Significance Test in Speaker Recognition Data Analysis with Data Dependency

Jin Chu Wu
Alvin F. Martin
Craig S. Greenberg
Raghu N. Kacker
Vincent M. Stanford

http://dx.doi.org/10.6028/NIST.IR.7884
Significance Test in Speaker Recognition Data Analysis with Data Dependency

Jin Chu Wu
Alvin F. Martin
Craig S. Greenberg
Information Access Division, Information Technology Laboratory

Raghu N. Kacker
Applied and Computational Mathematics Division, Information Technology Laboratory

Vincent M. Stanford
Information Access Division, Information Technology Laboratory

http://dx.doi.org/10.6028/NIST.IR.7884

October 2012
Significance Test
in Speaker Recognition Data Analysis with Data Dependency

Jin Chu Wua, Alvin F. Martina, Craig S. Greenberga, Raghu N. Kackerb, and Vincent M. Stanforda
aInformation Access Division, bApplied and Computational Mathematics Division,
Information Technology Laboratory,
National Institute of Standards and Technology, Gaithersburg, MD 20899

Abstract

To evaluate the performance of speaker recognition systems, a detection cost function defined as a weighted sum of the probabilities of type I and type II errors is employed. The speaker datasets may have data dependency due to multiple uses of the same subjects. Using the standard errors of the detection cost function computed by means of the two-layer nonparametric two-sample bootstrap method, a significance test is performed to determine whether the difference between the measured performance levels of two speaker recognition algorithms is statistically significant. While conducting the significance test, the correlation coefficient between two detection cost functions for two algorithms, respectively, is taken into account. Examples are provided.

\textit{Keywords}: Significance test; Speaker recognition; Data dependency; Standard error; Bootstrap.
1 Introduction

The Speaker Recognition Evaluation (SRE) is an ongoing project conducted by the National Institute of Standards and Technology (NIST) [1]. It has had a great impact on the research efforts and the development of technology in the community of the audio, speech, and language processing. Each trial in a speaker recognition test consists of a training model speaker and a test speech segment. The speaker recognition system must decide whether speech of the model speaker occurs in the test speech segment and generate a similarity score. A higher score indicates greater confidence that the test speech is spoken by the model speaker. Target (non-target) scores are generated by trials in which the test speech segment contains (does not contain) speech of the model speaker defined in the training data.

To evaluate the performance of speaker recognition systems, a detection cost function defined as a weighted sum of the probabilities of type I error (miss) and type II error (false alarm) is employed as a metric [1]. These two error rates represent a tradeoff and are negatively correlated [2]. Further, the NIST speaker recognition data contain dependencies [3]. Data dependency in speaker recognition applications arises largely from multiple uses of the same subjects in order to provide more target and non-target scores due to limited resources. This data dependency is complicated, due in part to the way the data are collected. There are several ways to interpret the dependencies of the data, which can impact the bootstrap results.

In our test, data dependency is determined based solely upon the multiple use of the training speaker identification (ID) number. Target scores and non-target scores generated using the same training speaker ID number are grouped into a target set and a non-target set, respectively, in order to preserve the data dependency. Then the speaker datasets are refined to a two-layer data structure: the first layer consists of target sets and non-target sets, and the second layer consists of target scores and non-target scores within sets.

Based on our investigation of the probabilities for scores being selected, and to keep the numbers of scores resampled equal from iteration to iteration while using the bootstrap method, the datasets are adjusted in such a way that all target sets contain the same number of scores and likewise for the non-target sets [3]. The adjusted datasets had 132 target sets (130 non-target sets), each of which contained 96 target scores (244 non-target scores); and thus the total number of target (non-target) scores was 12,672 (31,720). Hence, there are still tens of thousands of scores in the datasets [3].

The sampling variability, including the data dependency, results in uncertainties of the detection cost function in the SRE. However, the covariance between the type I and II errors and the data dependency make the analytical computation of such uncertainties difficult. Hence, in our prior studies, the standard error (SE) of the detection cost function was estimated using the two-layer nonparametric two-sample bootstrap method, where the empirical distribution is assumed for each of the observed scores, based on our extensive bootstrap variability studies in ROC analysis on large datasets [2-9].

The two samples involved are referred to as a set of target scores and a set of non-target scores, which characterize the speaker recognition system that generates them and usually do not have well
defined parametric forms [10, 11]. In the two-layer bootstrap, the nonparametric two-sample resampling takes place randomly with replacement (WR), not only on the first layer of the data, i.e., the target sets and non-target sets, but also subsequently on the second layer, i.e., the target scores and non-target scores within the sets. While resampling on the first layer, the bootstrap units are sets; on the second layer, the bootstrap units are scores within a set, where the similarity scores are conditionally independent.

In evaluating and comparing the performances of speaker recognition systems, it is insufficient to only compute the uncertainty of the cost function [2, 12]. It may be of interest to determine whether the difference between the measured performance level of a specific speaker recognition algorithm and a hypothesized criterion value is real or by chance, or to determine whether the difference between the measured performance levels of two algorithms is statistically significant. The principles are the same. In SRE the latter is often of more interest, and thus is explored in this article.

Comparison issues may be examined intuitively to some extent using the 95% confidence intervals (CI) derived from the uncertainty. But it is difficult to reach any conclusion when the two 95% CIs overlap. CIs alone are insufficient to provide quantitative information (such as p-values) on the statistical significance of the difference. Thus, statistical hypothesis testing is employed.

By examining the relationship between the two types of 95% CIs, it was found that the one computed using the quantile method matched very well with the one derived using the normality assumption for the distribution of the detection cost function. This suggests that the detection cost function be regarded as approximately normally distributed. Thereafter, the Z-test may be used to perform significance testing.

The detection cost functions of the two speaker recognition systems might or might not be correlated, depending on how the test is designed and how the sets of similarity scores are generated. In our SRE tests, all the scores of the different systems were generated on a common set of speakers and speech segments and, therefore, are highly correlated. And thus, the resulting detection cost functions are also correlated. In this article, an algorithm is provided to find the correlated pairs of metrics from the correlated similarity scores, and then the correlation coefficient of the detection cost function can be computed explicitly [2, 12].

The notations of sets and scores are provided in Section 2. The formulas for computing the detection cost function are presented in Section 3. The general formulas of hypothesis testing for comparing two speaker recognition systems are shown in Section 4. The two-layer nonparametric two-sample bootstrap algorithm is provided in Section 5. An algorithm for computing the correlation coefficient of two detection cost functions is described in Section 6. The results of examples involving five speaker recognition systems are presented in Section 7. The conclusions and discussion can be found in Section 8.

1 Specific hardware and software products identified in this paper were used in order to adequately support the development of technology to conduct the performance evaluations described in this document. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products and equipment identified are necessarily the best available for the purpose.
2 The notations of sets and scores

<table>
<thead>
<tr>
<th>target S_T</th>
<th>sets</th>
<th>S_{T1}</th>
<th>S_{T2}</th>
<th>......</th>
<th>S_{Tm_T}</th>
</tr>
</thead>
<tbody>
<tr>
<td>scores</td>
<td>$\alpha_{T11}, \alpha_{T12}, \ldots, \alpha_{T1m_T}$</td>
<td>$\alpha_{T21}, \alpha_{T22}, \ldots, \alpha_{T2m_T}$</td>
<td>......</td>
<td>$\alpha_{Tm_T1}, \alpha_{Tm_T2}, \ldots, \alpha_{Tm_Tm_T}$</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 The target sets, the number of which is m_T, and the target scores contained in each set.

<table>
<thead>
<tr>
<th>non-target S_N</th>
<th>sets</th>
<th>S_{N1}</th>
<th>S_{N2}</th>
<th>......</th>
<th>S_{Nm_N}</th>
</tr>
</thead>
<tbody>
<tr>
<td>scores</td>
<td>$\alpha_{N11}, \alpha_{N12}, \ldots, \alpha_{N1m_N}$</td>
<td>$\alpha_{N21}, \alpha_{N22}, \ldots, \alpha_{N2m_N}$</td>
<td>......</td>
<td>$\alpha_{Nm_N1}, \alpha_{Nm_N2}, \ldots, \alpha_{Nm_Nm_N}$</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 The non-target sets, the number of which is m_N, and the non-target scores contained in each set.

There are several ways to group data into sets according to data dependency. As discussed in Section 1, in this article the speaker recognition scores are grouped into sets based on the training speaker ID number. Target scores involving a given ID number of the training and test speakers are grouped into a target set, whereas non-target scores involving a given ID number of the training speaker but different ID numbers of the test speakers are grouped into a non-target set.

Suppose that the number of the target sets is m_T, and the number of the non-target sets is m_N. Thus, the set S_T of all target sets and the set S_N of all non-target sets are expressed, respectively, as follows,

$$S_i = \{ S_{ij} \mid j = 1, \ldots, m_i \}, i \in \{T, N\},$$ \hspace{1cm} (1)

where S_{Tj} are target sets and S_{Nj} are non-target sets.

In terms of its scores, each set can be expressed as

$$S_{ij} = \{ \alpha_{ijk} \mid k = 1, \ldots, \mu_{ij} \}, j = 1, \ldots, m_i \text{ and } i \in \{T, N\},$$ \hspace{1cm} (2)

where α_{Tjk} are target scores, α_{Njk} are non-target scores, and μ_{ij} stands for the number of scores in the corresponding set.

Due to the reasons stated in Section 1, the datasets are adjusted in such a way that all target sets contain the same number of scores and likewise for the non-target sets. In other words, $\mu_{i1} = \mu_{i2} = \ldots = \mu_{im_i}$, where $i \in \{T, N\}$. Moreover, since the scores are grouped into sets based on the training speaker ID numbers as discussed in Section 1, the two scores of any two speaker recognition systems with the same ordinal number of sets and the same ordinal number of scores in sets are generated by the speakers and speech segments with the same ID numbers, regardless of whether these two scores are target scores or non-target scores. Therefore, these two scores of two systems are correlated.

Hence, the set of all target scores and the set of all non-target scores can be denoted, respectively, as

$$T = \{ \alpha_{Tjk} \mid k = 1, \ldots, \mu_{Tj} \text{ and } j = 1, \ldots, m_T \},$$ \hspace{1cm} (3)
and

\[N = \{ \alpha_{Njk} \mid k = 1, \ldots, \mu_N j \text{ and } j = 1, \ldots, m_N \}. \]

(4)

The sets \(S_{ij}, T, \) and \(N \) are all in the sense of multiset, in which members are allowed to appear more than once. Indeed score can occur multiple times within a set. Finally, the total number of target scores \(N_T \) and the total number of non-target scores \(N_N \) are, respectively,

\[
N_i = \sum_{j=1}^{m_i} \mu_{ij}, \quad \text{where } i \in \{T, N\}. \quad (5)
\]

The target and non-target sets and scores contained in each set are explicitly listed in Table 1 and Table 2, respectively. There are \(m_T \) target sets and \(m_N \) non-target sets. The target sets \(S_{T1}, S_{T2}, \ldots, S_{mT} \) contain \(\mu_{T1}, \mu_{T2}, \ldots, \mu_{mT} \) target scores, respectively; and the non-target sets \(S_{N1}, S_{N2}, \ldots, S_{mN} \) have \(\mu_{N1}, \mu_{N2}, \ldots, \mu_{mN} \) non-target scores, respectively.

3 The detection cost function in speaker recognition evaluation

After converting scores to integer, without loss of generality, for a speaker recognition system, the scores are expressed inclusively using the integer score set \(\{s\} = \{s_{\min}, s_{\min+1}, \ldots, s_{\max}\} \), running consecutively from the lowest score \(s_{\min} \) to the highest score \(s_{\max} \). Let \(C_i (s), i \in \{T, N\} \) denote the cumulative probabilities of target scores and non-target scores from the highest score \(s_{\max} \) down to an integer score \(s \), respectively.

The probability of type I error at a threshold \(\{s\} \in t \) for target scores, denoted by \(P_I (t) \), is cumulated from the lowest score \(s_{\min} \). The probability of type II error at a threshold \(t \) for non-target scores, denoted by \(P_{II} (t) \), is cumulated from the highest score \(s_{\max} \). For discrete probability distribution, while computing \(P_I (t) \) and \(P_{II} (t) \) at a threshold \(t \), the probabilities of target scores and non-target scores at this threshold \(t \) must be taken into account [13].

Hence, at a threshold value \(t \in \{s\} \), the estimators of the probabilities of type I error and type II error are expressed, respectively, as

\[
\hat{P}_I (t) = 1 - C_T (t + 1) \quad \text{for } t \in \{s\},
\]

\[
\hat{P}_{II} (t) = C_N (t)
\]

(6)

where \(C_T (s_{\max} + 1) = 0 \) is assumed [2, 10]. Based on Eq. (8), in practice, the estimators \(\hat{P}_I (t) \) and \(\hat{P}_{II} (t) \) can be obtained by moving the score from the highest score \(s_{\max} \) down to the threshold \(t \) one score at a time to cumulate the probabilities of target scores and non-target scores, respectively.

A number of metrics exist for measuring the performance level of a speaker recognition system [1]. In this article, the detection cost function at a threshold for the primary evaluation of speaker detection performance is employed as the metric of interest. However, the same method of computing the uncertainties of the detection cost functions can be used to compute uncertainties for other metrics in SRE as well.
The detection cost function at a threshold t is defined as a weighted sum of the probabilities of type I error and of type II error at the threshold t [1]

$$C_{\text{Det}}(t) = C_{\text{Miss}} \times P_I(t) \times P_{\text{Target}} + C_{\text{FalseAlarm}} \times P_{II}(t) \times (1 - P_{\text{Target}}). \quad (7)$$

Hence, it is a function of the threshold t. It was required that the thresholds be provided by speaker recognition systems in order to make an explicit speaker detection decision for each trial. The thresholds can also be determined in other ways. It is a challenging research problem to determine appropriate decision thresholds, which is outside the scope of this article. Therefore, the thresholds used in this article are those provided by the tested systems.

The parameters C_{Miss} and $C_{\text{FalseAlarm}}$ are the relative costs of detection errors, and the parameter P_{Target} is the a priori probability of the specified model speaker. For the primary evaluation of speaker recognition performance for all speaker detection tests, the parameters C_{Miss}, $C_{\text{FalseAlarm}}$, and P_{Target} were set to be 10, 1, and 0.01, respectively [1].

4 Two-algorithm hypothesis testing for comparisons

As pointed out in Section 1, due to the specific applications in SRE, the comparison of two speaker recognition systems rather than the evaluation of a system with respect to a hypothesized criterion value for the cost function is of more interest and thus is explored in this article. Nonetheless, the principles stay the same.

Let C_1 and C_2 denote the two detection cost functions for any two speaker recognition systems at respective thresholds. Then, the null and alternative hypotheses are

$$H_0 : C_1 = C_2$$
$$H_a : C_1 \neq C_2 \quad (8)$$

If the statistic of interest is normally distributed, the general Z statistic for two-algorithm hypothesis testing is expressed as

$$Z = \frac{\hat{C}_1 - \hat{C}_2}{\sqrt{\text{SE}^2(\hat{C}_1) + \text{SE}^2(\hat{C}_2)} - 2 \cdot r \cdot \text{SE}(\hat{C}_1) \cdot \text{SE}(\hat{C}_2)} \quad (9)$$

where \hat{C}_1 and \hat{C}_2 are two estimators of the detection cost function, $\text{SE}(\hat{C}_1)$ and $\text{SE}(\hat{C}_2)$ stand for their SEs, respectively, and r is the correlation coefficient between \hat{C}_1 and \hat{C}_2.

The Z statistic is distributed as the standard normal distribution with zero expectation and unit variance. The standard errors of the detection cost function with data dependency can be computed using the two-layer nonparametric two-sample bootstrap (see Section 5). If the two statistics of interest are positively correlated and the correlation coefficient r is not taken into account, it can leave the denominator of Eq. (9) larger and the Z score smaller; thereby reduce the chance of detecting a performance difference between two algorithms.

There is no reason to believe a priori that the performance of one algorithm is likely to be better than the performance of the other algorithm. Further, the two-tailed test is generally more
conservative than the one-tailed test in the sense that the former is more difficult to reject the null hypothesis for a given significance level [14]. Thus, the two-tailed Z-test is used in this article.

5 An algorithm for the two-layer nonparametric two-sample bootstrap

Because it is difficult to compute analytically the covariance term of the correlated probabilities of type I error \(P_I(t) \) and type II error \(P_{II}(t) \) at a threshold \(t \) in Eq. (7) and also because the data dependency is involved, the two-layer nonparametric two-sample bootstrap method is proposed to compute the estimate of the uncertainty of the detection cost function at a threshold \(t \), based on our previous studies of bootstrap variability in ROC analysis on large datasets [2-9].

The two-layer resampling is carried out not only on the first layer of the new data structure where the resampling units are target sets and non-target sets, but also on the second layer of the data in which the resampling units are target scores and non-target scores in sets. From here on, the superscript indices are used for the numeration of the resampling iterations. The algorithm is shown as follows.

\textit{Algorithm I (two-layer nonparametric two-sample bootstrap)}

1: \textbf{for} \(i = 1 \) to \(B \) \textbf{do}
2: \hspace{1em} \textsc{WR} _\textsc{Random} _\textsc{Sampling} _\textsc{Set} \ (m_T, S_T, S'_{T} _i = \{ S'_{Tj} _i \mid j = 1, \ldots, m_T \})
3: \hspace{1em} \textbf{for} \(k = 1 \) to \(m_T \) \textbf{do}
4: \hspace{2em} \textsc{WR} _\textsc{Random} _\textsc{Sampling} _\textsc{Set} \ (\mu'_{Tk} _i, S'_{Tk} _i, S''_{Tk} _i)
5: \hspace{1em} \textbf{end for}
6: \textsc{WR} _\textsc{Random} _\textsc{Sampling} _\textsc{Set} \ (m_N, S_N, S'_{N} _i = \{ S'_{Nj} _i \mid j = 1, \ldots, m_N \})
7: \hspace{1em} \textbf{for} \(k = 1 \) to \(m_N \) \textbf{do}
8: \hspace{2em} \textsc{WR} _\textsc{Random} _\textsc{Sampling} _\textsc{Set} \ (\mu'_{Nk} _i, S'_{Nk} _i, S''_{Nk} _i)
9: \hspace{1em} \textbf{end for}
10: S''_{T} _i = \{ S''_{Tj} _i \mid j = 1, \ldots, m_T \} \text{ and } S''_{N} _i = \{ S''_{Nj} _i \mid j = 1, \ldots, m_N \} \Rightarrow \text{statistic } \hat{C}^i
11: \textbf{end for}
12: \{ \hat{C}^i \mid i = 1,...,B \} \Rightarrow \hat{S} \hat{E} \text{ and } (\hat{Q}(\alpha / 2), \hat{Q}(1 - \alpha / 2))
13: \textbf{end}

1.1: \textbf{function} \textsc{WR} _\textsc{Random} _\textsc{Sampling} _\textsc{Set} \ (L, \Gamma, \Theta)
1.2: \hspace{1em} \textbf{for} \(i = 1 \) to \(L \) \textbf{do}
1.3: \hspace{2em} \text{select randomly \textsc{WR} an index } j \in \{ 1, \ldots, L \}
1.4: \hspace{2em} \theta_i = \gamma_j
1.5: \hspace{1em} \textbf{end for}
1.6: \textbf{end function}
The two-layer nonparametric two-sample bootstrap calls the function \(\text{WR_Random_Sampling_Set} \). In this function, \(\Gamma \) stands for a set of sets or a set of scores, \(L \) is the cardinality of the set \(\Gamma \), \(\Theta \) represents a new set of sets or scores accordingly with the same cardinality, and \(\gamma_i \) and \(\theta_i \) are members of the sets \(\Gamma \) and \(\Theta \), respectively. Notice that this function can be applied to either a set of sets or a set of scores. It runs \(L \) iterations as shown from Step 1.2 to Step 1.5. In the i-th iteration, a member of the set \(\Gamma \) is randomly selected \(\text{WR} \) to become a member of a new set \(\Theta \), as indicated in Steps 1.3 and 1.4. As a result, \(L \) members (sets or scores) are randomly selected \(\text{WR} \) from the set \(\Gamma \) to form a new set \(\Theta \).

In Algorithm I, \(B \) is the number of the bootstrap replications, i.e., the number of iterations as shown from Step 1 to 11, \(\mathcal{S}_T \) is the set of all target sets and \(\mathcal{S}_N \) is the set of all non-target sets as expressed in Eq. (1), and \(m_T \) and \(m_N \) are the cardinalities of the set \(\mathcal{S}_T \) and the set \(\mathcal{S}_N \), respectively.

In the i-th iteration, as shown in Step 2 and Step 6, the function \(\text{WR_Random_Sampling_Set} \) is applied to the first layer of datasets, i.e., the target and non-target sets. That is, \(m_T \) target sets are randomly selected \(\text{WR} \) from the set \(\mathcal{S}_T \) of all original target sets to form a new set \(\mathcal{S}_T' | j = 1, ..., m_T \) and \(m_N \) non-target sets are randomly selected \(\text{WR} \) from the set \(\mathcal{S}_N \) of all original non-target sets to constitute a new set \(\mathcal{S}_N' | j = 1, ..., m_N \).

Subsequently, the same function is applied to the second layer of datasets, i.e., the similarity scores in sets as well. As shown from Step 3 to 5, \(m_T \) iterations take place after the first-layer resampling of the target sets in Step 2. In the k-th iteration, \(\mu_{T_k} \) target scores are randomly selected \(\text{WR} \) from the target set \(\mathcal{S}_{T_k} \), which is the k-th new target set from the first-layer resampling, to form the k-th new target set \(\mathcal{S}_{T_k}' \) of the second-layer resampling. The analogous interpretation can be applied to non-target scores in the non-target set \(\mathcal{S}_{N_k}' \) as shown from Step 7 to 9.

As indicated in Step 10, all target scores in the new set \(\mathcal{S}_{T}'' | j = 1, ..., m_T \) and all non-target scores in the new set \(\mathcal{S}_{N}'' | j = 1, ..., m_N \) are employed to calculate the estimators of the probabilities of type I and type II errors, i.e., \(\hat{P}_I(t) \) and \(\hat{P}_{II}(t) \) using Eq. (6) and then the i-th bootstrap replication of the estimated detection cost function at a given threshold, i.e., \(\hat{C}_i \) using Eq. (7).

With the new data structure described in Section 1, not only does each target (non-target) score have the same probability to be selected, but also the same numbers of target scores and the same numbers of non-target scores, respectively, are resampled in Step 10 at different iterations of the two-layer nonparametric two-sample bootstrap. All these can reduce the variance of the computation.

Finally, as shown in Step 12, from the set \(\{ \hat{C}_i | i = 1, ..., B \} \), the standard error \(\hat{SE} \) of the detection cost function is estimated by the sample standard deviation of the \(B \) bootstrap replications, and the estimators of the \(\alpha/2 \) 100 % and \((1 - \alpha/2) \) 100 % quantiles of the bootstrap distribution, denoted by \(\hat{Q}(\alpha/2) \) and \(\hat{Q}(1 - \alpha/2) \), at the significance level \(\alpha \) can be calculated [5]. Definition 2 of quantile in Ref. [15] is adopted. That is, the sample quantile is obtained by inverting the empirical
distribution function with averaging at discontinuities. Thus, \((\hat{Q}(\alpha/2), \hat{Q}(1-\alpha/2))\) stands for the estimated bootstrap \((1-\alpha) 100 \% CI\). If 95 \% CI is of interest, then \(\alpha\) is set to be 0.05.

The remaining issue is to determine how many iterations the bootstrap algorithms need to run in order to reduce the bootstrap variance and ensure the accuracy of the computation. In our applications, such as biometrics and the evaluation of speaker recognition, etc., the sizes of datasets are tens to hundreds of thousands of similarity scores, which are much larger than those in some other applications of bootstrap methods like medical decision making, etc. [5]. Moreover, in ROC analysis our statistics of interest are mostly probabilities or a weighted sum of probabilities, etc. rather than a simple sample mean. And most importantly our data samples of similarity scores have no parametric model to fit. Therefore, the bootstrap variability was re-studied empirically, and the appropriate number of bootstrap replications \(B\) for our applications was determined to be 2,000 [2, 8, 9].

6 An algorithm for computing the correlation coefficient

The two detection cost functions for any two speaker recognition systems may or may not be correlated. However, they are correlated in our test set due to its structure. For example, consider two speaker recognition systems denoted by A and B. These two systems have the same two-layer data structures. As stated in Section 2, the two systems generate two scores with the same ordinal number of sets and the same ordinal number of scores in sets by matching the speakers and speech segments with the same ID numbers, for target scores as well as non-target scores. Therefore, these two scores corresponding to the two systems co-vary. Consequently the detection cost functions of any two systems, computed using similarity scores in Eqs. (6) and (7), are also correlated.

An algorithm for computing the correlation coefficient of two detection cost functions is as follows.

Algorithm II (Correlation coefficient)

1: \(\text{for } i = 1 \text{ to } M \text{ do}\)
2: \(\text{Synchronized_WR_Random_Sampling_Set}\)
3: \(\text{for } k = 1 \text{ to } m_T \text{ do}\)
4: \(\text{Synchronized_WR_Random_Sampling_Set}\)
5: \(\text{end for}\)
6: \(\text{Synchronized_WR_Random_Sampling_Set}\)
7: \(\text{for } k = 1 \text{ to } m_N \text{ do}\)
8: \(\text{Synchronized_WR_Random_Sampling_Set}\)
9: \(\text{end for}\)
10: \(S^A_{T_T} i = \{ S^A_{T_T j} | j = 1, \ldots, m_T \} \) and \(S^A_{T_N} i = \{ S^A_{T_N j} | j = 1, \ldots, m_N \} \Rightarrow \text{statistic } \hat{C}^{A_i}\)
11: \(S^B_{T_T} i = \{ S^B_{T_T j} | j = 1, \ldots, m_T \} \) and \(S^B_{T_N} i = \{ S^B_{T_N j} | j = 1, \ldots, m_N \} \Rightarrow \text{statistic } \hat{C}^{B_i}\)
12: end for

13: \{ \hat{C}^A_i | i = 1, ..., M \} and \{ \hat{C}^B_i | i = 1, ..., M \} \Rightarrow \text{the correlation coefficient } \hat{r}^{AB}_C

14: end

2.1: function Synchronized_WR_Random_Sampling_Set (L, \Gamma^A, \Theta^A, \Gamma^B, \Theta^B)

2.2: for j = 1 to L do

2.3: select randomly WR an index k \in \{ 1, ..., L \}

2.4: \theta^A_j = \gamma^A_k

2.5: \theta^B_j = \gamma^B_k

2.6: end for

2.7: end function

where \Gamma^A stands for a set of sets or a set of scores generated by System A, and L is its cardinality. The analogous meanings are applied to \Theta^A, \Gamma^B, and \Theta^B. And \gamma^A_k, \theta^A_j, \gamma^B_k, and \theta^B_j are their members, respectively. Algorithm II is similar to Algorithm I, except that the Algorithm II is applied to two speaker recognition systems simultaneously. Based on our bootstrap variability studies, the number of iterations M is set to be 2000 [2, 8, 9].

The function Synchronized_WR_Random_Sampling_Set can be applied to either a set of sets or a set of scores. As stated above, the two sets or scores \gamma^A_k and \gamma^B_k of two systems A and B with the same ordinal number k co-vary. Therefore, this function synchronizes the selection in a set \Gamma^A created by System A and the selection in a set \Gamma^B generated by System B so that the sets or the scores with the same ordinal number k are chosen to form two new sets \Theta^A and \Theta^B, respectively. In other words, the correlated similarity scores generated by these two systems are selected.

From Step 1 to 12, Algorithm II runs M iterations. In the i-th iteration, in Step 2, the function is applied simultaneously to the first layer of the datasets, i.e., the set \mathcal{S}_A^T of target sets generated by System A and the set \mathcal{S}_B^T of target sets created by System B so that the two target sets with the same ordinal number in the two systems’ datasets are randomly selected WR and form two new sets \mathcal{S}_A^{T_i} and \mathcal{S}_B^{T_i} of target sets.

Then, from Step 3 to 5, this function is applied simultaneously to the second layer of the datasets m times created by the two systems. Hence, the target scores in set \mathcal{S}_A^{T_k i} generated by System A and the target scores in set \mathcal{S}_B^{T_k i} created by System B with the same ordinal number in the two systems’ datasets are randomly selected WR. These correlated similarity scores constitute two new sets of target scores \mathcal{S}_A^{n_T_k i} and \mathcal{S}_B^{n_T_k i}, respectively.

The analogous interpretation can be applied to non-target sets and non-target scores in sets from Step 6 to 9. In Step 10, the target scores in set \mathcal{S}_A^{n_T i} and the non-target scores in set \mathcal{S}_N^{n_T i} for System A produce the i-th bootstrap replication of the estimated detection cost function \hat{C}^A_i for System A. In Step 11, the correlated target scores in set \mathcal{S}_B^{n_T i} and the correlated non-target scores in set \mathcal{S}_N^{n_T i} for System B produce the i-th bootstrap replication \hat{C}^B_i for System B. Thus, the correlated pairs of bootstrap replications of estimated cost functions are calculated from the
correlated similarity scores. Finally, in Step 13, the estimated correlation coefficient of the detection cost functions, $\hat{\rho}^{AB}_{C}$, is computed from these two sets of correlated bootstrap replications of estimated cost functions [13].

7 Results

<table>
<thead>
<tr>
<th>Systems</th>
<th>Cost functions</th>
<th>SÊs</th>
<th>95% CÎs</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL</td>
<td>0.022199</td>
<td>0.001952</td>
<td>(0.018384, 0.026084)</td>
</tr>
<tr>
<td>UJ</td>
<td>0.028996</td>
<td>0.002026</td>
<td>(0.025082, 0.033150)</td>
</tr>
<tr>
<td>BK</td>
<td>0.031588</td>
<td>0.001883</td>
<td>(0.028046, 0.035311)</td>
</tr>
<tr>
<td>LZ</td>
<td>0.040098</td>
<td>0.002897</td>
<td>(0.034641, 0.045880)</td>
</tr>
<tr>
<td>DL</td>
<td>0.040880</td>
<td>0.001841</td>
<td>(0.037185, 0.044511)</td>
</tr>
</tbody>
</table>

Table 3 The estimated detection cost functions, SÊs, and 95 % CÎs of five speaker recognition systems.

Five speaker recognition systems, labeled as EL, UJ, BK, LZ and DL², are used for illustration. Their estimated detection cost functions, the estimated SÊs, and 95 % CÎs are shown in Table 3. In this table, the systems are listed in ascending order of the estimated detection cost functions. The estimated cost functions were derived using Eq. (7), in which all parameters were set as in Section 3 and the thresholds were all provided by speaker recognition systems. The estimated SÊs, and 95 % CÎs were all computed using the two-layer nonparametric two-sample bootstrap method as described in Section 5 taking account of the data dependency in the speaker datasets.

² It is the policy of NIST and the evaluation sponsors not to publicly associate specific SRE participants with their evaluation performance results, and therefore system names are encoded in this article.
The estimated 95 % CÎs shown in Table 3 were all calculated using the quantile method as described in Section 5. They can also be computed by multiplying 1.96 by the estimated SÊ, assuming that the distribution of 2,000 bootstrap replications of the detection cost function is normal. These two types of 95 % CÎs are matched up to the third or fourth decimal place for all five systems shown in Table 3. For instance, for system EL, the 95 % CÎ derived from the quantile method is (0.018384, 0.026084) as shown in Table 3, while it is (0.018374, 0.026024) based on the assumption of normality. This suggests that the detection cost function may be normally distributed.

Figure 1 depicts the estimated detection cost functions, and their estimated 95 % CÎs, for the five speaker recognition systems. The estimated 95 % CÎs overlap in some cases. For instance, the 95 % CÎ of System EL somewhat overlaps the one of System UJ; and the latter considerably overlaps that of System BK. If the speaker recognition system pair needs to be compared to assess which may be more accurate than the other, no conclusion can be reached in these cases. In other words, useful comparisons cannot be made in these cases merely using the confidence interval approach.

<table>
<thead>
<tr>
<th>Systems</th>
<th>EL</th>
<th>UJ</th>
<th>BK</th>
<th>LZ</th>
<th>DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL</td>
<td>1.000000</td>
<td>0.233958</td>
<td>0.433872</td>
<td>0.620300</td>
<td>0.388808</td>
</tr>
<tr>
<td>UJ</td>
<td>1.000000</td>
<td>0.347396</td>
<td>0.196418</td>
<td>0.425286</td>
<td></td>
</tr>
<tr>
<td>BK</td>
<td>1.000000</td>
<td>0.437193</td>
<td>0.640776</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LZ</td>
<td>1.000000</td>
<td>0.426599</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td>1.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 The average correlation coefficients of two detection cost functions out of 20 runs of five speaker recognition systems.

<table>
<thead>
<tr>
<th>Systems</th>
<th>EL</th>
<th>UJ</th>
<th>BK</th>
<th>LZ</th>
<th>DL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EL</td>
<td>1.0000</td>
<td>0.0058</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>UJ</td>
<td>1.0000</td>
<td>0.2463</td>
<td>0.0005</td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>BK</td>
<td>1.0000</td>
<td>0.0015</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LZ</td>
<td>1.0000</td>
<td>0.7713</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5 The two-tailed p-values of two speaker recognition systems, where the correlation coefficients were taken into account.

To determine whether the difference between the performances of two speaker recognition systems is statistically significant, hypothesis testing is carried out. Based on the normality assumption for the distribution of the cost function as stated above, the two-algorithm hypothesis testing provided in Section 4 can be employed.

The correlation coefficient of the detection cost functions of two systems, which appears in Eq. (9), can be estimated using Algorithm II as presented in Section 6. This algorithm involves a synchronized random resampling. Due to the stochastic nature of resampling, for this article, the algorithm was run 20 times, and the average out of these runs was taken to be the resultant correlation coefficient for significance testing, in order to reduce the computational fluctuation. In
our testing, the algorithm was also run 50 times, and the results did not alter the qualitative substance shown here. In practice, if the p-value is considerably different from the critical value of interest such as 5%, 1%, etc., then this algorithm only needs to run once.

All the correlation coefficients are shown in Table 4. Note that all of them are positive. This indicates as expected that all systems tend to assign higher or lower similarity scores to particular trials. Thus, these results provide evidence that the synchronized algorithm for computing the correlation coefficient is quite reasonable.

All two-tailed p-values of system pair among the five speaker recognition systems are presented in Table 5, where the correlation coefficients were taken into account. In this table, only two p-values are greater than 5%. They are 24.63% for Systems UJ and BK and 77.13% for Systems LZ and DL. This indicates that the null hypothesis cannot be rejected, i.e., the performance differences between UJ and BK and between LZ and DL are not significant, even though the estimated detection cost functions of Systems UJ and LZ are smaller than those of Systems BK and DL, respectively. This conclusion is consistent with the observation in Figure 1, where the estimated 95% CIs of the detection cost functions for Systems UJ and LZ overlap considerably those for Systems BK and DL, respectively.

All other p-values in Table 5 are considerably less than 5%. This suggests that the null hypothesis be strongly rejected. That is, the performance difference between the corresponding two systems is real. For instance, comparing Systems EL and UJ, the two-tailed p-value is 0.58%. Thus, the performance of System EL is significantly better than the performance of System UJ, although their estimated 95% CIs slightly overlap as shown in Table 3 and Figure 1.

In addition, the magnitudes of the p-values in Table 5 suggest, to some extent, how much the corresponding 95% CIs overlap. Thus, they describe quantitatively how significant the differences are between the performances of the two systems. In other words, the statistical hypothesis testing provides quantitative information (such as p-values) regarding the statistical significance of differences.

8 Conclusions and discussion

SRE involves the evaluation and comparison of speaker recognition systems. It can be important to determine whether the difference between the performance level of one speaker recognition system and a performance criterion value, or the difference between the performance levels of two systems is statistically significant. In this article, the latter case was investigated, but the principle involved in the former case is similar.

To evaluate the performance of speaker recognition systems, a detection cost function defined as a weighted sum of the probabilities of type I error (miss) and type II error (false alarm) is employed as a metric. The NIST speaker recognition data contain dependencies due to multiple uses of the same subjects. Thus, the similarity scores are grouped into sets to preserve the data dependency, and the speaker datasets are refined into a two-layer data structure.
The sampling variability, including this data dependency, results in uncertainty for the value of the detection cost function. The uncertainties of the detection cost function in terms of SE and 95% CI were computed using the two-layer nonparametric two-sample bootstrap method with 2000 bootstrap replications based on our variability study of bootstraps in ROC analysis.

The detection cost function may be approximately normally distributed regardless of the distributions of target scores and non-target scores. This assumption is supported by the matches between two types of 95% CIs. One is computed using the definition of quantile, while the other is calculated based on the assumption that the distribution of 2000 bootstrap replications of the statistic of interest is normal. As a consequence, it seems reasonable to apply the Z-test.

In SRE, the similarity scores of any two speaker recognition systems are correlated. Therefore, the detection cost functions of two systems are also correlated. If the two statistics of interest are indeed positively correlated and the correlation coefficient is not taken into account, the likelihood of detecting a difference between the performance levels of two systems will be reduced. In this article, a synchronized algorithm is provided to calculate such correlation coefficients.

This algorithm is a stochastic process, since it involves a synchronized sampling. In practice, if the p-value is not considerably different from the critical value of interest, such as 5%, 1%, etc., then this algorithm needs to run several times (20 in our case) in order to reduce the computational fluctuation. The average correlation coefficient from these is taken to be the resultant correlation coefficient for the significance test.

When conducting comparisons, the 95% CIs can be examined intuitively. It is hard, however, to reach any conclusion when the two 95% CIs overlap. Determining whether the difference is real or by chance may be addressed using a significance test. As presented in Section 7, although the 95% CIs of Systems EL and UJ did slightly overlap, hypothesis testing showed that the difference in performance levels between these two algorithms was statistically significant.

The pairwise comparison conducted after obtaining a priori knowledge from the relationship among the 95% CIs as described in Section 7 is to show how crucial the significance test is if the two 95% CIs overlap while determining whether the difference between the performances of the two algorithms is statistically significant. If the confidence intervals for any combinations of algorithms are of interest, for instance, then some multiple comparison procedures, such as Tukey’s method, Scheffe’s method, Bonferroni’s method and so on, might need to be employed [16, 17, and references therein].

Conventionally, if the two-tailed p-value is greater than or equal to 5%, the null hypothesis is not rejected; if it is less than 5%, the null hypothesis is rejected in favor of the alternative hypothesis. In the literature [5], it is alternatively suggested: If the p-value is less than 0.10, borderline evidence is against H_0; if the p-value is less than 0.05, reasonably strong evidence is against H_0; if the p-value is less than 0.025, strong evidence is against H_0; if the p-value is less than 0.01, very strong evidence is against H_0.
References

10. J.C. Wu, and C.L. Wilson, Nonparametric analysis of fingerprint data on large data sets, Pattern Recognition 40 (9), 2574-2584 (2007).