INTRODUCTION

In a previous publication, Holmes (1997), fragmentation of bare E-glass fibers embedded in an undercured diglycidyl ether of bisphenol-A (DGEBA)/meta-phenylenediamine (m-PDA) epoxy resin system was shown to occur when the stress-strain response of the matrix material is nonlinear. The occurrence of fragmentation in this region violates the linear elastic assumption in "classical" shear-lag models formulated to determine the "interfacial shear strength" or "effective shear stress transferability" at the fiber-matrix interface. Estimates using a strain dependent secant modulus instead of the linear elastic modulus in the Cox model suggests that the linear elastic estimate of the interfacial shear strength in dry DGEBA/m-PDA single fiber fragmentation test (SFFT) specimens is at least 15% too high. These results are consistent with numerical simulations of the single fiber fragmentation test by Feillard (1993) which indicate that the linear elastic approximation overpredicts the number of breaks obtained during a fragmentation test. These researchers found better agreement between the numerical simulation and experimental data by using a secant modulus in the Cox model.

Central to understanding the applicability of the strain-dependent secant modulus in the Cox Model and establishing a rigorous theoretical stress-transfer model is the development of a nonlinear constitutive equation for the matrix. In the present paper we subject the DGEBA/m-PDA epoxy resin system to multi-step strain deformation profiles analogous to those obtained in the single fiber fragmentation test (SFFT). From this data we develop an empirical nonlinear constitutive equation which accurately accounts for the observed deformation behavior.

EXPERIMENTAL

Sample Preparation. Test specimens without fibers were made according to a procedure described previously, Holmes (1997), for the preparation of SFFT specimens.

Multi-Step Stress Relaxation Test. The multi-step stress relaxation tests are carried out on a small hand operated loading frame mounted on a polarizing microscope. The image is viewed using a video camera and monitor. The sample is scanned by translating the loading frame under the microscope with a micrometer. The position of the load frame is monitored by an LVDT connected to an A-to-D board in a computer. To determine the strain, two lines are made in the gauge section of the test specimen using a "green" permanent marker. An identifiable point on each line is marked and the location of this point is determined at each strain increment. The location of the point of interest on each line is aligned with a cross hair in the microscope as seen on the video monitor, and the position of the LVDT is digitized into the computer. The load is also monitored during the experiment using a 2,224 N (500 lbf) load cell that is connected to a bridge. The bridge is attached to the same computer via a serial connection. The expected standard uncertainty of the load measurements is 3% of the load. A custom program was developed to continuously record the load and any LVDT measurements that are made.

RESULTS AND DISCUSSION

A typical load-time curve for the multi-step relaxation of DGEBA/m-PDA is shown in Figure 1 along with various theoretical approximations. The linear elastic and linear viscoelastic approximations grossly over predict the load in the tests specimen at higher strains. This behavior indicates the epoxy resin at higher strains is exhibiting nonlinear viscoelastic behavior. Two nonlinear viscoelastic approximations of the load-time curve are also shown in Figure 1. The time-strain separable nonlinear viscoelastic approximation of the load-time curve was obtained using the strain dependent relaxation modulus shown in equation 1 and the modified Boltzmann Superposition Principle.
Theoretical prediction of multi-step relaxation behavior of DGEBA/m-PDA specimen using equation 2.

\[E(\varepsilon, t) = E_0 \exp\left(-\frac{C_0 \varepsilon}{\tau} \right)^{\theta} \]

(1)

This equation incorporates a damping function of the Wagner type to model changes in the elastic stiffness of the matrix with increasing strain and a modified power law expression to capture the relaxation behavior. This theoretical load-time curve still over predicts the response of the epoxy matrix at higher strains. In addition, this equation does not capture the change in relaxation behavior of the material with increasing strain. This latter observation is consistent with strain softening being due, at least in part, to nonlinearity in the relaxation process. The nonseparable nonlinear viscoelastic load-time curve was obtained by allowing \(\theta \) to vary with strain, i.e., \(\theta = \theta(\varepsilon) \). Until the nonseparable load-time curve deviates from the actual data, the variation of \(\theta \) with increasing strain was approximately linear. This form of equation 1 qualitatively captures the change in relaxation behavior with increasing strain, but under predicts the response of the matrix to increasing strain.

It was shown that parameters generated for equation 2 from 10 minutes strain increment data when \(\theta_1(\varepsilon) = \theta_2(\varepsilon) \) could not predict the response for the matrix when the time between strain increments was increased to 1 hr. Reasonable fits of the multi-step relaxation behavior was obtained by utilizing equation 2 (see Figure 2). In this equation a bi-exponential form of the damping function, Osaki and Laun class, is used and two relaxation regimes are assumed, i.e., \(\theta_1(\varepsilon) \neq \theta_2(\varepsilon) \). The strain rate dependent parameter, \(\kappa \), was found to scale with the effective strain rate of the multi-step stress relaxation experiment.

\[E(\varepsilon, t) = E_0 \left(1 + \frac{t}{\tau} \right)^{-\theta} \left[f \exp(-C_0 \varepsilon) \left(1 + \frac{t}{\tau} \right)^{-\theta}_f \right]
+ E_0 \left(1 + \frac{t}{\tau} \right)^{-\theta}_1 \left[(1-f) \exp(-C_0 \varepsilon) \left(1 + \frac{t}{\tau} \right)^{-\theta}_1 \right] \]

(2)

Fig. 1: Approximations of multi-step relaxation behavior in DGEBA/m-PDA epoxy resin strain at 1 hour time increments.

Fig. 2: Theoretical prediction of multi-step relaxation behavior of DGEBA/m-PDA specimen using equation 2.

REFERENCES

2nd International Conference on Mechanics of Time Dependent Materials
Double Tree Hotel, March 1-4, 1998, Pasadena, California, USA

Proceedings

Editors:
Igor Emri
University of Ljubljana, Ljubljana, Slovenia
and
Wolfgang G. Knauss
California Institute of Technology, Pasadena, USA

In Cooperation with

The Society for Experimental Mechanics, Inc.
7 School Street
Bethel, CT 06801, USA
Tel: (+1) 203 790-6373
Fax: (+1) 203 790-4472

The Society of Plastics Engineers, Inc.
PO Box 403
Brookfield, CT 06804-0403, USA
Tel: (+1) 203 775-0471
Fax: (+1) 203 775-8490

Published by:

SEM - Center for Time Dependent Materials
Cesta na Brdo 49
SI-1125 Ljubljana, Slovenia
Tel.: (+386) 61 123 7430, FAX (+386) 61 123 2471, E-mail: sem@ki.si
INTERNATIONAL CONFERENCE ON MECHANICS OF TIME-DEPENDENT MATERIALS
Proceedings / 2nd International Conference on Mechanics of Time
Dependent Materials, March 1-4, 1998, Pasadena, California, USA;
editors I. Emri, Wolfgang G. Knauss. - Ljubljana : SEM - Center for
Time Dependent Materials, 1998
ISBN 961-90575-1-1

1. Emri, Igor 2. Knauss, Wolfgang G.
73070848
TABLE OF CONTENTS

0. PLENARY LECTURES

TIME DEPENDENCE IN MATERIALS
 TSCHOEG N.W., CALIFORNIA INSTITUTE OF TECHNOLOGY (USA) _________________ 1

TORQUE AND NORMAL FORCE MEASUREMENTS TO CHARACTERIZE THE NON-LINEAR VISCOELASTIC RESPONSE OF SOLID POLYMERS
 MCKENNA G.B., NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (USA) _______ 2

EXTENSIONAL RHEOLOGY AND PROCESSING OF POLYMER MELTS
 WAGNER M.H., UNIVERSITAT STUTTGART (GERMANY) __________________________ 3

1. MEASURING AND MODELING POLYMER CONSTITUTIVE BEHAVIOR

TIME DEPENDENT DEFORMATION OF POLY (OXYMETHYLENE)
 KAUSCH H.H., SCARAMUZZINO P., PLUMMER C.J.G., SWISS FEDERAL INSTITUTE OF TECHNOLOGY (SWITZERLAND) _______________________________ 5

STRESS CLOCKS OR STRAIN CLOCKS
 POPELAR C.F., LIECHT I.K.M., THE UNIVERSITY OF TEXAS AT AUSTIN, (USA) __________ 6

A MODEL FOR NONLINEAR VISCOELASTICITY IN THE GLASS TRANSITION REGION
 CARUTHERS J.M., PURDUE UNIVERSITY (USA) ________________________________ 7

VOLUME/SHEAR INTERACTION IN GLASSY POLYMERS
 KNAUSS W.G., CALIFORNIA INSTITUTE OF TECHNOLOGY (USA); AND LU H., OKLAHOMA STATE UNIVERSITY (USA) ________________________________ 8

EFFECTS OF MORPHOLOGY ON THE TIME DEPENDENT CREEP COMPLIANCE OF ABS MODEL MATERIALS HAVING DEFINED SIZE DISTRIBUTION OF THE BUTADIENE PARTICLES
 MOGINGER B., EYERER P., UNIVERSITY OF STUTTGART (GERMANY) ________________ 9

THERMODYNAMICS OF THE RELAXATION OF CONTINUOUS MEDIA, SCALE TRANSITION AND BEHAVIORS OF TIME DEPENDENT MATERIALS
 CUNAT C., LEMTA – UMR 7563 – ENSEM – INPL (FRANCE) ___________________ 11

2. TIME DEPENDENCE IN METALS

CREEP BEHAVIOR OF DISPERSION HARDENED ALUMINUM MATERIALS
 KROPPF I., VOHRINGER O., MACHERAUCH E., UNIVERSITY OF KARLSRUHE (GERMANY) ______ 13

TIME DEPENDENT RHEOLOGICAL PROPERTIES OF SEMISOLID METAL ALLOYS
 MODIGELL M., KOKE J., AACHEN UNIVERSITY OF TECHNOLOGY (GERMANY) ____________ 15

MODELING OF MECHANICAL BEHAVIOUR OF NICKEL ALLOY BY USING A TIME DEPENDENT THERMODYNAMIC APPROACH OF RELAXATIONS OF CONTINUOUS MEDIA
 AYADI Z., CUNAT C., LEMTA – UMR 7563 – CNRS-2 (FRANCE); AND PILVIN PH., ECOLE CENTRALE PARIS, FRANCE _________________________________ 17
DEFORMATION AND FAILURE OF SOLDER JOINTS IN ELECTRONIC PACKAGING
TONG W., MENOR A.M., LEE X., YALE UNIVERSITY (USA) 19

THE EFFECTS OF STRESS RATIO AND FREQUENCY IN HCF OF Ti-6Al-4V
MORRISSEY R.J., McDOWELL D.L., GEORGIA INSTITUTE OF TECHNOLOGY (USA); AND NICHOLAS T., AIR FORCE RESEARCH LABORATORY/MLL WPAFB (USA) 20

THE THERMO-VISCOELASTIC BEHAVIOR OF Sn-Pb ALLOYS
BRUELLER O.S., TECHNICAL UNIVERSITY OF MUNICH (GERMANY); AND VILLAIN J., APPLICATION-ORIENTED UNIVERSITY OF AUGSBURG (GERMANY) 22

3. MEASURING AND MODELING POLYMER CONSTITUTIVE BEHAVIOR

LARGE DEFORMATION GENERALIZED ANISOTROPIC NONLINEAR VISCOELASTIC CONSTITUTIVE RELATIONS: MATHEMATICAL MODELING AND NUMERICAL SIMULATIONS
HILTON H.H., UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN (USA); AND YI S., NANYANG TECHNOLOGICAL UNIVERSITY (REPUBLIC OF SINGAPORE) 23

MODELING OF MULTI-STEP NONLINEAR STRESS RELAXATION IN DGEBA/M-PDA EPOXY RESINS
HOLMES G.A., PETERSON R.C., HUNSTON D.L.; NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (USA) 26

FURTHER DEVELOPMENT IN THERMODYNAMIC APPROACH FOR NONLINEAR THERMOVISCOELASTIC MATERIALS
ARFAOUI M., CHAZAL C., UNIVERSITE DE LIMOGES (FRANCE) 28

SIMULTANEOUS MEASUREMENT OF A NONLINEAR BULK AND SHEAR RELAXATION BEHAVIOR
RAVI-CHANDAR K., UNIVERSITY OF HOUSTON (USA) 30

STEPS TOWARDS A CONSISTENT ANALYSIS OF THE VISCOELASTIC PERFORMANCE OF POLY(TETRAFLUOR ETHYLENE) IN THE TRANSITION REGION
WORTMANN F.-J., DEUTSCHES WOLLFORSCHUNGSINSTITUT E.V. (GERMANY) 32

NON-DESTRUCTIVE DETERMINATION OF VARIATION WITH DEPTH MECHANICAL PROPERTIES OF TIME DEPENDENT POLYMERS
AILIKOVICH S.M., KRENEV L., SEROVA N., ROSTOV STATE UNIVERSITY (RUSSIA) 34

TRANSIENT STRESS WAVES IN VISCOELASTIC SHELLS AT LONGITUDINAL SHOCK LOADING
EMRI I., UNIVERSITY OF LJUBLJANA (SLOVENIA), AND KOSOVICH L., SUHULOVSKY M., SARATOV STATE UNIVERSITY (RUSSIA) 35

4. STRUCTURAL PROBLEMS

SELF-HEATING AND THERMAL FAILURE IN A POLYMERIC TUBE SUBMITTED TO CYCLIC TORSION
DINZART F., MOLINARI A., UNIVERSITE DE METZ (FRANCE) 37

ABOUT STRESS SINGULARITY ANALYSIS IN SPACE JUNCTIONS OF THIN VISCOELASTIC PLATES
MIKHAILOV S.E., UNIVERSITAT STUTTGART (GERMANY) 38

5. MEASURING AND MODELING POLYMER CONSTITUTIVE BEHAVIOR

APPARATUS FOR MEASURABLES
SAMARIN M., EMRI I., UNIVERSITY OF LJUBLJANA (SLOVENIA) 39

VOLUMIC RECOVERY OTHER MODELING
AIHAROUNE A., M., UNIVERSITY OF PARIS VI (FRANCE) 40

CREEP OF POLYMERS
KOCZÓWSKI R.H., UNIVERSITY OF LUBLIN (POLAND) 41

CONSTITUTIVE BEHAVIOR
CHEN W., ZHOU B., UNIVERSITY OF HOUSTON (USA) 42

FOURIER TRANSFORM BIOPOLYMERS - A CRITICAL REVIEW
BECKET S.T., NEST NATURPHYSIK (GERMANY) 43

RHEOLOGICAL PROPERTIES
ULČNIK-KRUMP M., AND STADLER R., UNIVERSITY OF LJUBLJANA (SLOVENIA) 44

TIME-DEPENDENT RHEOLOGY OF POLYMERS
MÖSTEDT H., GAI B., NÜRNBERG (GERMANY) 45
ON THE EVOLUTION AND THE ASYMPTOTIC BEHAVIOR OF A VISCOELASTOPLASTIC SHANLEY MODEL UNDER CONSTANT LOAD
Benedetti A., Università di Bologna (Italy); and Deseri L., Università di Ferrara (Italy) ... 40

CREEP BEHAVIOR AND STRESS RAISING AT CONTACT REGION IN A ROLLING WHEEL-TIRE
Takenaka T., Takashi M., Aoyama Gakuin University (Japan) 48

SMALL PUNCH TEST METHOD ASSESSMENT FOR THE DETERMINATION OF THE STEAM TURBINE ROTORS
Kozlowski R.H., Cracow University of Technology (Poland) 50

ABOUT THE STABILITY OF A NONLINEAR VISCOELASTIC ROD SUBJECTED TO A LONGITUDINAL FORCE IN THE FORM OF A RANDOM STATIONARY PROCESS
Potapov V.D., Moscow State University of Means Communication (Russia) 52

QUASI-FRONT IN VISCOELASTIC PLATES AND SHELLS
Emri I., University of Ljubljana (Slovenia); and Kaplunov J.D., Nolde E.V., Institute for Problems in Mechanics RAS (Russia) 53

5. MEASURING AND MODELING POLYMER CONSTITUTIVE BEHAVIOR

APPARATUS FOR MEASURING THE LATERAL CONTRACTION IN UNIAXIAL TENSION
Samarin M., Emri I., University of Ljubljana (Slovenia) 55

VOLUMIC RECOVERY OF PVAC-COMPARISON BETWEEN THE DNLR APPROACH AND SOME OTHER MODELING
Aharoune A., Marceron P., Cunat C.: LEMTA - UMR 7563 - ENSEM - INPL (France) ... 57

CREEP OF POLYMERS - A NONLINEAR VISCOELASTIC EXTENSION OF THE TIME DEPENDENT CREEP COMPLIANCE AND ITS COMPARISON TO EXPERIMENTAL RESULTS
Moginger B., Eyerer P., University of Stuttgart (Germany) 59

CONSTITUTIVE BEHAVIOR OF AN EPOXY AT VARIOUS STRAIN RATES
Chen W., Zhou B., University of Arizona (USA) ... 61

FOURIER TRANSFORM MECHANICAL SPECTROSCOPY (FTMS) OF TIME DEPENDENT BIOPOLYMERS - A CRITICAL STUDY
Becket S.T., Nestle R&D Centre York (United Kingdom); and Roberts I.D., Williams P.R., University of Wales Swansea (United Kingdom) 64

RHEOLOGICAL PROPERTIES OF COMPATIBILIZED TPU/SAN BLENDS
Ulčnik-Krump M., Malavašič T., National Institute of Chemistry (Slovenia); and Stadler R., University Bayreuth (Germany) 65

TIME-DEPENDENT RHEOLOGICAL PROPERTIES OF POLYOLEFIN MELTS AND THEIR RELATION TO MOLECULAR STRUCTURE
Münstedt H., Gabriel C., Kaschta J., Kurzbeck S., University of Erlangen-Nürnberg (Germany) ... 67
6. STRUCTURAL PROBLEMS

CREEP-DAMAGE BEHAVIOR OF PLATES AND SHELLS
ALTENBACH H., MARTIN-LUTHER UNIVERSITAT HALLE-WITTENBERG (GERMANY) 69

EVALUATION OF STRESS STATE AROUND THE CONTACT EDGE USING TRICOLOR PHOTOVISCOELASTIC TECHNIQUE
YONEYAMA S., TAKASHI M., AOYAMA GAKUIN UNIVERSITY (JAPAN), AND GOTOH J., YOKOHAMA NATIONAL UNIVERSITY (JAPAN) 71

7. AGING AND ENVIRONMENTAL EFFECTS

NONISOTHERMAL PHYSICAL AGING IN POLYMERS AND COMPOSITES
BRINSON C., BRADSHAW R.D., NORTHWESTERN UNIVERSITY (USA) 73

STUDY OF THE EFFECT OF AGING PROGRESSION ON CREEP BEHAVIOR OF PPE COMPOSITES
BISWAS K.K., SOMIYA S., KEIO UNIVERSITY (JAPAN) 74

PHYSICAL AGING IN FIBERS OF POLY ETHER-ETHER-KETONE
D'ANELLO C., RUSSO R., INSTITUTO DI RICERCA E TECNOLOGIA DELLE MATERIE PLASTICHE (ITALY), AND VITTORIA V., UNIVERSITY SALERNO (ITALY) 76

TIME DEPENDENCE OF DEGRADATION PHENOMENA OF PLANE WOVEN AFRP IN HOT-WET ENVIRONMENTAL EXPOSURE
SHIBASAKI M., SOMIYA S., KEIO UNIVERSITY (JAPAN) 78

TIME AND STRESS EFFECTS ON CRACK AND CRAZE GROWTH IN PMMA
PULOS G., NATIONAL UNIVERSITY OF MEXICO, MEXICO 80

8. SOLID/FLUID INTERFACE I

TIME-DEPENDENT STRUCTURES IN PIGMENTED WAXES AND THEIR INFLUENCE ON RHEOLOGICAL PROPERTIES
KASCHTA J., MUNSTEDT H., UNIVERSITY OF ERLANGEN-NURNBERG (GERMANY) 81

TRANSIENT SHEAR AND NORMAL STRESSES IN CONCENTRATED SUSPENSIONS-NEGATIVE NORMAL STRESSES
GLEIDLE W., UNIVERSITAT KARLSRUHE (GERMANY) 83

NONLINEAR FLUCTUATING HYDRODYNAMICS OF A VISCOELASTIC FLUID
MEDVEDEV G., BHATIA R., CARUThERS J.M., PURDUE UNIVERSITY (USA) 85

DETECTION OF INCipient GELATION BY SHEAR WAVE DISPERSION
WILLIAMS P.R., WILLIAMS R.L., UNIVERSITY OF WALES SWANSEA (UNITED KINGDOM) 86

RHEOLOGICAL AND PARAMETRIC STUDY ON SETTING MATERIALS BY LOW FREQUENCY DEVICE
ARNAUD L., VILLAIN G., BOUTIN C., ECOLE NATIONALE DES TRAVAUX PUBLICS DE L'ETAT (FRANCE) 88

SORPTIVE STRESS ESTIMATION OF MSE IN WOOD
HOUSKA M., KOC P., UNIVERSITY OF LJUBLJANA (SLOVENIA) 90

9. FAILURE / FRACTURE

TIME DEPENDENT FRACTURE
SUZUKI K., TAKASHI

ON CREEP LIFE TIME
GERMAIN Y., ELF AT (FRANCE) 91

A VISCOELASTIC FRACTURE
MULMULE S.V., DEN

CRACK DYNAMICS IN V1:
SLEPYAN L.I., TEL A INDUSTRIAL MATHEM

INVESTIGATING THE EF:
FILLED POLYMERIC MA

A FINITE ELEMENT AN:
DUBOIS F., CHAZAL

10. SOLID / FLUID INTERFACE II

ANALYSIS AND MODELING OF FIBERS
HAMAD W.Y., ECHI

TIME-DEPENDENT MEC
PIGNON F., MAGNIN

THIXOTROPIC BEHAVIOR
KHERFELLA H., BEN-HOUARI BOUMEDIENI CNRS (FRANCE)

RHEOLOGICAL PROPERTIES
SOSTAR S., UNIVERSITI

ON THE ELASTOVISCOPLASTIC INTERNAL PRESSURE
MARES R., UNIVERSIT

NEW FUNCTIONAL OF C.
YUMASHEVA M., SHE

OSCILLATORY GRAN
JAMES J., JOSEPH G., MENA B., INSTITUTO
9. FAILURE / FRACTURE I

TIME DEPENDENT FRACTURE PARAMETERS OF A GROWING CRACK IN A VISCOELASTIC THIN PLATE UNDER BIAXIAL TENSION
SUZUKI K., TAKASHI M., AOYAMA GAKUIN UNIVERSITY (JAPAN) .. 92

ON CREEP LIFE TIME AND FAILURE MODES
GERMAIN Y., ELF ATOCHEM (FRANCE), AND MOLINARI A., UNIVERSITÉ DE METZ (FRANCE) ... 94

A VISCOELASTIC FICTITIOUS CRACK MODEL FOR LARGE-SCALE IN-SITU SEA ICE FRACTURE
MULMULE S.V., DEMPSEY J.P., CLARKSON UNIVERSITY (USA) .. 95

CRACK DYNAMICS IN VISCOELASTIC LATTICE
SLEPAN L.I., TEL AVIV UNIVERSITY (ISRAEL); AZENBERG M.V., INSTITUTE FOR INDUSTRIAL MATHEMATICS (ISRAEL); AND DEMPSEY J.P., CLARKSON UNIVERSITY (USA) ... 96

INVESTIGATING THE EFFECTS OF PRESTRAIN AND STRAIN RATE ON CRACK GROWTH IN A FILLED POLYMERIC MATERIAL
A FINITE ELEMENT ANALYSIS OF CREEP CRACK GROWTH
DUBOIS F., CHAZAL C., PETIT C., UNIVERSITÉ DE LIMOGES (FRANCE) ... 99

10. SOLID / FLUID INTERFACE II

ANALYSIS AND MODELING OF THE VISCOELASTIC BEHAVIOR OF REGENERATED CELLULOSIC FIBERS
HAMAD W.Y., EICHHORN S., UNIVERSITY OF MANCHESTER (UNITED KINGDOM) 101

TIME-DEPENDENT MECHANICAL AND STRUCTURAL PROPERTIES IN COLLOIDAL CLAY GEL
PIGNON F., MAGNIN A., PIAU J.-M., UNIVERSITÉ JOSEPH FOURIER GRENOBLE I (FRANCE) 103

THIXOTROPIC BEHAVIOR OF WATER-BASED DRILLING MUDS
KHREFELLAH N., BENHADID S., UNIVERSITÉ DES SCIENCES ET DE LA TECHNOLOGIE HOUARI BOUMÈDÈNE (FRANCE); AND BEKKOUR K., SCRIVENER O., UMR 7507 ULPCNRS (FRANCE) ... 105

RHEOLOGICAL PROPERTIES OF PRINTING PASTES IN TEXTILE PRINTING
SOSTAR S., UNIVERSITY OF MARIBOR (SLOVENIA) ... 107

ON THE ELASTOVISCOPLASTIC BEHAVIOR OF CYLINDRICAL AND SPHERICAL SHELLS UNDER INTERNAL PRESSURE
MARES R., UNIVERSITY OF FERRARA (ITALY) ... 108

NEW FUNCTIONAL OF CREEP END CREEP RUPTURE
YUMASHEV AM., SHESTERIKOV S. UNIVERSITY OF MOSCOW (RUSSIA) 114

OSCILLATORY GRANULAR FLOWS
JAIMES 1., JOSEPH G., MAGANA A., & NATIONAL UNIVERSITY OF MEXICO, MEXICO; AND MENA B., INSTITUTO MEXICANO DEL PETROLEO, MEXICO ... 115
11. FAILURE / FRACTURE II

A MICROMECHANICAL APPROACH TO TIME-DEPENDENT FAILURE IN COMPOSITE SYSTEMS
GOVAERT L.E., SMIT R.J.M., PEIJS T., EINDHOVEN UNIVERSITY OF TECHNOLOGY (THE NETHERLANDS) 116

APPLICABILITY OF FATIGUE LIFE PREDICTION METHOD TO POLYMER COMPOSITES
MIYANO Y., NAKADA M., KANAZAWA INSTITUTE OF TECHNOLOGY (JAPAN); AND MUKI R., UNIVERSITY OF CALIFORNIA LOS ANGELES (USA) 118

VISCOELASTIC-PLASTIC AND DAMAGE MODELING OF THE TIME DEPENDENT BEHAVIOR OF POLYMER MATRIX COMPOSITES
CARDON A.H., QIN Y., BRUGGEMAN M., VANVOSSOLE CH., FREE UNIVERSITY OF BRUSSELS (BELGIUM) 120

CALCULATION OF THERMAL STRESSES IN GLASS-CERAMIC COMPOSITES
GANGHOFFER J.F., UNIVERSITÉ DE HAUTE-ALACE (FRANCE) 122

RESIDUAL STRESSES IN SHORT-FIBRE REINFORCED INJECTION MOLDED THERMOPLASTIC PARTS
MLEKUSCH B.A., MONTAN UNIVERSITY OF LEOBEN (AUSTRIA) 124

NUMERICAL AND ANALYTICAL ESTIMATES OF SLOW KINETIC FRACTURE OF MATERIALS
BALUEVA A.V., INSTITUTE FOR PROBLEMS IN MECHANICS OF RAS (RUSSIA) 126

INFLUENCE OF CREEP ON COHESIVE CRACK GROWTH IN CONCRETE STRUCTURES
BARPI F., VALENTE S., POLITECNICO DI TORINO (ITALY) 128

ABSTRACT

The last ten or fifteen years have seen a significant increase in the number of applications of composite materials in various industries. This growth is driven by the properties of composite materials, which offer a combination of strength, stiffness, and light weight compared to traditional materials. The use of composites has particularly increased in the aerospace, automotive, and construction industries.

However, the development of composite materials has also brought new challenges, particularly in terms of their failure behavior. Composite materials are subject to different forms of failure, such as matrix cracking, fiber-matrix debonding, and fiber failure. Understanding and predicting these failures is crucial for the design and optimization of composite structures.

A micromechanical approach to time-dependent failure in composite systems is a promising method for addressing these challenges. This approach considers the microstructure of the composite and the time-dependent behavior of the constituent materials.

The applicability of fatigue life prediction methods to polymer composites is another important aspect of composite material research. Fatigue failure is a common mode of failure in composite structures, and accurate prediction methods are essential for ensuring the durability and reliability of these materials.

Viscoelastic-plastic and damage modeling of the time-dependent behavior of polymer matrix composites is a complex area of research. This modeling helps to understand the behavior of composites under dynamic loading conditions and to predict their response in real-world applications.

Calculating thermal stresses in glass-ceramic composites is also crucial for the design of composite structures. These materials are often used in high-temperature applications, and understanding the thermal behavior of the composite is essential for avoiding failure due to thermal stresses.

Residual stresses in short-fibre reinforced injection molded thermoplastic parts are another area of interest. Residual stresses can significantly affect the performance of composite structures, and minimizing these stresses is important for achieving optimal performance.

Numerical and analytical estimates of slow kinetic fracture of materials are essential for understanding the fracture behavior of composite materials. This knowledge is crucial for predicting the failure modes and mechanisms of composite structures.

Influence of creep on cohesive crack growth in concrete structures is another important aspect of composite material research. Creep can significantly affect the behavior of composite structures, especially in long-term applications.

These advances in the understanding and modeling of composite materials are essential for their further development and widespread application. Future research should focus on improving the accuracy and reliability of these models to better predict the behavior of composite materials under various conditions.