LTB₄ Is a Signal-Relay Molecule during Neutrophil Chemotaxis

Philippe V. Afonso,1,4 Mirkka Janka-Junttila,1,4 Young Jong Lee,2 Colin P. McCann,1,3 Charlotte M. Oliver,1 Khaled A. Aamer,2 Wolfgang Losert,3 Marcus T. Cicerone,2 and Carole A. Parent1,∗

1Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
2Polymers Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
3Institute for Research in Electronics and Applied Physics, Department of Physics, University of Maryland, College Park, MD 20742, USA
4These authors contributed equally to this work

*Correspondence: parentc@mail.nih.gov
DOI 10.1016/j.devcel.2012.02.003

SUMMARY

Neutrophil recruitment to inflammation sites purportedly depends on sequential waves of chemoattractants. Current models propose that leukotriene B₄ (LTB₄), a secondary chemoattractant secreted by neutrophils in response to primary chemoattractants such as formyl peptides, is important in initiating the inflammation process. In this study we demonstrate that LTB₄ plays a central role in neutrophil activation and migration to formyl peptides. We show that LTB₄ production dramatically amplifies formyl peptide-mediated neutrophil polarization and chemotaxis by regulating specific signaling pathways acting upstream of actin polymerization and MyoII phosphorylation. Importantly, by analyzing the migration of neutrophils isolated from wild-type mice and mice lacking the formyl peptide receptor 1, we demonstrate that LTB₄ acts as a signal to relay information from cell to cell over long distances. Together, our findings imply that LTB₄ is a signal-relay molecule that exquisitely regulates neutrophil chemotaxis to formyl peptides, which are produced at the core of inflammation sites.

INTRODUCTION

Neutrophils are the most abundant leukocytes in the blood stream and the first cells recruited to an inflammation site, where primary chemoattractants such as formyl peptides released from bacteria or necrotic cells and complement fragments are produced (McDonald et al., 2010). In response to primary chemoattractants, the surrounding tissue as well as resident immune cells, such as macrophages, release secondary chemoattractants (Monteiro et al., 2011; Ribeiro et al., 1997). These pro-inflammatory mediators activate nearby endothelia and enhance leukocyte extravasation (Soehnlein et al., 2009). After neutrophils have entered the tissue, gradients of secondary chemoattractants guide neutrophils toward the vicinity of the inflammation. Locally, gradients of primary chemoattractants recruit neutrophils to the core of the inflammation (Foxman et al., 1997; Heit et al., 2002). After they have reached the inflammation site, neutrophils in turn secrete secondary chemoattractants and recruit additional leukocytes, which further amplify the inflammation process (Silva, 2010).

It has been proposed that secondary chemoattractants are secreted in sequential waves (McDonald and Kubes, 2010), where leukotriene B₄ (LTB₄) is the first secondary chemoattractant released at an inflammation site (Chou et al., 2010; Kim et al., 2006). LTB₄ is a product of arachidonic acid (AA) metabolism. It is synthesized by the sequential action of 5-lipoxygenase (5-LO) and leukotriene A₄ hydrolase (LTA₄H) (Crooks and Stockley, 1998; Peters-Golden and Henderson, 2007) and mediates its effects by binding to the G protein-coupled receptor BLT-1 (McDonald et al., 1992; Tager and Luster, 2003). LTB₄ is a potent chemoattractant for neutrophils and a key player in the initiation of inflammation (Canetti et al., 2003; Grespan et al., 2008; Ramos et al., 2005). Indeed, Chen et al. demonstrated that the recruitment of neutrophils toward inflammation sites is dependent on 5-LO expression in neutrophils (Chen et al., 2006a).

The current model suggests that LTB₄, as a secondary chemoattractant, is released once neutrophils reach the site of inflammation (McDonald and Kubes, 2010). We hypothesize that LTB₄ is actively secreted by neutrophils as they are migrating toward formyl peptides, therefore acting as a signal-relay molecule. To test this hypothesis, we assessed the role of LTB₄ secretion during primary neutrophil activation and migration in response to formyl peptides. We find that LTB₄ significantly amplifies neutrophil recruitment to primary chemoattractants by selectively modulating signaling cascades involved in cell polarization and by serving as a potent secondary gradient. Thus, LTB₄ acts as a signal-relay molecule for neutrophils migrating toward formyl peptides.

RESULTS

LTB₄ Secretion Does Not Alter fMLP-Induced ERK and PI3K Activation

We show that in response to the formyl peptide fMLP (N-formyl-methionine-leucine-phenylalanine), primary human neutrophils rapidly secrete LTB₄ in a concentration-dependent manner (Figure 1A), as previously established (Dahinden et al., 1988). Because LTB₄ and fMLP both bind to Gαi protein-coupled...
receptors (BLT-1 and FPR1, respectively) and activate similar cellular pathways (Berger et al., 2002; Cotton and Claing, 2009; Kuniyeda et al., 2007), we set out to determine if signal transduction pathways are amplified by fMLP-induced LTB4 secretion in primary human neutrophils. For this purpose we used two chemical inhibitors: MK886, an inhibitor of 5-LO activity and subsequent LTB4 production (Gillard et al., 1989); and LY223982, a BLT1 receptor antagonist, which blocks LTB4-mediated responses (Jackson et al., 1992).

We first focused our attention on the impact of LTB4 secretion on PI3K activation because previous reports suggested that the PI3K-PTEN axis is specifically involved in neutrophil migration toward LTB4 (Heit et al., 2002, 2008). We observed no significant difference in the fMLP-mediated phosphorylation of Akt on T308 (mediated through PI3K) (Alessi et al., 1997) in the presence of either MK886 or LY223982 compared to untreated cells (Figure 1B and Figure S1A available online). These results are consistent with the fact that LTB4 gives rise to a lower level of Akt phosphorylation compared to fMLP (Figure S1B); any increase in signal mediated by LTB4 would not be significant compared to the response elicited by fMLP alone. Similarly, we found that LTB4 signaling has no effect on the fMLP-mediated phosphorylation of Akt on S473, which is mediated through mTORC2 (Sarbassov et al., 2005), or of Erk1/2 (Figures 1B, S1A, and S1B). Together, these findings establish that LTB4 secretion has no impact on Akt and Erk1/2 activation upon fMLP stimulation.

Because the PI3K pathway has been linked to cell adhesion (Ferreira et al., 2006; Pellegatta et al., 2001; Shimizu and Hunt, 1996), we also tested the impact of secreted LTB4 on neutrophil adhesion in response to fMLP. We found that fMLP stimulation results in a dose-dependent increase in the number of neutrophils adhering to a fibronectin-coated surface (Figure 1C). As previously reported, we also found that PI3K inhibition by LY294002 treatment dramatically reduces the capacity of neutrophil to adhere (Oakes et al., 2009). In contrast, and...
consistent with our results of PI3K activation, no alteration in the adhesion capacity of neutrophils was detected in the presence of either MK886 or LY223982 (Figure 1C). Finally, comparison of neutrophil-substrate contact area using interference reflection microscopy (IRM) revealed no significant difference between cell contact areas in response to 1 nM fMLP in the presence of LTB4 pathway inhibitors (Figure 1D). These data confirm that PI3K modulates neutrophil adhesion and is not affected by LTB4 secretion following fMLP addition.

Autocrine and Paracrine LTB4 Secretion Enhances fMLP-Induced cAMP Production and MyoII Phosphorylation

We recently reported that the fMLP-mediated activation of the adenylyl cyclase 9 (AC9) and the subsequent accumulation of intracellular cAMP are important for neutrophil polarization and back retraction (Liu et al., 2010). We, therefore, set out to determine whether fMLP-induced LTB4 secretion alters intracellular cAMP dynamics at subsaturating and saturating doses of fMLP (FPR1 K0 = 1 nM) (Migeotte et al., 2006). We found that LTB4 pathway inhibitors do not impact the fMLP-mediated cAMP accumulation when fMLP is presented under saturating conditions (1 μM) (Figure 2A). In sharp contrast, both MK886 and LY223982 dose-dependently inhibited the ability of fMLP to induce cAMP production under subsaturating conditions (1 nM) (Figures 2B, S2A, and S2B). These findings establish that LTB4 secretion is required to elicit intracellular cAMP accumulation following stimulation with 1 nM fMLP. Because intracellular cAMP accumulation regulates uropod dynamics via a PKA/MyoII axis (Liu et al., 2010), we next measured the effect of fMLP-induced LTB4 secretion on the extent of myosin light-chain MyoII phosphorylation in neutrophils stimulated with 1 nM of fMLP. In accordance with our cAMP measurements, we found that the levels of fMLP-induced MyoII phosphorylation are significantly reduced in the presence of LTB4 pathway inhibitors (Figures 2C and S2C). These data suggest that fMLP-induced LTB4 secretion affects uropod dynamics during chemotaxis.

We next determined the role of fMLP-induced LTB4 secretion in fMLP-mediated actin polymerization and cell polarity. In response to a uniform stimulation of chemoattractant, neutrophils first accumulate cortical F-actin evenly around their periphery in a so-called cringe response; they then polarize and acquire a network of branched F-actin at their leading edge (Figure 3A) (Orelio and Kuijpers, 2009). When stimulated with 1 μM fMLP, the amount of F-actin in neutrophils doubles within 20 s and remains high up to 5 min (Figure 3B). Under these conditions, 83% of neutrophils accumulate cortical F-actin after 30 s, and 85% of neutrophils are polarized after 2 min (Figure 3D). Pretreating neutrophils with LTB4 pathway inhibitors has no effect on this outcome (Figures 3B and 3D). These results illustrate that the drugs have no toxic effect on the capacity of cells to polymerize actin and that LTB4 secretion has no impact on F-actin dynamics and cell polarization following saturating stimulations of fMLP.
When neutrophils are stimulated with the subsaturating dose of 1nM fMLP, the F-actin accumulation follows a biphasic profile with peaks at 20 s and 1 min after stimulation (Figure 3C). The first peak of F-actin correlates in time with the cortical cringe response, whereas the second peak matches the polarized F-actin response (Figure 3D). Under these conditions, after 2 min of stimulation, 67% of cells are polarized, whereas 25% show high cortical F-actin staining (Figure 3D). Remarkably, treatment with either MK886 or LY223982 specifically ablates the second F-actin (Figure 3C). Indeed, after 2 min of stimulation, we found that MK886 and LY223982 treatments decreased the percentage of polarized cells to only 34% and 26%, respectively (Figure 3D). Not surprisingly, we also found that the extent of F-actin accumulation following sub- and saturating IL-8 stimulations, which only lead to low LTB4 secretion (Figure S3A) (Meliton et al., 2010), is not altered in the presence of LTB4 pathway inhibitors (Figures S3B and S3C). These data demonstrate that LTB4 secretion facilitates and stabilizes neutrophil polarization in response to subsaturating stimulations of fMLP. Under these conditions we propose that the limited MyoII phosphorylation measured is a consequence of the absence of cell polarization; we did not observe neutrophil back-retraction defects.

We next wanted to assess if the effects of LTB4 on fMLP-mediated neutrophil polarization were mediated in an autocrine or paracrine fashion. To answer this question, we plated neutrophils at decreasing densities, which gradually reduces the effects of any paracrine signals, and measured the extent of neutrophil polarity 2 min after the addition of 1 nM fMLP. We observed a significant decrease in the percentage of polarized cells as we decreased cell density (Figure 3E), suggesting that

Figure 3. Autocrine and Paracrine LTB4 Secretion Enhances fMLP-Induced Cell Polarization
(A) Different stages of neutrophil polarization can be observed in response to fMLP stimulation. Primary human neutrophils were plated on gelatin-coated plates. Cells were stimulated, fixed, and F-actin was stained with FITC-phalloidin. Representative images are presented.
(B) LTB4 secretion has no impact on neutrophil response to a saturating dose of fMLP. Primary human neutrophils were treated with 100 nM MK886 or 10 μM LY223982 or DMSO as control, stimulated with 1 μM fMLP, fixed, and the F-actin network was stained with FITC-phalloidin. The kinetics of the average fluorescence was determined by FACS analysis. Results represent the average ± SEM of three independent experiments. *p < 0.005, ANOVA; Dunnett post hoc test.
(C) Neutrophil treatment with LTB4 inhibitors reduces neutrophil polarization in response to subsaturating doses of fMLP. Primary human neutrophils were treated as in (B), stimulated with 1 nM fMLP, and F-actin levels were determined by FACS, after staining with FITC-phalloidin. Results represent the average ± SEM of three independent experiments. *p < 0.005, ANOVA; Dunnett post hoc test.
(D) LTB4 amplifies neutrophil polarization after 2 min of fMLP stimulation. Primary human neutrophils were treated as in (B), plated on gelatin-coated plates, stimulated with fMLP, and fixed at different time points. Cells were stained with F-actin and counted into three categories (unpolarized, accumulated cortical F-actin, polarized). Results represent the average of four independent experiments.
(E) LTB4 amplifies neutrophil polarization in an autocrine and paracrine manner. Primary human neutrophils were treated as in (B), plated on gelatin-coated plates at different cell densities for 10 min. After 2 min stimulation with 1 nM fMLP, cells were fixed, and the number of polarized cells was counted. Results represent the average ± SEM of three independent experiments. *p < 0.05, ANOVA; Dunnett post hoc test.
See also Figure S3.
a paracrine signal regulates neutrophil polarization in response to fMLP. Because this effect is markedly inhibited in the presence of MK886 or LY223982, we propose that LTB4 acts as the main paracrine factor in this response. With 1 nM fMLP stimulations, the paracrine effect is lost when neutrophil density is lower than 10^5 cells/cm^2 because no further decrease in the percentage of polarized cells is observed at 10^5 and 0.5 x 10^5 cells/cm^2. However, at these cell densities, treatment with either LTB4 pathway inhibitor still significantly reduces the proportion of polarized cells (Figure 3E), suggesting that LTB4 also acts in an autocrine fashion. Taken together, these data demonstrate that, at subsaturating fMLP concentrations, secreted LTB4 functions as a paracrine and autocrine signal to enhance and stabilize neutrophil polarization.

AA Accumulates at the Front of Polarized Neutrophils

We next set out to determine if LTB4 secretion is directionally biased in polarized neutrophils. However, intracellular LTB4 has never been detected in neutrophils stimulated with either fMLP or ionomycin (a major 5-LO activator) (Mita et al., 1988; Williams et al., 1985), suggesting that LTB4 does not accumulate to significant levels in neutrophils. To circumvent this issue, we assessed the subcellular localization of the LTB4 precursor, AA, in polarized neutrophils using coherent anti-Stokes Raman scattering (CARS) microscopy.

Cells pretreated with deuterated AA were allowed to polarize and migrate directionally to fMLP using the under-agarose assay, fixed and analyzed by CARS to determine the subcellular distribution of deuterated species. We detected characteristic spectra for cytoplasm, nucleus, and deuterated punctates (Figure S4A). The peak at ~2,250 cm^{-1} is characteristic of carbon-deuterium (C-D) bound, whereas the broad peaks at ~2,900 cm^{-1} are a signature of carbon-hydrogen (C-H) bounds. Remarkably, we found that deuterated punctates accumulate toward the leading edge of neutrophils during chemotaxis (Figures 4A and 4B). In sharp contrast the inhibition of LTB4 synthesis with MK866 rendered the distribution of AA deuterated punctates random (Figures 4A and 4B). Importantly,
these findings were not a consequence of the weak cellular polarization measured in the presence of LTB₄ inhibitors because similar findings were obtained when deuterated punctates were monitored following a uniform stimulation with a saturating dose of fMLP (1 μM), which gives rise to normal polarization.

We next compared the averaged spectrum of the deuterated punctates of untreated and MK886-treated cells and found no difference between the two conditions (Figure 4C; see also Figure S4B for a zoomed-in view of the spectra of the C-D bound), even though simulations suggest that the CARS spectra of deuterated AA and deuterated LTB₄ should be different (Figure S4C). Similarly, no deuterated LTB₄ signal could be identified in neutrophils stimulated for longer periods (data not shown) or stimulated with the potent activator of 5-LO, ionomycin (Figures 4C and S4B) (Ford-Hutchinson et al., 1980). It, therefore, appears that, as previously suggested (Mita et al., 1988; Williams et al., 1985), LTB₄ does not accumulate in migrating neutrophils.

We see two possible interpretations of our data: (i) AA is enriched at the front of polarized neutrophils because most of the AA at the back of cells has been converted into LTB₄, which is then secreted at the cell rear; or (ii) AA is relocated at the front of neutrophils in response to 5-LO activation. Interestingly, we measured the asymmetrical distribution of deuterated punctates in neutrophils as early as 1 min after a uniform stimulation with 1 nM fMLP (data not shown), before the peak of LTB₄ secretion (Figure S4D). This finding suggests that AA is actively redistributed to the front of neutrophils and that LTB₄ is not primarily generated and secreted at the back of cells.

LTB₄ Autocrine/Paracrine Secretion Amplifies Neutrophil Chemotaxis to fMLP

Because cellular polarization is a prerequisite for migration, we studied the role of LTB₄ paracrine/autocrine secretion in neutrophil chemotaxis. We found that treating neutrophils with either MK886 or LY223982 significantly reduces transwell migration to fMLP (Figure 5A). Not surprisingly, neutrophil migration to IL-8 (which induces a very low LTB₄ secretion; Figure S3A) is not altered in the presence of LTB₄ pathway inhibitors (Figure S3D). This finding also confirms that the LTB₄ inhibitors used are specific and do not directly impact neutrophil migration.

This finding was further investigated using the under-agarose assays, where the behavior of populations of cells can be visualized directly (Heit and Kubes, 2003) (Figure 5B). We found that treatment with LTB₄ pathway inhibitors drastically reduces neutrophil chemotaxis to fMLP compared to untreated cells. The inhibition is statistically significant and more dramatic when cells migrated toward lower concentrations of fMLP (Figures 5B and 5C). The reduction in neutrophil chemotaxis in this assay could arise because cells cannot penetrate under the agarose in the absence of LTB₄ signaling or because fMLP-induced LTB₄ secretion amplifies chemotaxis. To get at this, we measured the extent of directed migration as a function of time; we found that in response to either 500 nM or 1 μM fMLP, LTB₄ pathway inhibitors give rise to a gradual inhibition of migration (Figures 5D and 5E), which is indicative of a chemotactic defect. Indeed, if cells were unable to migrate under the agarose, we would expect the migration profiles to show a time delay but otherwise be similar.

It has been shown that fMLP gradients in under-agarose assays are neither linear nor stable over time (Udén et al., 1986). We took advantage of this to study how a neutrophil population migrates into different gradients by assessing the migration speed of cells as a function of the chemoattractant gradient (Figure S5). We found that when neutrophils migrate in either shallow (lower than 25 pM/μm) or steep (greater than 60 pM/μm) gradients, the inhibition of LTB₄ has no significant impact on group migration (Figure 5F). Interestingly, when neutrophils migrate in intermediate gradients (between 25 and 60 pM/μm), the population migrates more efficiently, i.e., the front of migration progresses faster toward the well containing fMLP, in the presence of LTB₄ paracrine/autocrine secretion (Figure 5F). These data are consistent with the fact that fMLP-induced LTB₄ secretion impacts cell polarization at subsaturating (more physiological) concentrations of primary chemoattractants. More importantly, the data highlight the fact that LTB₄ paracrine/autocrine secretion is effective under conditions where LTB₄ is produced in sufficient amounts (i.e., in response to >20 pM/μm) and not overwhelmed by the high concentration of primary chemoattractant (>60 pM/μm).

LTB₄ Paracrine Secretion Acts as a Signal Relay between Neutrophils

We showed that fMLP-induced LTB₄ secretion favors neutrophil polarization and chemotaxis in shallow primary chemoattractant gradients. Several models could explain these observations. First, LTB₄ could increase the capacity of neutrophils to sense fMLP, e.g., by enhancing expression of the fMLP receptor. Second, LTB₄ could act as a chemokinetic agent and simply increase neutrophil migratory capacity. Finally, LTB₄ secretion could form a secondary gradient that facilitates a directional recruitment of neighboring neutrophils. In order to test these possibilities, we took advantage of the availability of mice that lack the formyl receptor 1 (FPR1), which mediates neutrophil chemotaxis to fMLP (Gao et al., 1999), and tested the ability of neutrophils isolated from these mice to migrate to exogenous fMLP when mixed with neutrophils isolated from wild-type (WT) mice.

We first demonstrated that the importance of LTB₄ secretion in neutrophil migration to formyl peptides is not restricted to human primary neutrophils. Using the under-agarose assay, we found that MK886 treatment reduces mouse bone marrow neutrophil migration to the synthetic WKYMVm peptide (a strong agonist for the mouse neutrophil FPR; He et al., 2000) (Figure 6A). Similarly to human neutrophils (Figure 5C), the inhibition is more important for cells migrating to low concentrations of the peptide (Figure 6A). Moreover, we demonstrate that this is not a consequence of drug-induced toxicity in neutrophils: neutrophils isolated from the bone marrow of mice lacking either BLT1 (Tager et al., 2000) or 5-LO (abox5/−/−) (Chen et al., 1994) exhibit impaired migration to 100 nM WKYMVm similarly to what we measure in neutrophils isolated from WT animals treated with MK886 (Figure 6B). Not surprisingly, we also confirmed that neutrophils isolated from fpr1−/− mice do not respond to 100 nM MKYMVm (Figure 6B). Importantly, these cells are able to migrate efficiently to LTB₄ (data not shown).

We then mixed cell populations (1:1 ratio) and measured their ability to migrate directionally to MKYMVm using the
under-agarose assay. To distinguish between the different populations, mutant neutrophils were fluorescently labeled. We first confirmed that the fluorescent label does not alter neutrophil migration (Figure 6C). Interestingly, we found that, in the presence of neutrophils derived from WT animals, \textit{fpr1}$^{-/-}$ neutrophils gain the capacity to migrate directionally to a well containing MKYMVm. Most importantly, the recruitment of \textit{fpr1}$^{-/-}$ neutrophils is abolished when WT neutrophils are treated with MK886 and do not produce LTB4. Similarly, \textit{fpr1}$^{-/-}$ neutrophils are not recruited when mixed with neutrophils isolated from the bone marrow of \textit{alox5}$^{-/-}$ mice (Figure 6C).

Together, these findings establish that LTB4 acts as a signal-relay molecule for neutrophils where WT neutrophils release LTB4 in an autocrine/paracrine fashion, which provides spatial information to neighboring \textit{fpr1}$^{-/-}$ neutrophils. This LTB4 relay allows the \textit{fpr1}$^{-/-}$ neutrophils to migrate directionally to a chemotactant they cannot sense.

DISCUSSION

LTB4 is widely recognized as an essential mediator in inflammation. Inhibiting leukotriene production reduces leukocyte recruitment and inflammation in a variety of models, such as arthritis, pancreatitis, or asthma (Peters-Golden and Henderson, 2007). Here, we establish that LTB4 is not only a secondary chemoattractant for neutrophils secreted early in the...
inflammation process, but it is also an important signal-relay molecule that increases the recruitment range and promotes the directional migration of neutrophils to formyl peptides, which are released at the core sites of inflammation (McDonald et al., 2010).

We demonstrate that LTB4 relay amplifies cAMP production, MyoII phosphorylation, F-actin polymerization, and cell polarization when cells are stimulated with subsaturating doses of fMLP. This is reminiscent to what has been described in the social amoebae Dictyostelium discoideum, where efficient effector activation requires the autocrine/paracrine production of chemoattractants when cells are stimulated with subsaturating concentrations of chemoattractant (Das et al., 2011). By contrast, and similar to the Dictyostelium model, LTB4 secretion has no impact on effector activation when neutrophils are stimulated with saturating concentrations of fMLP. These findings also support previous findings (Rochon and Frojmovic, 1993; Tomhave et al., 1994), where at saturating concentrations of fMLP, FPR1 activation induces BLT1 desensitization. Furthermore, we found that LTB4 pathway inhibition specifically impacts migration speed at intermediary fMLP gradients. In this case we envision that under very shallow fMLP gradients, LTB4 production is too low to impact fMLP-induced response, whereas under very steep gradients, LTB4 has no impact on migration because of cross-desensitization. We propose that this intermediary window of fMLP concentrations, where LTB4 relay is a key amplifier, may represent physiologically relevant conditions for in vitro studies.

Both BLT1 and FPR1 are coupled to Gαi-βγ G proteins, and neutrophil migration toward either LTB4 or formyl peptides is pertussis toxin sensitive (Brito et al., 1997). Therefore, one would expect that LTB4 relay amplifies the same signaling pathways as formyl peptides. However, we show that LTB4 relay specifically amplifies signaling pathways leading to F-actin production and MyoII phosphorylation without affecting Akt and Erk1/2 activation. Differences in signaling pathway activation upon formyl peptides and LTB4 stimulation have been previously reported: fMLP-induced chemotaxis has been shown to require P38-MAPK activation, whereas migration to LTB4 is P38 independent (Heit et al., 2002). Similarly, BLT1 activation does not induce H2O2 production, whereas FPR1 activation induces a high pertussis toxin-sensitive H2O2 production, and β2-integrin upregulation has been reported to be three times higher upon fMLP stimulation compared to LTB4 stimulation (Berger et al., 2002). Several models can be proposed to explain how the activation of a given Gα subunit can result in different functional responses. First, although the functional relevance of βγ subtypes has yet to be fully appreciated, the Gαi subunits could associate with different βγ subunits when coupled to different receptors—this has been demonstrated for the muscarinic M4 and somatostatin receptors binding to Gαo (Kleuss et al., 1992, 1993). Second, FPR1 and BLT1 have been reported to partition in different lipid domains at the plasma membrane (Sitrin et al., 2006). In this context we envision that effector molecules and activated receptors could access different lipid
domains resulting in the spatial segregation of signal transduction pathways.

fMLP-induced LTB4 secretion amplifies neutrophil polarization in an autocrine manner. In fact at low cell density, when LTB4 cannot act as a paracrine factor, fMLP-induced LTB4 still enhances neutrophil polarization, albeit to a lesser extent. LTB4 is not the only autocrine factor associated with effective cell polarization. It has been shown that autocrine ATP secretion enhances lamellipodia formation and stabilization in macrophage and neutrophil chemotaxis to C5a and fMLP, respectively (Chen et al., 2006b; Kronlage et al., 2010). Interestingly, the ATP autocrine activity has been associated with its directed release at the leading edge. We provide evidence that LTB4 could similarly be secreted at the front of neutrophils. We propose that in both cases the asymmetric secretion enhances lamellipod formation and stabilizes cell polarization by creating a local gradient at the leading edge.

In contrast to ATP, however, we also found that LTB4 acts in a paracrine fashion to enhance recruitment of neutrophils to primary chemoattractants. Previous studies have also suggested that LTB4 secretion could act as a paracrine effector for efficient neutrophil activation and degranulation in response to LTB4 or ATP, respectively (Kannan, 2002; Serio et al., 1997). We predict that both in vivo and in vitro, the secondary gradient generated by the secretion of LTB4 can efficiently recruit a population of neutrophils that may not normally be recruited to sites of inflammation. This is of consequence because human primary neutrophil populations are heterogeneous. For example three distinct neutrophil subsets, which respond differently to infectious agents, have been identified during Staphylococcus aureus infection in mice (Tsuda et al., 2004). In this context, neutrophils that can efficiently migrate to formyl peptides would readily secrete LTB4, thereby recruiting populations of neutrophils that are low responders for formyl peptides but are good LTB4 responders. Similarly, in Dictyostelium, signal relay has been shown to specifically amplify the range of recruitment of neighboring cells to an external chemotactant allowing cells to maintain directionality over very long distances (McCann et al., 2010).

It remains unclear how the secondary LTB4 gradient is formed. Due to its small size (molecular weight = 336 Da), LTB4 would likely diffuse quickly rendering the gradient short lived. We could first argue that LTB4 is a lipid-derived hydrophobic molecule, which could significantly reduce its diffusion properties. Second, neutrophils could create a more stable gradient by secreting LTB4 in exosomes. In Dictyostelium, signal relay has been proposed to be mediated by the secretion of chemoattractant-containing exosomes (Kriebel et al., 2008), and FLAP-containing exosomes have been detected in neutrophils (Jethwani et al., 2007). In addition a recent report has demonstrated that macrophages and dendritic cells are capable of secreting LTB4-producing exosomes (Esser et al., 2010), which can induce granulocyte migration. Hence, we speculate that neutrophils may secrete such exosomes. In this model, neutrophils that migrate to sites of inflammation would recruit additional neutrophils with LTB4-releasing vesicles. This model is consistent with our current study and others where intracellular LTB4 has not been detected (Mita et al., 1988; Williams et al., 1985). This suggests that either LTB4 is secreted quickly out of the cells or that the cytosolic production of LTB4 is weak. In this latter scenario, LTB4 production could be contained within extracellular vesicles.

Based on our findings, we propose the following model for LTB4-mediated signal relay (see Figure 7). In response to a given external formyl peptide gradient, some neutrophils respond, polarize, and release LTB4 or LTB4-producing vesicles at their leading edge. The local LTB4 gradient strengthens and stabilizes cell polarization of the first responders. Because LTB4 production is fMLP concentration dependent, neutrophils that are closer to the fMLP source will secrete higher amounts of LTB4. As a consequence, a secondary LTB4 gradient is formed parallel to the fMLP gradient. Neutrophils that were not initially responsive to fMLP can now sense the secondary gradient of LTB4 and migrate up this gradient toward the fMLP source, thus amplifying the inflammatory response.

In summary we provide a mechanism where directional cell-to-cell communication regulates neutrophil migration and recruitment to the core of inflammation sites. We envision this mechanism to be important in vivo where the relay of LTB4 signals would enhance neutrophil recruitment to the inflammation core at the initiation of the process, when low concentrations of primary chemoattractants are released. In addition we predict that LTB4 relay is poised to maintain the inflammation. In fact it has been shown that in the absence of LTB4 signaling, experimentally induced arthritis subsides faster (Chen et al., 2006a; Chou et al., 2010). We propose that in these models, directed neutrophil recruitment to the core of inflammation is enhanced by LTB4 signal relay.

EXPERIMENTAL PROCEDURES

Additional information is found in the Supplemental Experimental Procedures.

Materials

Percoll, Histopaque 1077, formyl peptides (fMLP for human neutrophils, and the synthetic WKYMVm peptide for mouse neutrophils), IL-8, ionomycin, and LY294002 were obtained from Sigma-Aldrich (St. Louis). LTB4, deuterated AA, the FLAP inhibitor MK886, and the LTB4 receptor antagonist LY223982 were purchased from Cayman Chemical (Ann Arbor, MI, USA). Anti-p-Akt (clone D31E5) and D9E for residues T308 and S473, respectively, anti-phosphorylated myosin light chain 2 (Ser19), and anti-p-Erk1/2 (clone D13.14.4E) rabbit antibodies were all from Cell Signaling Technology (Beverly, MA, USA). Transwell chambers were purchased from Corning Life Sciences (Lowell, MA, USA). WT, alox5−/−, and bt1−/− mice were from the Jackson Laboratory (Bar Harbor, ME, USA). Fpr1−/− mice were a generous gift from Philip Murphy (National Institute of Allergy and Infectious Diseases, National Institutes of Health [NIH]).

Isolation of Human Peripheral Blood Neutrophils

Heparinized whole blood was obtained by venipuncture from healthy donors. Neutrophils were isolated by dextran sedimentation (3% dextran/0.9% NaCl) followed by cell filtration over Histopaque 1077 (Mahadeo et al., 2007). Residual erythrocytes were removed using hypotonic lysis with 0.2% and 1.6% saline solutions. Blood samples were obtained from anonymous blood donors enrolled in the NIH Blood Bank research program.

Isolation of Mouse Bone Marrow Neutrophils

Mice were sacrificed, and the femurs and tibias were removed from both legs. HBSS (without calcium and magnesium) with 0.1% BSA was forced through the bones, and the solution was filtered through a cell strainer. Cells were centrifuged at 400 g for 5 min, and neutrophils were isolated using a three-layer Percoll gradient of 78%, 69%, and 52%, as previously described (Boxo et al., 2010).
et al., 2004). After isolation, neutrophils were resuspended in HBSS with or without 1 μM cyto
tracker green (Molecular Probes; Invitrogen, Eugene, OR, USA), incubated for 1 hr at 37°C, washed, resuspended in RPMI with 10%
serum, and incubated for 1 hr at 37°C. Animal procedures were done under
protocols approved by the National Cancer Institute, in accordance with Asso-
ciation for Assessment and Accreditation of Laboratory Animal Care guidelines
and policies established by the NIH.

LTB₄ Measurement

LTB₄ was measured using an ELISA kit (R&D Systems, Minneapolis). Human
primary neutrophils were resuspended at 1 x 10⁶ cells/ml in PBS and incu-
bated for 30 min on ice. GM-CSF (10 ng/ml; R&D Systems) was added, and
neutrophils were further incubated for 1 hr at 37°C. Cells were spun down at
400 x g for 5 min and resuspended (cell density = 15 x 10⁶ cells/ml) with
RPMI and incubated at 37°C until stimulated. After the stimulation, cold PBS
was quickly added, neutrophils were centrifuged, and supernatants were
collected and frozen. Assays were performed according to manufacturer’s
instructions.

Under-Agarose Assay

Chemotaxis of the neutrophil population was studied using the under-agarose
assay as previously described (Comer and Parent, 2006). Cell culture dishes
were coated with 1% BSA in PBS for 1 hr at 37°C. For assays with human
peripheral blood neutrophils, 0.5% agarose in 50% PBS was poured and incubated for 30 min at 37°C until stimulated. After the stimulation, cold PBS
was quickly added, neutrophils were centrifuged, and supernatants were
collected and frozen. Assays were performed according to manufacturer’s
instructions.

CARS Microscopy

Neutrophils were incubated with deuterated AA as reported previously (van
Manen et al., 2005). Labeled cells were allowed to migrate in under-agarose
assay for 2 hr, or stimulated uniformly for 1 or 2 min with 10 nM fMLP. The
experimental setup of the broadband CARS microscopy has been described
previously (Lee et al., 2011; Parekh et al., 2010). Briefly, the output (70 fs,
centered at 830 nm, 80 MHz) of a Ti:S laser oscillator (MaiTai-DeepSee,
Spectra-Physics) was split into two parts. One part was introduced into
photonic crystal fiber (Crystal Fibre; FemtoWHITE) to generate a continuum
pulse. The other part was spectrally narrowed by a 4-f dispersion-less filter to
10 cm⁻¹ full-width half-maximum (FWHM) with the center wavelength at
830 nm. The two beams were introduced collinearly and with parallel polarization
into a 60x 1.35 NA oil-immersion objective lens (Olympus) and focused on
the sample. The CARS signal generated from the sample was collected in the
forward direction and analyzed using a charge-coupled device (CCD; DU920-BR-DD; Andor) attached to a monochromator (SP-2300; Acton). The
spatial resolution was laterally 500 nm, and the sample was scanned either
by 120 or 250 nm pixel spacing. The average laser power at the sample was
kept below 15 mW for each pulse to avoid photodamage. The CCD exposure
time is typically 30 ms per pixel. The acquired CARS spectrum was processed
by modified Kramers-Kronig phase retrieval and followed by baseline detrend-
ing (Liu et al., 2009).

Figure 7. Model for LTB₄ as a Signal-Relay Molecule for Neutrophils Migrating to fMLP

In response to an external fMLP gradient, some neutrophils respond, polarize, and release LTB₄. The local LTB₄ gradient strengthens and stabilizes cell
polarization of these first responders. Because LTB₄ production is fMLP concentration dependent, a secondary LTB₄ gradient is formed parallel to the fMLP
gradient. Neutrophils that were not initially responsive to fMLP sense the secondary gradient of LTB₄ and migrate up this gradient toward the fMLP source, thus
amplifying the inflammatory response.

Developmental Cell

LTB₄ Signal Relay during Chemotaxis

Statistical Analysis
Analyses were performed with GraphPad Prism software Version 5.0b. One-way ANOVA and Dunnet post hoc test (with untreated cells as the control group) were performed on normalized data with “treatment” as the independent variable and “cAMP level,” “F-actin accumulation,” or “number of cells migrating in a transwell assay” as the dependent variable (p < 0.05 was considered statistically significant). Friedman and Dunn’s post hoc test (with untreated cells as the control group) was performed with “treatment” as the independent variable and “normalized MyoII phosphorylation levels” or “distance migrated in under-agarose assay” as the dependent variable (p < 0.05 was considered statistically significant). For the asymmetrical distribution we compared the distribution to a theoretical 0.5 mean value in a Wilcoxon test.

SUPPLEMENTAL INFORMATION
Supplemental Information includes five figures and Supplemental Experimental Procedures and can be found with this article online at doi:10.1016/j.develcell.2012.02.003.

ACKNOWLEDGMENTS
We thank Amy Melpolder and the NIH Blood Bank for providing human blood from healthy volunteers. We are grateful to Dr. Philip Murphy for providing fpr1−/− mice and, in particular, to Dr. Jiliang Gao for his help with the mice. We wish to thank Drs. Ronald Germain and Tim Lämmermann for providing the btt1−/− mice. We also thank the C.A.P. laboratory members for excellent discussions and suggestions and for valuable input on the manuscript. W.L. participated in this work while on sabbatical at the LCMB, COR. This research was supported by the Intramural Research Program of the Center for Cancer Research, NCI, National Institutes of Health. Official contribution of the National Institute of Standards and Technology; not subject to copyright and not protected under U.S. copyright. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Received: August 4, 2011
Revised: December 23, 2011
Accepted: February 3, 2012
Published online: April 26, 2012

REFERENCES

Developmental Cell 22, 1079–1091, May 15, 2012 ©2012 Elsevier Inc. 1089
LTB4 Signal Relay during Chemotaxis

