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Abstract

Two of the most critical requirements in support of producing reliable face�recognition
systems are a large database of facial images and a testing procedure to evaluate
systems� The Face Recognition Technology �FERET� program has addressed both
issues through the FERET database of facial images and the establishment of the
FERET tests� To date� ����	
 images from ���� individuals are included in the
FERET database� which is divided into development and sequestered portions of the
database� In September ���
� the FERET program administered the third in a series
of FERET face�recognition tests� The primary objectives of the third test were to
��� assess the state of the art� �	� identify future areas of research� and ��� measure
algorithm performance�

� Introduction

Over the last decade� face recognition has become an active area of research in com�
puter vision� neuroscience� and psychology� Progress has advanced to the point that
face�recognition systems are being demonstrated in real�world settings �	
� The rapid de�
velopment of face recognition is due to a combination of factors� active development of

�The work reported here is part of the Face Recognition Technology �FERET� program� which is
sponsored by the U�S� Department of Defense Counterdrug Technology Development Program� Portions
of this work was done while Jonathon Phillips was at the U�S� Army Research Laboratory �ARL�� Jonathon
Phillips acknowledges the support of the National Institute of Justice�



algorithms� the availability of a large database of facial images� and a method for evaluat�
ing the performance of face�recognition algorithms� The FERET database and evaluation
methodology address the latter two points and are de facto standards� There have been
three FERET evaluations with the most recent being the Sep�� FERET test�

The Sep�� FERET test provides a comprehensive picture of the state�of�the�art in face
recognition from still images� This was accomplished by evaluating algorithms ability on
di�erent scenarios� categories of images� and versions of algorithms� Performance was
computed for identi�cation and veri�cation scenarios� In an identi�cation application� an
algorithm is presented with a face that it must identify the face� whereas� in a veri�cation
application� an algorithm is presented with a face and a claimed identity� and the algorithm
must accept or reject the claim� In this paper� we describe the FERET database� the
Sep�� FERET evaluation protocol� and present identi�cation results� Veri�cation results
are presented in Rizvi et al� ��
�

To obtain a robust assessment of performance� algorithms are evaluated against dif�
ferent categories of images� The categories are broken out by lighting changes� people
wearing glasses� and the time between the acquisition date of the database image and the
image presented to the algorithm� By breaking out performance into these categories� a
better understanding of the face recognition �eld in general as well as the strengths and
weakness of individual algorithms is obtained� This detailed analysis helps to assess which
applications can be successfully addressed�

All face recognition algorithms known to the authors consist of two parts� ��� face
detection and normalization and ��� face identi�cation� Algorithms that consist of both
parts are referred to as fully automatic algorithms� and those that consist of only the
second part are partially automatic algorithms� The Sep�� test evaluated both fully and
partially automatic algorithms� Partially automatic algorithms are given a facial image
and the coordinates of the center of the eyes� Fully automatic algorithms are only given
facial images�

The availability of the FERET database and evaluation methodology has made a
signi�cant di�erence in the progress of development of face�recognition algorithms� Be�
fore the FERET database was created� a large number of papers reported outstanding
recognition results �usually � �	� correct recognition� on limited�size databases �usually
� 	� individuals�� �In fact� this is still true�� Only a few of these algorithms reported
results on images utilizing a common database� let alone met the desirable goal of being
evaluated on a standard testing protocol that included separate training and testing sets�
As a consequence� there was no method to make informed comparisons among various
algorithms�

The FERET database has made it possible for researchers to develop algorithms on
a common database and to report results in the literature using this database� Results
reported in the literature do not provide a direct comparison among algorithms because
each researcher reported results using di�erent assumptions� scoring methods� and images�
The independently administered FERET test allows for a direct quantitative assessment
of the relative strengths and weaknesses of di�erent approaches�

More importantly� the FERET database and tests clarify the current state of the art
in face recognition and point out general directions for future research� The FERET
tests allow the computer vision community to assess overall strengths and weaknesses
in the �eld� not only on the basis of the performance of an individual algorithm� but
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in addition on the aggregate performance of all algorithms tested� Through this type
of assessment� the community learns in an unbiased and open manner of the important
technical problems to be addressed� and how the community is progressing toward solving
these problems�

� Background

The �rst FERET tests took place in August ���� and March ���	 �for details of these tests
and the FERET database and program� see Phillips et al �	� �
 and Rauss et al ��
�� The
FERET database collection began in September ���� along with the FERET program�

The August ���� test established� for the �rst time� a performance baseline for face�
recognition algorithms� This test was designed to measure performance on algorithms
that could automatically locate� normalize� and identify faces from a database� The test
consisted of three subtests� each with a di�erent gallery and probe set� The gallery contains
the set of known individuals� An image of an unknown face presented to the algorithm
is called a probe� and the collection of probes is called the probe set� The �rst subtest
examined the ability of algorithms to recognize faces from a gallery of ��� individuals�
The second was the false�alarm test� which measured how well an algorithm rejects faces
not in the gallery� The third baselined the e�ects of pose changes on performance�

The second FERET test� that took place in March ���	� measured progress since
August ���� and evaluated algorithms on larger galleries� The March ���	 evaluation
consisted of a single test with a gallery of ��� known individuals� One emphasis of the
test was on probe sets that contained duplicate images� A duplicate is de�ned as an image
of a person whose corresponding gallery image was taken on a di�erent date�

The FERET database is designed to advance the state of the art in face recognition�
with the images collected directly supporting both algorithm development and the FERET
evaluation tests� The database is divided into a development set� provided to researchers�
and a set of sequestered images for testing� The images in the development set are
representative of the sequestered images�

The facial images were collected in �	 sessions between August ���� and July �����
Collection sessions lasted one or two days� In an e�ort to maintain a degree of consistency
throughout the database� the same physical setup and location was used in each photog�
raphy session� However� because the equipment had to be reassembled for each session�
there was variation from session to session ��gure ���

Images of an individual were acquired in sets of 	 to �� images� collected under rel�
atively unconstrained conditions� Two frontal views were taken �fa and fb�� a di�erent
facial expression was requested for the second frontal image� For ��� sets of images� a
third frontal image was taken with a di�erent camera and di�erent lighting �this is referred
to as the fc image�� The remaining images were collected at various aspects between right
and left pro�le� To add simple variations to the database� photographers sometimes took
a second set of images� for which the subjects were asked to put on their glasses and�or
pull their hair back� Sometimes a second set of images of a person was taken on a later
date� such a set of images is referred to as a duplicate set� Such duplicates sets result in
variations in scale� pose� expression� and illumination of the face�

By July ����� �	�� sets of images were in the database� consisting of ������ total
images� The database contains ���� individuals and ��	 duplicate sets of images� For
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fa fb duplicate I fc duplicate II

Figure �� Examples of di�erent categories of probes �image�� The duplicate I image was
taken within one year of the fa image and the duplicate II and fa images were taken at
least one year apart�

some people� over two years elapsed between their �rst and most recent sittings� with some
subjects being photographed multiple times ��gure ��� The development portion of the
database consisted of 	�� sets of images� and was released to researchers� The remaining
images were sequestered by the Government�

� Test Design

��� Test Design Principles

The FERET Sep�� evaluation protocol was designed to assess the state of the art� advance
the state of the art� and point to future directions of research� To succeed at this� the test
design must solve the three bears problem� The test cannot be neither too hard nor too
easy� If the test is too easy� the testing process becomes an exercise in �tuning� existing
algorithms� If the test is too hard� the test is beyond the ability of existing algorithmic
techniques� The results from the test are poor and do not allow for an accurate assessment
of algorithmic capabilities�

The solution to the three bears problem is through the selection of images in the
test set and the testing protocol� Tests are administered using a testing protocol that
states the mechanics of the tests and the manner in which the test will be scored� In face
recognition� the protocol states the number of images of each person in the test� how the
output from the algorithm is recorded� and how the performance results are reported�

The characteristics and quality of the images are major factors in determining the
di�culty of the problem being evaluated� For example� if faces are in a predetermined
position in the images� the problem is di�erent from that for images in which the faces can
be located anywhere in the image� In the FERET database� variability was introduced
by the inclusion of images taken at di�erent dates and locations �see section ��� This
resulted in changes in lighting� scale� and background�

The testing protocol is based on a set of design principles� Stating the design principle
allows one to assess how appropriate the FERET test is for a particular face recognition
algorithm� Also� design principles assist in determining if an evaluation methodology
for testing algorithm�s� for a particular application is appropriate� Before discussing the
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design principles� we state the evaluation protocol�
In the testing protocol� an algorithm is given two sets of images� the target set and the

query set� We introduce this terminology to distinguish these sets from the gallery and
probe sets that are used in computing performance statistics� The target set is given to
the algorithm as the set of known facial images� The images in the query set consists of
unknown facial images to be identi�ed� For each image qi in the query set Q� an algorithm
reports a similarity si�k� between qi and each image tk in the target set T � The testing
protocol is designed so that each algorithm can use a di�erent similarity measure and we
do not compare similarity measures from di�erent algorithms� The key property of the
new protocol� which allows for greater �exibility in scoring� is that for any two images qi
and tk� we know si�k��

This �exibility allows the evaluation methodology to be robust and comprehensive�
it is achieved by computing scores for virtual galleries and probe sets� A gallery G is a
virtual gallery if G is a subset of the target set� i�e�� G � T � Similarly� P is a virtual probe
set if P � Q� For a given gallery G and probe set P� the performance scores are computed
by examination of similarity measures si�k� such that qi � P and tk � G�

The virtual gallery and probe set technique allows us to characterize algorithm per�
formance by di�erent categories of images� The di�erent categories include ��� rotated
images� ��� duplicates taken within a week of the gallery image� ��� duplicates where the
time between the images is at least one year� ��� galleries containing one image per person�
and �	� galleries containing duplicate images of the same person� We can create a gallery of
��� people and estimate an algorithms performance by recognizing people in this gallery�
Using this as a starting point� we can then create virtual galleries of ���� ���� � � � � ����
people and determine how performance changes as the size of the gallery increases� An�
other avenue of investigation is to create n di�erent galleries of size ���� and calculate the
variation in algorithm performance with the di�erent galleries�

To take full advantage of virtual galleries and probe sets� we selected multiple images
of the same person and placed them into the target and query sets� If such images were
marked as the same person� the algorithms being tested could use the information in the
evaluation process� To prevent this from happenning� we require that each image in the
target set be treated as an unique face� �In practice� this condition is enforced by giving
every image in the target and query set a unique random identi�cation�� This is the �rst
design principle�

The second design principle is that training is completed prior to the start of the test�
This forces each algorithm to have a general representation for faces� not a representation
tuned to a speci�c gallery� Without this condition� virtual galleries would not be possible�

For algorithms to have a general representation for faces� they must be gallery �class�
insensitive� Examples are algorithms based on normalized correlation or principal com�
ponent analysis �PCA�� An algorithm is class sensitive if the representation is tuned to
a speci�c gallery� Examples are straight forward implementation of Fisher discriminant
analysis ��� �
� Fisher discriminant algorithms were adapted to class insensitive testing
methodologies by Zhao et al ���� ��
� with performance results of these extensions being
reported in this paper�

The third design rule is that all algorithms tested compute a similarity measure be�
tween two facial images� this similarity measure was computed for all pairs of images
between the target and query sets� Knowing the similarity score between all pairs of
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Figure �� Schematic of the FERET testing procedure

images from the target and query sets allows for the construction of virtual galleries and
probe sets�

��� Test Details

In the Sep�� FERET test� the target set contained ���� images and the query set ����
images� All the images in the target set were frontal images� The query set consisted
of all the images in the target set plus rotated images and digitally modi�ed images�
We designed the digitally modi�ed images to test the e�ects of illumination and scale�
�Results from the rotated and digitally modi�ed images are not reported here�� For each
query image qi� an algorithm outputs the similarity measure si�k� for all images tk in the
target set� For a given query image qi� the target images tk are sorted by the similarity
scores si���� Since the target set is a subset of the query set� the test output contains the
similarity score between all images in the target set�

There were two versions of the Sep�� test� The target and query sets were the same for
each version� The �rst version tested partially automatic algorithms by providing them
with a list of images in the target and query sets� and the coordinates of the center of
the eyes for images in the target and query sets� In the second version of the test� the
coordinates of the eyes were not provided� By comparing the performance between the
two versions� we estimate performance of the face�locating portion of a fully automatic
algorithm at the system level�

The test was administered at each groups site under the supervision of one of the au�
thors� Each group had three days to complete the test on less than �� UNIX workstations
�this limit was not reached�� We did not record the time or number of workstations because
execution times can vary according to the type of machines used� machine and network
con�guration� and the amount of time that the developers spent optimizing their code �we
wanted to encourage algorithm development� not code optimization�� �We imposed the
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time limit to encourage the development of algorithms that could be incorporated into
operational� �eldable systems��

The images contained in the gallery and probe sets consisted of images from both
the developmental and sequestered portions of the FERET database� Only images from
the FERET database were included in the test� however� algorithm developers were not
prohibited from using images outside the FERET database to develop or tune parameters
in their algorithms�

The FERET test is designed to measure laboratory performance� The test is not
concerned with speed of the implementation� real�time implementation issues� and speed
and accuracy trade�o�s� These issues and others� need to be addressed in an operational�
�elded system� were beyond the scope of the Sep�� FERET test�

Figure � presents a schematic of the testing procedure� To ensure that matching was
not done by �le name� we gave the images random names� The nominal pose of each face
was provided to the testee�

� Decision Theory and Performance Evaluation

The basic models for evaluating the performance of an algorithm are the closed and open
universes� In the closed universe� every probe is in the gallery� In an open universe�
some probes are not in the gallery� Both models re�ect di�erent and important aspects of
face�recognition algorithms and report di�erent performance statistics� The open universe
models veri�cation applications� The FERET scoring procedures for veri�cation is given
in Rizvi et al ��
�

The closed�universe model allows one to ask how good an algorithm is at identifying
a probe image� the question is not always �is the top match correct�� but �is the correct
answer in the top n matches�� This lets one know how many images have to be examined
to get a desired level of performance� The performance statistics are reported as cumula�
tive match scores� The rank is plotted along the horizontal axis� and the vertical axis is
the percentage of correct matches� The cumulative match score can be calculated for any
subset of the probe set� We calculated this score to evaluate an algorithms performance
on di�erent categories of probes� i�e�� rotated or scaled probes�

The computation of an identi�cation score is quite simple� Let P be a probe set and
jPj the size of P� We score probe set P against gallery G� where G � fg�� ���� gMg and
P� fp�� ���� pNg by comparing the similarity scores si��� such that pi � P and gk � G� For
each probe image pi � P� we sort si��� for all gallery images gk � G� We assume that
a smaller similarity score implies a closer match� If gk and pi are the same image� then
si�k� � �� The function id�i� gives the index of the gallery image of the person in probe
pi� i�e�� pi is an image of the person in gid�i�� A probe pi is correctly identi�ed if si�id�i��
is the smallest scores for gk � G� A probe pi is in the top k if si�id�i�� is one of the k�th
smallest score si��� for gallery G� Let Rk denote the number of probes in the top k� We
reported Rk�jPj� the fraction of probes in the top k� As an example� let k � 	� R� � ��
and jPj � ���� Based on the formula� the performance score for R� is ������ � ����

In reporting identi�cation performance results� we state the size of the gallery and the
number of probes scored� The size of the gallery is the number of di�erent faces �people�
contained in the images that are in the gallery� For all results that we report� there is one
image per person in the gallery� thus� the size of the gallery is also the number of images
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in the gallery� The number of probes scored �also� size of the probe set� is jPj� The probe
set may contain more than one image of a person and the probe set may not contain an
image of everyone in the gallery� Every image in the probe set has a corresponding image
in the gallery�

� Latest Test Results

The Sep�� FERET test was designed to measure algorithm performance for identi�cation
and veri�cation tasks� Both tasks are evaluated on the same sets of images� We report
the results for �� algorithms that includes �� partially automatic algorithms and � fully
automatic algorithms� The test was administered in September ���� and March ����
�see table � for details of when the test was administered to which groups and which
version of the test was taken�� Two of these algorithms were developed at the MIT
Media Laboratory� The �rst was the same algorithm that was tested in March ���	�
This algorithm was retested so that improvement since March ���	 could be measured�
The second algorithm was based on more recent work ��� �
� Algorithms were also tested
from Excalibur Corp� �Carlsbad� CA�� Michigan State University �MSU� ��� ��
� Rutgers
University ���
� University of Southern California �USC� ���
� and two from University of
Maryland �UMD� ��� ��� ��
� The �rst algorithm from UMD was tested in September ����
and a second version of the algorithm was tested in March ����� For the fully automatic
version of test� algorithms from MIT and USC were evaluated�

The �nal two algorithms were our implementation of normalized correlation and a
principal components analysis �PCA� based algorithm ��� ��
� These algorithms provide
a performance baseline� In our implementation of the PCA�based algorithm� all images
were ��� translated� rotated� and scaled so that the center of the eyes were placed on
speci�c pixels� ��� faces were masked to remove background and hair� and ��� the non�
masked facial pixels were processed by a histogram equalization algorithm� The training
set consisted of 	�� faces� Faces were represented by their projection onto the �rst ���
eigenvectors and were identi�ed by a nearest neighbor classi�er using the L� metric� For
normalized correlation� the images were ��� translated� rotated� and scaled so that the
center of the eyes were placed on speci�c pixels and ��� faces were masked to remove
background and hair�

��� Partially automatic algorithms

We report identi�cation scores for four categories of probes� The �rst probe category was
the FB probes ��g ��� For each set of images� there were two frontal images� One of the
images was randomly placed in the gallery� and the other image was placed in the FB
probe set� �This category is denoted by FB to di�erentiate it from the fb images in the
FERET database�� The second probe category contained all duplicate frontal images in
the FERET database for the gallery images� We refer to this category as the duplicate I
probes� The third category was the fc �images taken the same day� but with a di�erent
camera and lighting�� The fourth consisted of duplicates where there is at least one year
between the acquisition of the probe image and corresponding gallery image� We refer
to this category as the duplicate II probes� For this category� the gallery images were
acquired before January ���	 and the probe images were acquired after January �����
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Table �� List of groups that took the Sept�� test broken out by versions taken and dates
administered� �The � by MIT indicates that two algorithms were tested��

Test Date

September March

Version of test Group ���
 ��� Baseline

Fully Automatic MIT Media Lab �	� �� �
U� of So� California �USC� ��	� �

Eye Coordinates Given Baseline PCA ��� ��� �
Baseline Correlation �
Excalibur Corp� �
MIT Media Lab �

Michigan State U� ��� ��� �
Rutgers U� ���� �

U Maryland ��� ��� ��� � �
USC �

The gallery for the FB� duplicate I� and fc probes was the same and consisted of ����
frontal images with one image person in the gallery �thus the gallery contained ����
individuals�� Also� none of the faces in the gallery images wore glasses� The gallery for
duplicate II probes was a subset of ��� images from the gallery for the other categories�

The results for identi�cation are reported as cumulative match scores� Table � shows
the categories corresponding to the �gures presenting the results� type of results� and size
of the gallery and probe sets ��gs � to ���

In �gures � and �� we compare the di�culty of di�erent probe sets� Whereas� �gure �
reports identi�cation performance for each algorithm� �gure � shows a single curve that
is an average of the identi�cation performance of all algorithms for each probe category�
For example� the �rst ranked score for duplicate I probe sets is computed from an average
of the �rst ranked score for all algorithms in �gure �� In �gure �� we presented current
upper bound for performance on partially automatic algorithms for each probe category�
For each category of probe� �gure � plots the algorithm with the highest top rank score
�R��� Figures � and � reports performance of four categories of probes� FB� duplicate I�
fc� duplicate II�

Table �� Figures reporting results for partially automatic algorithms� Performance is
broken out by probe category�

Figure no� Probe Category Gallery size Probe set size

� FB ���
 ����

� duplicate I ���
 		

� fc ���
 ���


 duplicate II �
� 	��
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Figure �� Identi�cation performance against FB probes� �a� Partially automatic algo�
rithms tested in September ����� �b� Partially automatic algorithms tested in March
�����
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Figure �� Identi�cation performance against all duplicate I probes� �a� Partially automatic
algorithms tested in September ����� �b� Partially automatic algorithms tested in March
�����
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Figure 	� Identi�cation performance against fc probes� �a� Partially automatic algorithms
tested in September ����� �b� Partially automatic algorithms tested in March �����
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Figure �� Identi�cation performance against duplicate II probes� �a� Partially automatic
algorithms tested in September ����� �b� Partially automatic algorithms tested in March
�����
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Figure �� Identi�cation performance of fully automatic algorithms against partially auto�
matic algorithms for FB probes�
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Figure ��� Identi�cation performance of fully automatic algorithms against partially au�
tomatic algorithms for duplicate I probes�
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��� Fully Automatic Performance

In this subsection� we report performance for the fully automatic algorithms of the MIT
Media Lab and USC� To allow for a comparison between the partially and fully automatic
algorithms� we plot the results for the partially and fully automatic algorithms� Figure �
shows performance for FB probes and �gure �� shows performance for duplicate I probes�
�The gallery and probe sets are the same as in subsection 	����

��� Variation in Performance

From a statistical point of view� a face�recognition algorithm estimates the identity of
a face� Consistent with this view� we can ask about the variance in performance of
an algorithm� �For a given category of images� how does performance change if the
algorithm is given a di�erent gallery and probe set�� In tables � and �� we show how
algorithm performance varies if the people in the galleries change� For this experiment� we
constructed six galleries of approximately ��� individuals� in which an individual was in
only one gallery �the number of people contained within each gallery versus the number of
probes scored is given in tables � and ��� Results are reported for the partially automatic
algorithms� For the results in this section� we order algorithms by their top rank score
on each gallery� for example� in table �� the UMD Mar�� algorithm scored highest on
gallery � and the baseline PCA and correlation tied for �th place� Also included in this
table is average performance for all algorithms� Table � reports results for FB probes�
Table � is organized in the same manner as table �� except that duplicate I probes are
scored� Tables � and � report results for the same gallery� The galleries were constructed
by placing images within the galleries by chronological order in which the images were
collected �the �rst gallery contains the �rst images collected and the �th gallery contains
the most recent images collected�� In table �� mean age refers to the average time between
collection of images contained in the gallery and the corresponding duplicate probes� No
scores are reported in table � for gallery � because there are no duplicates for this gallery�

� Discussion and Conclusion

In this paper we presented the Sep�� FERET evaluation protocol for face recognition
algorithms� The protocol makes it possible to independently evaluate algorithms� The
protocol was designed to evaluate algorithms on di�erent galleries and probe sets for dif�
ferent scenarios� Using this protocol� we computed performance on identi�cation and
veri�cation tasks� The veri�cation results are presented in Rizvi et al� ��
� and all veri��
cation results mentioned in this section are from that paper� In this paper we presented
detailed identi�cation results� Because of the Sep�� FERET evaluation protocols ability
to test algorithms performance on di�erent tasks for multiple galleries and probe sets� it
is the de facto standard for measuring performance of face recognition algorithms� These
results show that factors e�ecting performance include scenario� date tested� and probe
category�

The Sep�� test was the latest FERET test �the others were the Aug�� and Mar�	
tests ��
�� One of the main goals of the FERET tests has been to improve the performance
of face recognition algorithms� and is seen in the Sep�� FERET test� The �rst case is
the improvement in performance of the MIT Media Lab September ���� algorithm over
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Table �� Variations in identi�cation performance on six di�erent galleries on FB probes�
Images in each gallery do not overlap� Ranks range from � ���

Algorithm Ranking by Top Match
Gallery Size � Scored Probes

������� ������� ������� ������� ������� �������
Algorithm gallery � gallery � gallery � gallery � gallery 	 gallery �

Baseline PCA � �� � � �� �
Baseline correlation � � � � � ��
Excalibur Corp� � � � 	 � �

MIT Sep�� � � � � � �
MIT Mar�	 � 	 � � 	 �

Michigan State Univ� � � 	 � � �
Rutgers Univ� � � � � � �
UMD Sep�� � � � �� 	 	
UMD Mar�� � � � � � �

USC � � � � � �

Average Score ����	 ���	� ����� ����� ����� �����

Table �� Variations in identi�cation performance on �ve di�erent galleries on duplicate
probes� Images in each of the gallery does not overlap� Ranks range from � ���

Algorithm Ranking by Top Match
Gallery Size � Scored Probes

������� ������ ������� ������� ������
Mean Age of Probes �months� ���� ��	� 	��� ����� ���	

Algorithm gallery � gallery � gallery � gallery � gallery 	

Baseline PCA � �� 	 	 �
Baseline correlation �� � � � �
Excalibur Corp� � 	 � � �

MIT Sep�� � � � � �
MIT Mar�	 � � � � ��

Michigan State Univ� � � � �� �
Rutgers Univ� 	 � �� � �
UMD Sep�� � � � � �
UMD Mar�� � � � � �

USC � � � � �

Average Score ����� ����� ����	 ��	�� �����
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the March ���	 algorithm� the second is the improvement of the UMD algorithm between
September ���� and March �����

By looking at progress over the series of FERET tests� one sees that substantial
progress has been made in face recognition� The most direct method is to compare the
performance of fully automatic algorithms on fb probes �the two earlier FERET tests
only evaluated fully automatic algorithms� The best top rank score for fb probes on the
Aug�� test was ��� on a gallery of ��� individuals� and for Mar�	� the top score was
��� on a gallery of ��� individuals ��
� This compares to ��� in September ���� and
�	� in March ���� �gallery of ���� individuals�� This method shows that over the course
of the FERET tests� the absolute scores increased as the size of the database increased�
The March ���	 score was from one of the MIT Media Lab algorithms� and represents an
increase from ��� in March ���	�

On duplicate I probes� MIT Media Lab improved from ��� �March ���	� to 	��
�September ������ USCs performance remained approximately the same at 	��	�� be�
tween March ���	 and March ����� This improvement in performance was achieved while
the gallery size increased and the number of duplicate I probes increased from ��� to ����
While increasing the number of probes does not necessarily increase the di�culty of iden�
ti�cation tasks� we argue that the Sep�� duplicate I probe set was more di�cult to process
then the Mar�	 set� The Sep�� duplicate I probe set contained the duplicate II probes
and the Mar�	 duplicate I probe set did not contain a similar class of probes� Overall�
the duplicate II probe set was the most di�cult probe set�

Another goal of the FERET tests is to identify areas of strengths and weaknesses
in the �eld of face recognition� We addressed this issue by computing algorithm per�
formance for multiple galleries and probe sets� From this evaluation� we concluded that
algorithm performance is dependent on the gallery and probe sets� We observed variation
in performance due to changing the gallery and probe set within a probe category� and
by changing probe categories� The e�ect of changing the gallery while keeping the probe
category constant is shown in tables � and �� For fb probes� the range for performance is
��� to ���� for duplicate I probes� the range is ��� to ���� Equally important� tables �
and � shows the variability in relative performance levels� For example� in table �� UMD
Sep�� duplicate performance varies between number three and nine� Similar results were
found in Moon and Phillips ��
 in their study of principal component analysis�based face
recognition algorithms� This shows that an area of future research could measure the ef�
fect of changing galleries and probe sets� and statistical measures that characterize these
variations�

Figures � and � shows probe categories characterized by di�culty� These �gures show
that fb probes are the easiest and duplicate II probes are the most di�cult� On average�
duplicate I probes are easier to identify than fc probes� However� the best performance on
fc probes is signi�cantly better than the best performance on duplicate I and II probes�
This comparative analysis shows that future areas of research could address processing of
duplicate II probes and developing methods to compensate for changes in illumination�

The scenario being tested contributes to algorithm performance� For identi�cation�
the MIT Media Lab algorithm was clearly the best algorithm tested in September �����
However� for veri�cation� there was not an algorithm that was a top performer for all probe
categories� Also� for the algorithms tested in March ����� the USC algorithm performed
overall better than the UMD algorithm for identi�cation� however� for veri�cation� UMD

��



overall performed better� This shows that performance on one task is not predictive of
performance on another task�

The September ���� FERET test shows that de�nite progress is being made in face
recognition� and that the upper bound in performance has not been reached� The im�
provement in performance documented in this paper shows directly that the FERET series
of tests have made a signi�cant contribution to face recognition� This conclusion is indi�
rectly supported by ��� the improvement in performance between the algorithms tested
in September ���� and March ����� ��� the number of papers that use FERET images
and report experimental results using FERET images� and ��� the number of groups that
participated in the Sep�� test�
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