Hierarchical Restoration Scheme for Multiple Failures in GMPLS Networks

SuKyoung Lee, Chul Kim, and David Griffith
National Institute of Standards and Technology
100 Bureau Drive, Stop 8920, Gaithersburg, MD 20899

Abstract—It is expected that GMPLS-based recovery could become a viable option for obtaining faster restoration than layer 3 rerouting. Even though dedicated restoration ensures restorability, exclusive use of dedicated scheme would result in wasting network resources, especially in case of providing for multiple failures. A range of restoration schemes have been proposed about sharing capacity. However, multiple simultaneous failures have not been considered. In this paper we propose a hierarchical scheme for multiple simultaneous failures, where hierarchical Shared Risk Link Groups (SRLGs) are applied. We also introduce a Backup Group Multiplexing (BGM) into our hierarchical scheme to precipitate the restoration of multiple Label Switched Paths (LSPs) with failures all at once. Furthermore, the proposed scheme selects a backup path with resources enough to satisfy renegotiated Quality of Service (QoS) of each backup group, among M backup paths. Our simulation results demonstrate that our scheme utilizes bandwidth more efficiently through multiplexing gain.

I. INTRODUCTION

With the migration of real-time and high-priority traffic to IP networks and the deployment of more and more critical applications, network survivability has become critical for future IP networks.

Above all, fast recovery of service is an important aspect of current and future IP networks. To support this fast recovery, most recently, there have been many works mentioning restoration functionality in both MPLS[1] and GMPLS networks[2]. Different from legacy IP networks, these protocols establish LSPs, where packets with the same label follow the same path. This potentially allows GMPLS networks to pre-establish backup LSPs for working LSPs, and achieve better protection switching times than those in legacy IP networks.

These protocols, however, can still cause serious disruption of service while shared restoration is being run over the Internet. For $M : N$ mode, even though backup paths are pre-reserved, it takes sometime for a working path with failure to search for a backup path with available capacity if the other working paths with failures have already occupying some backup paths from backup path pool. When the resources are in use for other low priority paths and the backup resources are needed, it also takes sometime to tear down the low priority connection. In the case that backup paths are not pre-reserved, it is certain that GMPLS experiences significant service interruption time. That is, it is possible that shared backup paths are configured in advance at the ingress, but are not signaled until the failure is reported. This is unacceptable for many applications that require a highly reliable service, and has motivated network providers to give serious consideration to the issues of not only network survivability but also restoration time.

Another major challenge of restoration in GMPLS networks is capacity. In order to achieve protection against failures, enough capacity must be provided for the interrupted traffic to be restored. Several capacity-efficient restoration schemes have been proposed[3],[4]. But, these schemes are restricted to single SRLG failure event.

Therefore, in this paper, we will propose a scheme to handle multiple simultaneous failures over SRLG disjoint resources. In the proposed scheme, in the event of multiple failures over SRLG disjoint resources, we apply different restoration scheme to the higher SRLG by defining a higher level SRLG for the SRLG disjoint resources as in [5], while the existing shared capacity scheme[3],[4] still works in the event of single failure. Especially in the event of multiple simultaneous failures, while some primary paths of high priority are supposed to use the pre-reserved shared capacity, for the rest of the paths with failures, restoration controller performs GMPLS-based $M : N$ protection mechanism without pre-reservation. In order to recover multiple failed LSPs promptly at once, we multiplex the LSPs into some backup groups, QoS of which are different from each other. The QoS of each backup group is renegotiated, since, usually, resource would be scarce to restore all the simultaneously failed LSPs.

The performance of the proposed scheme is demonstrated by simulation. Simulated tests are useful to verify that our scheme recovers multiple simultaneous LSPs promptly through BGM while improving resource utilization.

II. HIERARCHICAL RESTORATION

We have two hierarchies for SRLG where low level is physical SRLG (PSRLG) closely related to physical resources, and high level is logical one (LSRLG). In optical networks, SRLG has meant PSRLG till now generally, so many proposals computed constrain-based paths which is PSRLG-disjoint. LSRLG is defined to target some regions with high failure probability of multiple simultaneous failures over different PSRLGs. In our hierarchical scheme, LSRLG denotes SRLG for geographical region as proposed in [5] or region controlled by a specific carrier. As an example of geographical region, in New York city with high probability of attack, although PSRLGs are disjoint, adjacent many PSRLGs could be torn down at once. Natural disaster (e.g. earthquake, typhoon) region like California or Japan could be another example for geographical topology. Also over a region operated by a specific carrier, multiple simultaneous failures occur on various PSRLG-disjoint links/nodes due to serious outages by software upgrades in large-scale network infrastructures, or deficits in network management tool[6].

While many researches[3],[4] have mainly focused on PSRLG to provision backup paths, in this paper, a different restoration scheme is applied to each SRLG hierarchy. Even though the algorithms in [3],[4] benefit from sharing capaci-
ity among backup paths whose primary paths are PSRLG (e.g., link/node) disjoint, they are based on the assumption of only single failure upon a PSRLG. For example, when failures occur on both a and c in Fig. 1[4], all the primary paths could not be recovered due to the lack of resource. So if there exists another restoration mechanism to handle a failure of higher SRLG A, the mechanism over LSRLG layer could restore the multiple failures on a and c. Generally, since LSRLGs are overlaid on multiple PSRLGs, multiple PSRLGs for links/nodes are grouped into new LSRLG for a region in our model. Thus, LSRLG covers multiple simultaneous failures over multiple PSRLG-disjoint resources.

If multiple simultaneous failures occur among PSRLG disjoint paths, it is certain that some paths with failures could not have enough capacity (or channel) since they have been sharing the capacity. To restore all the traffic affected by these multiple failures over PSRLGs, $M:N$ restoration function is performed as a different restoration scheme for LSRLG.

III. BACKUP GROUP-BASED RESTORATION OVER LSRLG

A. Backup Grouping

Since the proposed $M:N$ restoration with BGM (we call this MN_BGM for the rest of the paper) operates over LSRLG including multiple failures on PSRLG layer, pre-reserving the bandwidth enough to restore all the multiple failures will lead to enormous bandwidth waste. Thus, in this paper, we concentrate on the case that there is no pre-reservation on backup path. On the basis that MN_BGM scheme operates over an LSRLG including the paths of different QoS, when N working paths that have shared backup bandwidth, fail over different PSRLGs, the traffic of the highest priority among the failed paths is supposed to use the shared bandwidth unconditionally like 1:1 protection over PSRLG. For the rest of the traffic over the failed paths, the proposed MN_BGM function is carried out, as can be seen in Fig. 2. This remaining traffic belongs to such service classes of the priority lower than the traffic that has been restored onto the shared bandwidth already, as Assured Service (AS) or Best Effort (BE) in Differentiated Services (DiffServ)[7]. Under MN_BGM, the traffic of lower priority on the failed paths are multiplexed into a several LSPs as aggregating service classes of individual failed paths into new service classes having common per-LSP QoS parameters. Thus, MN_BGM results in restoring the failed paths faster than existing $M:N$ restoration scheme in which restoration manager tries to search for individual backup path corresponding to each failed path. In the case of optical network, a several traffic flows of lower priority over the failed paths can also be multiplexed onto higher-capacity wavelength[8]. Another advantage over original $M:N$ restoration is to get multiplexing gain by aggregating primary LSPs, that leads to accommodating more traffic on the backup path. This multiplexing gain makes MN_BGM scheme allocate less bandwidth than the requested demand (e.g. PDR: Pak Data Rate or CDR: Committed Data Rate) to meet the QoS.

While defining restoration-related classes newly, restoration manager renegotiate offline or online with each backup group about QoS. We classify the failed paths into Restoration Class-High (RC-H), RC-M (Medium), RC-L (Low), and RC-N (None) as can be seen in Table I.

First, RC-H corresponds to Expedited Forwarding (EF) service in DiffServ. For all the traffic flows in this class, backup paths are pre-configured and bandwidth is also pre-reserved due to the precedence for the shared bandwidth on PSRLG layer. Thus, QoS is guaranteed even after restoration. Second, RC-M can be regarded as Assured Forwarding (AF1) service in DiffServ. While backup paths are pre-configured as part of N paths, bandwidth is allocated on-demand. In addition to on-demand allocation, the bandwidth necessary for restoration (we call restoration bandwidth) is renegotiated or determined offline to satisfy restoration bandwidth ratio, $RB \geq \varepsilon_m (< 1)$. Third, RC-L is similar to AF2 service in DiffServ. All the restoration plans are same as in RC-M except for meeting different QoS $RB \geq \varepsilon_l (< \varepsilon_m < 1)$. Lastly, RC-N is Best Effort (BE). No restoration is provided.

For RC-M and RC-L, it is reasonable to control the traffic flow after renegotiating the bandwidth, because there are no quantifiable delay requirements associated with the forwarding of AF packets[9]. Generally being noted that the classification depends on each Internet Service Provider (ISP)’s policy, ISPs could provide different levels of restoration services with the higher level service at the higher cost when they control multiple failures in an area like an LSRLG. Moreover, ISPs can pre-negotiate offline the QoS after failure, for RC-M and RC-N classes.

Fig. 1. Example Hierarchy

Fig. 2. Basic Flow in MN_BGM
RB is defined as the ratio of the bandwidth available on backup path, to the bandwidth affected by failures. The estimate of RB can be computed on the assumption that failures occur on an working LSP at random. Considering there exist N working LSPs under MN_BGM scheme, N_f (≠ N) failed paths are classified into the above service classes as G_h, G_m, G_i, and G_n each of which includes N_h, N_m, N_i, and N_n failed paths. Thus, the set of N_f LSPs, \{P_1, P_2, \ldots, P_N_f\} is expressed as the set of groups, \{G_h, G_m, G_i, G_n\}. Generally, ISPs determine grouping policy in accordance with restoration service classes.

For a backup group with N_f (≠ N_h, N_m, or N_i) paths, some notations are defined:

- B_f is the total bandwidth affected by failure.
 \[B_f = \sum_{i=1}^{N_f} B^i_f \]

- B_{min} is the minimum guaranteed bandwidth that users in a group requested ISP to offer.
 \[B_{min} = \sum_{i=1}^{N_f} B'^i_{min} \]

- B_{RN} is the bandwidth necessary to satisfy renegotiated QoS.
 \[B_{RN} = \sum_{i=1}^{N_f} B'^i_{RN} \]

In accordance to each restoration class, we define bandwidth necessary to restore a backup group, B_r as

\[B_r = \begin{cases}
 B_f & \text{if } P_i \in G_h \\
 B_{min} & \text{if } P_i \in G_m \\
 B_{RN} & \text{if } P_i \in G_i
\end{cases} \quad (1) \]

where B_f is the guaranteed bandwidth for premium and assured services that use the backup path as their primary path while restoration process is going on. Based on the customers’ tolerable QoS degradation after failure, ISPs could not only determine RB but also appropriate the bill for each group. In accordance with RB for a restoration service group, restoration manager could find appropriate backup path to meet the RB.

B. Label Stacking for Backup Grouping

We use label stacking[10] at edge nodes to multiplex some LSPs into a backup group. As a matter of fact, some other proposed mechanisms[11],[12] could be also used to multiplex working LSPs onto a backup LSP. While in [11],[12], multiple LSPs could be merged into a single Forwarding Adjacency (FA) LSP, handling by OSPF/ISIS might result in slow restoration.

![Fig. 3. Label Stacking for Backup Grouping](image)

This is, grouping of working LSPs should go through layer 3 at ingress LSR. To avoid this overhead on layer 3, when working LSPs are multiplexed into a backup group, the stacking capability of GMPLS is make use of. An inner label is used to help guide the traffic on primary LSPs with failures, to backup LSP. While, in MN_BGM scheme, all the failed primary LSPs in a group have the same inner label, the original labels of the failed primary LSPs become outer labels. The label assignment process is shown in Fig. 3.

But in optical network, instead of label stacking, there should be a change of the corresponding ports between GMPLS router and optical switch which are integrated in Optical cross-connect (OXC)[8].

IV. Simulation and Performance Evaluation

This section evaluates two aspects of the performance of MN_BGM, with bandwidth utilization and restoration time. As a simulation tool, we used GMPLS Lightwave Agile Switching Simulator (GLASS) developed by NIST, that is the extension of Scalable Simulation Framework (SSF) Net[13].

We generated TCP traffic as files whose size is exponentially distributed with various mean values, 10^5, 10^6, 10^7, and 10^8 bytes. File requests are assumed to arrive at hosts 100,102,104,106,108 and 110, according to a Poisson process with a rate of 0.5. In the simulation test herein, the traffic of AF service exists (e.g. RC-M or RC-L) where the schemes are tested with two QoS classes, G_1 and G_2, that usually determine ISPs to classify RC. The CDR and PDR for G_1 and G_2 are 2.5 and 1 Mbps, and 2 and 0.8 Mbps, respectively.

Fig. 4 shows that our simulation model has 3 active working paths for each restoration service class between edge nodes, 301 and 302 (i.e. N_f = 6). The bandwidth of each active path is guaranteed as CDR not interfered with by other traffic in the network. In the simulation model, given that a failure occurs on link between 203 and 301 nodes, while the traffics belonging to G_1 are multiplexed onto a backup LSP (300-201-202-301), the traffics of G_2 are done so onto a backup LSP (300-204-203-301).
Fig. 4. Network scenario under MN_BGM scheme

![Fig. 4](image)

Fig. 5. Bandwidth utilization under various traffic amounts

![Fig. 5](image)

Fig. 6. Network scenario under $M : N$ restoration

![Fig. 6](image)

TABLE II

<table>
<thead>
<tr>
<th>Backup path</th>
<th>Bandwidth Utilization</th>
<th>Loss Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BP_1 \in G_1$</td>
<td>0.67</td>
<td>no loss</td>
</tr>
<tr>
<td>$BP_2 \in G_1$</td>
<td>0.62</td>
<td>no loss</td>
</tr>
<tr>
<td>$BP_1 \in G_2$</td>
<td>0.43</td>
<td>0.00069</td>
</tr>
<tr>
<td>$BP_2 \in G_2$</td>
<td>0.39</td>
<td>0.00067</td>
</tr>
<tr>
<td>$BP_3 \in G_2$</td>
<td>0.42</td>
<td>0.018</td>
</tr>
</tbody>
</table>

MN_BGM restoration is 2 times slower than MN_BGM scheme. Moreover, $M : N$ restoration could not restore the failed path between nodes, 104 and 105 due to the lack of backup paths. These results imply that MN_BGM scheme is more suitable for multiple failures.

Table II shows the bandwidth utilization of both schemes. It can be seen from this table that MN_BGM produces better bandwidth utilization than $M : N$ restoration. It is because MN_BGM scheme makes better use of multiplexing gain. In other words, this scheme makes it possible to multiplex low rate traffics into a backup path to improve the utilization of the paths. In case of optical network, the low rate traffics are groomed into a lightpath. From this table, we could also know that the proposed scheme is capable of maintaining acceptable loss QoS, as well as improving bandwidth utilization. Therefore, MN_BGM would give ISPs useful information about RB, an appropriate selection of which cannot only improve resource utilization but also guarantee a certain loss quality.

V. CONCLUSION

This paper describes a novel approach to resolve multiple failures. This approach facilitates resource-efficient service restoration as well as restoration of multiple failures. The proposed MN_BGM scheme restores the failed paths with the highest restoration level firstly by performing the existing sharing schemes which were developed over a network with only
PSRLG such as optical network, while the remaining failed paths of lower priority are restored by backup grouping and QoS renegotiation functions in MN_BGM scheme. Therefore, when multiple failures occur, the proposed hierarchical scheme can restore the multiple failed paths instead of losing them at once, that is the usual phenomenon of the existing scheme handling only single failure. This scheme also enabled us to devise a bandwidth-efficient restoration for the traffic of lower priority, relying on BGM. In addition, the investigation of our simulation results has shown that the improvement in bandwidth utilization can be effectively realized by BGM while keeping loss QoS at a moderate level.

Finally, our ongoing work is to extend MN_BGM scheme with decent backup bandwidth provisioning mechanism. Instead of renegotiated QoS parameters, we are focusing on bandwidth provisioning via traffic measurements at ingress node of backup path to exploit multiplexing gain more effectively.

REFERENCES