Overview

- Introduction
 - Communication
 - who, what, where, under which conditions
 - Radio systems – why not?
 - Distributed Multi-Nodal Voice/Data Communication -
 - Wireless Sensors
 - Building
 - Fire fighter
 - Networks
 - Fixed
 - Ad-Hoc

- Summary

Communication – Who & What?

- Who is "communicating" in building?
 - First responders
 - Fire fighters
 - Law enforcement
 - Incident commander
 - Rapid Intervention Teams
 - Rehab Team

- What is the information needed for?
 - Tactical
 - Fire ground – suppression and venting
 - Searching for victims/suspects
 - Rapid intervention teams (RIT)
 - Staging of additional resources

Communication – Who & What?

- Who is "communicating" in building?
 - First responders
 - Fire fighters
 - Law enforcement
 - Incident commander
 - Rapid Intervention Teams
 - Rehab Team

- What is the information needed for?
 - Tactical
 - Fire ground – suppression and venting
 - Searching for victims/suspects
 - Rapid intervention teams (RIT)
 - Staging of additional resources
 - Locating/tracking first responders
 - Fire conditions – fire spread
 - Bio-metrics – heat stress
Where or what building type?

- **Type I or Fire-Resistive (NFPA)**
 - High rise office, shopping centers, or residential units
 - Reinforced concrete, structural steel (protected)

- **Type II or Noncombustible**
 - Office buildings, warehouses, auto repair shops
 - Metal frame with metal walls, metal frame with masonry walls, masonry walls with metal roof

- **Type III or Ordinary**
 - Office buildings, retail stores, mixed occupancy, apartment buildings
 - Noncombustible bearing walls and combustible roofs
 - Most buildings are of this type

- **Type IV or Heavy Timber**
 - Exterior noncombustible or limited combustible, masonry
 - Interior structural members, walls, columns, floors and roofs are large timbers
 - Common in the New England area

- **Type V or Wood Frame**
 - Single family dwelling, restaurants, retail stores
 - Log, post & beam, balloon, platform, and plank & beam
 - Structural members are wood and exterior walls are combustible

Under what conditions?

<table>
<thead>
<tr>
<th>Thermal Class</th>
<th>Maximum Time (min)</th>
<th>Maximum Temperature (°C)/(°F)</th>
<th>Maximum Flux (kW/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>25</td>
<td>100/212</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>15</td>
<td>160/320</td>
<td>2</td>
</tr>
<tr>
<td>III</td>
<td>5</td>
<td>260/500</td>
<td>10</td>
</tr>
<tr>
<td>IV</td>
<td><1</td>
<td>>260/500</td>
<td>>10</td>
</tr>
</tbody>
</table>

Radio Communication – Why not?

- **Radio Frequency Based Systems**
 - VHF – 30 MHz to 300 MHz
 - UHF – 300 MHz to 3 GHz
 - UWB – 2.4 GHz – 5.4 GHz
- **Simplex – point to point**
- **Duplex -**

- **Signal Attenuation –**
 - Construction materials absorb
 - Varying degrees
 - Metals or metal containing materials block transmission
 - Siding or roofs
 - Solar radiation coatings
 - Aluminum foil on insulation
Communication Technology

Wide range of technologies
- Acoustic/sound
- Radio frequency
- Infrared signal

Source of Technologies
- Military
- Security and surveillance industry
- NASA
- Mining Industry

Commercial market
- Fire Service Equipment
 - Limited due to the market size/funding

Acoustic / Sound Systems

- Transmitter/receiver system
 - Acoustic or sound waves
 - Not in range of human hearing
- Data communication
 - Not voice
 - Locates firefighter
- Commercially available
 - Summit Safety

Issues
- Reflections –
 - Must compare strength of signal
 - Materials reflect differently
 - Multiple reflections
 - No tracking
Communication Technology

- **Wide range of technologies**
 - Acoustic/sound
 - Infrared signal
 - Radio frequency

Infrared / Laser Signal

- Transmitter/receiver system
- Light signal
- Not in range of human vision
- Data communication
- Not voice, but could be digitized audio
- Can be used to locate fire fighter
- Commercially available
 - Relume, Inc.

Issues
- Reflections –
- Materials reflect differently
- Multiple reflections
- No tracking

Distributed Multi-Nodal Voice / Data Systems

- Each sensor or package a “node”
- More than one node – “multi”
- Can transmit voice in real time
- Can transmit data in real time

- May or may not be in network arrangement
Distributed Multi-Nodal Voice/Data Systems

- Building Sensor Nodes
 - System performance – heat, AC, etc.
 - Network
 - Equipment specific
 - RFID tags/readers

- Fire Fighter Nodes
 - Network
 - RFID tags/readers
 - Multi-hop
 - Ad hoc

Wireless Building Sensors

- Building Sensors or Nodes
 - In place to track building performance
 - Attached to specific equipment
 - Designed for months/years of service
 - Locate and track
 - Sample frequency
 - Buildings – samples / hours
 - Fire fighters – samples / second

- Issues
 - Need complete building coverage
 - Not just equipment spaces
 - Require pre-wiring of building
 - Adaptive sampling?

Wireless Fire Fighter Sensors cont’d

- RF Identification Tags
 - Reader and Tag uniquely identified

- RFID readers in building
 - Each fire fighter is tagged
 - Walmart tracking merchandise in warehouse
 - Nursing homes – patients

- RFID tabs in building
 - Each fire fighter has reader
 - Readers more expensive

Wireless Fire Fighter Sensors cont’d

RFID Tags cont’d

- Issues
 - Pre-wiring of readers/tags

- Signal
 - Coverage
 - Penetration/attenuation
 - Reflections
Fire Fighter Sensor Networks

- Fixed
 - Pre configured
 - Data paths established

- Ad Hoc
 - Self healing or reforming

- RF systems
 - 802.15.4 ZigBee
 - Bluetooth

Star or Point-to-Point

Mesh Network

Wireless Fire Fighter Sensors cont’d

Multi-hop Network – fixed path

Fire Team 1

Incident Command

Fire Team 2

Engine 3

Wireless Fire Fighter Sensors cont’d

- Fixed networks
 - Multi-hop
 - Voice/data communication
 - Williams-Pyro (SBIR)
 - Not locating/tracking
 - Strength of signal
 - TOF

- Issues-
 - Limited ability to dynamically add new nodes/sensors
 - Short range
 - Node drop-out

Wireless Fire Fighter Sensors cont’d

- Ad Hoc Networks
 - Self-forming/re-forming
 - Data communication
 - Locating and tracking
 - GPS
 - Physiology sensors and dosimeters
 - Siemens (USAF)

- Dynamically add sensors/nodes
 - Data paths established on the fly
 - Repetitive pinging to locate nearby nodes

- Issues-
 - Short range
 - Path determination
 - Ping, ping, ping, ping, ping, ping
 - Data, but not voice
Ad Hoc Network – Two Pings

Distributed Multi-Nodal Voice/Data Summary

- Building Sensors
 - Interior of Structure
 - Commercial systems for indoor use
 - Pre-wired for limited coverage

- Fire Fighter Nodes
 - Interior and exterior of structures
 - Downed fire fighter

- Currently no commercially available system
 - Voice, data and video
 - Inside and outside
 - Locate and track
 - Fire responders
 - Occupants

Communication Technology Future Work

- Assist in development of new technology
 - Technical expertise
 - Internal research funds
 - Grants

- Evaluate current systems
 - Laboratory-scale tests
 - Full-scale fire exposure tests
 - Collaborate with Fire Service

- Standards & testing protocols
 - Representative building types
 - Representative exposure conditions

Communication Technology

- Questions?

Nelson Bryner
301-975-6868
nelson.bryner@nist.gov

www.fire.gov
www.bfrl.nist.gov
Why Invest in Distributed Multi-Nodal Voice/Data Technology?

- **Firefighter Fatalities** – 117 in 2004 (USFA)
- **Total Injuries** – 80,800 in 2004 (NFPA)
 - Fireground – 37,976 injuries

- Magnitude of U.S. Annual Losses ~ $128 billion total cost
- Tracking fire fighters allow
 - Better tactical decisions
 - Faster suppression
 - Decreased property losses

Communication Technology

- **Roles of NIST**
 - Fundamental Science
 - Measurement or metrology
 - Signal penetration
 - Sensor design
 - Combustion Science
 - Building performance
 - Fire Environment
 - Performance Standards and Testing Protocols
 - Signal quality
 - Sensor interfaces/performance
 - Thermal exposure testing
 - Network design
 - Develop new technology where expertise exists