Boulder Damage
Symposium XXXVIII

Annual Symposium on
Optical Materials for High Power Lasers

25–27 September 2006
National Institute of Standards and Technology
Lobby, Building 1, 325 Broadway • Boulder, Colorado USA
Damage of thermal detector platforms based on metal-carbon nanotube composites

L. A. Lewis, C. L. Cromer, National Institute of Standards and Technology; R. L. Mahajan, Virginia Polytechnic Institute and State Univ.; K. Ramadurai, Univ. of Colorado/Boulder; J. H. Lehman, National Institute of Standards and Technology

PRIMARY AUTHOR BIOGRAPHY:
Laurence A. Lewis is currently a Summer Undergraduate Research Fellow (SURF) at NIST Boulder. He is a rising junior at James Madison University in Harrisonburg, VA and majoring in physics. He recently was awarded the Serway/Saunders Physics Scholarship and is the Society of Physics Students president. He has presented at several technical conferences, each resulting in an award.

ABSTRACT TEXT:
Today's standards for laser power and energy measurements are inadequate for tomorrow’s high-power high-efficiency diode and fiber lasers. To meet this need, a new generation of thermal detector platforms based on carbon nanotubes (CNTs) and metal is being developed. Commercially available CNTs were selected based on the promise of high thermal conductivity and optical absorptivity reported in the literature. We discuss several techniques for the fabrication of thermal detector platforms including CNTs airbrushed on metal, aligned CNTs grown on copper, and a recently developed electroplating process. In the latter method CNTs were deposited with nickel on copper and then chemically etched to remove surface layers of nickel, thereby exposing the CNTs. We report qualitative evaluation of coating damage at laser irradiance at 10.6 μm up to 10 kW/cm² by scanning electron microscopy. In addition we present quantitative evaluation of optical properties and thermal conductivity.