Advanced Propellant/Additive Development for Fire Suppressing Systems

Stephen Fallis and Russell Reed
Research Department, Naval Air Warfare Center Weapons Division, China Lake, CA

Paul Wierenga, Gary F. Holland
Aerojet-Redmond Rocket Center
Redmond, WA

Halon Options Technical Working Conference
May 2003

Aerojet-NAWC
Outline of Presentation

• Introduction
 – Program Background Information
 – Fire Suppression and GG’s

• Propellant Development
 – Cooler, High Nitrogen Compositions

• Effectiveness Testing
 – SPFES (Solid Propellant Fire Extinguishers)
 – HFEs (Hybrid Fire Extinguishers)

• Summary

• Acknowledgements
But First…

GF Holland
PH Wierenga

S Fallis
R Reed

Olin Aerospace
Rocket Research
Fire Suppression Mechanistics

\[\text{FE} = \text{X}_{\text{dil}} + \text{X}_{\text{cool}} + \text{X}_{\text{chem}} + \text{X}_{\text{flow}} \]

- \(\text{X}_{\text{dil}} \sim \text{dilution effects: } [\text{O}_2] \approx 12-13\% \)
- \(\text{X}_{\text{cool}} \sim \text{cooling effects: } C_p \approx 40-50 \text{ cal/}\degree\text{K-mol } \text{O}_2 \)
- \(\text{X}_{\text{chem}} \sim \text{chemical effects: radical traps} \)
- \(\text{X}_{\text{flow}} \sim \text{flow rate effects: dec } \tau_{\text{res}} \text{ in flame zone} \)
Solid Propellant Fire Suppression Systems

Current State of the Art:
- Size competitive w/ Halon-1301 (volume, mass)
- Effective, clean, fast acting
- Environmentally rugged and reliable
- Low human hazard: CO₂, N₂, H₂O
- Environmentally friendly, SNAP-approved
- Temperature compensating designs
- All based on commercial automotive airbag technology

Next Generation Objectives:

Improve effectiveness via:
- Increased cooling
 - Cooler burning propellants
 - Hybrid configurations
- Increased gas output
- Added chemical activity

Opportunity:
- 2-5x reduction in agent loads
Program Background Information: Propellant Development

• Phase I
 – Developmental Compositions, High-N Compounds
 – Chemically Active Formulations: vary agent

• Phase II
 – BTATZ Scale-up
 – Chemical additives incorporated into SPFE, HFE

• Phase III
 – BTATZ Formulations: Ballistic Testing
 – Chemically Active Formulations: vary [agent]
High-Nitrogen Fuels Used in CL/PAC Propellant Development

Guanidinium Bitetrazole (GBT)

Bisguanidinium Azotetrazole (GAZT)

Triaminoguanidium Nitrate (TAGN)

Bis(aminotetrazolyl)tetrazine (BTATZ)

5-Aminotetrazole (5AT)

Bitetrazole (BT)
Effect of Combustion Temperature on Ballistics

- Trends
 - BR not predictable by T_c alone
 - Falloff in BR follows Arrhenius-type activated process
 - $\ln(BR) = f(1/T_c)$
 - Slopes vary
- Predictive tool?
Control of Exhaust Temperatures

- Propellant modifications
 - Vary F, O
 - F+O \rightarrow CO$_2$, N$_2$, H$_2$O
 - Incorporate coolant
 - Calculate T_c (combustion)
 - T_{meas} \sim 200–600 °C

- Hybrid combinations
 - T_{meas} \sim 50–100 °C

![Graph showing the relationship between MgCO3 % and T_c °K.](image)

5-Aminotetrazole (5AT)

Bis(aminotetrazolyl)tetrazine (BTATZ)
Developmental Propellants: High Gas, Cooler Gas

<table>
<thead>
<tr>
<th>Descriptors</th>
<th>Tc, °C</th>
<th>Gas, mol/100g</th>
<th>theoretical density, g/cc</th>
<th>BR<sub>1000</sub>, in/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTSN-00</td>
<td>2501</td>
<td>2.27</td>
<td>2.38</td>
<td>1.09</td>
</tr>
<tr>
<td>BTSN-10Ê</td>
<td>2289</td>
<td>2.12</td>
<td>2.43</td>
<td>TBD</td>
</tr>
<tr>
<td>BTSN-20</td>
<td>2032</td>
<td>2.00</td>
<td>2.49</td>
<td>0.75</td>
</tr>
<tr>
<td>BTSN-30</td>
<td>1621</td>
<td>1.89</td>
<td>2.55</td>
<td>TBD</td>
</tr>
<tr>
<td>BTSN-40</td>
<td>1537</td>
<td>1.79</td>
<td>2.61</td>
<td>0.35</td>
</tr>
<tr>
<td>BTSN-50</td>
<td>1071</td>
<td>1.54</td>
<td>2.67</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Propellant Combustion

Discharging from GG
Rate of discharge = orifice \times P
Discharge is uniform blend of CO₂, N₂, H₂O + Additive

Evolving from propellant into GG at uniform rate:
CO₂+N₂+H₂O + additive Vapor + Heat
Rate of evolution = Area \times Burn rate

Initiator output ignites propellant

F+O → CO₂+N₂+H₂O + clinker + HEAT
HEAT flows into grain

Burn progresses uniformly into propellant
Rate = (const) \times P^n

Each propellant grain is a uniform mix of:
- Fuel (F, yellow matrix)
- Oxidizer (O, green)
- Coolant (blue)
- Additive (red diamonds)

Additive + HEAT → vaporization

Coolant + HEAT → CO₂ + Clinker
Aerojet Fire Test Fixture

Fuel Spray

SPGG or HFE on Bracket

Air Inlet
Test Fixture Parameters

• ~700 kW Flame Intensity
 – Flame temperature = ~1000 K (1300 °F)
 – Air flow rate = 450 g/s (1 lbₐir/s)
 – Fuel flow rate = 15 g/s (0.033 lbₐir/s)
 – Air:fuel ratio = 31
 – Equivalence ratio = 0.5

• 24 ft³ Total Volume (16 ft³ fire zone)
 – Residence time = ~1 s (through fire zone)

• 100-200 ms Discharge Time for SPFEs and HFEs

\[
\frac{m_{\text{air}}}{m_{\text{fuel}}}
\]
Aerojet SPFE Active Agent Test Unit

- Agent exhaust
- Matrix containing chemical particulate
- Solid Propellant
- Initiator
- Chamber 1
- Chamber 2
Test Videos: Active Agent Assessment

$\text{Fe}_2\text{O}_3/\text{FeCp}_2$ \hspace{2cm} $\text{KI}/\text{K}_2\text{CO}_3$
Summary of FTF Data

<table>
<thead>
<tr>
<th>Neat agent</th>
<th>Agent mass, g</th>
<th>Test No.</th>
<th>Result</th>
<th>Neat agent</th>
<th>Agent mass, g</th>
<th>Test No.</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI</td>
<td>20</td>
<td>027-06</td>
<td>fire not out</td>
<td>Fe₂O₃</td>
<td>40</td>
<td>038-01</td>
<td>fire not out</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>027-07</td>
<td>fire not out</td>
<td></td>
<td>80</td>
<td>038-02</td>
<td>fire not out</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>027-05</td>
<td>fire out</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>027-04</td>
<td>fire out</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KBr</td>
<td>40</td>
<td>032-02</td>
<td>fire not out</td>
<td>Ferrocene</td>
<td>40</td>
<td>039-01</td>
<td>fire not out</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>032-03</td>
<td>fire not out</td>
<td></td>
<td>80</td>
<td>039-02r</td>
<td>fire not out</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>032-01</td>
<td>fire not out</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K₂CO₃</td>
<td>20</td>
<td>035-03</td>
<td>fire not out</td>
<td>Fe Oxalate</td>
<td>40</td>
<td>040-01</td>
<td>fire not out</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>035-02r</td>
<td>fire out</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>035-01</td>
<td>fire out</td>
<td>PBPE</td>
<td>60</td>
<td>041-01</td>
<td>fire not out</td>
</tr>
</tbody>
</table>
SPFE’s

- Advantages
 - Rapid discharge
 - No storage pressure
 - T-compensating

- Applications
 - Ballistic & safety fire protection for aircraft.
 - Land vehicle engine compartments.
 - Electronics bays
Hybrid Fire Extinguishers

• Advantages
 – Tailorable discharge
 – Fits into current Halon 1301 envelope
 – Low/No storage pressure
 – T-compensating discharge

• Applications
 – Armored vehicle engine & crew compartments.
 – Aircraft engine nacelles.
 – Automotive & industrial fire/explosion protection
SPFE, HFE Testing

Fire Test, active agent

Discharge demo, active agent (100x)
3304/FM200 HFE Fire Out Sequence

HFE Function: T= 0 msec T= 33 msec T= 66 msec

T= 99 msec T= 132 msec T= 165 msec
Performance Summary

Mass of Initial Agent (g)

SPFE Baseline
HFE Baseline

Series: 10:1 – 6:1
Vary $T_{exh}(+1 \text{ ft})$ ~ 50–65 °C

Aerojet-NAWC HOTWC 2003
Conclusions

• BTATZ-based formulations provide excellent platform for cooler-burning FS compositions

• Increasing the amount of active additive leads to more efficient SPFE and HFE performance.
 – Catalysis not yet saturated

• HFE’s effective for low vapor pressure fluids
 – Higher-boiling fluorocarbons
 – Water-based systems
Acknowledgements

• Suppression and Ballistics Testing:
 – At China Lake: Dr. T. P. Parr, R. Stalnaker, J. Hitner, P. Curran, A.I. Atwood
 – At Aerojet/GD: Gary Gregg, Jennifer McCormick, Chuck Anderson, Ron Paxton, Ray Nikko

• Funding
 – SERDP’s Next Generation Fire Suppression Technology Program (NGP)
 – Naval Air Combat Survivability Program