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Abstract

Two types of Fourier Transform based filters are presented and used to enhance fingerprint
images for use with a neural network fingerprint classification system developed at NIST [1][2].
With image enhancement the system is capable of achieving classification error rates of 8.65% with
10% rejects (average over volumes 1-5 of NIST Special Database 9), a 2 percentage point improve-
ment in error rate versus using no fingerprint enhancement. Speed of the filters range from 2 to 9
seconds. Classification tests were performed with fingerprints from NIST Special Database 9 Vol-
umes 1-5 [3] using ridge-valley based feature extraction, Karhunen Loève transform, and a Proba-
bilistic Neural Network (PNN) classifier. Improvements made to the classification system used
include: a new segementor, use of non uniform feature vectors, and a faster version of the PNN
classifier. The faster PNN classifier results in an average of four times faster classification with no
change in resulting error rates. Also, the testing method used differs from past reports because no
rolling of the same print is allowed to appear in both the training and testing set used by the Neural
Network classifier.

Keywords: image enhancement, fast Fourier transform, fingerprint classification, Probabilistic
Neural Network, Karhunen Loève transform, database, registration.
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1Introduction
The current classification system used at NIST involves three main steps: pre-processing, fea-

ture extraction and classification. The current problem being presented is to accurately classify fin-
gerprints into five major class groupings: Arch, Left Loop, Right Loop, Tented Arch and Whorl
(see Figure 1a-e for example prints). A major problem that has occurred in trying to classify fin-
gerprints is extracting features from poor quality images. The features extracted from poor quality
images tend to have scattered ridge directions with low confidences. Poor ridge directions can
result in erroneous registration points or, since some of the classes like arch and tented arch may
have very slight differences, the classifier will have difficulty accurately separating the different
classes. This report concentrates on using three different Fourier Transform based image filters to
help reduce the noise present in the images. One hopes that by providing the feature extractor with
less noisy images that it will be able to extract less ambiguous features to send into the classifica-
tion stage resulting in more accurate classification. Results will show that the goal of extracting bet-
ter features and improving classification was accomplished.

Figure 1a: Example of arch pattern.
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Figure 1b: Example of left loop pattern.

Figure 1c: Example of right loop pattern.
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Figure 1d: Example of tented arch pattern.

Figure 1e: Example of whorl pattern.

The images used, for training and testing, are from NIST Special Database 9 Volumes 1 and 2
[3], which are 832 X 768 8-bit gray scale images. All reports to this point have reported results
using NIST Special Database 4 [4]; there are very significant differences between the two data-
bases making comparison of results obtained from each database very difficult. Section 2 discusses
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the important differences between NIST Special Databases 4 and 9 such as method of scanning the
data and quality of the data.

Another important difference from earlier testing methods is that in previous test the “f” roll-
ings of the fingerprints in Special Database 4 were used for training and the “s” prints were used
for testing. This is very significant because for test in this report the “f” prints from one volume are
used as the training set and the “s” of a different volume are used as the testing set. Test have shown
there is a significant difference in classification error rates (3-4%) that occurs when the first rolling
of a print appears in the training set (especially with a Probabilistic Neural Network) versus having
different data in the training and testing sets. Knowing this one should not compare results reported
in this report with results reported in earlier reports. For this reason, Section 8 contains results of
classification at various stages of system improvement (i.e. no enhancement at all, adding registra-
tion and adding new feature extraction methods) for use in comparing the effects of applying dif-
ferent filters to the images.

Most of the original 832 X 768 images contain significant amounts of white background space
which only increases processing time and does not help classification. Segmentation, as described
in Section 3, is used to obtain the best 512 X 480 section of the original image for use by the rest
of the classification system. Currently a section of 512 X 480 is used for compatibility with current
algorithms and to help reduce computation time.

The next step is filtering of the fingerprint images, which is discussed in Section 4. As previ-
ously stated there are three different filters that will be applied to the image data. Each filter uses
the fast Fourier transform to first convert the image into the frequency domain before applying fil-
ter masks. The first filter processes the image in subsections and reconstructs the filtered image
from these sections. The other two filters use specially oriented masks which filter the image based
on distinct orientations. They create new images based on each orientation and then reconstruct the
filtered image from these orientation images.

After filtering, the image is ready for feature extraction. The current method being used, dis-
cussed in Section 5, is a ridge-valley feature extractor. The feature extractor provides more detail
in important areas of the fingerprint print image such as cores and deltas by allowing more ridge
directions in these areas at the expense of less ridge data near the edges of the image. At this stage
the ridge directions are also registered. Figure 2 shows an example of a core location found by reg-
istration. Registration is used to move the core of each fingerprint to a common point and help
reduce differences introduced by segmenting the fingerprint at different locations. The output of
the feature extractor, an array of 840 ridge directions, is reduced to a much smaller set of input fea-
tures by first calculating the covariance matrix of the training set feature vectors and then sending
the principle eigenfunctions of the covariance matrix (calculated using EISPACK routines [5]) to
a Karhunen Loève (KL) transform. The KL transform is a dimensionality reducing transform
which takes the 840 ridge directions for each image and produces approximately 120 features for
use as input to the Neural Network classifier. Another useful feature of the KL transform method
is that the features are ranked in order of decreasing variance so it is simple to use fewer features
than are actually found by selecting the first n features.
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The final stage of the system is classification. For classification purposes the primary class of
each print was used and no weight was given for any referenced classes at this time. Also, all scar
prints were discarded from the dataset as it was not clear how to handle these prints. The classifier
used for this report is a Probabilistic Neural Network [2][13] as described in Section 6. During clas-
sification the a priori probabilities of each class are applied to the output activations giving more
weight to classes that have a more common occurrence in a natural distribution. Also, a “fast”
implementation of PNN is used which reduces the computation time by approximately a factor of
4 with no change in classification accuracy. The method takes advantage of the KL feature set being
in order of decreasing variance to limit the calculation time.

The results of the experiments performed are given in Section 8 along with the methods used
for scoring and rejecting the fingerprints. Unlike previous work reported, the scoring does not use
the a priori probabilities when scoring because after rejecting a certain number of prints it may be
incorrect to assume the class distributions are still the same. At this point there is not sufficient data
to estimate the class distributions after certain levels of rejection.

Figure 2: Example of a core location found by registration.
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2 Experimental Fingerprint Database
To date most fingerprint classification results reported in NIST work were performed using

NIST Special Database 4 (SD4). The images used in this report for training and testing purposes
were taken from NIST Special Database 9 Volumes 1-5 (SD9). SD9 images are 8 bit per pixel gray
scale images of mated fingerprint card pairs (270 card pairs per volume). This means the finger-
prints are matched at the card level, and not every individual fingerprint from mated cards will nec-
essarily have the same exact class. In contrast, SD4 was setup so that all matched fingerprints had
the same class label. Every fingerprint in SD9 has a National Crime Information Center (NCIC) [6]
class label assigned by classification experts. These assigned NCIC classes were converted to one
of the following five major groups: Arch, Left Loop, Right Loop, Tented Arch and Whorl for clas-
sification purposes.

The most obvious difference between the two databases is that SD4 contains an equal number
of fingerprints from the five major classes where as SD9 was randomly selected from current FBI
work so that it approximated a natural distribution of the fingerprint classes. The “natural” proba-
bility of occurrence for each of the five major classes is shown in Table 1. These probabilities were
calculated from a sample of fingerprint classes containing approximately 222 million fingerprint
classes. Also shown in table 1 are the exact class distributions of volumes 1 and 2 of SD9. The vari-
ations between the exact and natural distributions are accounted for by weighting the output acti-
vations of the PNN classifier with the probabilities for each class (see Section 6).

Table 1: Probability of occurrence of the five major class groups.

The random collection of data from current FBI work also results in a lower quality of images,
although it is a more realistic sample of the classification work being done by humans. The quality
is lower because the “s” rollings are from current search cards sent to the FBI which in most cases
are of lower quality than the permanent file cards. The prints used in SD4 were taken from the per-
manent files of the FBI in which case if multiple cards have been collected on one individual the
better quality cards are stored in the permanent file.

There was also a significant difference in the method used to collect the data for SD4 and SD9.
In SD4 each image was scanned individually and some “eyeball” registration was done to center
the image in the area being scanned as well as rotating the image into the upright position. SD9 was
collected by first scanning all ten prints on a card into one large image (4096 X 1536 pixels) and
then segmenting the individual images. The images were segmented at the same point for every
card, so there was no “eyeball” registration or orientation correction occurring in SD9.

Class
A
L
R
T
W

“Natural” 
0.037
0.338
0.317
0.029
0.279

Volume 2
0.038
0.316
0.309
0.048
0.289

Volume 1
0.067
0.306
0.311
0.041
0.275
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Taking all the factors of quality, registration, and segmentation into account, SD9 is a more
realistic method of evaluating a complete classification system, where as SD4 is more useful in
evaluating a simple feature extraction routine and classifier. The use of SD9 for evaluating the per-
formance of the entire system should provide more realistic results than using SD4.

3 Image Segmenting
The fingerprints from NIST Special Database 9, present a new problem to the classification sys-

tem because the images are 832 by 768 pixels in dimensions and contain significant amounts of
white space in the image (see Figure 3). The segmentation routine described below is used to seg-
ment the fingerprint data for use by the rest of the classification system. 

The segmentation routine takes as its input an original fingerprint image, which is an 8-bit gray
raster of dimensions 832 pixels (width) by 768 pixels (height); its output is a smaller 8-bit raster,
512 by 480 in size, produced by snipping from the input raster a rectangular region, with the sides
of the snipped rectangle not necessarily parallel to the corresponding sides of the original raster.
Snipping out a smaller rectangle is helpful because it reduces the amount of data that has to undergo
the compute-intensive filtering process, and also because it produces a raster whose size is well
matched to our implementation of Wegstein’s R92 registration routine. The segmentor also
attempts to return fingerprints which are rotated to an upright position.
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Figure 3: Original raster of image to be segmented.

The segmentor decides which rectangular region of the raster to snip out by performing the fol-
lowing steps (Figure 3 is an original fingerprint raster, and Figure 4a-d illustrate the processing as
applied to this fingerprint):

 1) Produce a 104x96-pixel binary raster whose pixels indicate which 8x8-pixel blocks of the
original raster are considered to be “foreground”:

Find minimum pixel value for each block as well as the global minimum
and maximum pixel values.

For (several factor values between 0.0 and 1.0)

{

threshold = global_min + factor * (global_max - global_min)

Set to “true” each pixel of candidate-foreground map whose correspond-
ing pixel of the array of block minima is <= threshold and count resulting
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candidate-foreground pixels.

Count the transitions between the true and false values in the candidate-
foreground, counting along all rows and also along all columns. Keep
track of minimum number of transitions.

}

Among those candidate-foregrounds whose number of true pixels is within
specified limits, pick the one with the fewest transitions. (If threshold is
too low, there tend to be many holes in what should be solid blocks of fore-
ground; if the threshold is too high, there tend to be many spots on what
should be solid background. If threshold is about right, there are few holes
and spots, and hence relatively few transitions.

Figure 4a shows the foreground produced from the fingerprint of figure 3.

Figure 4a: Foreground of Figure 3.

2) Clean up and center the foreground-map:

Perform three erosions on foreground-map. Each erosion consists of
changing to false each true pixel that is next to a false pixel.

Find the connected sets (“blobs”) of true pixels, and change to false all pix-
els except those belonging to the largest blob.

Change to true any pixel that has true pixels both to its left and to its right,
or both above and below itself.

Calculate centroid of foreground-map and translate foreground-map mov-
ing its centroid to the middle pixel position of its raster.

Figure 4b shows the result of cleaning up and centering the foreground.

Figure 4b: Foreground of Figure 3, “cleaned” and centered.

3) Find the left, top, and right edges of the foreground:

Move upward from middle row and find left-most true pixel of each row,
but stop when horizontal difference between current row’s and previous
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row’s left-most true pixel is > 1.

Repeat process, moving downward from middle row.

These two processes find the left edge of the foreground. The limit of one
on the horizontal change prevents the supposed edge from going around a
corner of the foreground.

Similarly, find top and right edges.

The three lines in the center of Figure 4c are the edges of the foreground.

Figure 4c: Edge detection of Figure 3.

4) Fit straight lines to foreground edges:

For each of the three edges, use linear regression to produce a straight line
that most closely fits the points comprising the edge.

Naturally, the left and right edges are fitted to lines of the form x = m * y
+ b.

The top edge is fitted to a line of the form y = m * x + b.

The straight lines in the right part of Figure 4c are the fitted lines.

5) Calculate overall slope of foreground:

Calculate the average of the slopes of the left edge, the right edge, and a
line perpendicular to the top edge (negative the slope of the fitted line).
This average slope is the overall slope of the foreground.

6) Find top of foreground:

Make a histogram from the rows of a rectangle whose width corresponds
to the output raster width, whose height is large, whose center is at the cen-
ter of the foreground’s raster, and which is rotated so that its sides have the
same slope as the foreground.

Move downward in the histogram, stopping at the first row which both fits
entirely into the foreground raster and has a threshold number of true pix-
els. (Note that the resulting foreground top is not generally the same as the
top edge found earlier, because its slope is the average of the slopes corre-
sponding to the three edges found, rather than being the slope of just the
top edge.)

7) Finish deciding the snipping parameters:

The overall slope computed earlier determines the angle of snipping which
nullifies any rotation of the fingerprint.
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As for the position of snipping, that is chosen so that the top of the snipped
rectangle corresponds to the foreground top found in the preceding step.
(Having the snipped rectangle hang from the top of the foreground, instead
of centering it on the foreground center, produces a bias in favor of the last
joint of the finger, which is the only interesting part of the finger as far as
classification is concerned.)

The box superimposed on the foreground, in the left part of Figure 4c,
shows the snipping rectangle that has been decided on.

8) Snip smaller raster from the original raster:

Produce the output raster by copying the appropriate pixels of the input
raster, applying the translation and rotation that correspond to the snipping
parameters that were computed.

Figure 4d shows the output raster snipped from the input raster. Its edges
correspond to the box in the left part of Figure 4c.

Figure 4d: Segmented image of Figure 3.
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4 Fingerprint Image Enhancement
This section describes the two filtering techniques used to enhance the quality of the fingerprint

images. Both filter techniques use the fast Fourier transform (FFT) to compute the discrete Fourier
transform (DFT) when filtering the image. The difference in the methods is that the first filter oper-
ates on 32 X 32 pixel sub-regions of the image and the second filter acts globally over the entire
image. Also, the second filter enhances the image in distinct directions where as the first just does
simple noise reduction. Figure 5 shows the original unfiltered fingerprint raster that has been
through the segmenting process.

Figure 5: Original image f0000048.pct.

4.1 Localized FFT Fingerprint Filter
The first filter used to improve the quality of the fingerprint images is based on the algorithm

in [7]. This filter processes the image in 32 X 32 pixels, beginning in the upper left hand corner of
the image. After processing a tile it shifts right 24 pixels and to obtain the next 32 X 32 tile, result-
ing in the first 8 columns of the tile being common with the last 8 columns of the previous tile. After
reaching the right side of the image the filter shifts down 24 pixels, resulting in the 8 rows of com-
mon data with vertically adjacent tiles, and restarts at the left side of the image. Processing contin-
ues until reaching the bottom right side of the image. The common data between the horizontally
and vertically adjacent tiles helps reduce the artifacts (visible in Figure 6) created by processing
the image in tiles.
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Each tile is treated as a matrix of real numbers. The first step in filtering a tile is to compute the
two-dimensional DFT, defined as follows (B set to zeros):

 

The FFT is used, rather than using formula (1) directly. The filtering of some of the high and low
spatial frequencies is done using a mask to set these frequencies to zero. Next the power spectrum
P of the FFT is computed:

The elements of the power spectrum (Pjk) are then raised to a power α (0.3 was used) and multi-
plied by the FFT elements X + iY producing the new elements U + iV:

Finally, the inverse transform of U + iV is computed, and its real part becomes the filtered tile. In
reconstructing the image the filter keeps only the center 24 X 24 pixels, accounting for the 8 pixel
overlap, and discards the 4 outer edge rows/columns of the tile. The multiplication of the FFT ele-
ments by a power of the power spectrum has the effect of amplifying the dominant frequencies in
the tile. Presumably, the dominant frequencies of the tile are those corresponding to the ridges
thereby increasing the ratio of ridge information to non-ridge noise and adapting to variations in
ridge frequency from one tile to the next. Figure 6 is a result of applying this filter to the raster of
Figure 5.

Xjk iYjk+ Amn iBmn+( ) exp 2πi
j 1 ) m 1 )−(−(

32

k 1 ) n 1 )−(−(
32

+ ) )(−(
n 1=

32

∑
m 1=

32

∑= (1)

Pjk Xjk
2 Yjk

2+= (2)

Qjk Pjk
α= (3)

Ujk QjkXjk= (4)

Vjk QjkYjk= (5)
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Figure 6: Image filtered using localized FFT filter.

4.2 Directional FFT Filter
The directional FFT filter was designed to do better filtering with respect to the ridge flow in

the fingerprint image [8]. The filter uses a predefined orientation mask designed to filter the finger-
print image in a primary ridge direction while preserving the detail of the minutiae. Another advan-
tage of the filter is that it does not produce artifacts as seen with the localized FFT filter.

The filter processes the image by first calculating the FFT of the image. Next, the directional
mask is applied by rotating it to ten distinct orientations, creating ten different images with the
ridge flow enhanced in each of ten distinct directions. Then the inverse FFT for each direction fil-
tered image is computed (see Figure 7a). The pixel orientations of the filtered image are determined
by comparing the ten direction filtered images, pixel by pixel, and recording the direction with the
largest squared magnitude at each pixel as the pixel orientation in the filtered image. A histogram
smoothing function is applied to the recorded pixel orientations to help smooth directions in local
neighborhoods.The filtered image is then reconstructed using the recorded pixel directions to deter-
mine from which direction filtered image to select each pixel value. Figure 7b shows the results of
filtering the fingerprint in Figure 5 with this method.

After some experimentation it was determined that using ten orientations was probably not nec-
essary, so adjustments were made to the kernel mask and a second version used only six orienta-
tions (see Figure 8a and Figure 8b).
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Figure 7a: Orientation images for direction filter version1.
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Figure 7b: Image filtered using version 1 of the directional filter (ten orientation masks).

Figure 8a: Orientation images for direction filter version2.
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Figure 8b: Image filtered using version 2 of the directional filter (six orientation masks).
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5 Feature Extraction
An earlier version of the direction finder, based on the ridge-valley fingerprint binarizer

described in [9], produced a grid of directions spaced 16 pixels apart horizontally and vertically,
for a total of 840 (28 X 30) vectors as shown in Figure 9. The ridge directions were then registered
by shifting the fingerprint “core” to a location which is the median core location from a larger sam-
ple of handmarked core data. Wegsteins’ [10] routine was used to find the core location for each
fingerprint. Figure 10 shows an example of a incorrect registration point found before filtering and
Figure 11 shows that after filtering a correct registration point was found.

The current version of the direction finder [11] produces better classification results by using
the same number of vectors, but arranged in a fixed unequally spaced pattern which concentrates
the vectors in certain areas at the expense of less important regions (see Figure 12).The location of
the dense ridge directions was determined by hand marking the location of cores and deltas in a
large sample of images and then adding up the number of cores and deltas located in each 32 X 32
grid of the image. A mapping of the most dense core and delta regions was used to determine where
the dense ridge regions should be located. Each 32 X 32 pixel tile of the raster gets either 1, 4, or
16 direction vectors. First, a grid is produced with the vectors spaced every 8 pixels (but still using
16 X 16 pixel averaging windows); this grid has 16 vectors per tile. Grids with 4 vectors/tile and 1
vector/tile are produced from this original grid by two averaging steps. Then, some tiles receive
their vectors from the coarse grid. some from the medium grid, and some from the fine grid, accord-
ing to a pattern produced as follows. Let the number of tiles that receive 1, 4, and 16 vectors be n1,
n4, and n16. There are 15 X 16 = 240 tiles, so n1 + n4 + n16 = 240. The total number of vectors is
fixed at 840 for comparability with the earlier version, so n1 + 4n4 + 16n16 = 840. Using these two
equations in three variables, integer values of n16 with 0 <= n16 <= 40 produce n1 and n4 values
that are non-negative integers. Meaningful values for the three variables were produced by simply
picking n16 values and solving for the other two variables, since there is not a unique meaningful
solution. Through experimentation it was determined that the best classification error rate was
obtained using a n16 value of 10.

The 840 output vectors were then reduced, using a Karhunen Loève (KL) [12] transform, to
approximately 120 features for use in with the Neural Network classifier. The dimensionality
reduction was accomplished by first calculating the covariance matrix of the training data and
determining the principle eigenfunction set using EISPACK routines. The KL transform uses the
output vectors along with the mean output vector (calculated from the training data) and principle
eigenfunctions to produce the reduced feature set for each image. In the transform, the mean output
vector is first subtracted from the output vector and then the result is multiplied by a matrix con-
taining the principle eigenvectors. Since the KL features are ranked in order of decreasing variance
it is simple to reduce the number of features used by selecting the first n features. Through testing
it was determined that no difference in error rate was seen when using more than 96 input features.
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Figure 9: Equally spaced direction vectors of non-filtered image.

Figure 10: Registered equally spaced direction vectors of non-filtered image.
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Figure 11: Registered equally spaced direction vectors of filtered image.

Figure 12: Registered non-equally spaced direction vectors of filtered image.
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6 PNN Classifier
The classification algorithm used was a Probabilistic Neural Network (PNN)[2][13]. The

unknowns are classified by summing the values of the kernel functions of the prototypes for each
output class i, and then weighting these “output activations”, Di(y), by a compensating factor
involving the a priori probability of each output class, p(i) and the number of examples for each
class, Mi. The activations are then normalized and the highest activation is selected as the hypoth-
esized class. The kernel function used is a radially symmetric Gaussian kernel parameterized by a
smoothing variable σ that was optimized by trial and error.

where the euclidean distance of the unknown y to the jth prototype xj is:

A modification was made to the classifier which decreased the time of classification by a factor
of 4 with no cost to classification accuracy. The method takes advantage of the KL features being
ranked in order of decreasing variance by applying a threshold factor which keeps only those pro-
totypes which make a significant contribution to the computation of the discriminant function
shown above. The exponential in the discriminant function results in the closer prototypes having
by far the most significant contribution to the summation. Taking this into account, the function
can be approximated by discarding those prototypes with exponential terms contributing less than
10-λ times the largest term. Meaning, a prototype of any given class, xj

(i), can be deleted from its
discriminant summation if:

where xc is the closest prototype without regard to class.

By taking logs and changing sign this condition can be expressed more usefully in the squared
distance domain. If we define the set of eligible prototypes of class i as

Di y( )
p i( )
Mi

exp
1

2σ2
d2 xj

i( ) y,( )−( )
j 1=

Mi

∑= (6)

d2 xj
i( ) y,( ) y k( ) x k( ) j

i( )−( ) 2

k 1=

n

∑ d k( ) 2

k 1=

n

∑= = (7)

exp
1

2σ2
d2 xj

i( ) y ),(−( ) 10 λ− exp
1

2σ2
d2 xc y,( )−( )< (8)

S i( ) j d2 xj
i( ) y ),( 2σ2λln10 d2 xc y,( )+≤ }{= (9)



22

then the discriminant summation of (6) can be abbreviated,

so that only those prototypes whose squared distance is less than or equal to the distance of the clos-
est prototype, xc, plus the factor controlled by λ as defined in (9). Note that xc is the closest proto-
type without regard to class. The error associated with this approximation is controlled by setting
λ to a sufficiently large value. The value used in these experiments was λ = 4, insuring error rates
did not change between traditional PNN and the optimized PNN.

One advantage to this calculation is that an outer limit distance is determined by the current
closest prototype’s squared distance and the 2σ2λln10 factor. If a new prototype becomes the clos-
est, the threshold criteria is reapplied and the set is redefined. The main execution time is saved by
the fact that as soon as any distance summation (7) is larger than the criteria set by 2σ2λln10 in (4),
the calculation can be stopped with k < n and the prototype discarded. This becomes very useful
with the KL transform because the expected value for the contribution of a given feature is propor-
tional to the variance of that feature. Formally, over all prototypes, xj, the expected value of d(k)2

in equation (7) for a given unknown y is:

Then, by substituting in the sample estimates:

For KL features the mean value of x(k) is zero, so the expression reduces to:

and if the unknown feature vectors are identically distributed as the prototypes then:

 Since the KL transform ranks the features in order of decreasing variance, the first few features
contribute most to the distance calculation. Normally, only 4 or 5 features are used in the distance
calculation before the distance to the prototype exceeds the deletion criteria (2σ2λln10) and the cal-
culation can be stopped.
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Each filter process was tested twice, the first time using the f rollings from volume 1 as the pro-
totype set and the s rollings of volume 2 as the test set and the second time using the f rollings of
volume 2 as the prototypes and the s prints of volume 1 as the testing. This testing method insured
that no other rollings of a print in the prototype set occurred in the testing set making the results
using the PNN classifier more realistic. It also checked for some consistency in the results over the
two sets of data.

7 Method of Rejection
After selecting the class based on the highest output activation as described in Section 6, the

highest activation is used a confidence measure to determine wether or not to reject the fingerprint
as unclassifiable. Rejecting fingerprints was done by comparing a threshold value to the highest
output activation and any output activation below the confidence threshold level is rejected as
unclassifiable. The reason for doing this is to discard any prints that appear ambiguous to the clas-
sifier resulting in a low output activation.

8 Results

8.1 Accuracy
As is shown in Table 2 an improvement of approximately 2 percentage points was seen in the

overall classification error rate when filtering was applied to the fingerprint data. No one filtering
method seemed to do significantly better than the other suggesting that the classifier is not
extremely sensitive to the technique used to reduce noise in the image. Since most of the prints mis-
classified at high reject levels are not of bad quality one would not expect more filtering to result
in better error rates at high levels of reject. Improved filtering could still help reduce error rates at
lower reject levels. Figure 13 and Figure 14 show plots of the error rate versus the percent reject
for volumes 1 and 2 of NIST Special Database 9.

The scoring method used to present these results was a simple method of dividing the number
of wrong prints by the number of accepted prints shown in the equation below. This differs from
some previous work reported which used the a priori probabilities to calculate the error rates [2].
Using the a priori probabilities after rejecting some of the prints may actually be invalid because
it assumes that after rejecting a percentage of the prints the probability of occurrence for each class
has not changed. This may actually be true but at this point we do not have the data to compute
these probabilities.

8.2 Speed
There was a significant difference seen in the time required to filter images with the three dif-

ferent filters. The fastest time seen for the localized FFT filter was approximately 2 seconds per
image when run on a DAP 510C1 massively parallel architecture. The fastest times for the direc-

Ei 100.0
Wi

Ai⎝ ⎠
⎛ ⎞×= (15)
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tional FFT filters were approximately 9 seconds per image (version 1) and 5 seconds per image
(version 2) when run on a i860XP 50 MHz processing board1. The execution times on a SUN sparc
2 workstation1 were approximately 30 seconds (localized FFT filter), 5 minutes (version 1 direc-
tional filter) and 3 1/2 minutes (version 2 directional filter).

Table 2: Classification results for NIST Special Database 9 Volumes 1 and 2.

1. Certain commercial equipment is identified in order to adequately describe the subject matter of this work.
In no case does such identification imply recommendation or endorsement by the National Institute of Stan-
dards and Technology, nor does it imply that the equipment identified is necessarily the best available for the
purpose.

Image Enhancement
Equally Spaced Grids

No Filter or Registration

Registered

Non-Equally Spaced Grids

Registered

Localized FFT Filter

Directional FFT filter 1

Directional FFT filter 2

% error

18.91

17.05

15.63

13.73

14.89

14.81

% error with
10% rejects

14.68

12.81

11.32

9.33

10.45

10.66

σ

2.19

2.01

2.18

2.47

2.23

2.43

% error

21.33

18.39

15.79

13.23

14.04

14.37

% error with
10% rejects

16.67

13.56

11.12

8.85

9.31

10.01

σ

2.10

1.83

1.93

2.54

2.21

2.83

Volume 1 Prototypes Volume 2 Prototypes

Volume 2 Testing Volume 1 Testing
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Figure 13: Error vs. reject plot for Volume 1 of NIST Special Database 9.
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Figure 14: Error vs. reject plot for Volume 2 of NIST Special Database 9.
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9 Conclusions
The first point that needs to be made about the results are that they can not be compared to pre-

vious results reported using NIST Special Database 4 for two main reasons. First the data sets were
collected using different techniques which affected the quality and orientations of the images. Sec-
ond the test performed in this report do not use the first rollings of a set of prints as the training set
and the second rollings of the same prints as the testing set as was done in previous tests. Test have
shown that using different rollings of a print in the prototype and testing sets result in significantly
better error rates (3-4%) versus using different prototype and testing data with a PNN classifier. For
this reason, all tests in this report are done using a set of prototypes that does not contain any roll-
ings of the prints in the testing set. This testing method produces more realistic results since one
can not always expect a rolling of a fingerprint in the testing data to appear in the prototype data.

The use of filtering accomplished the main goal of providing better features the classifier as
shown by improved registration and ridge flow data (Figure 9-Figure 12) and improved error rates
(Table 2). The improvement from the feature vectors in Figure 9 to those in Figure 11 is shown by
two facts. First the feature vectors have smoother flow from one orientation vector to the next. Sec-
ond the length of the lines in the figures shows the amount of confidence that the orientation is cor-
rect, the confidences are clearly better in Figure 11. There was also an improvement of
approximately 2% consistently observed for rejection rates up to 50%. Currently our system uses
the localized FFT filter because it is more than twice as fast as the next fastest filter and provides
the best error rates.

After carefully observing the results it was also determined that further filtering will result in
very little gain in overall error rate with the current system. In a separate test a printout was made
of all the fingerprints incorrectly classified after rejecting 35% of the classified prints. The printouts
showed that approximately 45% were double loop whorls with accurate ridge flow data and correct
registration points (as defined by the current algorithm). The problem is that the classifier is having
trouble distinguishing between certain double loop whorls (Figure 15a and Figure 15b show an
example print with registration point and corresponding ridge features) and loops. The same prob-
lem was occurring approximately 15% of the time with central pocket whorls that had a small num-
ber of ridges completely circling the center core (see Figure 16a and Figure 16b). The classifier
also had difficulty with tented arches confusing them with loops and arches (10% of the errors).
Taking into account these three cases approximately 70% of the error occurring needs to be solved
by some other method than improving image enhancement.



28

Figure 15a: Example of misclassified double loop whorl with marked registration point.

Figure 15b: Feature vectors for fingerprint image in Figure 15a.
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Figure 16a: Example of misclassified central pocket whorl with marked registration point.

Figure 16b: Feature vectors for fingerprint image in Figure 16a.
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