INTRODUCTION

Scanning Probe Microscopy (SPM) techniques promise micrographs that map specimen properties with nanometer scale resolution. While current SPM images generally provide quantitative information, some progress has been made in quantifying SPM data. A prime example in this regard is AFM topography data. In this case two factors, scanning piezo non-linearity and unknown probe tip shape hamper precision measurements of specimen surface features. Now, linearized/calibrated piezo systems ensure micrograph dimensions are uniform. Accordingly, convenient means to characterize these probes are needed.

In recent years, a new generation of SPM techniques, which intend to measure chemical, mechanical, and electro/optical properties on the nanoscale, have been developed. Based upon sample/probe interactions that are more complex than in AFM, contrast in the new SPM images is difficult to quantify. In particular, the development of quantitative SPM techniques require methods to gauge the following factors:

- Resolution and Sensitivity: The lateral resolution, measurement volume, and sensitivity to measured properties must be determined.
- Probe quality: Many new SPM techniques depend upon custom-made probes, the fabrication of which is generally not reliable or uniform. Accordingly, convenient means to characterize these probes are needed.
- Combination Effects: SPM measurements of, for example, chemical properties are convoluted with local mechanical, topographic and other effects. Effective reference specimens would serve to separate the impact of these "combined" effects on image contrast.

In response to these needs, a new research effort initiated by the NIST Combinatorial Methods Center (NCMCM) aims to provide a suite of reference specimens useful for the quantification of new generation SPM data. By design, these specimens gauge the quality of SPM probes, calibrate SPM image contrast through "traditional" surface measurements (e.g. spectroscopy, contact angle) and provide information useful for modeling complex probe/sample interactions. The design and production of these specimens uses bench-top microfabrication routes, used in conjunction with the combinatorial gradient-specimen fabrication toolbox developed by the NCMC.

REFERENCE SPECIMEN DESIGN

An example reference specimen design is illustrated in Figure 1. Such a specimen would be useful for quantifying chemically sensitive SPM techniques such as friction-force AFM, or Chemical Force Microscopy (CFM), which employs a chemically functionalized AFM probe. The reference specimen includes a pattern of micron-scale lines that gradually change in their chemical contrast (e.g. surface energy) with respect to a constant matrix. Wide "calibration" fields, which bound the patterned area, directly reflect the changing (or static) chemistry of the lines (or matrix); so traditional measurements along the calibration fields gauge chemical differences in the gradient micro-pattern. Accordingly, for SPM micrographs acquired along the patterned region, the specimen calibrates the image contrast and illuminates the sensitivity (minimum contrast) with respect to traditional measures. In addition, for techniques like CFM this specimen serves as a tool for comparing the quality of tip-functionalization.

ACKNOWLEDGEMENTS

The authors thank the NIST MSEL Director's Reserve Program and the NIST Advanced Technology Program for Funding. Thanks also to Donna Hurley (Materials Reliability Division, NIST) and Brian Huey (Ceramics Division, NIST) for useful discussions, and to Tinh Nguyen and Xiohong Gu for providing feedback on our specimen designs.

REFERENCES