LONG PERIOD GRATINGS AS FLOW SENSORS FOR LIQUID COMPOSITE MOLDING

Sylvia R. M. Kueh1, Richard S. Parnas2, Joy P. Dunkers2, Suresh G. Advani1, Paige S. Furrows3, Mark E. Jones3, Timothy A. Bailey2

1Department of Mechanical Engineering, University of Delaware, Newark, DE 19716-3140
2Polymers Division, NIST, 100 Bureau Drive, Gaithersburg, MD 20899-8543
3F&S/Luna Innovations, P.O. Box 11704, Blacksburg, VA 24062-1704

ABSTRACT

One of the most important issues in liquid composite molding (LCM) is the complete saturation of the preform by the resin to eliminate voids or dry spots in the structure which could later adversely affect the structural integrity of the part. While there have been efforts in developing reliable mold filling simulations for LCM, very few successful flow sensing systems exist for detecting actual resin arrival during mold filling. In this study, the feasibility of using optical fibers with long period gratings (LPG) as sensors for monitoring flow in the LCM process was investigated. An advantage of using LPGs is that they are more robust and less susceptible to background noise than simple bare fibers. Furthermore, the location of resin arrival can be easily identified as the signals from each LPG uniquely correspond to predetermined wavelengths along the source spectrum. The LPGs are sensitive to changes in the refractive index and register a strong signal change when covered with resin. In this study, the LPG sensors were placed in the middle of a preform stack inside a mold and the sensor response after the mold was properly closed, and when the resin covered a particular LPG was monitored. An assortment of preforms, which included random mats and unidirectional fabrics, with a series of fiber volume fractions were used to determine their effects on the sensor response.

Keywords: Flow sensing system, long period gratings (LPG), liquid composite molding (LCM)

1. INTRODUCTION

Since the late 1970’s, it has been discovered that exposing a section of a germanium-doped optical fiber to an interference pattern of UV light results in a spatial modulation of the refractive index with the same spacing [1-2]. Long period gratings (LPGs) are fabricated by transversely exposing the side of such a fiber through an amplitude mask with a desired grating period [1,3-4]. The long period describes a fiber refractive index perturbation with a periodicity that is much greater than the wavelength of light. In most cases, this is on the order of hundreds of micrometers.

The periodic index changes couple light from a guided fundamental mode in the core of single-mode fibers to a co-propagating cladding mode [3,5-10]. Only certain wavelengths are converted to the cladding modes and subsequently attenuated while others pass unaffected through the gratings. These are manifested as “dips” in the transmission spectrum. Wavelengths at which a LPG couples light is determined by the grating period and the difference between the two modal refractive indices [1,3,8,11-12]. Due to their wavelength selective attenuation properties, LPGs have primarily been employed as spectral filters in fiber optic communications systems [1,3,6-8,10,12-15].

Since the cladding modes interact with the material surrounding the cladding, LPG spectral responses are modified by changes in the properties of the ambient condition, in addition to any modulation of the core and cladding guiding properties [1,6,12,15]. It is this characteristic that researchers have utilized to monitor changes in physical parameters such as stress, strain, temperature and refractive index [3,5-6,8,11,16-17] as well as chemical processes like corrosion monitoring [8] and biosensing [1].

In liquid composite molding (LCM), the fiber preforms are placed in a steel mold, which is then closed and resin is injected to saturate the empty pores in the preforms. However, under these typical manufacturing circumstances, it is difficult to “see” if the resin is fulfilling its function. Embedded sensors can help monitor the impregnation process and many such developments have been attempted [18-25]. For the first time, LPGs will be used as embedded flow monitoring sensors in LCM, to detect the arrival of resin in the mold during filling. When the higher indexed resin covers a LPG sensor, the light
that would have been attenuated gets coupled back into the core and, hence, there is no corresponding dip in the transmission spectrum. Such information would be very useful to composites manufacturers by alerting them to specific problems that could occur during resin injection.

Although the many currently existing simulation packages concerned with mold filling [26-31] have contributed tremendously in providing insight and understanding of this process, the design optimizations based on them have traditionally been conducted offline. This poses a difficulty when unanticipated anomalies are encountered during manufacturing. Moreover, the variations in the processing parameters are too numerous to be accounted for in these simulations. A more effective approach would be to monitor the progression of the mold filling as it occurs and implement appropriate corrective measures as necessary online as well. We believe LPGs have the potential to serve in such a sensory capacity.

LPGs posses the usual advantages associated with fiber optic systems, for instance small size and light weight, which allows them to be embedded without compromising the host’s structural integrity. Furthermore, their inherent immunity to electromagnetic interference gives these systems a clear edge over other flow sensing systems that are based on the resin dielectric properties [22-25]. Moreover, LPG sensors have an additional advantage over other intensity-based fiber optic systems [18] in that they are robust to fluctuations in light amplitude due to unquantified connection losses and fluctuating light sources [19-21]. As each LPG sensor is uniquely wavelength encoded, several of them can be multiplexed on a single strand of fiber, and thereby minimizing the degree of additional heterogeneity introduced into the process.

As an initial step towards establishing the feasibility of using LPGs in such a capacity, experiments were conducted to benchmark the performance of LPGs under realistic composites manufacturing conditions. These tests included ascertaining the effects of fiber architecture and volume fraction on the sensor response. The results are presented here along with a brief comparison of simulated responses from LPG-based sensing system and continuous linear sensors.

2. EXPERIMENTAL SETUP AND PROCEDURE
The LPGs were prepared at F&S on communication-grade optical fiber with a cladding diameter of 125 µm. Each strand of fiber used had two 2.0 cm LPGs spaced 5.0 cm apart. The core refractive index is 1.4515 while the buffer refractive index is 1.444.

These optical fibers are sandwiched in between equal number of layers of fiber glass preforms and placed inside a flat plaque mold 1.0 cm x 15.2 cm x 22.9 cm with a transparent top as shown in Figure 1. The resin was injected from the same location as the optical fiber’s point of entry into the mold. An environmentally friendly corn syrup-water mixture was used as the simulated resin having viscosities ranging from 0.3 Pa s to 0.6 Pa s. The refractive index of the simulated resin was higher than that of the cladding refractive index.

Both ends of the optical fiber are connected to the input-output ports of the Lunascan device using bare fiber adapters. The device is basically an optical spectrum analyzer (OSA) and light source. One port emits light at 1550 nm while the other collects and analyzes the optical spectrum transmitted through the fiber. The spectral output is displayed on a computer and only the spectrum of light between 1495 nm and 1585 nm is viewed using this system. Approximately three scans are taken by the system every second. Every spectrum that is recorded is the mean of several consecutive scans logged by the OSA. Averaging the scans ensures that any inherent fluctuations in the system are accounted for.

A spectrum from the optical fiber is recorded before the fiber is placed inside the stack of preforms. It is also logged after the mold is closed, before the liquid is injected into the mold, and at various other times during the mold filling process. This procedure was done for random fiber mats, plain bi-directional weave and two cases of unidirectional fibers. In one case, the reinforcing fibers are parallel to the optical fiber alignment and transverse to it in the other case. Three fiber volume fractions were used for each reinforcing architecture. Table 1 summarizes the tests that were conducted. The check marks indicate the experiments that were conducted in this investigation.

3. RESULTS AND DISCUSSION
The OSA system proved to be a fairly stable system since there was very little fluctuation (less than 0.004 standard uncertainty in relative intensity) in the scans obtained for each case. Figure 2 shows a typical spectrum of an optical fiber with two LPGs written on it. The vertical axis is relative intensity with respect to the maximum intensity detected by the
system for that particular scan. In this case, the LPGs were written such that light at 1509 nm and 1549 nm would be filtered out, as evident from the transmission dips seen in that figure.

These dips disappear when the simulated resin covers the sensor, coupling the light at that wavelength back into the core-propagating mode. When both LPGs are covered, the spectrum is like that of an optical fiber without any LPGs written on it. Since each of the LPGs is written at distinctly different wavelengths, it is possible to identify where and when the sensors are covered.

As with any optical fiber system, the LPGs are extremely sensitive to microbending when they are compressed between the preform layers inside the mold as can be seen in Figure 3. It was observed that signal deterioration worsened at higher fiber volume fractions and it was noticeably worst in the random mat case. There was the least signal deterioration with the parallel unidirectional reinforcements. Both the transverse unidirectional mat and bi-directional weave cases are between these two extremes, with the signals from the bi-directional weave being slightly more affected than the other.

It is possible that this deterioration in signal is due to a combination of effects. Not only is there excessive microbending on the optical fibers when it is compressed in the midst of the preform stack but the LPGs are also in intimate contact with the fiber glass reinforcement which has a similar refractive index as the buffer and cladding. Moreover, it is likely that compressive stresses are induced in the optical fiber itself.

The greatest challenge in these experiments was to retain the integrity of the sensor signals. To overcome this issue, a hollow glass sleeve was placed over the sensors. These protective sleeves have an inner diameter of 445 µm and an outer diameter of 650 µm. They are 4 cm long each, long enough to cover the entire length of the LPG and allow for some slight translational movement along the optical fiber during placement in the mold. These glass sleeves are not permanently fixed onto optical fiber so that liquid may flow inside them and reach the LPGs.

As can be seen from Figure 4 there is a slight difference between the signals from a LPG compressed inside a stack of random mats but is covered by such a sleeve and that of an uncompressed LPG. However, this is a vast improvement over the signals obtained when the sensor is not protected by the glass sleeve and is subjected to the same conditions inside the mold. When the resin simulant is injected into the mold, the dips disappear, as expected, after the resin simulant completely covers each LPG as is shown in Figure 5. However, this usually occurs after the flow front is observed to have moved beyond the sensor locations.

Although we have managed to isolate the source of the signal deterioration, using the protective glass sleeves on the LPGs is only an interim solution to the problem. Not only do they delay the resin from reaching the sensors, they are also significantly larger than the reinforcement fibers and the optical fiber itself. Hence, their presence in the mold might also affect the resin flow progression. Alternative solutions are being sought to retain the sensor’s signal integrity without adding to the heterogeneity inside the mold.

4. SENSOR PLACEMENT

With the confidence that the LPGs will adequately function as flow sensors in a mold filling situation, the next step is to decide on their optimal location in the mold. This may be accomplished by applying an evaluation procedure similar to that discussed in [32], which assigns a score reflecting the relative performance of each sensor configuration considered. Although this algorithm was developed for sensors with continuous linear response, it could be modified in this case, to account for the discrete nature of the LPG response.

Just as the trajectory of the line sensor that performed the best in [32] was located in the top half of the mold, the best sensor location for a single LPG sensor is expected to be somewhere in that region of the mold as well. Moreover, it is expected that the score for this singular sensor will be less than that for the continuous linear sensor. In fact, adding more sensing points along a trajectory should improve the score since a set of strategically placed discrete sensors would yield more information about the mold filling process than just one. For example, a system with two sensing locations should outperform a system with just one. A more detailed account of this work will be included in an upcoming paper.

5. CONCLUDING REMARKS
It has been demonstrated that these LPGs can feasibly be used as flow sensors in a mold filling application. Their simple “yes/no” response to the presence of resin at a certain location makes them more robust and less susceptible to losses and fluctuations in light than intensity-based optical fiber sensors. Resin arrival is easily identified since each LPG can be fabricated to uniquely correspond to predetermined wavelengths along the transmission spectrum. This also allows the implementation of wavelength multiplexing along the same strand of fiber.

Although we were able to maintain most of the LPG signals, by using the glass sleeves, even while it was compressed in between fiber glass reinforcements in the mold, the sleeves were found to delay the sensor response. Efforts are still underway to find alternative solutions to this problem without increasing the complexity within the mold.

6. REFERENCES

7. TABLES AND FIGURES

Table 1: Summary of tests that were conducted

<table>
<thead>
<tr>
<th>Architecture Type</th>
<th>Fiber Volume Fraction (%)</th>
<th>Dry</th>
<th>With Liquid Injection</th>
<th>Without Hollow Core</th>
<th>With Hollow Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random mat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidirectional (parallel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidirectional (transverse)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi-directional</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Schematic of mold and optical fiber assembly and experimental setup
Figure 2: Spectrum of an optical fiber containing two LPGs written at 1509nm and 1549nm in (a) its clean, uncompressed state, (b) when the 1509nm LPG is covered by resin simulant and (c) when both LPGs are covered by the resin simulant.
Figure 3: Spectrum of an optical fiber containing two LPGs written at 1509nm and 1549nm in (a) its clean, uncompressed state, when it is compressed in between (b) random mats (\(v_f=17\%\)), (c) unidirectional mats with fiber transversely oriented with respect to the optical fiber (\(v_f=60\%\)) and (d) unidirectional mats with fibers aligned parallel to the optical fiber (\(v_f=60\%\))
Figure 4: Spectrum of an optical fiber containing two LPGs written at 1508nm and 1549nm in (a) its clean, uncompressed state, when it is compressed in between (b) random mats ($v_f=17\%$) without any protective sleeves and (c) random mats ($v_f=17\%$) with the protective sleeves.
Figure 5: Spectrum of an optical fiber containing two LPGs written at 1508nm and 1549nm in (a) its clean, uncompressed state, (b) when it is compressed inside the mold with the hollow sleeves in place, when the resin simulant is injected into the mold and covers (c) the 1508nm LPG and (d) both LPGs.