

Evaluation of Fault Detection Effectiveness for

Combinatorial and Exhaustive Selection of Discretized Test Inputs

Carmelo Montanez, D. Richard Kuhn, Mary Brady, Richard M. Rivello, Jenise Reyes, Michael K. Powers

National Institute of Standards and Technology, Gaithersburg, MD

Corresponding authors: carmelo.montanez-rivera@nist.gov, kuhn@nist.gov

mailto:kuhn@nist.gov
mailto:carmelo.montanez-rivera@nist.gov

Evaluation of Fault Detection Effectiveness for

Combinatorial and Exhaustive Selection of Discretized Test Inputs

Abstract: Testing components of web browsers and other graphical interface software can be

extremely expensive because of the need for human review of screen appearance and interactive behavior.

Combinatorial testing has been advocated as a method that provides strong fault detection with a small

number of tests, although some authors have disputed its effectiveness. This paper compares the

effectiveness of combinatorial test methods with exhaustive testing of discretized inputs for the Document

Object Model Events standard. More than 36,000 tests – all possible combinations of equivalence class

values – were reduced by more than a factor of 20 with an equivalent level of fault detection, suggesting

that combinatorial testing is a cost-effective method of assurance for web-based interactive software.

Keywords: combinatorial testing; conformance testing; document object model; interoperability

testing; world wide web standards

Background

Test input selection is a critical task in software testing, because it is generally impossible to test all

possible combinations of inputs, particularly for continuous-valued variables. Representative discrete

values for input variables must be chosen using some form of category partitioning (Ammann & Offutt,

2008). After inputs are discretized, there still remains the task of selecting inputs for tests to be applied

to the system. Possibilities for input selection include ad hoc, random, each-choice, pairwise, and

generalized t-way testing. For ad hoc testing, judgment may be used to determine test inputs that the

tester believes most critical or likely to detect errors. Random testing requires sampling input values

according to some distribution and sampling level. The other strategies listed above can be defined for a

set of N input variables, with v1, v2, …, vN values per variable, by specifying coverage of t-way

combinations in the full test set as follows: each-choice means that t=1 and every variable value is

included in some test; for pairwise, every 2-way combination is covered, and t-way testing for t > 2

means that every t-way combination is covered at least once.

Combinatorial or t-way testing is among the test approaches that appear to offer good fault

detection with a small test set (Grindal et al., 2005), including its simplest form, pairwise (t=2) testing

(Lei & Tai, 1998; Tai & Lei, 2002). Because system failures often result from the interaction of

conditions that might be innocuous individually, this method can be effective for domains with many

interacting parameters, such as interoperability testing. Consider a large example: a manufacturing

automation system that has 20 controls, each with 10 possible settings, a total of 1020 combinations.

Surprisingly, we can check all pairs of these values with less than 200 tests, if the tests are carefully

constructed. Pairwise testing has become popular because it can check for problem-causing interactions

with relatively few tests. Several investigations suggest individual values or a pair of parameters are

responsible for roughly 70% to more than 98% of faults (Kuhn & Reilly, 2002; Kuhn et al., 2004).

Empirical results suggest that extended forms of combinatorial testing, covering combinations

beyond simple pairwise, can be as effective as testing all possible combinations (Kuhn et al., 2004; Bell,

2006), because if all faults are triggered by interactions of one to six variables, then testing all 6-way

combinations can provide a high degree of confidence. However, some authors argue that combinatorial

or t-way testing may be no more effective than other approaches (Bach & Schroeder, 2004; Jorgensen,

2008). In this paper, we compare the fault detection effectiveness of t-way testing with full exhaustive

testing of discretized inputs for implementations of the Document Object Model events standard.

Because testing DOM events requires substantial human involvement, testing can be extremely time-

consuming and expensive. Thus there is a need for methods to reduce the number of test inputs while

retaining a high level of fault detection. As described in the next section, the DOM test suite had already

been applied with exhaustive (with respect to discretized values) tests against a variety of commercial

DOM implementations, so it provided a valuable opportunity to evaluate the combinatorial approach on

real-world software. If results showed that a much smaller test suite could achieve the same level of fault

detection as exhaustive tests, then conformance testing could be done at much lower cost in staff time and

resources.

The Document Object Model

The Document Object Model (DOM) (W3C, 2011) is a standardized method for representing and

interacting with components of XML, HTML, and XHTML documents. DOM lets programs and scripts

access and update the content, structure, and style of documents dynamically, making it easier to produce

web applications in which pages are accessed non-sequentially. DOM is standardized by the World Wide

Web Consortium (W3C).

Since its origination in 1996 as a convention for accessing and modifying parts of Javascript web

pages (known now as DOM Level 0), DOM has evolved as a series of standards offering progressively

greater capabilities. Level 1 introduced a model that allowed changing any part of the HTML document,

and Level 2 added support for XML namespaces, load and save, cascading style sheets (CSS), traversing

the document, and working with ranges of content. Level 3 brings additional features, including keyboard

event handling.

DOM Level 3 Events (W3C, 2009) is a W3C Standard developed by the Web Applications

Working group. Implemented in browsers, it is a generic platform and language neutral event system

that allows registration of event handlers, describes event flow through a tree structure, and provides basic

contextual information for each event. This work builds on the previous Document Object Model Level

2 events specifications. There are two basic goals in the design of DOM Level 3 Events. The first goal is

to design an event system that allows registration of event listeners and describes an event flow through a

tree structure. The second goal is to provide a common subset of the current event system used on DOM

Level 3 Events browsers.

DOM browser implementations typically contain tens of thousands of source lines of code. To help

ensure successful implementations of this complex standard, NIST developed the DOM Conformance

Test Suites, which include tests for many DOM components. Early DOM tests were hand-coded in a test

language, then processed to produce ECMAScript and Java. In the current version of the test suites, tests

are specified in an XML grammar, allowing easy mapping from specification to a variety of language

bindings. Because the grammar is generated automatically from the DOM specs, tests can be constructed

quickly and correctly. Output of the test generation process includes the following components, which

implementers can use in testing their product for DOM interoperability:

• Tests in the XML representation language,

• XSLT stylesheets necessary to generate the Java and ECMA Script bindings,

• Generated executable code.

To reduce the time required to generate the large number of tests required for checking standards

conformance, NIST developed a Test Accelerator tool (NIST, 2011) that was used to generate tests for 35

(out of 36) DOM Events. The specification defines each event as an Interface Definition Language (IDL),

which in turn defines a number of functions for each event. A typical function can have anywhere from

one to fifteen parameters. Since the IDL definition could be accessed directly from the specs web site;

the web address was given as input to the Java application. This way the application could read and

traverse them extracting just the information of our interest. In this case the function names and their

respective parameters, argument names, etc., which became part of the XML file that was used to feed

the Test Accelerator to automatically create the DOM Level 3 tests.

Category partitioning was used to select representative values for non-Boolean parameters. The

initial test set was exhaustive across the equivalence classes, producing 36,626 tests that exercised all

possible combinations of representative parameter values. Two different implementations were tested.

The implementations successfully executed about 48.49% of the test cases and generated a total of ten

distinct messages that indicated a test could not be run because of a problem such as a non-supported

feature. The DOM events and number of tests for each are shown in Table 1. This set of exhaustive tests

detected a total of 72 failures.

Event Name

Abort
Blur
Click
Change
dblClick
DOMActivate
DOMAttrModified
DOMCharacterDataModified
DOMElementNameChanged
DOMFocusIn
DOMFocusOut
DOMNodeInserted
DOMNodeInsertedIntoDocument
DOMNodeRemoved
DOMNodeRemovedFromDocument
DOMSubTreeModified
Error
Focus
KeyDown
KeyUp
Load
MouseDown
MouseMove
MouseOut
MouseOver
MouseUp
MouseWheel
Reset
Resize
Scroll
Select
Submit
TextInput
Unload
Wheel

Number of

Parameters

3
5

15
3

15
5
8
8
6
5
5
8
8
8
8
8
3
5
1
1
3

15
15
15
15
15
14
3
5
5
3
3
5
3

15

Number of
Tests

12

24

4352

12

4352

24

16

64

8

24

24

128

128

128

128

64

12

24

17

17

24

4352

4352

4352

4352

4352

1024

12

48

48

12

12

8

24

4096

Total Tests 36626

Table 1. DOM Level 3 Events Tests – Exhaustive

Combinatorial Testing of DOM Events

To investigate the effectiveness of combinatorial testing, covering arrays of 2-way through 6-way

tests were produced. A covering array defines a set of tests that cover all t-way combinations in a highly

compact form. A variety of high quality free tools are available for producing covering arrays, including

Microsoft PICT, and ACTS, developed by the National Institute of Standards and Technology and the

University of Texas Arlington. Using t-way combinations can significantly reduce the number of tests as

compared with exhaustive. For example, the mousedown event (Figure 2) requires 4352 tests if all

combinations are to be realized. Combinatorial testing reduces the set to 86 tests for 4-way coverage. An

excerpt of these tests is shown in Figure 2 (function arguments are: 'type', bubbles, cancelable,

windowObject, detail, screenX, screenY, clientX, clientY, ctrlKey, altKey,

shiftKey, metaKey, button, relatedTarget).

Table 3 details the number of parameters and number of tests produced for each of the 35 DOM

events, for t = 2 through 6. That is, the tests covered all 2-way through 6-way combinations of values.

Note that for events with few parameters, the number of tests is the same for the original test suite (Table

1) and combinatorial for various levels of t. For example, 12 tests were produced for Abort in the original

and also for combinatorial testing at t = 3 to 6. This is because producing all n-way combinations for n

variables is simply all possible combinations of these n variables, and Abort has 3 variables. This

situation is not unusual when testing configurations with a limited number of values for each parameter.

For nine of the 35 events (two Click events, six Mouse events, and Wheel), all combinations are not

covered even with 6-way tests. For these events, combinatorial testing provides a significant gain in

efficiency (see Table 2).

1 "mousedown" true true window 5 5 5 5 5 true true true true 5 null
2 "mousedown" true true window 5 5 5 5 5 true true true true 10 null
3 "mousedown" true true window 5 5 5 5 5 true true true false 5 null
4 "mousedown" true true window 5 5 5 5 5 true true false true 5 null
5 "mousedown" true true window 5 5 5 5 5 true true false true 5 null
6 "mousedown" true true window 5 5 5 5 5 true true false true 10 null

...
83 "mousedown" true true window 5 5 5 -5 5 false true true false 5 null

84 "mousedown" true true window 5 5 5 -5 5 false true true false 10 null

86 "mousedown" true true window 5 5 5 -5 5 false true false true 5 null

86 "mousedown" true true window 5 5 5 -5 5 false true false true 10 null

Figure 2. Excerpt of 86 combinatorial tests produced for “mousedown” event.

Event Name
Num
para

m

2-way
Tests

3-way
Tests

4-way
Tests

5-way
Tests

6-way
Tests

Abort 3 8 12 12 12 12
Blur 5 10 16 24 24 24
Click 15 18 40 86 188 353
Change 3 8 12 12 12 12

2dblClick 15 18 40 86 188 353
DOMActivate 5 10 16 24 24 24
DOMAttrModified

88888
8 8 16 16 16 16 110

DOMCharacterDataModified 8 32 62 64 64 64
33323232 2DOMElementNameChanged 6 8 8 8 8 8

DOMFocusIn 5 10 16 24 24 24
DOMFocusOut 5 10 16 24 24 24
DOMNodeInserted 8 64 128 128 128 128
DOMNodeInsertedIntoDocument 8 64 128 128 128 128
DOMNodeRemoved 8 64 128 128 128 128
DOMNodeRemovedFromDocume
nt

8
128

64 128 128 128 128
DOMSubTreeModified 8 32 64 64 64 64
Error 3 8 12 12 12 12
Focus 5 10 16 24 24 24
KeyDown 1 9 17 17 17 17
KeyUp 1 9 17 17 17 17
Load 3 16 24 24 24 24
MouseDown 15 18 40 86 188 353
MouseMove 15 18

18 18
40 86 188 353

MouseOut 15 18 40 86 188 353
MouseOver 15 18 40 86 188 353
MouseUp 15 18 40 86 188 353
MouseWheel 14 16 40 82 170 308

4096 Reset 3 8 12 12 12 12
Resize 5 20 32 48 48 48
Scroll 5 20 32 48 48 48
Select 3 8 12 12 12 12
Submit 3 8 12 12 12 12
TextInput 5 8 8 8 8 8
Unload 3 16 12 24 24 24
Wheel 15 20 44 92 214 406
Total Tests 702 1342 1818 2742 4227

Table 2. DOM 3 Level Tests - Combinatorial

Test Results

Table 3 shows the faults detected for each event. All conditions flagged by the exhaustive test

suite were also detected by three of the combinatorial testing scenarios (4, 5 and 6 way testing), which

means that the implementation faults were triggered by 4-way interactions or less. Pairwise testing would

have been inadequate for the DOM implementations, because 2-way and 3-way tests detected only 37.5%

of the faults. As can be seen in Table 3, the exhaustive (all possible combinations) and the 4-way to 6

way combinatorial tests were equally successful in fault detection, indicating that exhaustive testing

added no benefit beyond 4-way tests. These findings are consistent with the studies described earlier in

this paper, which showed that software faults tend to be triggered by interactions of no more than six

variables, for the applications studied so far. Using combinatorial methods, we are able to take advantage

of this finding and limit the size of conformance test suites, greatly reducing costs. DOM testing was

somewhat unusual in that exhaustive testing was possible at all. For most software, too many possible

input combinations exist to cover even a tiny fraction of the exhaustive set, so combinatorial methods

may be of greater benefit for these.

The exhaustive approach used a total of 36,626 tests (See Table 1) for all combinations of events,

but after applying combinatorial testing, the set of tests is dramatically reduced, as shown in Table 4. The

number of tests generated in combinatorial covering arrays is proportional to vt log n, for t-way

interactions where each of n parameters has v values. In cases where most parameters have a small

number of discrete values, such as DOM events, this is less of a limitation, but it was required for

parameters such as screen X and Y values, and must be considered for most software testing.

Table 3 shows results for 2-way through 6-way testing. An interesting observation that can be

gathered by examining the data is that although the number of tests that successfully execute varies from

t-way combination to t-way combination, the- number of failures remains a constant at t = 2 and 3, and at

t = 4 to 6. The last column shows the tests that did not execute to completion, in almost all cases due to

non-support of the feature under test.

tway Combinations
Number of

Tests
Pct of

Exhaustive
Passed Failed

Not
Executed

2 Way 702 1.92% 202 27 473
3 Way 1342 3.67% 786 27 529
4 Way 1818 4.96% 437 72 1309

5 Way 2742 7.49% 908 72 1762

6 Way

Exhaustive

4227

36626

11.54% 1803

29218

72

72

2352

7336

Table 3. Results for all t-way combinations

DOM results were consistent with previous findings that testing a small number of interactions (in

this case 4-way) was sufficient to detect all errors. Comparing results of the DOM testing with previously

reported data on t-way interaction failures, we can see that some DOM failures were more difficult to

detect, in the sense that a smaller percentage of the total were found by 3-way tests than for the other

application domains, where testing through 3-way combinations typically detected more than 80% of

faults (Kuhn et al., 2004). The unusual distribution of fault detection for DOM tests may result from the

large number of parameters for which exhaustive coverage was reached (so that the number of tests

remained constant after a certain point). There are thus two sets of events: a large set with few possible

values which could be covered exhaustively with 2-way or 3-way tests, and a smaller set with a larger

input space (from 1024 to 4352). In particular, nine events (click, dblClick, mouse events, and wheel) all

have the same input space size, with number of tests increasing at the same rate for each, while for the

rest, exhaustive coverage is reached at either t=2 or t=3. The ability to compare results of previously-

conducted exhaustive testing with combinatorial testing provides an added measure of confidence in the

applicability of these methods to this type of interoperability testing.

Conclusions

The DOM Events testing suggests that combinatorial testing can significantly reduce the cost and

time required for conformance testing for web standards with characteristics similar to DOM. What is the

appropriate interaction strength to use in this type of testing? Intuitively, it seems that if no additional

faults are detected by t-way tests, then it may be reasonable to conduct additional testing only for t+1

interactions, but no greater if no additional faults are found at t+1. In empirical studies of software

failures, the number of faults detected at t > 2 decreased monotonically with t, and the DOM testing

results are consistent with this earlier finding. Following this strategy for the DOM testing would result

in running 2-way tests through 5-way, then stopping because no additional faults were detected beyond

the 4-way testing. Alternatively, given the apparent insufficient fault detection of pairwise testing (see

Figure 3), testers may prefer to standardize on a higher level of interaction coverage, say 3-way or 4-way.

This option may be particularly attractive for an organization that produces a series of similar products

and has enough experience to identify the most cost-effective level of testing. Even the relatively strong

4-way testing in this example was only 5% of the original test set size.

What is the best strategy for applying combinatorial methods to interoperability testing? This

question can be investigated in future applications of combinatorial methods. Results in this study have

been sufficiently promising for combinatorial methods to be applied in testing other interoperability

standards.

References

(Ammann & Offutt, 2008). P. Ammann, J. Offutt, Introduction to Software Testing, Cambridge
University Press, New York, 2008, p. 10.

(Bach & Schroeder, 2004). J. Bach, P. Shroeder, Pairwise Testing - A Best Practice That Isn't.
Proceedings of 22nd Pacific Northwest Software Quality Conference, 2004, pp. 180-196

(Bell, 2006). K.Z. Bell, Optimizing Effectiveness and Efficiency of Software Testing: a Hybrid
Approach, PhD Dissertation, North Carolina State University, 2006.

(Cohen et al., 1996). Cohen, D.M. S.R. Dalal, J. Parelius, and G.C. Patton. The Combinatorial Approach
to Automatic Test Generation. IEEE Software, vol. 13, no. 5: 83-88, (September 1996).

(Grindal et al., 2005). Grindal, Mats, Offutt, Jeff, and Andler, Sten F. “Combination Testing Strategies:
A Survey,” Journal of Software Testing, Verification and Reliability vol. 15, no. 3, pp. 167-199, 2005.

(Jorgensen, 2008). P.C. Jorgensen, Software Testing: A Craftsman’s Approach, Third Edition, Auerbach
Publications, 2008.

(Kuhn & Reilly, 2002). Kuhn, D.R. M.J. Reilly, "An Investigation of the Applicability of Design of
Experiments to Software Testing", 27th NASA/IEEE Software Engineering Workshop, IEEE Computer
Society, pp. 91-95, 4-6 December, 2002.

(Kuhn et al., 2004). Kuhn, D. R., D. Wallace, and A. Gallo, “Software Fault Interactions and Implications
for Software Testing,” IEEE Transactions on Software Engineering, 30(6):418-421, 2004.
(Lei & Tai, 1998). Lei, Y. K.C. Tai. In-parameter order: a Test Generation Strategy for Pairwise
Testing. Proceedings of the Third IEEE High Assurance Systems Engineering Symposium, pp. 254-261,
IEEE, Nov. 1998.

(NIST, 2011). National Institute of Standards and Technology. Test Accelerator. .

http://www.itl.nist.gov/div897/docs/testacc.html

(Tai & Lei, 2002). Tai, K.C. Y. Lei. A Test Generation Strategy for Pairwise Testing. IEEE Trans.

Software Eng. vol. 28, no. 1, 109-111 (January 2002).

(W3C, 2009). World Wide Web Consoritum, DOM Level 3 Events Specification, 8 Sept 2009.

http://www.w3.org/TR/DOM-Level-3-Events/

(W3C, 2011). World Wide Web Consoritum, Document Object Model. http://www.w3.org/DOM/

http://www.w3.org/DOM
http://www.w3.org/TR/DOM-Level-3-Events
http://www.itl.nist.gov/div897/docs/testacc.html

