the collection of comb lines transmitted by the optical filter (see Fig. 1).

Figure 3 demonstrates a strong coherent peak in the heterodyne beat between the two combs at wavelengths of 1200±5, 1300±5, 1400±5, 1540±0.5, 1580±5, 1600±0.5, 1720±15 nm (see Fig. 1), where $\pm x$ indicates the 3 dB bandwidth of the optical filter. This coherent peak approaches a δ-function with a 3 dB linewidth limited by either the spectrum analyzer or uncompensated drifts in any out-of-loop fibers. In this case our coherent peak is instrument limited to 300 mHz over the 48 s acquisition time. The inset shows the heterodyne beat at 1720nm for a wider 1 MHz span, showing the coherent peak con-

Fig. 2. (a) In-loop phase noise spectral densities for the lock between the cw reference laser and comb 1 (gray) and comb 2 (black). The integrated phase noise of 0.94 and 0.35 rad, respectively, is dominated by the servo bumps at high Fourier frequencies. Extrapolation to the Nyquist frequencies of 92.5 and 25 MHz for the two combs gives integrated phase noises of 0.53 and 1.21 rad. (b) In-loop phase noise for f_{ceo} for comb 1 (gray) and comb 2 (black). The integrated phase noises are 1.5 and 1.0 rad, respectively.

Figure 1 shows the experimental setup. Comb 1 is based on a Fabry–Perot-type Er-soft-glass-fiber oscillator.15 Self-starting mode-locking operation is stabilized by a saturable absorber mirror. The oscillator intracavity dispersion is compensated by a chirped fiber Bragg grating to near zero. The oscillator emits a pulse train with a repetition rate $f_{r,1}$ of 175 MHz and an optical bandwidth of 60 nm. Comb 2 is based on a stretched-pulse Er-fiber ring laser with a repetition rate of $f_{r,2}$ of 50 MHz and optical bandwidth of 80 nm.10,16 The combs were on separate optical tables. Each laser emits between 5 and 50 mW cw laser. The cw fiber laser line

Fig. 3. (Color online) Spectra of the coherent peak across the comb and on $f_{\text{beat},i}$ between the combs and the cw reference laser (resolution bandwidth (RBW) of 0.3 Hz, acquisition time 48 s). Inset, rf spectra on a 1 MHz span and log scale for the heterodyne beat at 1720 nm (RBW=3 kHz).
much larger than white-noise floor at large optical phase locks, as is shown below. (Excess phase noises of each other and are limited by the quality of the frequency yields petition rate noise up to the appropriate optical frequency, versus wavelength.

The tight phase lock between the two combs implies a low residual timing jitter. A reasonable upper limit to this jitter on the pulse train of comb 2 is \((2\pi f_{1550})^{-1}\int_{0.06 \text{ Hz}}^{0.5 \text{ MHz}} (S_{\text{beat,2}}(\nu) + S_{\text{ceo,2}}(\nu)) \text{d}\nu)^{1/2} = 0.9 \text{ fs}. \) Extrapolating to the Nyquist frequency of 25 MHz from the measured white-phase-noise floor increases the jitter to 1.12 fs. Of course, such a low timing jitter remains to be demonstrated. Finally, the low phase noise also translates into excellent relative frequency stability; with a lower-noise frequency synthesizer used in the optical phase lock for comb 2, the counted \(f_{\text{beat}} \) and \(f_{\text{ceo}} \) both exhibit a counter-limited standard deviation of \(<1 \text{ mHz} \) at a 1 s gate time, giving a statistical error of 1 mHz/\(\sqrt{c/1550 \text{ nm}} \) \(\sim 5 \times 10^{-15} \) at 1 s, which can certainly support the next generation of optical clocks.

We acknowledge helpful discussions with S. Diddams and Q. Quraishi. N. R. Newbury's email address is nnewbury@boulder.nist.gov; I. Hartl's is ihartl@imra.com.

References