An Overview of Robot-Sensor Calibration Methods for Evaluation of Perception Systems

Mili Shah
Loyola University Maryland
4501 North Charles Street
Baltimore, MD, 21210
1-410-617-2724
mishah@loyola.edu

Roger D. Eastman
Loyola University Maryland
4501 North Charles Street
Baltimore, MD, 21210
1-410-617-2281
reastman@loyola.edu

Tsai Hong
National Institute of Standards and Technology
100 Bureau Drive
Gaithersburg, MD, 20899
1-301-975-3444
hongt@nist.gov

ABSTRACT

In this paper, an overview of methods that solve the robot-sensor calibration problem of the forms $AX = XB$ and $AX = YB$ is given. Each form will be split into three solutions: separable closed-form solutions, simultaneous closed-form solutions, and iterative solutions. The advantages and disadvantages of each of the solutions in the case of evaluation of perception systems will also be discussed.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Performance attributes;
B.8.2 [Performance and Reliability]: Performance Analysis and Design Aids;
G.1.6 [Optimization]: Global optimization;
I.4.8 [Scene Analysis]: Motion, Tracking;
I.5.4 [Applications]: Computer Vision

General Terms

Computer Vision, Robot-Sensor Calibration, Hand-Eye Calibration, Performance Evaluation

1. INTRODUCTION

Robot-sensor calibration has been an active area of research for many decades. The most common mathematical representations for the robot-sensor calibration problem consist of two forms: $AX = XB$ and $AX = YB$. Examples for each of the forms can be seen in Figure 1. Specifically in Figure 1a, A_i represents robot motion, B_i represents camera motion, and the unknown X represents the fixed homogeneous transformation between the robot base and camera. Following the arrows, it can easily be seen that

$$A_iX = XB_i \Rightarrow AX = XB,$$

where $A = A_i$ and $B = B_i$. Similarly in Figure 1b, A_i represents the transformation from robot base to gripper, B_i represents the transformation from camera to object, and X represents the transformation from target to sensor.

$$A_iXB_i = AXB_i \Leftrightarrow A_iX = XB_i \Rightarrow AX = XB,$$

where $A = A_i^{-1}A_i$, $X = XB_iB_i^{-1}$, and $B = B_iB_i^{-1}$. Finally in Figure 1c, A_i represents the transformation from target to sensor, B_i represents the transformation from camera to object, the unknown X represents the fixed homogeneous transformation between sensor and object, and the unknown Y represents the fixed homogeneous transformation between target and camera.

$$A_iX = YB_i \Rightarrow AX = YB,$$

Thus, the unknown X represents the fixed homogeneous transformation between gripper and camera. Following the arrows

$$AX = XB$$

$$\begin{align*}
(R_A & t_A) \\
0 & 1
\end{align*}
\begin{align*}
(R_X & t_x) \\
0 & 1
\end{align*} =
\begin{align*}
(R_X & t_x) \\
0 & 1
\end{align*}
\begin{align*}
(R_B & t_B) \\
0 & 1
\end{align*},

$$R_AR_X = R_XR_B,$$

which we will define as the orientational component, and

$$R_AT_x + t_A = R_Xt_B + t_x,$$

which we will define as the positional component for $AX = XB$. The orientational component

$$R_AR_X = R_YR_B,$$

and positional component

$$R_AT_x + t_A = R_Yt_B + t_Y$$

for $AX = YB$ can similarly be constructed. The methods to solve $AX = XB$ and $AX = YB$ consist of three forms: separable closed-form solutions, simultaneous closed-form solutions, and iterative closed-form solutions. The separable closed-form solutions arise from solving the orientational component separately from the positional component, the simultaneous closed-form solutions arise from simultaneously solving the orientational component and the positional component, while the iterative solutions arise from solving both the orientational component and positional component iteratively using optimization techniques. Details of each of the

(c) 2012 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by a contractor or affiliate of the U.S. Government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.
PerMIS’12, March 20-22, 2012, College Park, MD, USA.
Copyright © 2012 ACM 978-1-4503-1126-7/22/12 ...$10.00.
solutions will be discussed in the following sections. Specifically for \(\mathbf{AX} = \mathbf{XB} \), separable closed-form solutions will be discussed in Section 2.1, simultaneous closed-form solutions will be discussed in Section 2.2, and iterative solutions will be discussed in Section 2.3. Following, in Section 3, will be a section discussing the different solutions for \(\mathbf{AX} = \mathbf{YB} \). Finally, concluding remarks, which will include the advantages and disadvantages for each of the solutions in the evaluation of perception systems, will be discussed in Section 4.

2. \(\mathbf{AX} = \mathbf{XB} \) SOLUTIONS

2.1 Separable Solutions for \(\mathbf{AX} = \mathbf{XB} \)

The robot-sensor calibration problem of the form \(\mathbf{AX} = \mathbf{XB} \) was introduced in the work of Shiu and Ahmad [21]. In this paper, they solve the robot-sensor calibration problem by separating the problem into its orientational component

\[\mathbf{R}_\mathbf{A} \mathbf{R}_\mathbf{X} = \mathbf{R}_\mathbf{X} \mathbf{R}_\mathbf{B} \]

and positional component

\[\mathbf{R}_\mathbf{A} \mathbf{t}_\mathbf{X} + \mathbf{t}_\mathbf{A} = \mathbf{R}_\mathbf{X} \mathbf{t}_\mathbf{B} + \mathbf{t}_\mathbf{X}. \]

They solve the orientational component by utilizing the angle-axis formulation of rotation; i.e., let \(\mathbf{R} = \text{Rot}(\mathbf{k}_\mathbf{R}, \theta) \), where \(\mathbf{k}_\mathbf{R} \) is the axis of rotation of \(\mathbf{R} \) and \(\theta \) is the angle. Specifically, they state that the general solution

\[\mathbf{R}_\mathbf{X} = \text{Rot}(\mathbf{k}_{\mathbf{A}_i}, \beta_i) \mathbf{R}_{\mathbf{R}_i}, \]

where

\[\mathbf{R}_{\mathbf{R}_i} = \text{Rot}(\mathbf{v}, \omega) \]
\[\mathbf{v} = \mathbf{k}_{\mathbf{B}_i} \times \mathbf{k}_{\mathbf{A}_i} \]
\[\omega = \text{atan2}(|\mathbf{k}_{\mathbf{B}_i} \times \mathbf{k}_{\mathbf{A}_i}|, \mathbf{k}_{\mathbf{B}_i} \cdot \mathbf{k}_{\mathbf{A}_i}) \]

and \(\beta_i \) is calculated by solving a \(9 \times 2n \) linear system of equations where the number of frames \(n \geq 2 \). They also prove for uniqueness at least two of the axes of rotation of \(\mathbf{R}_{\mathbf{A}_i} \) cannot be parallel. Once \(\mathbf{R}_\mathbf{X} \) is formulated, the positional component

\[\begin{pmatrix} \mathbf{R}_{\mathbf{A}_1} - I \\ \vdots \\ \mathbf{R}_{\mathbf{A}_n} - I \end{pmatrix} \mathbf{t}_\mathbf{X} = \begin{pmatrix} \mathbf{R}_\mathbf{X} \mathbf{t}_{\mathbf{B}_1} - \mathbf{t}_{\mathbf{A}_1} \\ \vdots \\ \mathbf{R}_\mathbf{X} \mathbf{t}_{\mathbf{B}_n} - \mathbf{t}_{\mathbf{A}_n} \end{pmatrix} \]

can be solved using standard linear system techniques. This is the general technique of separable solutions for \(\mathbf{AX} = \mathbf{XB} \): first calculate \(\mathbf{R}_\mathbf{X} \) using some technique and then use that \(\mathbf{R}_\mathbf{X} \) to solve for \(\mathbf{t}_\mathbf{X} \) using standard linear system techniques. Thus, for the rest of this section concentration will be placed solely on calculating the optimal rotation \(\mathbf{R}_\mathbf{X} \).

A problem with the Shiu and Ahmad method is that the size of the linear system doubles each time a new frame is added to the system. An alternative method by Tsai and Lenz [23] solves the robot-sensor calibration method using a fixed size linear system. The derivation is simpler than the Shiu and Ahmad method and computationally more efficient. Specifically, Tsai and Lenz solve the orientational component by again considering the angle-axis formulation \(\mathbf{R} = \text{Rot}(\mathbf{k}_\mathbf{R}, \theta) \) for rotation. They find the axis of rotation \(k_{\mathbf{RX}} \) for \(\mathbf{R}_\mathbf{X} \) by solving

\[\text{Sk} \left(k_{\mathbf{RA}_1} + k_{\mathbf{RB}_i} \right) k'_{\mathbf{RX}} = k_{\mathbf{RA}_1} - k_{\mathbf{RB}_i} \]

(1)

\[k_{\mathbf{RX}} = \frac{2k'_{\mathbf{RX}}}{\sqrt{1 + |k'_{\mathbf{RX}}|^2}} \]

where the skew-symmetric matrix

\[\text{Sk}(x) = \begin{pmatrix} 0 & -x(3) & x(2) \\ x(3) & 0 & -x(1) \\ -x(2) & x(1) & 0 \end{pmatrix}, \]

and the angle of rotation \(\theta \) for \(\mathbf{R}_\mathbf{X} \) by setting

\[\theta = 2\text{atan} \left| k'_{\mathbf{RX}} \right|. \]

Another formulation that utilizes the angle-axis formulation was presented by Wang in [24]. They solve the orientational component by considering the properties of the axes of rotation of \(\mathbf{R}_{\mathbf{A}_1}, \mathbf{R}_{\mathbf{B}_1}, \mathbf{R}_{\mathbf{A}_{i+1}}, \) and \(\mathbf{R}_{\mathbf{B}_{i+1}} \) for \(i = 1, 2, \ldots n - 1 \). Wang compares his method with the Shiu and
Ahmad method [21] and the Tsai and Lenz method [23]. He concludes that of the three methods, the Tsai and Lenz method is the best on average.

The angle-axis methods for calculating the solution of the robot-sensor calibration problem up to this point can be cumbersome. In order to simplify the problem, Park and Martin formed a solution for R_X by taking advantage of Lie group theory to transform the orientational component into a linear system [17]. Specifically, they take advantage of the property that for a given rotation matrix R, $\log R = \frac{\theta}{2\sin \theta} (R - R^T)$ is Skew(r).

Here, $r = \theta k_R$ where θ is the angle of rotation of R and k_R is the axis of rotation of R. For this paper, r is the shorthand notation of $\log R$. Using this formulation,

$$R_A R_X = R_X R_B \Leftrightarrow R_X a_i = b_i$$

where a_i and b_i are the shorthand logarithms of A_i and B_i, respectively. In the presence of noise, Park and Martin calculate the solution of the robot-sensor problem by solving

$$\min_{R_X} \sum_{i=1}^n \|R_X a_i - b_i\|^2,$$

whose closed-form solution can be calculated efficiently as

$$R_X = U V^{-1/2} U^{-1} M^T$$

where $M = \sum_{i=1}^n b_i a_i^T$ and the eigendecomposition of $M^T M = UVU^{-1}$.

Chou and Kamel introduce quaternions into the robot-sensor calibration problem in [4, 5]. They notice that the orientational component

$$R_A R_X = R_X R_B \Leftrightarrow \mathbf{q}_A * \mathbf{q}_X = \mathbf{q}_X * \mathbf{q}_B$$

where \mathbf{q}_X is the quaternion representation of the rotation matrix R_X. Using the matrix form of quaternion multiplication, the orientational component can be restructured into a linear system

$$\mathbf{q}_A * \mathbf{q}_X - \mathbf{q}_X * \mathbf{q}_B = (\mathbf{q}_A - \mathbf{q}_B) \mathbf{q}_X = 0$$

since

$$\mathbf{q}_X * \mathbf{q}_B = \begin{pmatrix} x_0 & -x^T \ b_0 \\ x & (x_0 I + Sk(x)) \ b \end{pmatrix}$$

and

$$\mathbf{q}_A * \mathbf{q}_X = \mathbf{q}_A \mathbf{q}_X = \mathbf{q}_X = \mathbf{q}_B \mathbf{q}_X.$$
the dual-quaternion representations \(a_i + a_i' \) and \(b_i + b_i' \) of \(A_i \) and \(B_i \) respectively to create the matrix

\[
T = \begin{pmatrix}
S_1^T & S_2^T & \ldots & S_n^T
\end{pmatrix}^T
\]

\[
S_i = \begin{pmatrix}
\overrightarrow{a_i} - \overrightarrow{b_i} & \text{Sk}(\overrightarrow{a_i} + \overrightarrow{b_i}) & 0 & 0 \\
\overrightarrow{a_i'} - \overrightarrow{b_i'} & \text{Sk}(\overrightarrow{a_i'} + \overrightarrow{b_i'}) & \overrightarrow{a_i} - \overrightarrow{b_i} & \text{Sk}(\overrightarrow{a_i} + \overrightarrow{b_i})
\end{pmatrix}
\]

Using the singular value decomposition on \(T \), Daniilidis and Bayro-Corrochano show that the dual-quaternion representation for the unknown \(X \) can be calculated as a linear combination of the last two right singular vectors of \(T \). It should be noted that the authors developed a similar method through the use of Clifford Algebra in [2]. Zhao and Liu also develop a similar method through the algebraic properties of screw theory in [27].

Lu and Chou [15] apply the quaternions via the eight step method to solve the robot-sensor calibration problem simultaneously. Specifically, by the use of quaternions, they can simplify the problem to a single linear system which they solve using Gaussian elimination and Schur decomposition.

Andreff et al. are the first to apply the Kronecker product to simultaneously solve the robot-sensor problem in [1]. They reformulate the robot-sensor problem into a linear system of the form

\[
\begin{pmatrix}
I - R_{B_{i}} & 0 \\
t_{B_{i}} \otimes I & I - R_{A_{i}}
\end{pmatrix}
\begin{pmatrix}
\text{vec}(R_X) \\
t_X
\end{pmatrix}
= \begin{pmatrix}
0 \\
t_{A_{i}}
\end{pmatrix}
\]

Andreff et al. prove that at least two independent general motions with non-parallel axes are needed to have a unique solution to the linear system. A problem with this method is that due to the noise the solution for \(R_{X} \) may not necessarily be an orthogonal matrix. Thus, an orthogonalization step for the orientational component has to be taken. However, the corresponding positional component is not recalculated, which causes errors in the solution. Therefore, Andreff et al. suggest separating the orientational and positional components as was shown in the work of Liang et al. (see Section 2.1) in [14].

2.3 Iterative Solutions for AX=XB

Simultaneous solutions were developed to solve the problem of orientational errors propagating into the positional errors. Another option to solve this problem is to create an iterative solution for \(AX = XB \). Zhuang and Shi propose a one-step iterative method, based on minimizing \(||AX - XB|| \) with the Levenberg-Marquardt algorithm in [30]. The iterative method solves both the orientational and positional components simultaneously. Furthermore, the method is not dependent on robot orientation \(R_{B_{i}} \) information. Fassi and Legnani propose a similar algorithm in [9]. This paper also provides a geometric interpretation of the hand-eye calibration problem. Wei et al. [25] create an efficient iterative method that is optimized by the sparse structure of the corresponding normal equations.

Horaud and Dornaika in [11] also propose to solve the orientational and positional components simultaneously using an iterative method. However, their method is based on using the quaternion representation for the orientational component.

Mao et al. [16] apply the Kronecker product in their iterative formulation. An issue with the Mao et al. optimization problem is that the solution is based on the initial condition. Therefore, different initial conditions could result in varying solutions. A remedy to this problem is to use convex optimization as shown in the work of Zhao [26]. Zhao claims that his Kronecker product algorithm is very fast and not dependent on an initial condition. However, their setup gives no guarantee that the orientational component \(R_{X} \) of the solution is a rotation matrix. Therefore, his algorithm may cause errors that are similar to the errors of Andreff et al. [1]. Shi et al. [20] have a similar formulation to Zhao (thus similar problems), but their iterative algorithm optimizes motion selection to improve accuracy and to avoid degenerate cases.

Strobl and Hirzinger create an iterative method that is based on a parameterization of a stochastic model in [22]. This iterative method is novel since it creates an inherent algorithm to weight the orientational and positional components to optimize the accuracy of the method. Kim et al. extend this formulation in [12] with the use of the Minimum Variance method.

These iterative methods get rid of the propagation of orientational errors into the positional component. However, solving the robot-sensor calibration method in this manner can be computationally taxing since these methods often contain complex optimization routines. In addition, as the number of equations \(n \) gets larger, the differences between iterative solutions and closed-form solutions often get smaller. Thus, one has to decide whether the accuracy of an iterative solution is worth the computational costs.

3. AX=XB SOLUTIONS

In this section we will give an overview of techniques to solve \(AX = XB \). The methods for solving this system are very similar to the \(AX = XB \) problems, i.e., the methods can be organized into three groups: separable solutions, simultaneous solutions, and iterative solutions.

Wang proposes the \(AX = XB \) problem in [24], though he assumes that one of the unknowns is given. Zhuang et al. were the first to give a separable closed-form solution via quaternions in [29]. Dornaika and Horaud extend Zhuang et al.'s separable solution to give a more accurate separable closed-form solution via quaternions in [8]. Shah creates a formulation based on Kronecker product in [19].

Li et al. look at simultaneous closed-form solutions via dual-quaternions and Kronecker products in [13]. Their formulations follow the methodology of the \(AX = XB \) formulation of dual quaternions of Daniilidis [7] and the formulation of Kronecker product of Andreff et al. [1].

Iterative solutions for the \(AX = XB \) problem were first introduced in the work of Remy et al. [18]. Here they define a nonlinear optimization problem and use the Levenberg-Marquardt method to solve it. Hirsh et al. develop an iterative method in [10] that optimizes the orientational and positional components separately, while Strobl and Hirzinger create an iterative method [22] that simultaneously solves the orientational and positional components. Their method is based on a parameterization of a stochastic model which is identical to their \(AX = XB \) model. Kim et al. also use a model [12] identical to their \(AX = XB \) model to simultaneously solve \(AX = XB \) using the Minimum Variance method.

4. CONCLUSION

In this paper, we give an overview of methods to solve the
robot-sensor calibration problem of the forms $AX = XB$ and $AX = YB$ for the evaluation of perception systems. Each form’s solutions can be split into three categories: separable solutions, simultaneous solutions, and iterative solutions. The separable solutions are simple and fast solutions; however, errors calculated from the orientational component get carried over to the positional component. As a result, simultaneous solutions were developed. However, these solutions produce variable results depending on the scaling of the positional component. To weight the orientational and positional components, iterative methods were created. However, though these solutions are often more accurate, the solutions are often complex and generally depend on starting criteria. In addition, there is generally no guarantee that the convergent solution is the optimal solution. Thus, users must decide which type of method to use for evaluation which is dependent on their desired accuracy and complexity.

5. REFERENCES

[27] Z. Zhao, Y. Liu Hand-Eye Calibration Based on Screw

