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The transition between the superconducting and normal states is of extreme practical importance because the
very sharp onset of resistance in voltage biased thin films is the basis for transition-edge sensors (TESs). TESs
are being successfully utilized in many new instruments despite the fact that there is no consensus model that
describes the resistance as a function of both temperature and current R(T ,I ). A new model assuming a TES
can be described as a resistively shunted junction (RSJ) has generated much interest. Here we compare the
predictions of this model with the predictions of a two-fluid model and measured data. Except for some small
TESs (characteristic size <125 μm), the data are not consistent with the RSJ model but are consistent with the
two-fluid model.
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A superconducting film electrically biased on the transition
between the superconducting and normal states can be utilized
as an extremely sensitive thermometer known as a transition-
edge sensor (TES). Microbolometers based on TESs have be-
come an indispensable tool for submillimeter and millimeter-
wave astronomy instruments due to their high sensitivity,
e.g., achieving microkelvin sensitivity in maps of the cosmic
microwave background (CMB).1 This sensitivity has led to
a demonstration of gravitational lensing of the CMB,2,3 an
independent confirmation of the existence of dark energy using
only the CMB,4 constraints on the dark energy equation of
state,5 and strong evidence for motions of galaxy clusters and
groups via CMB temperature distortions due to the kinematic
Sunyaev-Zel’dovich effect.6 Microcalorimeters based on TESs
offer a unique combination of efficiency and energy resolution
that is being exploited in a wide range of applications,7

including studies of the atomic structure of high-Z ions,8 x-ray
materials analysis,9 gamma-ray spectroscopy for nuclear mate-
rials accounting in nonproliferation scenarios,10 and the search
for weakly interacting massive particles (WIMPs).11 Taking
only the last example, the Cryogenic Dark Matter Search
experiment has placed the strongest constraints on the WIMP-
nucleon spin-independent scattering cross section for a wide
range of WIMP masses and excluded new parameter space in
inelastic dark matter models. TESs have been extremely suc-
cessful despite the fact that there is no consensus on the under-
lying mechanism for the observed finite width of the transition.
A physical model that explains the resistance of TESs as a func-
tion of both temperature and current [R(T ,I )] has been elusive.

Measurements by Sadleir et al.12 of the superconducting
critical current (Ic) in TESs from 8 to 290 μm long showed an
exponential dependence on the length (L) of the TES. They
also observed a Fraunhofer-like pattern for Ic as a function
of applied magnetic field. A theory based on the long-range
lateral proximity effect was used to describe this behavior
as a superconducting weak link between the leads of the
TES, where the transition temperature of the superconducting
electrodes (TcL) is much larger than the transition temperature
of the TES film (Tc). Figure 1(a) shows a photograph (left)
and a schematic representation (right) of a typical TES where,
in this case, the TES film is a MoCu bilayer suspended on

top of a silicon nitride membrane. A superconducting weak
link13 is a weak electrical contact of direct (non-tunnel-type)
conductivity between superconducting electrodes. Due to
the proximity effect, the order parameter (ψ) of the super-
conducting electrodes extends into the weak link, decaying
exponentially over a distance of the coherence length (ξ ).
If ξ � L, then the order parameter does not go to zero and
supercurrent can traverse the weak link [see Fig. 1(b)]. When
T < Tc, the TES bilayer thin film is in the superconducting
state (S′) and the coherence length is ξS′ . When T > Tc,
the TES bilayer thin film is in the normal state (N′) and
the coherence length is ξN′ . Except when L � ξ , the critical
current of a weak link depends on L.

The observation of weak-link behavior for the Ic in TESs
suggested to Kozorezov et al.14 that a resistively shunted
junction model (RSJ) would contain the essential physics
necessary to describe the resistance of a TES. Until the
RSJ model is compared to data, it remains an outstanding
question whether the weak-link behavior observed at the onset
of resistance in some TESs extends into the transition and
has an important effect on the R(I,T ) surface. In contrast,
Irwin et al.15 base their two-fluid model for the resistance
of a TES on physics that occurs in the superconducting film
rather than originating in the coupling between the leads.
This model separates the supercurrent, which is some fraction
(cI ) of the critical current, and a quasiparticle current, which
is equal to the voltage (V ) applied across the TES divided
by some fraction (cR) of the normal resistance. The most
promising physical mechanism for the resistance of this form
is the model for phase-slip lines (PSLs) proposed by Skocpol-
Beasley-Tinkham (SBT).16 With PSLs as the physical basis
for resistance, the SBT model assumes a constant ratio of the
time-averaged supercurrent to the bulk critical current, Ic/Ic.
For this model the two-fluid parameters are cI = Ic/Ic and
cR = 2Nρλ�Q∗/Rn, where ρλ is the normal resistance per unit
length, �Q∗ is the charge imbalance relaxation length, and N is
the number of phase-slip lines. In this Rapid Communication,
the RSJ model will be compared to the two-fluid model17 and
to measured data.

The RSJ model has been used with some success in
modeling superconducting weak links.13 The simplest version
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FIG. 1. (Color online) (a) A photograph (left) and diagram
(right) of a 350 μm MoCu TES with Mo electrodes. (b) Schematic
representation of the modulus squared of the superconducting order
parameter for SS′S (T < Tc, solid red line) and SN′S (T > Tc, dashed
red line) in three different length TESs.

of the RSJ model assumes that the resistance is determined
by the interaction of the superconducting leads with the TES
film in between, rather than any resistive mechanism of the film
itself, e.g., nonequilibrium effects, Andreev reflections, phase-
slip mechanisms, and conversion from supercurrent to normal
current in intervening normal-metal structures. Kozorezov
et al. base their RSJ model for TESs on a model developed
by Coffey et al.18 that describes quantum corrections to the
standard Brownian motion of a particle in a tilted washboard
potential in the presence of thermal fluctuations. In the classical
limit, the resistance of the weak link is

R(T ,I ) = Rn

(
1 + 1

x
Im

[
I1+iγ x(γ )

Iiγ x(γ )

])
, (1)

where Rn is the normal resistance, x = I/[Ic(T )], Ic(T ) is
the critical current, and γ = [h̄Ic(T )]/(2ekBT ) is the ratio of
Josephson coupling energy to thermal energy. I1+iγ x(γ ) and
Iiγ x(γ ) are modified Bessel functions Iν(z) of complex order
ν and real variable z. For typical TESs γ is large near the
maximum Ic, e.g., γ ≈ 105 at Ic = 1 mA and T = 100 mK,
and goes to zero as Ic goes to zero.

When modeling the performance of TESs,7 the local
resistance is parametrized by use of the logarithmic derivatives
of resistance with respect to temperature at constant current,
αI = (T/R) (∂R/∂T )|I , and with respect to current at constant
temperature, βI = (I/R) (∂R/∂I )|T . We therefore compare
predictions of αI and βI in the two models. Within the RSJ
model, αI and βI are14

αI = −γ

x

∂ ln Ic

∂ ln T

Rn

R
Im

[
I−1+iγ x(γ )I1+iγ x(γ )

I 2
iγ x(γ )

]
, (2)

βI = Rn

R

(
1 − 2 Re

[∫ γ

0 Iiγ x(z)I1+iγ x(z)dz

I 2
iγ x(γ )

])
− 1. (3)

The RSJ model defined by Eq. (1) includes the effect of
thermal fluctuations through γ . In the limit where γ → ∞, the
zero-temperature limit, the RSJ model has a simpler form.19

For I > Ic, the voltage across the TES is

V = Rn[I 2 − Ic(T )2]1/2, (4)

and the resistance in terms of current is

R(T ,I ) = Rn

[
1 −

(
Ic(T )

I

)2
]1/2

. (5)

The RSJ resistance at finite temperature is bounded by
Rn on the high side and by Eq. (4) on the low side. αI

can be calculated by rearranging the partial derivative αI =
T/(RI )∂V/∂T , and then taking the derivative of Eq. (4) at
constant current,

αI = −R2
n

R2

Ic(T )

I 2
T

∂Ic

∂T
= −R2

n

R2

Ic(T )2

I 2

∂ ln Ic

∂ ln T
. (6)

βI can be calculated by rearranging the partial derivatives as
βI = 1/(R)∂V/∂I − 1 and taking the derivative of Eq. (4) at
constant temperature,

βI = Rn

R

1[
1 − (

Ic(T )
I

)2]1/2 − 1 =
(

Rn

R

)2

− 1. (7)

Numerical evaluation of Eqs. (2) and (3) show that, at any
given value of I/Ic, Eqs. (6) and (7) give the maximum values
of αI and βI in the RSJ model.

Now considering the two-fluid model, the voltage across
the TES for I > Ic is

V = cRRn[I − cI Ic(T )], (8)

and the resistance as a function of temperature and current is

R(T ,I ) = cRRn

[
1 − cI

Ic(T )

I

]
. (9)

In the standard version of the model, 0 � cI � 1 and 0 �
cR � 1.15 From Eqs. (1) and (9), the two-fluid resistance is
always less than the RSJ resistance for a given I/Ic. The αI

and βI calculated for the two-fluid model17 are

αI = −cI cR

Rn

R

Ic(T )

I

∂ ln Ic

∂ ln T
, (10)

assuming cI and cR are not a function of T, and

βI = cR

Rn

R
− 1, (11)

assuming that Ic and cR are not a function of current.
In the PSL model, �Q∗ is assumed to have weak temper-

ature dependence, causing cR to increase with temperature,
eventually reaching a limit of cR = 1 before reaching the
normal state. This temperature dependence does not change
the expression for βI [Eq. (11)] but gives additional terms for
αI [Eq. (10)], the consequences of which are not relevant for
the model comparison in this Rapid Communication and will
be addressed in a future paper.

Also within the PSL model, there are discrete points in the
transition where N changes by an integer amount based on the
total current in the TES. Over most of the transition, the TES is
biased between changes in N. However, near a change in N, cR

could have a nonzero positive derivative with respect to current
and Eq. (11) would then have an additional term that increases
βI . Hence βI is given by Eq. (11) over most of the transition,
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FIG. 2. (Color online) Ax and Ax0 as a function of I/Ic for various
values of γ .

but increases in the number of PSLs can make higher values
of βI accessible to the two-fluid model in localized regions of
the transition.

With cR = 1 and cI = 1, Eqs. (9)–(11) reproduce the
expected behavior of an idealized infinitely long supercon-
ducting wire. Both the RSJ and two-fluid models have a
theoretical basis in their respective regimes, and as L/ξ

increases there is a smooth transition from weak-link behavior
to two-fluid behavior. The two-fluid model encompasses a
range of scenarios, e.g., an idealized infinite superconducting
wire for cI = 1 and cR = 1 or PSLs for cI < 1 and cR � 1.
We can now compare the relevant metrics (αI and βI ) between
the two models and establish the maximum and minimum
values as a function of I/Ic and γ . We begin by comparing
the predictions of the models for αI but will find that it is most
useful to compare predictions of βI .

Assuming that cR = 1 and cI = 1, αI for the RSJ and two-
fluid models [Eqs. (2) and (10)] differ by a multiplicative factor

Ax = γ Im

[
I−1+iγ x(γ )I1+iγ x(γ )

I 2
iγ x(γ )

]
. (12)

When Ax = 1 the values αI are the same for the two models.
In Fig. 2, Ax is plotted as a function of I/Ic for several values
of γ . At smaller values of I/Ic, the values of Ax are bigger
than 1 so that the values αI in the RSJ model are bigger than
in the two-fluid model. The same comparison for the γ → ∞
case from Eq. (6) gives

Ax0 = Rn

R

Ic(T )

I
. (13)

Ax0 is plotted in Fig. 2 for the same values of γ as were plotted
for Ax . For larger values of I/Ic, Ax0 is a good approximation
of Ax at all values of γ . The derivative of Ic with respect
to T that is in the expressions for αI in both the RSJ and
two-fluid model means that the models cannot be compared
to data without assuming a temperature dependence for the
critical current or measuring it explicitly.

For βI , Eqs. (3) and (11) differ in the first term by the
multiplicative factor

Bx = 1 − 2 Re

[∫ γ

0 Iiγ x(z)I1+iγ x(z)dz

I 2
iγ x(γ )

]
. (14)

In Fig. 3, Bx is plotted as a function of I/Ic for the same values
of γ as in Fig. 2. In the regime of interest when I/Ic > 1,
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FIG. 3. (Color online) Bx as a function of I/Ic for various values
of γ along with Bx0.

Bx � 0, and therefore the RSJ model always gives a larger βI

than the two-fluid model for cR = 1. At values of I/Ic � 1,
Bx goes to unity, and we recover the two-fluid model. Also, for
small values of γ , Bx is small and almost constant. Returning
to γ → ∞ in Eq. (7), we define

Bx0 = 1[
1 − (

Ic(T )
I

)2 ]1/2
. (15)

Bx0 is also plotted in Fig. 3 as a black solid line. Any βI

predicted by the RSJ model will be bounded by Eq. (7) on the
high side and the two-fluid model with cR = 1 on the low side.

Using Eq. (7) to obtain the maximum βI in the RSJ model,
which depends only on the bias point, we can define the
possible ranges of βI within the RSJ model. At any bias point,
Eq. (7) � βI [Eq. (3)] � Eq. (11), cR = 1. Assuming cR � 1,
we can also define the range of βI in the two-fluid model,
Eq. (11) (cR = 1) � βI [Eq. (11), cR � 1]. Figure 4 shows
these expressions plotted as a function of R/Rn, dividing the
regions of possible βI between a region consistent with the
RSJ model (upper red shaded region) and a region consistent
with the two-fluid model (lower blue shaded region).

350 μm MoCu 7 bar
350 μm MoCu 7 bar
400 μm MoCu 8 bar
125 μm MoCu no bar
125 μm MoCu 3 bar
130 μm MoAu 3 bar [21]
140 μm MoAu 3 bar [22]
35  μm MoAu 3 bar [23]
50  μm TiAu no bar [24]

Eq. 7

Eq. 11 (c
R
=1)RSJ Regime
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β I
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FIG. 4. (Color online) βI as function of R/Rn for the two-fluid
model with cR = 1 (blue solid line) and the zero-temperature RSJ
model (red dashed line). The region between the two lines contains
the possible values of βI from Eq. (3), and the values below the
blue solid line are the possible values from Eq. (11). The points are
measured values of βI for TESs of various sizes and different bilayer
materials as described in the legend.
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Figure 4 shows measured values of βI at various bias
values for a number of different devices. The open symbols
are for MoCu TESs fabricated at NIST Boulder, while the
solid symbols are measured values from the literature. For
the devices fabricated and measured at NIST, the values
of βI are extracted from simultaneous fits to the complex
impedance at the different bias points. The blue diamonds and
red circles are measured βI values for 350 × 350 μm2 x-ray
TESs with seven Cu bars for noise mitigation.20 The TESs
corresponding to the red circles were previously analyzed and
compared to the two-fluid model.17 The purple hexagons are
for a 400 × 400 μm2 TES with eight Cu bars, optimized for
gamma-ray spectroscopy.10 Finally the magenta squares and
black stars are for a 125 × 125 μm2 TESs with no Cu bars and
three Cu bars, respectively.

Also shown in Fig. 4 are recently published values of
βI from other groups measuring TESs of different sizes and
using different materials. The blue downward-pointing, dark
yellow upward-pointing, and orange left-pointing triangles are
from 130 × 130 μm2,21 140 × 140 μm2,22 and 35 × 35 μm2

(Ref. 23) MoAu TESs, respectively, all with three Au bars.
Finally the green right-pointing triangles are from a 50 ×
50 μm2 TiAu TES with no bars.24

The measured βI in Fig. 4 represent a broad range of TESs.
However, the majority of the measured values are in a range
of βI that is not accessible within the RSJ model. Only the
smallest devices (<125 μm) at low bias (<30% Rn) values
have βI in the RSJ regime. It is logical that smaller TES
films where L < ξ have stronger RSJ behavior. Some of the
MoAu TESs in Fig. 4 have superconducting electrodes with
an elevated Tc due to an additional Nb layer23 that may extend
the order parameter further into the TES. Except in the 35 μm
device, the βI of TESs with normal-metal bars are in the
two-fluid regime across the whole transition. This is consistent
with an increase in the effective length of the TES as the current
meanders around the bars low in the transition.25 This is also
supported by the 3-bar 125 μm MoCu device having lower βI

values at 10% and 20% Rn than the no-bar device that is the
same size. In the larger TES devices, at typical bias points with
R > 10% Rn, there is not enough wave function overlap for the
leads to do much more than reduce the effective length of the
TES. In this regime, the two-fluid model is more appropriate.

Although the smaller devices show a higher βI for R/Rn �
1, they quickly converge with the larger devices as the bias is

increased. This could be explained by the TES going from a
superconducting state toward a normal state, causing the weak
link to transition from a SS′S structure to a SN′S structure
[Fig. 1(b)]. In a SN′S weak link with an L just a few times
greater than ξ , the supercurrent through the weak link drops
exponentially with increased L.13 However, in a SS′S weak
link the order parameter decreases to a nonzero constant value
that is dependent on the properties of the S′ material, and the
weak-link behavior can occur at much greater lengths. The Ic

for long SS′S weak links can also be much higher than for the
same-sized SN′S weak link.26 This implies that the physics
describing the transition of the TES film from the supercon-
ducting state to the normal state is critical to understanding
the temperature- and current-dependent TES resistance. It also
suggests that only in very small devices, where the weak-link
behavior is maintained in the finite resistance regime, will the
TES resistance be dominated by its weak-link behavior.12

An important factor limiting the development of models that
describe the temperature- and current-dependent resistance of
a TES is a lack of direct comparisons to measured devices
at realistic operating conditions. This unfortunate deficit is
likely due to a lack of expressions for the important TES
parameters αI and βI . We have derived simple expressions for
the upper and lower limits of αI and βI within the RSJ model
as proposed by Kozorezov et al.14 and illustrated how these
relate to the same parameters in the two-fluid model.17 These
simple expressions allow direct comparison of these models
as a function of R/Rn to the available data.

The expressions for βI are especially straightforward and
suggest that most TES devices are more reasonably described
by the two-fluid model. The smallest devices show evidence
of weak-link behavior at low biases but quickly converge to
the predictions of the two-fluid model as the TES becomes
more resistive. Similarly simple expressions were derived for
αI and could be compared to data if measurements of Ic(T )
at the relevant temperatures were available. Together, these
measurements across a broad array of TES devices should
help produce a better understanding of the resistive transition
that is at the foundation of these successful detectors.
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