Complete Inspection
In-situ system enables 100 percent inspection of microparts

By Dr. Shawn Moylan, NIST*

NIST's experimental measuring system is designed to allow parts to be measured on micro/meso machine tools.

In-situ, or on-machine, metrology can improve discrete part manufacturing markedly because it allows for 100 percent inspection without removing the part from the production line. In addition to saving space by eliminating the need for a separate metrology station and time by not having to reposition the part for measurement, on-machine metrology has many additional benefits, particularly in the realm of micro/meso (μ/γ) manufacturing.

The small sizes and fragility of μ/γ features and parts present unique metrology and handling challenges. Small errors in part registration not only increase measurement uncertainty, but also may make finding tiny part features time-consuming. Micro/meso parts can present difficult fixturing scenarios, often requiring expensive custom fixtures. All of these problems can be avoided if the part is registered once for machining and remains in place, in the same fixture, during machining and measurement.

Because the part is measured without removing it from its registration on the machine tool, measurement results are better correlated to machine tool errors. Some measured errors can be corrected immediately by the user or the controller. Further, measured-error magnitudes can be used for machine tool-condition monitoring. The measured and logged errors can be used to improve machining accuracy on subsequent parts. Trends in the data may indicate when machine maintenance is needed. These qualities make an μ/γ machine tool with on-machine metrology more of a "smart"

*This article is an official contribution of the National Institute of Standards and Technology (NIST) and is not subject to copyright in the U.S. NIST does not recommend or endorse commercial equipment, nor does it imply that the equipment or materials shown are necessarily the best available for the purpose.
Complete Inspection continued

A major challenge for on-machine metrology is decoupling machine tool errors from manufacture uncertainty. No machine tool is perfect and machine tool motion errors, which produce part imperfections, have largely been found to be systematic. If the same machine again moves to perform the measurements, the systematic error motions repeat, obscuring part imperfections from the measurements. This is a significant obstacle and, if not properly addressed, will defeat any advantages on-machine measurement can offer.

The growing demand for smaller parts has led to the development of new m/m machine tools significantly smaller than their macroscale cousins, and often with different designs. An on-machine measurement device would need to operate within the confined work volume of any m/m machine tool, often just 25mm x 25mm x 25mm. Just as m/m machine tools vary in design, m/m parts can vary greatly in both size and shape. Entire parts can be as large as 25 cu. mm and can contain many features smaller than 100μm.

Figure 1: The experimental measuring system incorporates off-the-shelf components, none of which cost more than $2,500.

An on-machine measurement device should accommodate measurements that encompass this entire size scale and should meet the accuracy requirements.

Fringe projection

One approach to on-machine metrology under investigation in the Manufacturing Engineering Laboratories at the National Institute of Standards and Technology uses fringe projection, or structured light.

Fringe projection is based in photogrammetry—the art and science of obtaining reliable information about physical objects through processes of recording, measuring and interpreting photographic images and patterns [1-5]. Specifically, a branch of photogrammetry known as stereovision allows 3-D information to be extracted by analyzing 2-D images obtained from at least two views.
(more views can be added if desired to increase system robustness). Triangulation of a single, common distinguishable point between the two images allows the determination of X, Y and Z coordinates. These common points are termed correspondence points and the mathematics involved is known as the "stereo correspondence problem."

With fringe projection, unlike stereovision, a projector replaces one of the cameras in the typical stereovision setup. With stereovision, multiple images are analyzed and correspondence points are often determined manually (and can have large uncertainty). A projector is simply an inverted camera, both physically and mathematically. With fringe projection, the mathematics to determine the X, Y and Z coordinates is the same as with stereovision [1, 2, 4]. However, the projector projects patterns onto the scene captured by the cameras, allowing correspondence points to be determined automatically through simple image analysis techniques (see sidebar below).

Fringe projection is intriguing for on-machine metrology at the micro/meso scales because some of the process strengths—setup flexibility, large field of view and long working distance—directly address obstacles to on-machine metrology. The setup for fringe projection is very

Best fringe projection option for on-machine metrology

A MAJOR SOURCE of uncertainty in stereovision is the determination of correspondence points. This determination requires points of reference captured by all images, and is often done manually. In fringe projection, a projector projects patterns onto the scene captured by the cameras. This allows the pattern to act as the reference and the determination of correspondence points can then be automated.

There are many different pattern types and schemes used in fringe projection applications, but the scheme most appropriate for on-machine metrology is the combination of grayscale patterns with pattern shifting [2, 5]. Correspondence cannot be determined with only one pattern because the part’s contours may obscure areas of the pattern from the cameras. With grayscale patterns, a set of seven patterns with increasingly fine fringes are projected onto the part in sequence, one after another. When analyzing the captured patterned scene, the sequence of a specific point’s intensity values reveals from which projector pixel that ray of light emanated.

The figure here shows an example of how grayscale patterns work. The point highlighted with the cross in each image is 360 pixels from the left and 410 pixels from the top of each image. Thus, the coordinate of this point in the camera frame is (360, 410). In the first image, this point is in the brightly lit portion. This point is given a value of 1 for this image. In the next image, the point is again in the bright region, providing another value of 1. In the third image, the point is in the darkly lit region, and it is given a value of 0. This continues for the next four images, producing a sequence of 0s and 1s. In this example, the sequence is 1100101, and it is unique to one particular fringe in the finest fringe pattern. In this case, the center of that fringe emanated from a point 580 pixels from the left of the pattern. As such, projector point 580 corresponds to the camera point (360, 410). This, combined with calibration, provides sufficient information to solve the stereo correspondence problem.

With grayscale patterns, however, resolution is limited to the size of the smallest projected fringe. Because better resolution is required, pattern shifting is used in addition to the grayscale patterns [3, 5]. By digitally shifting the finest fringe pattern, the projector point can be determined within one fringe. With a shifting technique, the specific projector fringe cannot be determined unambiguously, but the distance to the right or left from the center of the fringe can be accurately determined.

For the current application, the finest fringe pattern is shifted one pixel to the right eight times, using the entire resolution of the projector. Here, the sequence of 111000000 means the point is two pixels to the left of center, or projector point 578.

—S. Moylan

micromanufacturing.com | 39
Complete inspection continued
flexible, meaning measurement can be
accomplished with system components
in a variety of positions.

Flexibility within a single machine
means the process can adapt to a vari-
ety of part and feature shapes and sizes
(though measurement uncertainty will
change with different fields of view). In
general, flexibility means the process
can fit a variety of machine tool shapes
and sizes. Many other on-machine mea-
surement setups utilize spindle-
mounted measurement devices that limit
the flexibility and adaptability of the processes.

Digital projection and imaging can
easily scale fields of view to envelop the
entire feature or part being measured. This
means the entire part can be measured
without any movement of the machine
or the measuring device. Because the
machine does not need to move, coupling
between machine tool errors and measure-
ment uncertainty is avoided. Other
microscope-based optical measurements
often do not have a large enough field of
view to measure the entire part at once.
These processes require many measure-
ments to be stitched together, introduc-
ing an additional source of measurement
uncertainty in the stitching algorithm.

The working distances of fringe projec-
tion components are long, isolating them
from the harsh machining environment.
This eliminates the risk of damaging the
measurement system during machining.
Spindle-mounted measurement setups
require continual mounting and removal
of the device, introducing yet another
source of measurement uncertainty.

System setup
An illustration of the experimental
NIST on-machine fringe projection setup
is shown in Figure 1 on page 38. The pro-
jector is a standard boardroom model
with a resolution of 1,024 pixels × 768
pixels. The projection technology is DMD
digital micromirror device). This projec-
tor was chosen over an LCD (liquid-crystal-
display) device because DMDs project
darker blacks than LCDs, an important
aspect of the patterns used in this setup.
The camera is a FireWire CCD (charge-
coupled-device) array with a resolution
of 1,392 pixels × 1,040 pixels.

At the outset of the project, it was de-
cided that the on-machine measurement

system should be able to measure typical
parts produced on NIST’s m/m machine
tool platforms. This meant that feature
and part sizes ranging from tens of mi-
crons up to 25mm would be measured.
This choice dictated the choice of lenses
for the system. The large image emanating
from the boardroom projector is scaled
down to the appropriate size by a com-
plementary lens system. The lenses are from
a lens system that is split to achieve the
level of demagnification needed. When
separated by 75mm, a 25mm-wide image
is obtained 260mm from the front lens.
Because the camera images the part from
a relatively large angle, a telecentric lens
was chosen. A telecentric lens provides a
greater depth of focus and, more impor-
tantly, the image is not distorted if points
on the imaged surface are different dis-
tances from the lens. A telecentric lens
with 0.16x magnification and a working
distance of 200mm provides the appro-
riate field of view.

A commercially available software
package was chosen to coordinate the
pattern projection and image-capture
process, as well as the image analysis and
mathematical computations. Fifteen im-
ages (see sidebar on page 39) can be
projected and captured within 4 seconds,
allowing a 0.25-second settling time for
the projector and camera between pro-
jected images.

The setup was made from relatively
inexpensive, off-the-shelf components.
Software was the most expensive system
component. Otherwise, no component in
the system used by NIST cost more than
$2,500.

Early results from the on-machine
fringe projection system show promise—
and room for improvement. The fringe
projection system successfully measured
a step height of about 102μm (0.004).
Figures 2 a and b illustrate the results,
showing a measured step height of 106μm.
The standard uncertainty in the determina-
tion of an individual point’s coordinates
is approximately 10μm laterally (in the X
and Y directions) and 16μm vertically (Z
direction) [6].

Overcoming limitations
A troublesome limitation of fringe pro-
jection is its inability to measure reflective
surfaces. For the measurement to func-
tion properly, the projected pattern must
be in view of the camera. With diffuse or
matte surfaces, the projected light is scat-
tered by the surface, sending the light in
different directions, including toward the
camera. However, with a reflective surface,
the light is reflected in only one direction.
If that direction is not toward the camera,
the pattern will not be seen and the mea-
surement cannot take place. The current
solution to this problem is to thoroughly
clean the surface and apply a temporary,
nonreflective coating (often white).

Ongoing research is aimed at im-
proving the speed and uncertainty of the
measurements. It is advantageous to use
multiple views of the part for one
measurement; this requires multiple
cameras and potentially more than one

References

Photogrammetry. American Society of
Photogrammetry. Virginia.
[2] Bette, L. Mouaddib, E., and Salvi,
structured light as a technique to solve
the correspondence problem: a survey,”
Pattern Recognition, v31, no7, pp. 963-
982.
[3] Salvi, J., Pages, J., and Bette, L.,
in structured light systems,” Pattern
Recognition, v37, no4, pp. 827-849.
[4] Postdamer, J.L, and Aartschoter,
M.D., (1982), “Surface measurement
directly from the encoded projected
beam systems,” Computer Graphics and
Image Processing, v18, pp. 1-17.
3-D surface acquisition by structured
light using off-the-shelf components,”
Videometrics and Optical Methods for
Shape Measurement, v4303, pp. 220-231.
“Uncertainty Analysis of a Simple Fringe
Projection System,” Proceedings of the
ASPE Summer Topical Meeting on The
Economics of Precision Engineering,
pp. 32-35.
(2000), “Theory and arrangements of
self-calibrating whole-body three-
dimensional measurement systems using
fringe projection technique,” Optical
Engineering, v39, pp. 159-169.
projector. However, additional data will require higher data processing speed and efficiency.

The measurement uncertainty is larger than desired for a m/m measurement process. One of the limiting factors for uncertainty comes from the projector’s resolution. Recent improvements in projector technology indicate that smaller projectors with better resolution will soon be available. Also, different pattern-shifting techniques may also reduce the uncertainty in determining the projector correspondence points.

The primary contributor to measurement uncertainty comes from the camera and projector calibration process. A calibration target with a greater number of more precisely known features will quickly reduce measurement uncertainty. Alternatively, self-calibration of the setup with every measurement may be an option. Using horizontal fringes in addition to the vertical fringe grayscale patterns allows determination of the X and Y projector correspondence points. This additional coordinate makes the system overdetermined, allowing the system’s calibration to be done at the same time as the measurement. In photogrammetry, this practice is called “free network bundle adjustment” [7].

There are trade-offs in any measurement process, including fringe projection for on-machine measurement. However, the on-machine fringe projection process at NIST demonstrates the concept’s potential with m/m machine tools.

About the author:
Dr. Shawn Moylan is a mechanical engineer in the Manufacturing Engineering Laboratory at the National Institute of Standards and Technology, Gaithersburg, Md. E-mail: shawn.moylan@nist.gov.

The GrindSmart® Nano6 tool grinder for diameters 0.01 – 2.0 mm (0.0004” – 0.078”)
- Mirror surface finish: fully hydrostatic linear axes
- Zero micron runout: new shank guide & floating workhead
- Optimal thermal stability: coolant oil doubles as hydrostatic oil
- Vibration-free operation: machine base is separated from the hood

GrindSmart® Nano6 - the PREMIER micro-tool grinder. To find out more about this revolutionary micro machine, visit www.rolromaticusa.com or call 847-281-8550.