R Implementation of a Polyhedral Approximation to a 3D Set of Points Using the α-Shape

Thomas Lafarge
National Institute of Standards and Technology

Beatriz Pateiro-López
Universidad de Santiago de Compostela

Antonio Possolo
National Institute of Standards and Technology

Joy P. Dunkers
National Institute of Standards and Technology

Abstract

This work presents the implementation in R of the α-shape of a finite set of points in the three-dimensional space \mathbb{R}^3. This geometric structure generalizes the convex hull and allows to recover the shape of non-convex and even non-connected sets in 3D, given a random sample of points taken into it. Besides the computation of the α-shape, the R package alphashape3d provides users with tools to facilitate the three-dimensional graphical visualization of the estimated set as well as the computation of important characteristics such as the connected components or the volume, among others.

Keywords: set estimation, 3D surface reconstruction, α-convexity, α-shape, R.

1. Introduction

Point sets are a fundamental source of information in many disciplines: they may be samples from probability distributions, portions of realizations of point processes observed within bounded sampling windows, or have substantive meaning (for example, landmarks in industrial parts or in biological structures). In many cases, a primary goal is to recover the size and shape of the set the points originate from (set estimation). In some applications the set is known but a sample of points is taken from it anyway, and used as a discrete approximation that facilitates the estimation of selected geometric attributes of the set (morphometry).

Besides the long-standing models for two-dimensional (2D) data, there is now an increasing
interest in modeling techniques for three-dimensional (3D) data. Widely available technologies for measurement of 3D structures—including 3D laser-scanning, confocal microscopy, and computed tomography from nano to macro scales—are generating high-quality digital datasets that may be point clouds, or sets whose geometry can be probed using point clouds, in cellular biology, medicine, material science, engineering, etc. Consequently, a rich branch of image analysis has been developing rapidly to deal with the reconstruction of 3D objects from point clouds, and to study geometrical attributes after discretization by sampling with point clouds.

Statistical morphometry seeks to characterize the variability of shape and size, which is essential in a wide range of disciplines that include biology, material science, geology, archaeology, geography, etc. We refer to Small (1996) and Grenander and Miller (2007) for an extensive review of the methods and applications of shape analysis. See also Claude (2008) for a guide on how to perform morphometrics with R. The geometric characterization of an object includes the computation of volumes and surface areas, surface roughness, deviations from convexity, porosity and permeability, among many other attributes, in many cases from points sampled within the object. In practice, the user defines a sampling procedure to obtain points in the set of interest, and thus the problem relates to the problem of set estimation.

The goal of set estimation is to produce estimates of compact subsets of an Euclidean space based on random samples of points from probability distributions whose supports are those sets, and then to study the statistical properties of the corresponding estimators (asymptotic properties, types of convergence, convergence rates, etc.). Cuevas and Fraiman (2009) surveys the most relevant theory on set estimation.

There are different geometrical structures that can capture the shape of a set from a sample of points taken from it. The extent to which these structures manage faithfully to reproduce the original set depends heavily on the geometrical characteristics of the set. For instance, if the original set is convex, the convex hull of the sample is the natural estimator. See Geffroy (1964), Rényi and Sulanke (1963, 1964), Schneider (1988), Dümbgen and Walther (1996) for results about the convex hull estimator. However, in many applications the sets or objects of interest are not strictly convex, but only approximately so. There is, therefore, a need to define relaxed convexity shape restrictions.

The \(\alpha \)-convexity is one such restriction that mildly relaxes the assumption of convexity, and does so in a tunable manner (determined by the value of the parameter \(\alpha \)): it appears in the literature on set estimation, see Walther (1997, 1999), Rodríguez-Casal (2007). By analogy with the characterization of a convex set as the intersection of half-spaces defined by planes tangent to the set, a set is said to be \(\alpha \)-convex if it can be expressed as an intersection of the complements of open balls of radius \(\alpha \) not intersecting the set. Section 2 provides details on \(\alpha \)-convex sets. The so-called \(\alpha \)-convex hull of the sample is a suitable estimator of \(\alpha \)-convex sets (think of what is left if carving out all the space with a spherical scoop of radius \(\alpha \) without removing any of the points in the sample). Rodríguez-Casal (2007) studies the asymptotic performance of this estimator.

The boundary of the \(\alpha \)-convex hull comprises arcs of circles (in 2D), or spherical caps (in 3D), and intersections thereof. If now we approximate the boundary of the \(\alpha \)-convex hull by a polygonal curve (in 2D) or by a polyhedral surface (in 3D), then we get another object that approximates the original set, called the \(\alpha \)-shape. Edelsbrunner, Kirkpatrick, and Seidel (1983) defined it in the case of \(\mathbb{R}^2 \), and Edelsbrunner and Mücke (1994) generalized it to three-dimensional Euclidean space. The \(\alpha \)-shapes have been widely used in several different
fields: for example, to characterize biological systems, and the structure, surface and cavities of molecules and proteins, as described by Liang, Edelsbrunner, Fu, Sudhakar, and Subramaniam (1998a,b), Edelsbrunner and Facello (1998), Zhou and Yan (2010), among others. Also in cosmology, by van de Weygaert, Platen, Vegter, Eldering, and Kruithof (2010), to study the topology of the distribution of galaxies. Vauhkonen, Tokola, Maltamo, and Packalén (2008) describe applications of α-shapes in remote sensing, where tree characteristics are determined from laser scanning data. There are also connections between α-shapes and pattern recognition and clustering techniques. Given a porous material, the α-shape of a sample of points drawn from the material can be used to characterize the geometry of the pores; alternatively, the α-shape of a sample of points drawn from the voids can be used to study the permeability of the material.

It is becoming increasingly clear that \mathbb{R} (R Core Team 2013) has grown to become one of the most powerful tools for statistical data analysis, and in fact the lingua franca for the interchange of ideas and methods in computational statistics and probability. \mathbb{R} is a high-level language that offers powerful graphical capabilities and a wide variety of facilities for statistical modeling and data analysis in many fields of research. Many of the techniques discussed in this paper have been developed over the last couple of decades, and there exist several \mathbb{R} packages that, in one form or another, address issues of set estimation. For example, the convex hull of a set of points in d-dimensional Euclidean space can be computed using functions in package geometry (Barber, Habel, Grasman, Gramacy, Stahel, and Sterratt 2013). Objects analyzed in the disciplines mentioned above are mostly two-dimensional or three-dimensional. The two-dimensional α-shape and the α-convex hull are implemented in the \mathbb{R} package alphahull by Pateiro-López and Rodríguez-Casal (2011). Edelsbrunner et al. (1983) describe the algorithm for the computation of the α-shape and α-convex hull in 2D. Pateiro-López and Rodríguez-Casal (2010) provide further details on the package and applications. However, and in spite of its potential usefulness in statistical analysis, the α-shape in 3D had not yet been implemented in \mathbb{R}. Cognizant of the importance of the development of a free, open-source software environment for statistical computing, we have produced the \mathbb{R} package alphashape3d, see Lafarge and Pateiro-López (2013).

The paper is organized as follows. In Section 2 we provide some background in set estimation theory and describe the estimator under study, the α-shape of a random sample of points in the three-dimensional Euclidean space. In Section 3 we briefly describe the algorithm by Edelsbrunner and Mücke (1994) and give the details about its implementation in \mathbb{R}. Section 4 describes an application of α-shapes to the characterization and quantification of geometric attributes of a polymeric scaffold used to grow biological tissues in culture. Further computational details are given in Section 5.

2. The α-shape in 3D

This work is based on the computation of α-shapes in \mathbb{R}^3 as defined by Edelsbrunner and Mücke (1994). The α-shape is computationally practicable, and it is closely related to the α-convex hull estimator, which has been studied predominantly from a theoretical viewpoint. As mentioned in Section 1, in order to estimate an unknown set effectively, from points drawn from it, some geometrical assumptions have to be made. Even though convex sets have many useful and well-known properties, restricting attention to estimators that are convex sets rules out consideration of many sets of great practical interest. There are meaningful extensions of
the notion of convexity, such as α-convexity. A set $A \subset \mathbb{R}^d$ is said to be α-convex, for $\alpha > 0$, if $A = C_\alpha(A)$, where

$$C_\alpha(A) = \bigcap_{\{B(x,\alpha) : B(x,\alpha) \cap A = \emptyset\}} \left(B(x,\alpha) \right)^c \tag{1}$$

is called the α-convex hull of A. In (1), $B(x,\alpha)$ denotes the open ball with center x and radius α. Walther (1999) describes properties of α-convex sets and relations between convexity and α-convexity. Let S be a nonempty compact subset in \mathbb{R}^d, equipped with the norm $\| \cdot \|$. Assume that we are given a random sample $X_n = \{X_1, \ldots, X_n\}$ from a probability distribution P_X on \mathbb{R}^d with support S. The goal is to approximate S based on the sample. If we assume that the set S is α-convex then the natural estimator of S is $C_\alpha(X_n)$, the α-convex hull of the sample. Rodriguez-Casal (2007) characterizes the performance of the estimator. In Figure 1 we represent the α-convex hull estimator in the two-dimensional case. If we straighten the α-convex hull in Figure 1 by substituting straight edges for the circular arcs, we obtain a straight line graph known as α-shape: this is computationally more practicable than the α-convex hull. Edelsbrunner et al. (1983) give a formal definition of the α-shape in \mathbb{R}^2.

In \mathbb{R}^3, one can visualize the α-convex hull estimator by thinking of a sphere of radius α scooping up space around the points without removing any of them. By replacing each spherical cap with the largest triangle circumscribed by the cap we obtain the α-shape, see Figure 2. The formal definition of the α-shape in 3D can be found in Edelsbrunner and Mücke (1994). It can be computed from the α-complex of the sample, also defined in Edelsbrunner and Mücke (1994), which is a subcomplex of the Delaunay triangulation. The α-shape is the polytope (in a general sense) formed by the union of all simplices of the α-complex. Further details are given in Section 3. The value of α controls the spatial scale of the shape of the estimator. As α decreases, the α-shape shrinks and cavities appear among the sample points. As α tends to ∞, the α-shape tends to the the convex hull of the sample, see Figure 2. This emphasizes the fact that the α-shape can be considered a generalization of the convex hull.

The flexibility that varying α affords is very useful to characterize the geometry of porous materials. When studying some of the properties of these materials, it may be preferable to focus on the α-shape of the voids: for example, to characterize the geometry of tunnels that link different pores, as will be illustrated in Section 4.

Figure 1: In pink, boundary of the α-convex hulls of a uniform random sample of size $n = 300$ on a ring in \mathbb{R}^2 for different values of α. In blue, the corresponding α-shapes.
Figure 2: From left to right, α-shapes of a point cloud in \mathbb{R}^3 for increasing values of α.

3. Implementation

The R package alphashape3d comprises functions to compute, represent and display the α-shape of a given sample of points in three-dimensional Euclidean space. We restrict ourselves to point sets in \mathbb{R}^3 because we are mainly motivated by the applications of the α-shape in 3D, even though the definition of the α-shape can be generalized to higher dimensions (increasing the difficulty of the implementation).

The main function in the package is `ashape3d`, that implements in R the algorithm specified by Edelsbrunner and Mücke (1994). The α-shape is computed from the three-dimensional Delaunay triangulation of the point set. Section 3.1 describes the computation of that triangulation, and Section 3.2 describes the computation of the α-shape. Section 3.3 gives details about the three-dimensional graphical representation of the α-shape. Section 3.4 describes functions to compute and visualize the connected components of the α-shape. Section 3.5 describes other important features of the α-shape that can be computed with functions in the package alphashape3d.

3.1. Delaunay triangulation in 3D: The package geometry

The computation of the α-shape is closely related to the construction of the Delaunay triangulation of the given point set. Edelsbrunner et al. (1983) makes precise the relationship that exists between these two geometric structures in the bi-dimensional case by proving that the α-shape is a subgraph of the Delaunay triangulation of the point set. Section 3.1 describes the computation of that triangulation, and Section 3.2 describes the computation of the α-shape. The relationship between α-shape and Delaunay triangulation is also decisive in \mathbb{R}^3. The problem of triangulation in \mathbb{R}^3 arises in the decomposition of three-dimensional objects, for example, in solid modeling. The Delaunay triangulation is an essential geometric structure with a large number of applications, such as mesh generation and cluster analysis, crystallography, metallurgy, image processing, etc. For in-depth discussions of these problems we refer the reader to Aurenhammer (1991) and Preparata and Shamos (1985).

Similarly to the two-dimensional case, the Delaunay triangulation in \mathbb{R}^3 is defined as the dual of the Voronoi diagram (or, tessellation). Recall that the Voronoi diagram of a finite sample of points is the partition of space into cells such that each cell comprises the points which are
closer to one particular sample point than to any other sample point. In the simplest, two-
dimensional case, the data are a sample of points in the plane, which are the Voronoi point
sites. Each point site has associated a closed and convex Voronoi cell, defined by an open
and convex Voronoi region, Voronoi edges and Voronoi vertices, as illustrated in Figure 3.
In \mathbb{R}^3, each Voronoi cell is defined by a Voronoi region that is a three-dimensional convex
polyhedron, Voronoi facets, Voronoi edges, and Voronoi vertices. The dual complex Delaunay
“triangulation” consists of Delaunay tetrahedra and their triangular faces, edges and vertices,
which may more properly be called a “tetrahedralization”.

An important feature in the Delaunay triangulation is that the circumsphere of each tetra-
hedron includes no other point sites (empty sphere property). The centers of these empty
circumspheres are just the vertices of the Voronoi diagram, see Figure 3. Okabe, Boots, Sugihara,
and Chiu (2009) provide an extensive discussion on the properties of Voronoi diagrams,
Delaunay triangulations and their many applications in computational geometry. It should
be noted that for a set of n points in \mathbb{R}^3 the number of Delaunay tetrahedra generally is
proportional to n^2.

In R, the Delaunay triangulation in \mathbb{R}^3 can be computed with the package geometry (Barber
et al. 2013), which makes the qhull library (Barber, Dobkin, and Huhdanpaa 1996) available
in R. The function qhull computes convex hulls, Delaunay triangulations, Voronoi vertices,
farthest-site Voronoi vertices, and half-space intersections. Barber et al. (1996) describe the
Quickhull algorithm and review literature on the subject exhaustively. Discussion on efficient
methods for the computation of Delaunay triangulation and Voronoi diagrams can be found
in Aurenhammer and Klein (2000) and references therein.

The function delaunayn in package geometry plays an important role in the computation
of the α-shape described in Section 3.2. Given a sample of points in \mathbb{R}^3, it returns for each tetrahedron in the triangulation the indices of the sample points defining the tetrahedron.

3.2. The function \texttt{ashape3d}

Here we describe the function \texttt{ashape3d}, included in the package \texttt{alphashape3d}, that implements the algorithm to construct the three-dimensional α-shape in \mathbb{R}. The function \texttt{ashape3d} computes the α-shape of a given sample X_n in \mathbb{R}^3 for given values of $\alpha > 0$. As an example to illustrate the use of the function we consider a point cloud of size $n = 4000$ within two linked tori, see Figure 4.

Using function \texttt{rtorus}, we generated a uniform random sample of size 2000 in each of two tori with minor radius $r = 0.5$ and major radius $R = 2$. The computation of the α-shape requires that the input points be in the so-called \textit{general position} (no quadruplet of points lies on the same plane, no quintuplet lies on the same sphere, and, for any particular α, the smallest sphere through any two, three, or four points has radius different from α). The function determines whether the given points are in such general position, and it gives the user the option of slightly disturbing their coordinates to remove the degeneracy and compute the α-shape, see Section 5.

\begin{verbatim}
R> n <- 4000
R> T1 <- rtorus(n/2, 0.5, 2)
R> T2 <- rtorus(n/2, 0.5, 2, ct = c(2, 0, 0), rotx = pi/3)
R> x <- rbind(T1, T2)
R> points3d(x, col = 4)

We compute the α-shape for $\alpha = 0.3$ and $\alpha = 0.5$.

R> alphashape3d <- ashape3d(x, alpha = c(0.3, 0.5))
R> class(alphashape3d)
[1] "ashape3d"

R> names(alphashape3d)
[1] "tetra" "triang" "edge" "vertex" "x" "alpha"
\end{verbatim}
The output of the function is an object of class ‘ashape3d’. The components x and alpha store the input information. For each simplex (tetrahedron, triangle, edge or vertex) in the three-dimensional Delaunay triangulation there is a single interval so that the simplex is a face of the alpha-shape if and only if alpha is contained in this interval. Moreover, see Table I in Edelsbrunner and Mücke (1994)\(^1\), each interval can be broken into three parts that classify a simplex as an interior, regular or singular simplex of the alpha-complex. As defined in Edelsbrunner and Mücke (1994), a simplex in the alpha-complex is interior if it does not belong to the boundary of the alpha-shape. A simplex in the alpha-complex is regular if it is part of the boundary of the alpha-shape and bounds some higher-dimensional simplex in the alpha-complex. A simplex in the alpha-complex is singular if it is part of the boundary of the alpha-shape but does not bound any higher-dimensional simplex in the alpha-complex. This classification allows us to identify the simplices that define the boundary of the alpha-shape.

Throughout this paper, numerical results are listed as R would produce them by default, irrespective of whether all the digits reported are substantively significant.

\[R> \text{head(alphashape3d}$tetra)\]

\[
\begin{array}{cccccc}
v1 & v2 & v3 & v4 & \rho_T & fc:0.3 \\
2195 & 2600 & 2744 & 3321 & 7.0230556 & 0 \\
2827 & 3068 & 3454 & 3945 & 115.7040464 & 0 \\
2487 & 2600 & 2706 & 3321 & 0.3737607 & 1 \\
945 & 987 & 1193 & 1212 & 6.1903426 & 0 \\
987 & 1193 & 1212 & 1564 & 1.9255532 & 0 \\
1016 & 1307 & 1806 & 2578 & 21.7796659 & 0 \\
\end{array}
\]

For each tetrahedron of the 3D Delaunay triangulation, the matrix tetra stores the indices of the sample points defining the tetrahedron (columns 1 to 4), a value rhoT that defines the intervals for which the tetrahedron belongs to the alpha-complex (column 5) and for each alpha a value (1 or 0) indicating whether the tetrahedron belongs to the alpha-shape (columns 6 to last). Thus, for the sample in Figure 5 (left), the tetrahedron defined by the points with indexes (2195, 2600, 2744, 3321) belongs to the alpha-shape for alpha > 7.0231.

\[R> \text{head(alphashape3d}$triang)\]

\[
\begin{array}{cccccccccc}
tr1 & tr2 & tr3 & on.ch & attached & \rho_T & \mu_T & MuT & fc:0.3 & fc:0.5 \\
1 & 92 & 215 & 0 & 1 & 0.08494984 & 0.09002722 & 0.2210708 & 1 & 1 \\
1 & 92 & 313 & 0 & 0 & 0.12766532 & 0.14948514 & 0.1673457 & 1 & 1 \\
1 & 92 & 519 & 0 & 0 & 0.06895091 & 0.09002722 & 0.1479914 & 1 & 1 \\
1 & 92 & 625 & 0 & 1 & 0.14687077 & 0.14799142 & 0.1494851 & 1 & 1 \\
1 & 92 & 1333 & 0 & 1 & 0.16734568 & 0.16734572 & 0.1673663 & 1 & 1 \\
1 & 92 & 1636 & 0 & 0 & 0.14244050 & 0.16736628 & 0.2210708 & 1 & 1 \\
\end{array}
\]

For each triangle of the 3D Delaunay triangulation, the matrix triang stores the indices of the sample points defining the triangle (columns 1 to 3), a value (1 or 0) indicating whether the triangle is on the convex hull (column 4), a value (1 or 0) indicating whether the triangle is attached or unattached\(^2\) (column 5), values rhoT, muT and MuT that define the intervals for

\(^1\)The end-points of these sub-intervals, ρ_T, μ_T and Π_T defined in Edelsbrunner and Mücke (1994), are stored in columns rhoT, muT and MuT, respectively.

\(^2\)See nomenclature of Edelsbrunner and Mücke (1994).
which the triangle belongs to the \(\alpha \)-complex (columns 6 to 8) and for each \(\alpha \) a value (0, 1, 2 or 3) indicating, respectively, that the triangle is not in the \(\alpha \)-shape or it is interior, regular or singular (columns 9 to last).

\[
\begin{array}{cccccccc}
\text{ed1} & \text{ed2} & \text{on.ch} & \text{attached} & \rho_T & \mu_T & \text{Mu_T} & \text{fc:0.3 fc:0.5} \\
[1,] & 1 & 92 & 0 & 0.06281722 & 0.06895091 & 0.2210708 & 1 & 1 \\
[2,] & 1 & 215 & 0 & 0.07220062 & 0.07221194 & 0.3163063 & 2 & 1 \\
[3,] & 1 & 313 & 0 & 0.11899642 & 0.12371479 & 0.1673962 & 1 & 1 \\
[4,] & 1 & 365 & 0 & 0.03166164 & 0.10016329 & 0.2673887 & 1 & 1 \\
[5,] & 1 & 372 & 0 & 0.10734872 & 0.10883523 & 0.3107847 & 2 & 1 \\
[6,] & 1 & 519 & 0 & 0.05835185 & 0.06895091 & 0.1479944 & 1 & 1 \\
\end{array}
\]

For each edge of the 3D Delaunay triangulation, the matrix \(\text{edge} \) stores the indices of the sample points defining the edge (columns 1 and 2), a value (1 or 0) indicating whether the edge is on the convex hull (column 3), a value (1 or 0) indicating whether the edge is attached or unattached (column 4), values \(\rho_T \), \(\mu_T \) and \(\text{Mu_T} \) that define the intervals for which the edge belongs to the \(\alpha \)-complex (columns 5 to 7) and for each \(\alpha \) a value (0, 1, 2 or 3) indicating, respectively, that the edge is not in the \(\alpha \)-shape or it is interior, regular or singular (columns 8 to last).

\[
\begin{array}{cccccccc}
\text{v1} & \text{on.ch} & \mu_T & \text{Mu_T} & \text{fc:0.3 fc:0.5} \\
[1,] & 1 & 0 & 0.03166164 & 0.3163063 & 2 & 1 \\
[2,] & 2 & 0 & 0.06276595 & 0.2062490 & 1 & 1 \\
[3,] & 3 & 0 & 0.06117960 & 0.1659127 & 1 & 1 \\
[4,] & 4 & 0 & 0.07173660 & 1.8094574 & 2 & 2 \\
[5,] & 5 & 0 & 0.09143347 & 1.0523604 & 2 & 2 \\
[6,] & 6 & 0 & 0.07450637 & 0.2802244 & 1 & 1 \\
\end{array}
\]

For each sample point, the matrix \(\text{vertex} \) stores the index of the point (column 1), a value (1 or 0) indicating whether the point is on the convex hull (column 2), values \(\mu_T \) and \(\text{Mu_T} \) that define the intervals for which the point belongs to the \(\alpha \)-complex (columns 3 and 4) and for each \(\alpha \) a value (1, 2 or 3) indicating, respectively, if the point is interior, regular or singular (columns 5 to last).

3.3. Graphical representation of the \(\alpha \)-shape in 3D

Graphical visualization is an essential part of data analysis and statistical modelling. An S3 \(\text{plot} \) method for \`ashape3d` objects performs 3D visualization of the \(\alpha \)-shape.

\[
\begin{align*}
\text{R}> & \text{rgl.viewpoint(20)} \\
\text{R}> & \text{rgl.light(120, 60)} \\
\text{R}> & \text{bg3d("white")} \\
\text{R}> & \text{plot(ashape3d, col = c(4, 4, 4), indexAlpha = "all")}
\end{align*}
\]
The input must be an object of class ‘ashape3d’. The argument col is a vector of colour numbers for the triangles, edges and vertices composing the α-shape (the default colour is red). The argument indexAlpha can be a single value or a vector specifying the indexes of alphashape3d$alpha to be used for representing the α-shape. If indexAlpha = "all" or indexAlpha = "ALL" then the function opens a new rgl device for each value of α in alphashape3d$alpha. Further arguments are also available. The argument transparency controls the transparency properties of the α-shape. Its value ranges from zero (transparent) to one (opaque). The scene and appearance of shapes, backgrounds and bounding box objects can be controlled by functions and parameters in package rgl, see Adler and Murdoch (2013). The package rgl adds three-dimensional, real-time visualization functionality to the R programming environment. Figure 5 shows snapshots of the above call to the plot method for ‘ashape3d’ objects.

3.4. Connected components of the α-shape

The package alphashape3d includes the function components_ashape3d that computes the connected components of the α-shape of a given point cloud in \mathbb{R}^3 and identifies the component that each sample point belongs to. We find this function potentially useful for partitioning point clouds into clusters. See Chapter 2 in Marchette (2004) for a discussion on the usefulness of the α-shape for clustering in the planar case. The visualization of the connected components of the α-shape provides clues about the reality of clusters in the data set. Owing to the characteristics of the α-shape, these clusters may have rather irregular shapes. Therefore, the connected components defined based on the α-shape may be more meaningful and accurate than those produced by classification algorithms that are entirely based on distance calculations.

In our implementation the α-shape is represented as a set of tetrahedrons, triangles, edges and vertices. This representation facilitates the computation of the adjacency matrix of the vertices. Using this information, we can then identify the connected components of the α-shape using an algorithm inspired by the strongly connected components algorithm described in Tarjan (1972). Our algorithm is a modification of depth-first search (DFS) to label all the vertices of a component and then to jump to another component when needed.

For the example whose results are depicted in Figure 6, we compute the connected components
Figure 6: Connected components of the α-shape of the point cloud for $\alpha = 0.3$ (left) and $\alpha = 0.5$ (right).

corresponding to the α-shapes for $\alpha = 0.3$ and $\alpha = 0.5$ stored in alphashape3d.

\begin{verbatim}
R> comp <- components_ashape3d(alphashape3d, indexAlpha = "all")
\end{verbatim}

If indexAlpha is a single value specifying the index of the alpha value of the input object which should be used, then the function returns a vector v of length equal to the sample size. For each sample point i, $v[i]$ represents the label of the connected component to which the point belongs (for isolated points, $v[i] = -1$). Otherwise, components_ashape3d returns a list of vectors describing the connected components of the α-shape for each selected value of α.

\begin{verbatim}
R> table(comp[[1]])

 1 2
2000 2000

R> table(comp[[2]])

 1
4000
\end{verbatim}

This shows that the α-shape for $\alpha = 0.3$ has two connected components with 2000 sample points each, and that the α-shape for $\alpha = 0.5$ has only one connected component. The plot-method for 'ashape3d' objects, described in Section 3.3, displays the connected components of the α-shape in different colours by setting the argument byComponents = TRUE. The following code produces Figure 6.

\begin{verbatim}
R> rgl.viewpoint(20)
R> rgl.light(120, 60)
R> bg3d("white")
R> plot(alphashape3d, byComponents = TRUE, indexAlpha = "all")
\end{verbatim}
3.5. Volume and other attributes of the α-shape

Here we describe other functions in the package `alphashape3d` that compute the values of several attributes of the α-shape. The function `volume_ashape3d` calculates the volume of the α-shape of a point cloud. The input must be an object of class ’ashape3d’. As described before, the argument `indexAlpha` can be a single value or a vector specifying the indexes of `alphashape3d$alpha` to be considered. For our example, we compute the volume of the α-shape for $\alpha = 0.3$.

```r
R> volume_ashape3d(alphashape3d, indexAlpha = 1)
[1] 14.84469
```

We can also compute the volume of each connected component of the α-shape separately, by setting the argument `byComponents = TRUE`.

```r
R> volume_ashape3d(alphashape3d, indexAlpha = 1, byComponents = TRUE)
[1] 7.482213 7.362480
```

These add up to 14.8447, which is the total volume of the α-shape in Figure 6 (left).

The function `inashape3d` checks whether one or several points belong to the interior of the α-shape. For example, the point $(-2.5, 2.5, 0)$ does not belong to any of the α-shapes computed above.

```r
R> inashape3d(alphashape3d, indexAlpha = "all", c(-2.5, 2.5, 0))
[[1]]
[1] FALSE
[[2]]
[1] FALSE
```

The following code produces Figure 7. We have considered a sequence of points in the line $y = -x$ ($z = 0$). After using the function `inashape3d` we represent in red the points that do not belong to the α-shape and in green the points that belong to the α-shape for $\alpha = 0.3$.

```r
R> np <- 50
R> x <- seq(-2.5, 2.5, length = np)
R> points <- cbind(x, -x, rep(0, np))
R> in3d <- inashape3d(alphashape3d, indexAlpha = 1, points = points)
R> rgl.viewpoint(20)
R> bg3d("white")
R> plot(alphashape3d, col = c(4, 4, 4), indexAlpha = 1, transparency = 0.2)
R> colours <- ifelse(in3d, "green", "red")
R> rgl.points(points, col = colours)
```
Figure 7: In blue, α-shape of the input point cloud for $\alpha = 0.3$. In red, points in the line $y = -x$ ($z = 0$) that do not belong to the α-shape. In green, points in the line $y = -x$ ($z = 0$) that belong to the α-shape.

The algorithm used to determine whether a given point p is inside the α-shape is an extension of the point-in-polygon ray-casting algorithm. The idea is to cast a ray from p in a randomly chosen direction and compute the intersections between the ray and the regular triangles of the α-shape. Recall that, according to the nomenclature of Edelsbrunner and Mücke (1994), a triangle is regular if it belongs to the boundary of the α-shape and is a face of one of its tetrahedra. If there is an odd number of intersections between the ray and the regular triangles, then the tested point p is inside the α-shape. If there is an even number of intersections, then p is outside the α-shape. To determine whether a half ray intersects a triangle, we compute the intersection of four half-spaces, which is considerably faster than testing whether p belongs to any of the tetrahedra that form the α-shape.

Finally, the function `surfaceNormals` calculates the normal vectors to the triangles in the boundary of the α-shape. For the considered example, we compute the normal vectors for the α-shape with $\alpha = 0.3$.

```r
R> normv <- surfaceNormals(alphashape3d, indexAlpha = 1)
R> class(normv)
[1] "normals"
R> names(normv)
[1] "normals" "centers"
R> head(normv$normals)
       [,1]        [,2]        [,3]
[1,] -0.004345889 -0.023284899 -0.017392624
[2,] -0.016612769 -0.020890596  0.007150918
[3,] -0.018222097 -0.013685685 -0.035881250
[4,] -0.038262752 -0.019933207 -0.062753611
[5,] -0.017801815 -0.010975041 -0.009781461
[6,] -0.001002255  0.005673446  0.018332014
```
The function returns an object of class ‘normals’. The component normals is a three-column matrix with the Euclidean coordinates of the normal vectors (the norm of each vector is equal to the area of its associated triangle). The component centers is a three-column matrix with the Euclidean coordinates of the centers of the triangles that form the boundary of the \(\alpha \)-shape. The normal vectors can be represented by setting the argument display = TRUE in the function surfaceNormals.

4. An application of the \(\alpha \)-shape in 3D to polymeric scaffolds

Figure 8 shows an X-ray computed micro-tomography slice through a free-form fabricated polymeric (poly-\(\epsilon \)-caprolactone, PCL) scaffold. Since PCL is biocompatible and biodegradable, it is a useful implantable support structure for replacement tissues grown in culture. The images in the stack of tomographic slices used for this demonstration comprise 956 × 956 square pixels of sidelength 6 \(\mu \)m, and represent a 6 \(\mu \)m thick slice.

Figure 9 shows one view of a sample of points drawn from the 3D scaffold, as projected onto the plane of an rgl graphics window. These are the points that \(\alpha \)-shapes will be computed for to enable quantification of several geometrical attributes of the scaffold. Several image processing tools are used to extract the cloud of points in \(\mathbb{R}^3 \) from the stack of images. Each image is thresholded, eroded, and dilated (in this order) to produce a binary image that is practically free of speckle noise. The points used for the calculation of the \(\alpha \)-shapes are a random subset of the “white” pixels in this binary image. The proportion of pixels to select...
Figure 9: Points sampled from the polymeric scaffold shown in Figure 8 (left panel), and corresponding α-shape with \(\alpha = 60 \, \mu m \) (right panel).

is related to the value chosen for \(\alpha \). The smaller \(\alpha \) is, the larger the sample should be to avoid the appearance of spurious holes. The α-shape corresponding to \(\alpha = 60 \, \mu m \) is shown in Figure 9 (right).

The α-shapes of the portion of the scaffold that is occupied by the polymer, and of its interior spaces, both can be useful constructs. The porosity of the scaffold can be estimated by the ratio of the volume of the voids to the volume of the convex hull of the scaffold: it is 66\% in this case. The connectivity of the voids is the probability of there being a path connecting two points in voids within the scaffold: this can be estimated based on the α-shape of the voids.

5. Computational details

5.1. About the general position assumption

For the computation of the α-shape, the input points in function `ashape3d` must be in general position. Otherwise, the function `ashape3d` prints an error message reporting that the general position assumption is not satisfied. By setting the argument `pert = TRUE` the function `ashape3d` applies a slight perturbation to the input points in case they are not in general position. Both, the original points and the perturbed data, are stored in components `x` and `xpert` of the output object, respectively.

5.2. Exporting as OFF files

Object File Format (OFF) files are commonly used to represent the geometry of an object. OFF files represent collections of planar polygons with possibly shared vertices. They are specially useful to describe polyhedra and many 3D graphics programs use this format for input or output. An object of class `‘ashape3d’` can be easily exported as an OFF file. Each OFF file begins with the keyword “OFF”. The next line includes the number of vertices, faces,
and edges of the object. Next, the coordinates of the vertices are listed and following these are the face descriptions. The following code saves the α-shape computed in our example for $\alpha = 0.3$ as an OFF file. OFF files can be visualized and manipulated quite easily using 3D viewing programs.

\begin{verbatim}
R> offFilename <- "alphashape3d.off"
R> write("OFF", file = offFilename, append = FALSE, sep = " ")
R> aux <- alphashape3d$triang
R> tr <- aux[aux[, 9] == 2 | aux[, 9]==3, c("tr1", "tr2", "tr3")]
R> write(c(dim(alphashape3d$x)[1], dim(tr)[1], 0), file = offFilename,
+ append = TRUE, sep = " ")
R> write(t(alphashape3d$x), file = offFilename, ncolumns = 3,
+ append = TRUE, sep = " ")
R> write(t(cbind(rep(3, dim(tr)[1]), tr - 1)),
+ file = offFilename, ncolumns = 4, append = TRUE, sep = " ")
\end{verbatim}

5.3. Software

The results in this document were obtained using R 3.0.1 (\cite{R-Core-Team-2013}). The alphashape3d package is available from the Comprehensive R Archive Network at \url{http://CRAN.R-project.org/package=alphashape3d}. This paper describes version 1.0-4 of the package.

Acknowledgments

This work has been partially supported by Spanish Grant MTM2008-03010 and the IAP research network grant no. P6/03 from the Belgian government (Beatriz Pateiro-López), and by the Shape Metrology Innovations in Measurement Science from the National Institute of Standards and Technology (all the authors). Since the work is a work product of the National Institute of Standards and Technology, an agency of the U.S. federal government, it is not subject to copyright in the United States.

We are much indebted to Girish Kumar (currently at the Food and Drug Administration, U.S. Department of Health and Human Services, formerly in the Polymers Division, Material Measurement Laboratory, National Institute of Standards and Technology) who obtained the images of the polymeric scaffold used in Section 4, and to Carl Simon and Tanya Farooque (Polymers Division, Material Measurement Laboratory, National Institute of Standards and Technology) for facilitating access to the digital data, and for suggesting substantively meaningful shape attributes to measure in polymeric scaffolds.

\texttt{R} is not a commercial product: it is a freely accessible software product. Its use here does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that it is necessarily the best available for the purpose.

References

Adler D, Murdoch D (2013). \texttt{rgl}: 3D Visualization Device System (\texttt{OpenGL}). R package version 0.93.935, \url{http://CRAN.R-project.org/package=rgl}.

Affiliation:
Beatriz Pateiro-López
Departamento de Estadística e Investigación Operativa
Facultad de Matemáticas
Rúa Lope Gómez de Marzoa s/n
15782 Santiago de Compostela, Spain
E-mail: beatriz.pateiro@usc.es