
Reviews in Computational Chemistry, Volume 29, First Edition.
Edited by Abby L. Parrill and Kenny B. Lipkowitz.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.

4
MACHINE LEARNING IN MATERIALS
SCIENCE: RECENT PROGRESS
AND EMERGING APPLICATIONS

Tim Mueller1, Aaron Gilad Kusne2, and Rampi Ramprasad3

1 Department of Materials Science and Engineering, Johns Hopkins University,
Baltimore, MD, USA
2 Material Measurement Laboratory, The National Institute of Standards and Technology,
Gaithersburg, MD, USA
3 Department of Materials Science and Engineering, University of Connecticut,
Storrs, CT, USA

INTRODUCTION

Data‐to‐knowledge ideas are beginning to show enormous promise within materials
science. Indeed, the concept of rationally designing materials through the effective
use of data‐driven methods forms the core of the U. S. Materials Genome Initiative.
This paradigm for studying the materials property space has the potential to mitigate
the cost, risks, and time involved in an Edisonian approach to the lengthy preparation–
testing or the computation–experiment cycles that permeate current approaches to
identify useful materials. Moreover, data‐centric approaches can also yield valuable
insights into the fundamental factors underlying materials behavior and can lead to
the discovery of Hume‐Rothery‐like rules.

To significantly accelerate the pace of discovery using such data‐driven para-
digms, efficient and effective methods to (i) generate, (ii) manage, and (iii) utilize
relevant information are necessary. The last of these tasks can be accomplished in a
systematic way through an approach known as “machine learning,” a branch of

INTRODUCTION 187

artificial intelligence pertaining to the creation of models that can effectively learn
from past data and situations. Machine learning schemes have already impacted areas
such as cognitive game theory (e.g., computer chess), pattern (e.g., facial or finger-
print) recognition, event forecasting, and bioinformatics. They are beginning to make
major inroads within materials science and hold considerable promise for materials
research and discovery.1,2 Some examples of successful applications of machine
learning within materials research in the recent past include accelerated and accurate
predictions (using past historical data) of phase diagrams,3 crystal structures,4,5 and
materials properties,6,7 as additional examples of prediction of materials properties,8,9
development of interatomic potentials10–12 as additional examples of development of
interatomic potentials13,14 and energy functionals15 for increasing the speed and accu-
racy of materials simulations, on‐the‐fly data analysis of high‐throughput experi-
ments,16 mapping complex materials behavior to set of process variables,17 and so on.

Machine learning algorithms can be separated into two broad classes: supervised and
unsupervised learning. In both of these classes, the algorithm has access to a set of obser-
vations known as training data. However the nature of the training data, and hence what
can be accomplished with the data, differs between the two. In supervised learning, the
training data consists of a set of input values (e.g., the structures of different materials)
as well as a corresponding set of output values (e.g., materials property values). With
these training data, the machine learning algorithm tries to identify a function that can
make accurate predictions about the output values that will be associated with new input
values. In unsupervised learning, there are no output values in the training data, and the
goal is to identify patterns in the input values. A list of different methods and materials‐
related applications for each of these classes of algorithms is provided in Table 1. There
is a third class, semi‐supervised learning, in which some, but not all of the input values
have corresponding output values. To date, semi‐supervised learning algorithms have
seen little use in materials science and engineering, and we do not cover them here.

This chapter is written for a materials researcher with an interest in machine
learning methods. These methods come in many flavors under many names with a
generous amount of jargon (as can be gleaned from Table 1). To effectively use

TABLE 1 Supervised and Unsupervised Learning Examples

Example Methods Selected Materials Applications

Supervised
learning

Regularized least squares Predict processing structure–property
relationships; develop model
Hamiltonians; predict crystal
structures; classify crystal
structures; identify descriptors

Support vector machines
Kernel ridge regression
Neural networks
Decision trees
Genetic programming

Unsupervised
learning

k‐Means clustering Analyze composition spreads from
combinatorial experiments; analyze
micrographs; identify descriptors;
noise reduction in data sets

Mean shift theory
Markov random fields
Hierarchical cluster analysis
Principal component analysis
Cross‐correlation

188 MACHINE LEARNING IN MATERIALS SCIENCE

learning schemes, a familiarity with the underlying mathematical tools and technical
jargon is necessary. Thus, the next two sections of this chapter are almost entirely
devoted to building this familiarity in one unified treatment (although relevant mate-
rials science illustrations are provided throughout those sections). Subsequent sec-
tions provide a rich assortment of pedagogical examples of successful applications of
machine learning methods within materials science, and recommendations for useful
machine learning‐related resources.

SUPERVISED LEARNING

One of the fundamental goals of science is the development of theories that can be
used to make accurate predictions. Predictive theories are generated through the
scientific method. Here, existing knowledge is used to formulate hypotheses, which
are then used to make predictions that can be empirically tested, with the goal of iden-
tifying the hypotheses that make the most accurate predictions. The scientific method
can be expressed mathematically by considering predictive theory as a function f that
maps a set of input data x to a predicted outcome y. The function may be relatively
simple, as in Newton’s laws of motion, or it may be complex, as in models that pre-
dict the weather based on meteorological observations. The collection of known input
(x) and output (y) values, called training data, may be generated through observa-
tions or controlled experiments. The goal of the scientist is to use such training data,
as well as any other prior knowledge, to identify a function that is able to predict the
output value for a new set of input data accurately. The process of identifying such a
function from a set of known x and y values is called supervised learning. If the
allowed output values y form a continuous range (e.g., melting points), then the pro-
cess of searching for a function is known as regression. If the allowed output values
form a discrete set (e.g., space groups), the process is then known as classification.

The hypothesis space contains all hypotheses (i.e., functions) that could be returned
by the learning algorithm. An appealing choice for a hypothesis space might be the
space in which every possible function is considered to be equally viable. However
there will be many functions in this space that exactly reproduce the training data
(Figure 1), and there will be no way to determine which functions would make the most
accurate predictions. Thus, to identify a predictive function, it is necessary to use a
 hypothesis space that is constrained in a way that excludes some functions from
consideration and/or is weighted to favor some functions more than others. For example,
it is common to constrain the hypothesis space so that only functions expressing a
linear relationship between the input and output values are considered (Figure 1d).

There may be no function in the hypothesis space that produces the observed
output values for all possible sets of input values. This could happen for some
combination of several reasons:

 The hypothesis space has been constrained in a way that excludes the function
that perfectly maps the input values to the output values. For example, the hypo-
thesis space might be constrained to include only linear functions, whereas no

SUPERVISED LEARNING 189

linear function of the input variables can reproduce the observed output values
(Figure 1d).

 The observed output values are the result of a process that is inherently
nondeterministic.

 Some input data that are relevant to calculating the correct output values are
missing and/or unknown.

In these situations, any function in the hypothesis space will result in some error in the
predicted values. To account for this error, the output values can be expressed as

 y f E= () +x [1]

where f is a function contained in the hypothesis space and E is a random error. We
will let g represent the probability distribution from which E is drawn. In other words,
g(a) is the probability density that y f a− =()x . The distribution g may depend on the
input data, but for simplicity we will generally assume that it does not. In general,
both the function f and the probability distribution g are unknown.

A Formal Probabilistic Basis for Supervised Learning

For a given probability distribution g, we can estimate the probability density that a
function f satisfies Eq. [1]. This probability density is expressed as P f g(| ,)D , where
D is the observed training data. This probability density can be evaluated using
Bayes’ rule.18

y

(a)

(c) (d)

(b)

x

y

x

y

x

y

x

FIGURE 1 Four different functions (blue lines) fit to the same set of training data (black
dots). (a), (b), and (c) reproduce the data, and (d) does not (color available in e‐book version).

190 MACHINE LEARNING IN MATERIALS SCIENCE

Bayes’ rule is a fundamental statistical theorem that can be derived from the fact
that the probability of two events, A and B, occurring is given by the probability of B
occurring times the conditional probability that A occurs given that B has occurred.
Mathematically, this is written as

 P A B P B P A B, () = () ()| [2]

Similarly,

 P A B P A P B A, () = () ()| [3]

Combining Eqs. [2] and [3] yields Bayes’ rule

P A B

P B A

P B
P A|

|() = ()
() () [4]

In the context of supervised learning, Bayes’ rule yields

P f g

P f g

P g
P f g| ,

| ,

|
|D

D

D
() = ()

() () [5]

The probability distribution P f g(|) gives the probability density that a function f
satisfies Eq. [1] given g prior to the observation of any training data. For this reason,
it is known as the prior probability distribution, which is sometimes simply referred
to as the prior. The probability distribution P f g(| ,)D represents the probability of
the same event after accounting for the training data. It is known as the posterior
probability distribution. The distribution P f g(| ,)D , commonly known as the
likelihood function, is the probability of observing the training data D given f and g.
The remaining term in Eq. [5], P g(|)D , does not depend on f and can effectively be
treated as a normalization constant.

Bayes’ rule provides a natural and intuitive framework (or basis) for under-
standing learning. Initially, the hypothesis space is constrained and/or weighted
through the prior probability distribution. All functions that are excluded from the
hypothesis space are assigned a probability of zero, and functions that are not
excluded are assigned nonzero prior probabilities. These probabilities represent the
prior belief that any particular function satisfies Eq. [1]. As training data are observed,
these probabilities are updated to account for the new knowledge, resulting in the
posterior probability distribution—this is the learning step. If additional training data
(D2) were to be observed, a reapplication of Bayes’ rule could be used to update the
probability distributions further:

P f g

P f g

P g
P f g| , ,

| , ,

| ,
| ,D D

D D

D D
D2

2

2
() = ()

() () [6]

where the posterior distribution in Eq. [5] has become the prior distribution in Eq. [6].
Thus repeated application of Bayes’ rule can be used to update the likelihood that a

SUPERVISED LEARNING 191

particular hypothesis is best as new data come in. An example of how the posterior
distributions change with new data points is shown in Figure 2.

Because it can be awkward to deal with a probability distribution defined over
many functions, learning algorithms will commonly return the single function f̂ that
maximizes the posterior probability density:

ˆ argmax | ,f P f g

f
= ()D [7]

Combining Eq. [7] with Eq. [5] yields

ˆ argmax | , |f P f g P f g

f
= () ()⎡⎣ ⎤⎦D [8]

Because the natural log function is monotonically increasing, Eq. [8] can be
equivalently written

ˆ arg min ln | , ln |f P f g P f g

f
= − ()()− ()()⎡⎣ ⎤⎦D [9]

The term in square brackets on the right side of Eq. [9] is the objective function to
be minimized. The function with the maximum posterior probability of satisfying
Eq. [1] is the function that minimizes the objective function. The idea of finding a
function that minimizes an objective function is common to most machine learning

P (f |D,g)

y

22 55 44 33 11

FIGURE 2 An example of how the posterior distribution changes with the addition of new
training data points. In this example, f is a constant value indicated by the black triangle and g
is a normal distribution with zero mean and known variance. The diamonds represent training
data. Assuming a uniform prior in which all values for f are considered equally likely, the pos-
terior distributions for f after the addition of the first (orange), second (red), third (purple),
fourth (blue), and fifth (green) training data points are shown. (See insert for color representa-
tion of the figure.)

192 MACHINE LEARNING IN MATERIALS SCIENCE

algorithms, and the Bayesian analysis enables interpretation of the components of
the objective function. The first term, � ln((| ,))P f gD , represents the empirical risk,
a measure of how well a given function reproduces the training data. The second
term, � ln((|))P f g , is the regularization term, representing the constraints and
weights that are put on the hypothesis space before the training data are known.

Equation [9] shows a commonly used framework for supervised learning algorithms.
To determine the function f̂ that is returned by the algorithm, there are five choices
that typically need to be made. It is necessary to determine both what the hypo-
thesis space should be and how the empirical risk will be calculated. There must
also be an optimization algorithm that is capable of selecting a function from the
hypothesis space (e.g., by minimizing the objective function). In addition, it is
sometimes necessary to select the input values to be included in the training data
and to estimate the prediction error for the selected function. In the following
sections, each of these five choices is discussed in more detail.

The Hypothesis Space It is through the prior probability distribution P f g(|) that
the hypothesis space is constrained and/or weighted. Thus selecting the prior prob-
ability distribution is equivalent to deciding which hypotheses will be considered
and to what extent some hypotheses should be preferred over others. Hypotheses
often take the form of models, or parameterized functions, for which the parame-
ters are unknown. Often the prior distribution is implicitly specified simply by
choice of the model to be used; for example, the assumption that a function is
linear (as in Figure 1d) implicitly assigns zero prior probability to all nonlinear
functions.

The choice of the prior probability distribution can impact the effectiveness of the
learning process significantly. Functions that are assigned a prior probability of zero
are excluded from the hypothesis space and will not be considered no matter how
strongly they are supported by the training data. On the other hand, a function that is
assigned a small, but nonzero, prior probability could have a large posterior proba-
bility, provided it predicts the training data with relatively high accuracy. It is advan-
tageous to choose prior distributions that assign the highest probability to the most
accurate functions, as these distributions will generally result in an accurate choice
of f̂ with little (or no) additional training data.

The prior probability distribution is incorporated into the objective function
through the regularization term, � ln((|))P f g . This term is often described as a way
to penalize functions that are unlikely to make good predictions, and the benefit of a
regularization term can be derived independently from Bayesian analysis.19 The use
of a regularization term can make an ill‐posed problem, in which there is no unique
solution and/or the solution does not change continuously with the training data, into
a problem that is well posed.

The act of choosing a prior probability distribution can be controversial because it
can introduce a subjective element into the learning process. However the choice of
a prior must be made, either implicitly (e.g., by constraining the hypothesis space to
only include certain functions) or explicitly. Here we describe five common strat-
egies for selecting the prior probability distribution/regularization term.

SUPERVISED LEARNING 193

Uninformative Priors If no information is known about the process being modeled,
a natural choice for the prior distribution would be one that makes the fewest assump-
tions about the relative merits of different candidate functions. Such prior probability
distributions are known as uninformative priors. An uninformative prior distribution
that assigns equal probabilities to all possible functions would make it impossible to
differentiate between functions that perfectly reproduce the training data. Thus if an
uninformative prior distribution is to be used among functions in the hypothesis
space, it is necessary to constrain the hypothesis space to only include certain
functions.

The appropriate choice of an uninformative prior may depend on the problem
being modeled and the way in which the functions in the hypothesis space are param-
eterized. A number of different strategies have been proposed, and a thorough review
of these can be found in Ref. 20. One strategy for choosing uninformative priors is
the principle of maximum entropy, championed by E. T. Jaynes.21 This principle
states that the prior probability distribution should be chosen in a way that maximizes
the information entropy within the constraints of existing knowledge, where the
information entropy of a probability density p is a measure of uncertainty defined as

S p p x p x dx() = − () ()()

−∞

∞

∫ ln [10]

Jaynes has made the case that the distribution that maximizes the information
entropy is the “maximally noncommittal” probability distribution.21 For example, if
a single scalar parameter is to be determined and nothing is known about it prior to
the observation of the training data, then the principle of maximum entropy would
state that the appropriate prior distribution is the uniform prior in which all possible
values are considered equally likely.

A uniform prior that assigns equal prior probabilities to an infinite number of
functions is an improper prior, in that it cannot be normalized to 1. In practice, such
improper priors are widely used, as they may result in a proper (i.e., normalizable)
posterior distribution.

Model Selection One strategy for selecting a prior distribution is to evaluate
multiple possible priors and choose the one giving the posterior distribution with
the lowest expected prediction error. To this end, the methods described in the sec-
tion “Estimating the Prediction Error” may be employed. A common variation of
this approach is model selection, in which the learning process is broken into two
steps. In the first step, a parameterized function (a.k.a. model) is selected, effec-
tively assigning zero prior probability to all other functions. (Different types of
models are discussed in the section on “Supervised Learning Algorithms”;
common examples include linear models, neural networks, etc.) In the second step
the parameter values that minimize the objective function for the selected model
are determined.

A general approach to model selection can be derived through a Bayesian anal-
ysis. For a given model and a given set of training data, different values of the model

194 MACHINE LEARNING IN MATERIALS SCIENCE

parameters will result in different values for the empirical risk. Let r represent the
minimum value of the empirical risk achievable within a given model for a given
set of training data. Schwartz demonstrated that under a wide range of conditions,
the model with the greatest expected posterior probability is the one for which the
following value is smallest:

 2r k n+ ()ln [11]

where k is the number of parameters in the model and n is the number of elements
(x, y pairs) in the training data.22 The expression in Eq. [11] is commonly known as
the Bayesian information criterion (BIC). Separately, Akaike derived a similar term
to be minimized for model selection, commonly known as the Akaike information
criterion (AIC):23

 2 2r k� [12]

Both the Bayesian information criterion and Akaike information criterion are
valuable for revealing a general rule for model selection: among models that repro-
duce the training data equally well, the one with the fewest parameters can be
expected to have the lowest prediction error. This result is similar to Occam’s razor,
a commonly used heuristic that all else being equal, simple hypotheses should be
favored over more complex ones. Intuitively, this insight can be understood by con-
sidering that if there are more parameters in a model, there is greater risk of selecting
a function that happens to reproduce the training data well but has little predictive
ability. This is known as overfitting the training data.

Prior Knowledge Determining the best way to constrain and/or weight the hypo-
thesis space can be accomplished by incorporating prior knowledge about the pro-
cess being modeled into the prior distribution. For example, physical arguments
might suggest that the output value should be a linear function of a particular input
value, or the expected magnitudes of some of the parameters that define the function
might be known. The prior probability distribution can be constructed in a way that
accounts for this knowledge, directing the learning process toward functions that are
expected to be reasonable even before the observation of the training data. The use of
a prior probability distribution that effectively takes into account external knowledge
can significantly accelerate the learning process by making use of all available
knowledge.

The principle of maximum entropy can be combined with prior knowledge to cre-
ate a prior distribution that incorporates existing knowledge in a “maximally non-
committal” way. For example, if estimates for the mean and the variance of a
parameter’s value are available, then a Gaussian distribution over possible parameter
values will maximize the information entropy and would therefore be the appropriate
choice of a prior distribution for the parameter value under the principle of maximum
entropy.

Prior knowledge can be especially useful for setting the mean of the prior proba-
bility distribution. If the prior probability distribution has a nonzero mean f , then the

SUPERVISED LEARNING 195

learning process can be recast in terms of a prior probability distribution with zero
mean by replacing the function f with

 ∆f f f= − [13]

Accordingly, each value yi in the training data is replaced with

 ∆y y fi i i= − ()x [14]

For example, if f calculates the energy of a compound, then f might be the
 composition‐weighted average of the energies of the constitutive elements and Δf
would be the formation energy.

The function Δf represents the difference between the actual function f and the
expected function f . Because f is expected to resemble f , it can be expected that the
norm of Δf, represented by ‖Δf‖, is more likely to be small than it is to be large. For
this reason, it is common to use a term that monotonically increases with ‖Δf‖ as the
regularization term.

A variety of different norms can be used, and some of the most popular take the
form of the Lp norm, defined by

f f d

p p
= ()()∫ x x

1/
 [15]

where p ≥ 1 and the integral is over all values of x. The L1 and L2 norms are com-
monly used, as are smoothing norms that favor functions that vary smoothly with the
input values (i.e., their higher‐order derivatives are small). An example of a widely
used smoothing norm is the L2 norm of the second derivative of Δf.

It is generally a good idea to transform f to Δf if prior knowledge can be used to
make a reasonable estimate for f ; otherwise f 0 is implicitly used. The approaches
to supervised learning discussed in this chapter are equally applicable to f and Δf.

Hyperpriors An alternative approach to selecting a particular prior distribution is to
assign a probability distribution over the space of possible prior distributions. Such a
probability distribution is known as a hyperprior. For example, if a Gaussian distri-
bution with zero mean is used as the prior, a hyperprior could be constructed as a
probability distribution over possible values of the variance of the Gaussian. The
posterior distribution can then be calculated as a weighted average over prior
distributions:

P f g

P f g

P g
P f g P P f g| ,

| ,

|
| |D

D
D

() = ()
() () ()()∫ [16]

where P f g(|) is the prior, P P f g((|)) is the hyperprior, and the integral is over all
possible prior distributions.

Many of the same challenges for determining a prior exist for determining a
hyperprior, and there is an extra integration step that needs to be performed to arrive
at the posterior. However the hyperprior allows for an extra layer of abstraction in

196 MACHINE LEARNING IN MATERIALS SCIENCE

situations in which the posterior may be particularly sensitive to the choice of a
prior. It is possible to similarly define hyperhyperpriors, etc., but in practice this is
rarely done.

The Empirical Risk The empirical risk represents the negative log probability of
observing the training data for a given f and g. Assuming that all of the observations
in the training data are independent, from Eq. [1] and the definition of g, we can write

P f g g y f

i
i iD x| ,() = − ()()∏ [17]

where xi is the ith set of input values in the training set, yi is the ith output value, and
the product is over all elements in the training set. Thus, under the assumption that
the observations in the training set are independent of each other, the empirical risk
can be written as

− ()() = − − ()()()∑ln | , lnP f g g y f

i
i iD x [18]

where the sum is over all elements in the training set. For example, if g is assumed to
be Gaussian, then the empirical risk would depend on the sum of the squared differ-
ences between yi and f(xi). This approach leads to least‐squares fitting, discussed in
more detail in the section on “Regularized Least Squares.”

The empirical risk is sometimes written more generally as

 i
i iL y f∑ ()(), x [19]

where L is a loss function that calculates the penalty (a.k.a. loss) for large differences
between yi and f(xi). In practice many commonly used loss functions can be written
in the form of Eq. [18], as a function of y fi i� ()x .

Unlike the prior probability distribution, the empirical risk depends on the function
g, which is in general unknown. As both f and g are unknown, it might make sense to
treat the two similarly and to search for the pair of functions that together are most
likely to satisfy Eq. [1]. The posterior and prior distributions would then be defined
for the pair, (f, g), and application of Bayes’ rule would yield

P f g

P f g

P
P f g, |

| ,
D

D
D

() = ()
() (), [20]

as an alternative to Eq. [5]. However such an approach is not commonly used. Instead,
it is more common to make the prior assumption that g, and hence the loss function,
is known.

If a uniform prior probability distribution is used for all functions in the hypo-
thesis spaces, then the optimization of the objective function (Eq. [9]) can be accom-
plished by minimizing the empirical risk. This approach is known as empirical risk
minimization. Empirical risk minimization is equivalent to selecting the function that
maximizes the likelihood function P f g(| ,)D (i.e., the function that best reproduces

SUPERVISED LEARNING 197

the training data). Although empirical risk minimization is a widely used method,
there is a risk of overfitting training data. This risk can often be mitigated by replac-
ing the uniform prior used in empirical risk minimization with a prior distribution
that favors simple functions or takes into account prior knowledge.

Optimization Algorithms Many machine learning algorithms involve the optimiza-
tion of an objective function, as in Eq. [9]. For practical purposes, the functions in the
hypothesis space are typically characterized by a set of unknown parameters; for
example, the functions may be expressed as a linear combination of basis functions,
in which the linear expansion coefficients are unknown parameters. Thus the problem
of searching for the optimal function becomes a problem of finding the set of param-
eters that minimize the objective function. Many algorithms have been developed to
address such optimization problems (e.g., gradient descent approaches, simulated
annealing, etc.), and the field of general optimization algorithms is too large to dis-
cuss here. Instead we refer the reader to some of the many comprehensive books on
the subject (e.g., Refs. 24–26).

For some objective functions, there may be no known algorithm that is able to find
the globally optimal function and/or verify whether a particular function is globally
optimal with a reasonable computational cost. However many machine learning
algorithms use an objective function and hypothesis space that have been designed to
facilitate the rapid identification of the globally optimal function. The ways in which
this is done are described in the context of individual machine learning algorithms in
the section on “Supervised Learning Algorithms.”

The Training Data The training data may be generated by observations of external
events that cannot easily be controlled, such as climatological data used in weather
forecasting. However in many cases it is possible to generate training data through
controlled experiments. In each experiment, a set of input values are evaluated, and
the corresponding output value becomes known once the experiment is complete.
Because the generation of training data can be an expensive and/or time‐consuming
step in the learning process, it is desirable to minimize the total number of experi-
ments that must be performed to achieve an acceptable level of prediction error. The
field of active learning, also known as design of experiments, deals with determining
the best set of experiments to perform (i.e., determining the best elements to include
in training data) to minimize the total cost of generating the training data.

There are many different approaches to active learning, and we will not review
them all here. Good overviews can be found in Refs. 27–29. A common approach to
active learning is uncertainty sampling,30 in which the next experiment is performed
on input values for which there is a large amount of uncertainty in the predicted
output value. A related approach is query by committee,31 in which several different
models are trained on the same data, and the next experiment is performed on a data
point about which there is the least agreement among the models. However this
approach can result in the sampling of outlier data points that are not representative
of the space of possible input values. Alternatively, if the distribution of all possible
input values is known, the input values can be selected in a way that takes this

198 MACHINE LEARNING IN MATERIALS SCIENCE

distribution into account. Such density‐weighted methods can result in significant
performance improvements over methods that do not account for the distribution of
possible input values.28

If the hypothesis space consists of parameterized functions, the training data
may be chosen in a way that minimizes some measure of the variance of the esti-
mated parameter values. This is often accomplished by optimizing the observed
information matrix, sometimes called simply the information matrix.32 The
observed information matrix is the Hessian of the empirical risk with respect to the
function parameters, and it is often evaluated at the parameter values that minimize
the empirical risk. It is an indicator of how informative the current training data are
about the parameter values.

A number of different criteria have been developed to optimize the observed
information matrix. Among the most common are A‐optimality, in which the trace of
the inverse information matrix is minimized, and D‐optimality, in which the determi-
nant of the information matrix is maximized.33–35 An overview of these and many
other optimality criteria can be found in Ref. 36. As the information matrix does not
take into account the prior probability distribution over possible parameter values, an
alternative approach is to use the Hessian of the objective function in place of the
information matrix. In this approach, sometimes referred to as Bayesian experi-
mental design,37,38 the same matrix optimality criteria (A‐optimality, D‐optimality,
etc.) may be used. In materials science, optimization of the information matrix has
been used to select training data for cluster expansion models, as described in the
section on “Lattice Models.”

Estimating the Prediction Error The goal of a machine learning algorithm is to
identify a function that makes accurate predictions for input values that are not
included in the training data. Thus to evaluate the results of a learning algorithm, it
is not sufficient to evaluate how well the function reproduces the training data (i.e.,
the empirical risk). Rather it is best to use a method that is capable of estimating the
prediction error of a function over the distribution of all possible input values.

The estimation of the prediction error can be accomplished using resampling
methods, in which functions are trained on one or more subsamples of the training
data using the same learning algorithm that is used for the entire set of training data.
These functions are then evaluated using subsamples of the training data on which
they were not trained, providing an estimate of the predictive ability of the functions
identified by the learning algorithm.

A common resampling technique is cross‐validation,39–42 in which the set of
known observations are partitioned into two subsets. The first subset, the training set,
is used to identify a likely function. The predictive power of this function is evaluated
by calculating its prediction error when applied to the second subset, known as the
test set. Averaging the cross‐validation prediction error over multiple different parti-
tions provides a measure of the estimated prediction error for a function trained on
the entire known set of observations. A common variation of cross‐validation
approach is k‐fold cross‐validation, in which the set of observations are partitioned
into k different subsets, and the prediction error on each subset is evaluated for a

SUPERVISED LEARNING 199

function trained on the k − 1 remaining subsets. When k equals the number of samples
in the training set, this approach is known as leave‐one‐out cross‐validation.

Another popular resampling technique is bootstrapping,43–45 in which the sub-
samples are drawn from the set of training data with replacement, meaning the same
element can appear in the subsample more than once. Functions trained on these
subsamples are then compared to a function trained on the entire set of training data.
Bootstrapping is commonly used to estimate statistics such as the bias and variance
in the output of the learning algorithm. Additional details about cross‐validation,
bootstrapping, and other resampling methods can be found in Refs. 46–50.

Resampling methods provide the best estimates of prediction error when the dis-
tribution of input values in the set of known observations is representative of the
distribution of all possible input values. Training data that consist of uncontrollable
empirical observations generally fit this description, provided the observations are
effectively randomly drawn from the distribution of all possible input values.
Alternatively, density‐weighted active learning methods can generate a set of obser-
vations that are representative of the distribution of possible input values and are well
suited for use in cross‐validation algorithms.

Supervised Learning Algorithms

Many supervised learning algorithms have been developed, and it is not feasible to
describe them all here. Instead, a brief overview of some of the most common
approaches is provided. These approaches are all described in the context of the
framework presented in the section entitled “A Formal Probabilistic Basis for
Supervised Learning.” In each of these approaches, there is a hypothesis space,
objective function, and optimization algorithm. There are also sometimes
algorithm‐specific active learning methods used to generate an efficient set of
training data. Approaches for estimating prediction error are fairly universal, so
they will not be described in detail here.

Regularized Least Squares One of the most widely used methods for fitting a
function to data is least‐squares regression. The least‐squares approach is character-
ized by the assumption that g is Gaussian:

g y f ei i

yi f i

− ()() =
− ()()

x
x

1

2

2

2 2

σ π
σ [21]

The empirical risk is therefore

− ()() = − ()() −

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥∑ln | , lnP f g y f

i
i iD x

1
2

1

22

2

σ σ π
 [22]

where the sum is over all elements in the training set. The loss function depends on
the squared difference between the observed and predicted output values, and
empirical risk minimization yields

200 MACHINE LEARNING IN MATERIALS SCIENCE

ˆ arg minf y f
f i

i i= − ()()∑ x
2
 [23]

Equation [23] describes a least‐squares fit, in which the selected function mini-
mizes the sum of the squared errors over all of the elements in the training set. The
loss function in Eq. [23], known as the squared error loss, is commonly used in
machine learning algorithms. Under the assumptions that the errors are normally dis-
tributed with zero mean and constant variance (Eq. [21]), the least‐squares fit returns
the function that maximizes the probability of observing the training data. Similarly,
if a uniform prior is assumed for the functions in the hypothesis space, the least‐
squares fit returns the function that maximizes the posterior probability distribution.

The least‐squares fit is often a justifiable choice for function fitting. The assump-
tion that g is Gaussian can be justified using the principle of maximum entropy, and
the use of a uniform prior can be justified on the grounds that it is uninformative and
hence will not bias the results. Perhaps most importantly from a practical perspec-
tive, the least‐squares fit is conceptually simple and easy to implement. In a common
implementation, known as linear least squares or ordinary least squares, the hypo-
thesis space is restricted to include only linear functions of the input values. The
optimal set of coefficients, ÊE, is given by

ˆ argminββ ββ= −()∑
β i

i iy x 2
 [24]

where xi is a row vector containing the input values and β is a column vector contain-
ing the unknown input values. From Eq. [24], the exact optimal solution can be
calculated:

 β̂β = ()−X X X yT T1
 [25]

where y is a column vector in which the ith element is yi and X is a matrix in which
the ith row is xi. A unique solution to Eq. [25] only exists if the matrix XTX is
nonsingular.

It is often possible to improve upon least‐squares fits by using a nonuniform prior
distribution. For example, consider the situation in which a multivariate normal
 distribution is used as the prior:

 P g eββ
ββ ββ

|()∝
− TΛ
σ2 2 [26]

where Λ is a positive definite matrix. The set of coefficients that minimize the
objective function is given by

 β̂β ΛΛ= +()−X X X yT T1
 [27]

Equation [27] represents a type of regularized least‐squares fit known as Tikhonov
regularization.19 When a normal least‐squares fit is ill posed (e.g., when XTX is
singular), Tikhonov regularization can make the problem well posed, such that a

SUPERVISED LEARNING 201

unique solution is guaranteed. Variants of Tikhonov regularization are popular in part
because they are often easy to justify and robust and the optimal solution can be
found with only slightly more computational cost than a least‐squares fit.

When Λ = λI in Eq. [27], where I is the identity matrix, it is known as ridge
regression.51 Ridge regression is equivalent to using the squared ℓ 2 norm of the coef-
ficients as the regularization term, where the ℓ p norm for a vector is defined as

ββ ββ=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ i

p

i

p1/

 [28]

for p ≥ 1. (It is the discrete version of the Lp norm described by Eq. [15].) Another
popular form of regularized least squares includes the use of an ℓ 1 norm instead of an
ℓ 2 norm. The use of the ℓ 1 norm often results in a minimizing vector of coefficients,
ÊE, in which many elements are identically 0. This approach is sometimes known as
the lasso estimator or compressive sensing,52,53 and it is useful when the solution is
sparse. It is in general not as straightforward as using the ℓ 2 norm, but efficient algo-
rithms for finding the optimal set of coefficients exist.54 The ℓ 1 and ℓ 2 norms are
revisited in the sections on “Similarity and Dissimilarity Measures” and “Lattice
Models.”

Linear least squares is a particularly convenient method for active learning
approaches (described in the section on “The Training Data”), as the information
matrix is independent of the values of the coefficients and proportional to XTX. For
Bayesian experimental design, the matrix X XT +ΛΛ may be used in place of XTX.

Support Vector Machines Classification problems differ from regression problems
in that the set of allowed output values is discrete, with each allowed output value
corresponding to a different class. The same general learning framework could be
used for classification problems as for regression problems, but in practice it can be
difficult to work with discontinuous output values. Many classification problems can
be simplified by recognizing that different classes often correspond to different
regions in input value space (Figure 3). Thus instead of searching for a discontinuous
function that predicts the output values directly, it is possible to search instead for a
continuous dividing surface between the regions corresponding to different classes.

For example, consider a situation in which there are two classes, corresponding to
y 1 and y = −1. If the prior assumption is made that there is a linear hyperplane in
the space of input values that divides the two different classes, then the classification
function takes the form

f

b

b
x

w x
w x

() = ⋅ − >
− ⋅ − <
⎧
⎨
⎩

1 0

1 0

,

,

if

if
 [29]

where the vector of coefficients w (commonly known as weights) and the offset b
define the hyperplane that divides the two classes (Figure 3). Thus the discrete
classification function, f(x), can be determined by learning the continuous function
w x⋅ − b. We will call this continuous function h(x).

202 MACHINE LEARNING IN MATERIALS SCIENCE

The training data are linearly separable if there is at least one hyperplane that per-
fectly separates the two classes. There are usually many competing hyperplanes that
can separate linearly separable data, and the goal of the learning algorithm is to find
the one that is most likely to correctly separate data points that are not in the training
set. One approach is to find the hyperplane that is farthest from the input values in the
training data. In other words, the best hyperplane is the one with the longest support
vectors, which are defined as the shortest vectors between the hyperplane and the
nearest training data point of each class (Figure 3). Support vector machines are
widely used supervised learning algorithms that identify such a hyperplane.55 If there
are more than two different classes present, support vector machines can be used to
find the hyperplanes separating all pairs of classes. A brief introduction to support
vector machines is presented in the following text, and a more comprehensive review
of different support vector machine approaches can be found in Refs. 56 and 57.

Hyperplanes are defined by the unknown parameters w and b, and the optimal
values for these parameters can be found by minimizing an objective function similar
to the one in Eq. [9]. The loss function (Eq. [19]) is given by

L y h

y h

y hi i
i i

i i
,

,

,
x

x
x

()() = () ≥
∞ () <
⎧
⎨
⎪

⎩⎪

0 1

1

if

if
 [30]

and the regularization term is simply (1/2)‖w‖2. The loss function ensures that the
plane separates the two classes, and the regularization term is minimized for the
plane with the longest support vectors. This is a constrained quadratic optimization
problem that can be solved using quadratic programming.58,59 A similar approach,
least‐squares support vector machines (LS‐SVM),60 enables the calculation of the
optimal weights by solving a linear system.

If the training data are not linearly separable, then the loss function in Eq. [30]
will always be infinite for at least one element of the training set, and no optimal set
of parameters will be found. This problem can be addressed by introducing

FIGURE 3 A linearly separable data set containing two classes (gray and white). Each point
corresponds to coordinates (x1, x2) given by the input values, and the colors are determined by
the corresponding y values. The dashed line shows the dividing plane, and the short thick lines
are the support vectors.

SUPERVISED LEARNING 203

nonnegative slack variables, ξi, that allow for some data points to be misclassified.55
The slack variables effectively measure the distance between the hyperplane and the
misclassified data points. The loss function becomes

L y h

y h

y hi i
i i i

i i i
,

,

,
x

x
x

()() = () ≥ −
∞ () < −
⎧
⎨
⎪

⎩⎪

0 1

1

if

if

ξ
ξ

 [31]

and the regularization term is (/)1 2 2w + ∑C ii
ξ , where C is an adjustable param-

eter that determines how severely misclassification should be penalized. An
alternative equivalent formulation is to use the hinge loss:

L y h

y h

C y h y hi i
i i

i i i i
,

,

,
x

x
x x

()() = () ≥
− ()() () <

⎧
⎨
⎪

⎩⎪

0 1

1 1

if

if
 [32]

where the corresponding regularization term is (1/2)‖w‖2. By comparing the loss
functions in Eqs. [30] and [32], it can be seen that the hinge loss simply replaces the
infinite penalty for misclassification with a penalty that scales linearly with the
degree of misclassification.

The optimal set of weights for support vector machines can be found by solving
the dual problem, in which the weights are written as

w x=∑

i
i i iyα [33]

where the sum is over all elements in the training set. The vector of coefficients α is
given by

argmax

α
α α α

i
i

i j
i j i j i jy y∑ ∑∑− ⋅()

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x x [34]

subject to the constraints

0

0

≤ ≤
=∑

α
α

i

i
i i

C

y

,
 [35]

where each sum is over all elements in the training set. The dual problem formulation
makes it possible to use support vector machines to classify data that are not linearly
separable using the kernel trick, in which the input variables are transformed in a way
that makes the data linearly separable.

The Kernel Trick Linear least squares and support vector machines are popular due
to their speed and simplicity, which come from the underlying assumption that the
solution must be a linear function of the input variables. However in many cases this
assumption is unrealistic. For example, consider the classification problem shown in
Figure 4a. There is no linear plane that will separate the data, which means that a

204 MACHINE LEARNING IN MATERIALS SCIENCE

linear support vector machine will fail to find a good solution. However it is possible
to transform the original one‐dimensional input value (x1) to a two‐dimensional
feature space, (x1, x1

2), in which linear separation is possible (Figure 4b). Such trans-
formations of the input variables are known as feature maps.

Feature maps can be used in machine learning algorithms by simply substituting
the transformed input variables, φ(x), for the original input variables x. However in
some cases, such as when the feature space has an infinite number of dimensions, it
may not be practical to explicitly make such a transformation. Alternatively, many
algorithms, including support vector machines (Eq. [34]) and linear least squares,
can be expressed in a way that depends only on the input variables through inner
products such as x x1 2� . In such cases, it is sufficient to find a kernel k(xi, xj) that
returns the dot product between φ(xi) and φ(xj):

k i j i jx x x x, () () ⋅ ()≡ ϕ ϕ [36]

To use a learning algorithm in a given feature space, all that needs to be done is to
use the kernel k(xi, xj) in place of the inner product x xi j� throughout the learning
algorithm. This is known as the kernel trick.61

The direct use of the kernel function saves the trouble of having to apply a
feature map and calculate the inner products explicitly. When using the kernel
trick, it is not even necessary to know which feature maps produce the kernel—
any symmetric, continuous, positive definite kernel can be used, as every such
kernel corresponds to an inner product in some feature space.62 (A positive
definite kernel is defined as a kernel for which c c ki j i jj

n
i
n

()x x, ≥== ∑∑ 0
11 for any

real‐valued {c1, … , cn} and {x1, … , xn}.) Such kernels are known as Mercer
 kernels or reproducing kernels. Some examples of reproducing kernels are shown
in Table 2.

(a)

(b)

FIGURE 4 (a) A one‐dimensional data set that is not linearly separable. (b) The same data
set mapped to two dimensions using a feature map that makes it linearly separable. The dashed
line is the separating plane.

SUPERVISED LEARNING 205

Reproducing Kernel Hilbert Spaces For a reproducing kernel k(x1, x2), consider the
space of functions f that are given by

f k

j
j jx x x() ()∑≡ α , [37]

where αj are scalar coefficients and the sum may contain any number of terms. The
inner product ⟨⟩H on this space is defined such that

k k ki j i jx x x x x x, , , ,() () = ()

H
 [38]

This function space is known as a reproducing kernel Hilbert space (RKHS).63
Each RKHS has a norm, ‖ f‖H, which is defined as

f f f

H H
{ , [39]

The norm of the RKHS depends on the underlying kernel. For example, the norm
of the linear RKHS is given by

f w

H

2 2 [40]

where f x wx() . Thus in a linear RKHS, functions with a steeper slope will have
larger norms. The norm of the Gaussian RKHS is

f F e d

H

2 2
2 2

2= ()
−∞

∞
∫ ω ω

σ ω
 [41]

where F(ω) is the Fourier transform of f (x). Thus in the Gaussian RKHS, functions
that fluctuate more rapidly will have larger norms.

Reproducing kernel Hilbert spaces have special properties that make them partic-
ularly useful for supervised machine learning. Consider a situation in which the hy-
pothesis space is an RKHS. If a Gaussian kernel is used, for example, the hypothesis
space would consist of linear combinations of Gaussian functions. Let the regulari-
zation term be given by r(‖ f‖H), where r is a monotonically increasing function. Let

TABLE 2 Examples of Symmetric, Continuous, Positive
Definite Kernels

Name k(xi, xj)

Linear x xi j c⋅ +
Polynomial kernel with degree d ()()c ci j

d
1 2x x⋅ +

Gaussian e
i j− −x x 2

2 2σ

Laplacian e
i j− −x x

σ

The scalar parameters c, c1, c2, and σ are all adjustable, with the con-
straints that σ and c1 are positive and d is a positive integer.

206 MACHINE LEARNING IN MATERIALS SCIENCE

the empirical risk take the general form of L y fi ii
(, ())xx , where the sum is over all

data points in the training set. The objective function is therefore

L y f r fi i

i

, x()() + ()∑ ∆
H [42]

The representer theorem then states that the function that minimizes this objective
function must take the form

f̂ c k

i
i ix x x() = ()∑ , [43]

where the sum is over all elements of the training set.64,65 Thus the problem of find-
ing f̂ is reduced to the problem of finding the coefficients ci that minimize the
objective function.

If a squared loss function is used and r f f∆ λ ∆
H H() = 2

 for some positive scalar
λ, then it is straightforward to show that the objective function can be written as

1
2

2y Kc c Kc− + λ T [44]

where K is a matrix in which K kij i j ()x x, for some xi and xj in the training data and c
is a column vector in which the ith element is ci. The unique solution to this problem is

 ĉ K I= +()−2 1λ [45]

This approach is known as kernel ridge regression.66 It is similar to regularized
linear least squares (Eq. [27]) with two major differences. The first is that it is no
longer necessary to work in a hypothesis space of linear functions—this solution
holds for any RKHS. The second is that the number of rows and columns in the
matrix to be inverted is now equal to the number of elements in the training set, rather
than the number of input variables. Thus although the calculations may take longer
in situations in which there are a lot of training data, this approach can be used for a
much wider variety of hypothesis spaces.

The flexibility and simplicity of kernel ridge regression have made it a popular
tool in materials science. It has been used for a variety of ends, including the predic-
tion of materials properties from descriptors, development of model Hamiltonians,
and generation of density functionals. These are described in more detail in the sec-
tions on “Materials Property Predictions Based on Data from Quantum Mechanical
Computations,” “Development of Interatomic Potentials,” and “Developing and
Discovering Density Functionals.”

Neural Networks An intuitive and effective approach to machine learning is to
mimic the biological brain. This is the idea behind a class of machine learning algo-
rithms known as neural networks.67 In a neural network, artificial neurons (a.k.a.
nodes) are linked together in a way that resembles the connections between neurons
in the brain (Figure 5). The input values (x) are passed directly into a set of neurons

SUPERVISED LEARNING 207

that comprise the first layer of the neural network, and these neurons use activation
functions to calculate output values that are then used as input values by the next set
of neurons. This process proceeds throughout the network until reaching a neuron
that produce the final output value (y). Some networks may be constructed to output
multiple values.

The hypothesis space in a neural network is defined by the topology of the con-
nections between nodes and the parameterized activation functions used by the
nodes. One of the simplest neural networks, consisting only of a single node, is
known as a perceptron (Figure 5a).68 The activation function of a perceptron com-
pares a weighted sum of the input values to a threshold value. If the weighted sum is
larger than the threshold value, the perceptron produces “1” as the output value. If it
is lower, the perceptron produces “0” as the output value. Mathematically, we write
this activation function as

a

b

b
x

w x
w x

() = ⋅ >
⋅ ≤

⎧
⎨
⎩

1

0

if

if
 [46]

where b is the threshold value and w is the vector of weights (Figure 6a). The percep-
tron is a linear classifier that is similar to a support vector machine, where the plane
that separates two classes is determined by w. The weights in a perceptron are typi-
cally optimized using a gradient descent algorithm to minimize the squared loss.

(a)

x1 x2 x3

y

a

a1 a2 a3

a4 a5 a6

a9

y

a7 a8

x4

x1 x2 x3 x4

(b)

FIGURE 5 (a) A perceptron. (b) A multilayer neural network containing many perceptron‐
like nodes. Nodes representing input variables (x1, x2, …) are gray, and nodes with activation
functions (a1, a2, …) are black.

208 MACHINE LEARNING IN MATERIALS SCIENCE

A perceptron is an example of a feed‐forward network, in which there are no loops.
More complicated feed‐forward neural networks can be created by combining multiple
perceptron‐like nodes in a multilayer network (Figure 5b). Such networks are some-
times referred to as multilayer perceptrons. The optimization of the weights of a
multilayer perceptron is more complicated than that of single node, but it can be
accomplished efficiently using a backpropagation algorithm that effectively minimizes
the squared loss using gradient descent.69 However the backpropagation algorithm
requires that the activation function is differentiable, which is not the case when using
the function in Eq. [46]. To avoid this problem, in multilayer neural networks the dis-
continuous step function used in Eq. [46] is replaced by a continuous sigmoid function
such as a logistic function (Figure 6b). The use of continuous activation functions
results in neural networks that can output a continuous range of output values, making
neural networks valuable tools for regression as well as classification.70,71

Multilayer perceptrons with sigmoid activation functions parameterized using
backpropagation have been widely and successfully used for classification and
regression. However there are a variety of alternatives to this approach. One alternative
is recurrent neural networks, in which loops are allowed in the network, enabling the
network to model dynamic processes. Different activation functions and optimization
algorithms have also been developed to improve the performance of neural networks.
A more extensive discussion of the different types of neural networks can be found in
Refs. 72 and 73. Across all types of neural networks, regularization is typically done
by penalizing the complexity of the network as measured by factors such as the
number of nodes in the network and the norm of the network weights.

Neural networks have had a long history of success in materials science and engi-
neering, especially in the development of accurate interatomic potentials and in the
mapping of complex materials behavior (flow stress, fatigue behavior, microstructure,
etc.) to materials processing parameters (heat treatment, deformation, cold working,
etc.). Examples touching on these developments can be found in the sections on
“Development of Interatomic Potentials” and “Materials Processing and Complex
Materials Behavior,” respectively.

Decision Trees Decision trees are among the oldest approaches to machine
learning, particularly for classification problems. Historically they have been among
the most widely studied machine learning methods, and more comprehensive reviews

(a) (b)

1

0.5

0

1

0.5

0
w · x – b

a(x)

w · x – b

a(x)

FIGURE 6 (a) The discontinuous activation function in Eq. [46]. (b) A sigmoid activation
function.

SUPERVISED LEARNING 209

of decision trees can be found in Refs. 74–77. Within materials science, decision
trees have been recently used to predict tribological properties (specifically, the coef-
ficient of friction) of various materials based on easily accessible properties (or
descriptors) of the materials and their constituents (e.g., melting point, Madelung
constant, density, etc.),78 as described in the section on “Materials Processing and
Complex Materials Behavior.” They have also been used to classify zeolite structures
based on topological descriptors.79 Here we provide a brief overview of the idea
behind decision trees and some common implementations.

Decision trees are similar to neural networks in that the function is represented as
a network of connected nodes. However in a decision tree, the network takes a hier-
archical treelike structure, in which each node may only have a single parent node
(Figure 7). The evaluation of the function starts at the topmost parent node, known as
the root node, and proceeds down through the tree until reaching a node with no chil-
dren, known as the leaf node. At each node along the way, there are multiple possible
branches, each of which leads to a different child node. The choice of which branch
to follow at each node is determined by the value of one of the input variables. Thus
the set of all input values determines the path through the tree, and the output value
is determined by the leaf node that is reached at the end of the path. Decision trees
are commonly used for classification, in which each leaf node corresponds to a dif-
ferent class. However they may also be used for regression, in which each leaf node
corresponds to a different numerical value.

There will generally be many different decision trees that are capable of reproduc-
ing the training data. The most efficient trees will be those that have, on average, the
shortest path between the root and leaf nodes. Unfortunately the problem of finding
such trees is NP‐complete,80 meaning that it is unlikely that the globally optimal
solution can be found using an algorithm that scales as a polynomial of the number
of possible output values. Given the computational cost of finding a globally optimal
solution, decision trees are commonly constructed using a greedy algorithm that
finds a solution by making a locally optimal choice at each node. Some of the most
successful algorithms are based on an approach known as top‐down induction of

x

x1 < b1 ?

x2 = b2 ?

No Yes

No Yes

y3

y1 y2

FIGURE 7 An example of a simple decision tree. The leaf nodes are in black.

210 MACHINE LEARNING IN MATERIALS SCIENCE

decision trees (TDIDT).81 In the TDIDT approach the tree is recursively built from
the training data, starting at the root node. At each node an input variable is selected,
and child nodes are created for each possible value of that variable. The training data
are then divided into subsets based on the value of the input variable and passed to
the appropriate child nodes. The process is then repeated at each child node, with
each of the subsets divided and passed on to the next level of child nodes. If any of
the subsets are empty, then a child node is not created, and if only one child node is
created, then the node becomes a leaf node. A common constraint is that there can be
no path through the tree in which the same variable is evaluated more than once.

The TDIDT approach provides a general framework for creating decision trees,
but it does not specify the order in which the input variables should be selected.
A common approach for classification problems is to choose the input variable that
produces subsets with the lowest average information entropy, where the information
entropy for a subset is given by

− ∑N p p

i
i iln [47]

In Eq. [47] the sum is over all classes in the subset, N is the total number of ele-
ments in the subset, and pi is the fraction of elements in the subset that belong to the
ith class. Information entropy is minimized for subsets that contain only one class
and maximized for subsets that contain equal numbers of every class, and as a result
this approach facilitates the rapid subdivision of the training data into subsets that are
pure. A similar approach is to use the Gini index in place of the information entropy,82
where the Gini index is defined as

N p

i
i1 2−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ [48]

When using a decision tree for regression, there is a continuous range of allowed
output values, and it is common for every element in the training set to have a differ-
ent output value. The objective of the decision tree is to provide an estimate of the
output value that is close to the true output value. At each node in the tree, an estimate
of the output value can be calculated based on the average of all output values in
the leaf nodes below that node (Figure 8). The tree can then be constructed in a way
that attempts to minimize the average estimation error along the path. One way to
accomplish this within the TDIDT framework is to choose at each node the attribute
that minimizes the average variance in output values within each of the subsets.82,83

There are two general strategies that can be used to improve the predictive accu-
racy of decision trees. The first is a regularization approach, in which the complexity
of the tree is reduced by pruning, or removing, branches of the tree.82,84,85 The pruned
branches are typically those that were poorly represented in the training data and/or
are many layers from the root node. For regression, the pruned branches can be
replaced by a function (e.g., using linear regression) that estimates the output values
for the remaining set of input values. Resampling methods (described in the section
on “Estimating the Prediction Error”) may be used to determine the optimal degree

SUPERVISED LEARNING 211

of pruning. An alternative approach to improving the prediction power is to generate
ensembles of decision trees. For example, in the random forest approach, an
ensemble of decision trees is created by introducing a stochastic element into the
algorithm for constructing trees.86 The prediction is then based on the mode (for
classification) or average (for regression) of predictions made by the members of the
ensemble. Variations of this approach, known as ensemble learning, are described in
the next section.

Ensemble Learning In ensemble learning, the function f̂ is created by combining
the outputs from an ensemble of different learning algorithms (e.g., by taking the
average). This approach can be a simple and effective way to increase the size of the
hypothesis space, and it often results in a function with greater predictive accuracy
than any of the individual algorithms in the ensemble. It is particularly popular for
classification problems.

Various approaches to ensemble learning are well reviewed in Refs. 87–89. Two
of the most common classes of algorithms are bagging algorithms,90 in which the
members of the ensemble are created by randomly resampling the training data, and
boosting algorithms,91,92 in which the training data is resampled in a way that assigns
extra weight to input values for which the losses (described in the section on “The
Empirical Risk”) are particularly high. The performance of some boosting algo-
rithms can be adversely sensitive to random classification noise (i.e., erroneous
classifications) in the training data.93

Genetic Programming It is often desirable to express a function symbolically, as a
simple combination of variables and basic mathematical operators. For example, the
simple formula F ma is generally preferable to expressing force as a linear
combination of many basis functions. The field of identifying such simple formulas
that best predict the output values is known as symbolic regression. In symbolic
regression the hypothesis space contains all symbolic formulas that combine the
input variables with a set of mathematical operators, and the space is typically

x

7

2

1 3 10 14

12

FIGURE 8 An illustration of how the output value could be estimated at each node in a
regression decision tree trained on four output values.

212 MACHINE LEARNING IN MATERIALS SCIENCE

regularized in a way that favors simple formulas (e.g., formulas that contain fewer
variables or operators). Functions are typically represented in a treelike structure,94
where input variables and constant values are represented by the leaf nodes and the
remaining nodes are mathematical operators or simple functions (e.g., trigonometric
functions). An example of such a diagram is given in Figure 9.

As with other supervised learning methods, symbolic regression is typically accom-
plished by searching through hypothesis space to find the formula that minimizes an
objective function. A common way to do this is through genetic programming,95,96
in which the search for the optimal function is performed using a genetic algorithm. In
genetic programming a population of candidate formulas evolves in a way that mimics
the process of natural selection, favoring the formulas that are most fit, that is, formulas
that produce the lowest values for the objective function. In a typical implementation,
an initial population of candidate functions is created, and those that are least fit are
discarded. The remaining functions are used to generate a new generation of functions
by using crossover operations, in which features of the functions are combined to cre-
ate “children,” and mutation operations, in which a feature of the function is randomly
changed. Examples of crossover and mutation are shown in Figure 10. Repetition of
this process results in a series of increasingly fit generations of functions.

The genetic programming algorithm will generate a set of candidate functions
with varying degrees of fitness and complexity. The complexity of the function may
be measured by factors such as the number of nodes in the treelike representation of
the function, and it is common for complexity to be measured in a way that penalizes

1.8

+

/

2 x

FIGURE 9 A treelike representation of the expression 1 8 2. ()� /x .

Crossover

(a) (b)

f(x) = 17x + e–2.3xf(x) = 3.2x2 + sin(x–1) f(x) = 3.2x2 + sin(x–1)

f(x) = 3.2x2 + cos(x–1)f(x) = 17x + sin(x–1)

Mutation

FIGURE 10 (a) An example of a crossover operation. (b) An example of a mutation
operation.

UNSUPERVISED LEARNING 213

advanced operators such as acos more than simple operators like addition. Although
it is possible to use a complexity‐dependent regularization term in the objective
function,95,97 an alternative approach is to generate a Pareto frontier of the functions
with respect to fitness and complexity.98 The Pareto frontier is defined as the set of
all candidate functions for which there is no other known function that is both more
fit and less complex. The Pareto frontier approach enables a transparent evaluation
of the fitness‐complexity trade‐off in the population of functions generated by the
genetic programming algorithm (Figure 11).

In materials science and engineering, genetic programming has been used by sev-
eral researchers to develop predictive models of the properties of cement,
concrete,99–101 asphalt,102 and the effects of processing parameters on metal
alloys.103–105 It has also recently been applied at the atomic scale to determine the
structural features of hydrogenated amorphous silicon that most strongly influence
hole trap depths.106 This last application is described in more detail in the section on
“Structure–Property Relationships in Amorphous Materials,” and a thorough review
of genetic programming can be found in Ref. 107.

UNSUPERVISED LEARNING

While supervised learning is focused on finding the function (f) that maps a set of input
data (x) to a corresponding output value (y), unsupervised learning focuses on finding
the relationship among the input data x themselves. In other words, while supervised
learning seeks to determine relationship between x and y through the conditional
density P f y g| , ,x(), unsupervised learning seeks to determine the properties of the
joint marginal density P(x).

We illustrate these notions with an elementary example. Twenty data points are
drawn from two Gaussian probability density functions (PDFs) of unit standard
deviation, one centered at (−3, 0) and the other at (3, 0) (see Figure 12a). The points

U
nf

itn
es

s

Complexity

FIGURE 11 The Pareto frontier for a set of functions with different levels of fitness and
complexity. Each dot represents a function, and the black dots (lower left dots connected by
dashed line) are the ones on the Pareto frontier.

214 MACHINE LEARNING IN MATERIALS SCIENCE

are color coded to identify their PDF of origin. Four additional points (indicated with
diamonds) are drawn from each PDF and are appropriately labeled (i.e., y values are
given). In other words, we are provided both x and y values for a subset of four data
points and are asked to classify each of the other data points as to which PDF they
came from. One of many supervised learning classification algorithms can be used to
accomplish this task, with the resulting color coding shown in Figure 12b (color in
e‐book version; light gray and dark gray in printed book version). The method used
here was support vector machines (SVM) (described previously). It is clear that the
SVM results are a perfect match to the true labels. However, it might also be apparent
that the performance of the SVM method here is strongly dependent upon the training
data used.

(a)

(b)

(c)

2

1

0

–1

–2

–3
–5 0 5

2

1

0

–1

–2

–3
–5 0 5

2

1

0

–1

–2

–3
–5 0 5

FIGURE 12 (a) Data points generated from two Gaussian PDFs with unit standard deviation
and means of −3 and 3. (b) Classification results using SVM with four labeled points indicated
with diamonds. (c) Clustering results with k‐means.

UNSUPERVISED LEARNING 215

Alternatively, imagine that we are only told the number of classes (i.e., the number
of PDFs used to generate the data), with no labels provided. We are then tasked with
sorting the samples into potential clusters associated with the underlying PDFs. This
is an example of unsupervised learning, as only the x values are provided. Applying
the k‐means unsupervised learning algorithm, discussed in the section “Combinatorial
(or k‐Means) Methods,” gives the results seen in Figure 12c. The clustering results
can now be used to learn something about the underlying PDF.

In this chapter we group unsupervised learning algorithms into two broad classes:
cluster analysis, in which the input data are grouped into clusters based on a simi-
larity measure, and dimensionality reduction, in which the data is represented in a
simplified form. When applied to very large collections of data, both cluster analysis
and dimensionality reduction are commonly considered data mining methods. These
approaches are described in more detail in the following sections.

Cluster Analysis

Cluster analysis is the unsupervised parallel to classification. In classification, as dis-
cussed in the section on “Support Vector Machines,” a set of data with class labels is
used to learn rules of data class membership. These rules can then be applied to deter-
mine the class membership of unlabeled data. If no labels are given, classification
becomes more of an open problem, relying only on similarity measures to group data
into clusters where data that share a cluster show greater similarity to each other than
to data in other clusters. Due to the open nature of cluster analysis, it is generally per-
formed for the goals of either data complexity reduction or exploratory data analysis.

Complexity reduction is achieved by assigning one representative data value for
each cluster that will be used to replace the values of all those in the cluster. This may
be an original data point or a function of data in the cluster, such as the mean. For
example, if structure micrographs are taken of multiple material samples, where each
sample is one of N material types, those micrographs can be sorted into N clusters
corresponding to the material types. One micrograph can then be chosen from each
cluster to represent the members of that cluster.

Clustering for exploratory data analysis is used to “present the data to the analyst
such that he or she can see patterns and formulate interesting hypotheses about the
data.”108 If, in the case of the micrographs of N material types, the value of N were
unknown, clustering analysis will provide an estimate of this number.

When performing cluster analysis, it is necessary to choose a similarity measure
that will be used to group the data as well as a way to evaluate the performance of
the algorithm. It is also often necessary to change the way in which the data are rep-
resented (i.e., through dimensionality reduction). Finally, it is necessary to choose
the clustering algorithm that is most appropriate for the problem. Because the
choice of data representation and measure can often have a greater impact on the
final data analysis than do the clustering algorithms used, they should be selected
with care. These topics are discussed in more detail in the following sections.
Applications of these ideas are described in the later sections on “Phase Diagram
Determination” and “Automated Micrograph Analysis.”

216 MACHINE LEARNING IN MATERIALS SCIENCE

Similarity and Dissimilarity Measures One of the most important decisions to be
made in a clustering algorithm is the measure used to evaluate the similarity or dissim-
ilarity between data; this will be discussed further in the example in the section on
“Phase Diagram Determination” (similarity measures are also important in supervised
learning situations, e.g., within kernel ridge regression alluded to section “Reproducing
Kernel Hilbert Spaces”; this will be discussed in the section on “Materials Property
Predictions Based on Data from Quantum Mechanical Computations”). A dissimi-
larity measure takes the place of a distance metric when comparing two pieces of
data—the more different the two pieces of data, the greater the value of the measure.
Alternatively, a similarity measure increases with greater similarity.

A dissimilarity measure d(xi, xj) is a metric if it meets the following conditions:

d i jx x, nonnegativity() ≥ 0,

d i j i jx x x x, if identity of indiscernibles() = =0 ,

d di j j ix x x x, , symmetry() = (),

d d di j i k k jx x x x x x, , , triangle inequality() ≤ () + (),

Measures that meet these conditions can be thought of as measures of distances
between data points.

For low‐dimensional data, it is common to use the norm of the difference between
two data points as a dissimilarity measure. In other words, the dissimilarity between
xi and xj is given by

d i j i jx x x x, () = − [49]

Higher‐dimensional data may require a different choice of measure that preserves
aspects of the data structure. For example, consider the situation shown in Figure 13a
where each data point is a simple black‐and‐white image with 10 pixels. The vector

(a) (b)

x1 = {0,1,0,0,0,0,0,1,0,0} x1 = {0,1,0,0,0,0,0,1,0,0}

x2 = {0,0,1,0,0,0,0,0,1,0} x2 = {0,0,1,0,0,0,0,0,1,0}

x3 = {0,0,0,0,1,1,0,0,0,0} x3 = {0,0,0,0,1,1,0,0,0,0}

FIGURE 13 (a) Three images that are equally dissimilar according to ℓ 1 and ℓ 2 measures.
Neither measure properly represents the perceived similarities. (b) Histogram representation
of the same data.

UNSUPERVISED LEARNING 217

x represents the colors of the pixels in the image, with xi representing the color of the
ith pixel. While the image labeled x1 appears to be more similar to x2 than x3, the ℓ 2
(and ℓ 1) measure between any two images gives the same value. For this case, we
would prefer a measure that identifies x1 and x2 as more similar despite the slight
shift in data structures, a common situation in high‐dimensional data. These impor-
tant issues are addressed in the section on “Bin‐by‐Bin and Cross‐Bin Measures.”

The choice of measure can greatly impact the efficacy and speed of a machine
learning algorithm. This is especially important for complex, high‐dimensional data
and those machine learning algorithms whose input is a dissimilarity matrix D, where

D dij i j= ()x x, [50]

There are many measures to choose from, and the decision of which to use gener-
ally depends on a cost–benefit analysis between the resultant algorithm performance
and the computational cost of evaluating the dissimilarity matrix. For example, the
use of dynamic time warping (DTW) greatly improves the analysis of diffraction
patterns over the use of the ℓ 1 norm but comes at a significantly greater computa-
tional cost.109 In the following sections some common measures are described.

Bin‐by‐Bin and Cross‐Bin Measures The image example shown in Figure 13 falls
into the broader class of situations in which x can be represented as a set of bins in a
histogram (Figure 13b). Such situations include high‐dimensional vector data or
image data as both can be represented as a list of numbers indexed by dimension or
pixel. There are a great number of measures for differentiating between data points
using a bin‐by‐bin comparison, in which the elements in the vector x1 are individu-
ally compared to the corresponding elements in another vector x2.

The most common bin‐by‐bin measure is the norm of the difference between the
two data points, as shown in Eq. [49]. Particularly common choices are ℓ p norms
(Eq. [28]). The ℓ 1 norm, also known as the taxicab distance, is often used for high‐
dimensional spectral or histogram data as it is less susceptible to outlier values. The
ℓ 2 norm, or Euclidean distance, is typically used for 2D or 3D data.

Another measure is the information theory‐based Kullback–Leibler divergence,
which describes the efficiency of coding one histogram h using another histogram k
as the codebook:110,111

d h

h

ki
i

i

i
KL , h k() =∑ ln [51]

However, this is nonsymmetric. A symmetric alternative is the Jeffreys
divergence:112,113

d h

h

m
k

k

mi
i

i

i i
i

i

i
JS , h k() = +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟∑ ∑1

2
ln ln [52]

where m h ki i i= +()/2 and the square root of the Jeffreys divergence is a metric.

218 MACHINE LEARNING IN MATERIALS SCIENCE

A measure for normalized histograms is the Hellinger distance, which was found
to provide good performance in distinguishing between histograms while also having
a low computational requirement:114,115

d h k

i
i iH , h k() = −∑1 [53]

An information theory‐ or statistics‐based metric is appropriate when dealing with
histograms that represent probability densities. For instance, the 1‐point statistics of
an image (or micrograph), discussed in the section on “N‐Point Cross‐Correlations
for N‐Point Statistics,” is a normalized histogram that describes the probability of
observing pixels of different states in the image (e.g., see Figure 25b). The 1‐point
statistics can be used to represent each image when differentiating between samples
of different statistical structures.

Although bin‐by‐bin measures are simple and easy to implement, they fare poorly
when features in the data can undergo shifts between neighbor bins or pixels
(Figure 13). Such a shift is a typical problem found in microscopy, where two images
of the same sample might not be perfectly aligned. A related issue arises when the
two histograms are of different lengths.

A solution to the problem of feature shifting and different histogram lengths is to
introduce a term that provides an expected correspondence between bin numbers.
This results in a cross‐bin measure. An example is the quadratic form distance:116

 dA h k h k A h k, T() = −() −() [54]

where the matrix A determines the similarity measure between bin indices. If the
expected correspondence between bins is not known, a measure can be used that
allows for some drift in features across neighboring bins or different histogram
lengths. For example, if feature shifting is possible with a maximum shift length of
L bins, A can be given by

A

i j L

i j L i j Lij =
− >

− − − ≤
⎧
⎨
⎪

⎩⎪

0

1

for

for /
 [55]

which allows for features to be compared over a window of L.

Structure‐Preserving Measures Two structure‐preserving measures are the dynamic
time warping measure (DTW)117 and the earth mover’s distance (EMD).118 DTW
began as a measure for analyzing temporal sequence data where two similar
sequences may vary in time or speed. For example, DTW is used in automated speech
recognition when speaking speed is an issue. DTW has recently found use in mate-
rials science for comparing diffraction patterns from samples that differ slightly due
to lattice expansion, resulting in diffraction peak shifting and broadening.109 EMD is
a popular technique for comparing images using histogram representations such as
1‐point statistics, when issues like histogram length can be a problem.

UNSUPERVISED LEARNING 219

In dynamic time warping (DTW), the dissimilarity measure is determined by the
amount of warping needed to map one histogram into another. This measure is, how-
ever, not a metric as it is nonsymmetric and does not obey the triangle inequality. For
the two histograms h and k of length N and M, respectively, DTW begins with the
construction of the cross‐bin dissimilarity matrix D (Eq. [50]). The minimum warp-
ing distance between (,)i j 1 1 and (,)i N j M is then computed recursively
using the function γ(hi, kj) defined by

γ γ γ γh k D h k h k h ki j ij i j i j i j, , , , () = + () () (){ }− − − −min , ,1 1 1 1 [56]

A localization constraint can be included, requiring that features should only be
considered similar within a window w, in which case the index j is restricted by

 j i w i w∈ −() … +(){ }max min1 1, , , , [57]

An example is shown in Figure 14. The values of h and k are given in Figure 14a.
For D h kij i j= − , the DTW path costs are shown in Figure 14b, and the path is shown
in gray. The corresponding point‐by‐point mapping is shown in Figure 14c.

Another shift‐resilient measure that has proven popular in the computer vision
community is the earth mover’s distance (EMD) or the Wasserstein metric.118 EMD
measures the minimum amount of “work” needed to construct one histogram using
another (Figure 15). This can be visualized by thinking of one histogram as a series
of mounds of earth and the other as a series of holes. EMD calculates the minimum
amount of work needed to transport the earth from the mounds to the holes, where
the weight is given by the bin intensity and the distance is given by a measure of
bin‐to‐bin or pixel‐to‐pixel distance. EMD obeys the conditions of a metric if the
distance between bins (or pixels) is defined by a metric and if both histograms have
the same total mass. For a more detailed description of the EMD algorithm, see
Refs. 118 and 119.

The improved analysis performance achieved by utilizing the DTW or EMD
 measures comes at the cost of a significantly increased computation. However, fast
implementations of each can be found that greatly reduce their computational
cost.120–122

For data features that undergo more extreme changes but still require a high mea-
sure of similarity, the data is typically first converted to a new representation, using
feature extraction methods in which the feature changes become negligible and have
minor impact on the measure. An appropriate moment invariant feature extraction
method will allow for similar features to be identified despite changes in location,
scale, orientation, shear, and/or dilation.

Clustering Algorithms Many types of clustering algorithms exist. While a theoret-
ical taxonomy of clustering methods has yet to be developed, there are several gen-
eral groupings of clustering methods. In the following sections, four of these general
groups are described: combinatorial methods, mode seeking, mixture models, and
hierarchical clustering.

220 MACHINE LEARNING IN MATERIALS SCIENCE

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

(a)

(b)

(c)

0

0

2

3

8

12

13

13

14 14 14 10

2

3

8

12

13

13

12

13

13

6

7

9

2

3

8

0

0

0

0

2

2

0

1

4

3

3

1

0

4

7

6

7

7

8

8

4

4

0

1

5

10

11

12

12

6

7

1

0

3

7

10

13

13

7

6

5

3

0

1

1 1

13

13

9

7

10

7

1

0

1

0 0

0 0 0

2

2

1

1

5

5

4

4

1

1

0

0

1h

k

2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

h

k

FIGURE 14 (a) Histograms h and k. (b) DTW mapping between h and k. (c) DTW path
cost matrix with minimal cost path of 1 shown in gray.

h
k

FIGURE 15 Histograms h and k with h shown as EMD earth mounds and k as holes.

UNSUPERVISED LEARNING 221

Combinatorial (or k‐Means) Methods Combinatorial methods utilize the similarity
between data to sort the samples into clusters. This is accomplished by using a dis-
similarity matrix to achieve a minimization of intracluster scatter (or equivalently,
maximizing the intercluster scatter), defined as

W C d

k

K

C i k C j k
i j() = ()

= ()= ()=
∑ ∑ ∑1

2 1

x x, [58]

where C is a function that assigns a cluster label to a data point, the outer sum is over
all clusters, and the inner sums are over all pairs of points within each cluster.

Filtering through all possible clustering configurations for large data sets is
infeasible, so most combinatorial methods rely on iterative greedy descent to opti-
mize clustering results. The most common combinatorial method, k‐means, uses
this approach. In the k‐means algorithm, the intracluster scatter W(C) is defined as

W C i k

C i kk

K
() = −

()==
∑∑1

2
2

1

x x [59]

where xk is the mean of the points in cluster k. We assume here that the number
of clusters K is known and that each point can be assigned only to one cluster. The
k‐means algorithm minimizes W(C) with an iterative decent method.

The algorithm is initialized by first randomly distributing k cluster center points
vk in the data vector space. Each data point is then assigned a cluster based on the
nearest center point. For each cluster, the mean xk is calculated and the k cluster cen-
ters are moved to the cluster mean: v xk k . Each data point is then reassigned to a
cluster based on proximity to the new set of center points. The process repeats until
the assignments of all points remain constant. Because the results depend on the
initial choice of the center points, this method is typically repeated with multiple
initial random assignments, and the cluster configuration that minimizes W(C) is
retained. An example of this algorithm is illustrated in Figure 16.

The k‐means algorithm assumes that clusters are spherical in shape and of similar
size and density. For cases where these assertions are not true, k‐means will not
 perform well. Outliers and empty clusters will also provide difficulty.

Statistical Techniques: Mixture Models and Mode Seeking Both mixture models and
mode‐seeking methods assume the data are statistical in nature, and the probability of
observing each data point is described by a probability density function (PDF) P(x)
over the data vector space. The PDF is assumed to be the sum of class‐associated PDFs
Pi(x) each associated with a different underlying classification. P(x) is then given by

P P

i

K

i ix x() = ()
=
∑

1

π [60]

where πi are normalizing constants. Mixture models assume that the general type of
each class‐associated PDF is known (e.g., Gaussian, Bernoulli, etc.); however, each

222 MACHINE LEARNING IN MATERIALS SCIENCE

class‐associated PDF has a set of unknown parameters including its location in the
vector space. The most likely values of these parameters are determined given the
data x using a gradient descent method. Similarly the most likely generating class‐
associated PDF is determined for each datum, and the class association is used to
determine cluster membership. In the particular case where all Pi(x) are Gaussians—
the Gaussian mixture model—P(x) can be rewritten:

P

i

K

i i ix x() = ()
=
∑

1

π µ& | ,Σ [61]

(e)

(a)

(b)

(c)

(d)

FIGURE 16 k‐Means for simulated data with k = 2: (a) cluster centers indicated by “X” are
initialized, (b) cluster assignment based on proximity to centers, (c) cluster centers computed,
(d) cluster assignment recomputed, and (e) convergence.

UNSUPERVISED LEARNING 223

where the unknown parameters μi and Σi are the D‐dimensional mean (for an x of
dimension D) and D × D‐dimensional covariance, respectively. These parameters are
initialized and the most likely class association z K∈ …{ }1, , for each datum is deter-
mined by evaluating p z(|)x given by

p z j j j j

i

K
i i i

=() =
=∑

x
π

π

&

&

(| ,)

(| ,)

x

x

µµ ΣΣ

µµ ΣΣ
1

[62]

The class assignments are then used to recalculate the PDF parameters. The cycle
is repeated using a gradient descent method until convergence in parameter values
and class associations.

Mode‐seeking methods also assume that P(x) is composed of class‐associated
PDFs, but the general type of each Pi(x) is unknown other than that each Pi(x) has
one major mode (i.e., the maximum of the PDF). Mode‐seeking methods utilize the
local density of points to estimate the topology of P(x) empirically and assign each
data point to the most likely mode and thus to a cluster.

For data of high dimension, evaluating the empirical PDF over the entire vector
space can be infeasible. One solution is to evaluate the PDF only in the vicinity of
data points. Mean shift theory,123 a popular mode‐seeking method, utilizes this
technique to “walk” each data point toward its mode by following increasing local
densities of data points. This is accomplished through the use of a window function
to identify local regions of points. The window function has a nonzero value
within the region and a value of zero otherwise. A typical window function is the
truncated Gaussian. The algorithm begins by either partitioning the vector space
in the vicinity of data points into regions enclosed by a window function or by
centering a window function at each data point. Each point within each region is
then assigned a mass by evaluating the window function at its location. The center
of mass within the window is computed, and the window center is then shifted to
this location. An illustration of this process can be found in Figure 17. The pro-
cess is repeated until the center of mass reaches a convergence point at a local
density maximum for each starting region. Points that fall within the original
regions are identified with their convergence point, and the convergence points
are given class labels.

(a) (b)

FIGURE 17 An illustration of mean shift theory: (a) center of mass computed for region of
interest indicated by circle and (b) region of interest is shifted to center of mass. Center of
mass recomputed.

224 MACHINE LEARNING IN MATERIALS SCIENCE

Hierarchical Cluster Analysis Clustering algorithms can provide either flat results or
hierarchical results. Flat methods provide only one clustering result as a function of
algorithm parameters. It is up to the user to vary the algorithm parameters to achieve
other clustering results. Hierarchical clustering analysis (HCA) provides a range of
clustering resulting in a binary tree or dendogram (Figure 27). There are two methods
of HCA—agglomerative, the bottom‐up approach, and divisive, the top‐down approach.

Agglomerative HCA begins with each data point in its own cluster. At each higher
level in the tree, the two clusters with the smallest intercluster dissimilarity are
merged. There are three common types of agglomerative HCA derived from the
choice of dissimilarity metric (Figure 18). Single linkage agglomerative clustering
defines cluster dissimilarity as the dissimilarity between the two points (one in each
cluster) that have the minimum dissimilarity. Complete linkage HCA defines the
cluster dissimilarity as that of the two points with the greatest dissimilarity. Group
average HCA uses the average dissimilarity between the two groups. A discussion of
the pros and cons of the different dissimilarity metrics can be found in Ref. 32.

Divisive HCA begins with all data points in one cluster. At each lower level in the
tree, the cluster with the largest intracluster dissimilarity is split into two. Various
methods have been proposed to accomplish this. One method is to use k‐means clus-
tering with k = 2. Another method proposed by Macnaughton et al.124 involves taking
the data point with the largest average intracluster dissimilarity, removing it from the
initial cluster A and placing it into a new cluster B. Points are moved one by one from
A to B by selecting those points with the largest average dissimilarity to points in A
minus the dissimilarity with points in B. The process ends once the remaining points
in A are each less dissimilar to the others in A than to the points in B. Further
discussion of the divisive algorithms can be found in Ref. 32.

Model Evaluation and Selection The variety of different clustering algorithms
available presents a challenge of how to choose the best algorithm for a given problem.
For some algorithms, such as k‐means, it is also necessary to choose the number of

(a)

(b)

(c)

FIGURE 18 Agglomerative HCA cluster dissimilarities: (a) single linkage, (b) complete
linkage, and (c) group average.

UNSUPERVISED LEARNING 225

clusters. Supervised learning methods have “teacher guidance” in the form of known
output values (y) in the training set, whereas clustering analysis does not generally
have labeled data. Thus in clustering analysis there is generally no way to evaluate the
empirical risk associated with a particular choice of clusters or to use cross‐validation
(described in the section on “Estimating the Prediction Error”) to evaluate model
quality. For this reason, clustering evaluation is often accomplished by having an
expert inspect the clustering results. In situations where data labels are provided for a
small data subset or information is known of the function that generated the data, a
testing scheme similar to cross‐validation can be used to determine performance.
First, the algorithm is tested on simulated data with a similar generating function.
Then the algorithm is tested on labeled data to evaluate performance. Finally, the
algorithm is run on unlabeled experimental data and inspected by an expert.

An alternative approach that has become popular for evaluating clustering algo-
rithms is cluster stability. A clustering result is considered stable if similar results are
obtained when the algorithm is tested on different sets of data drawn from the same
underlying models. In that sense, this approach is similar to cross‐validation. For
algorithms such as k‐means, in which the number of clusters is an unknown param-
eter that must be set, clustering stability is commonly implemented to select the
number of clusters to use. There are a variety of different measures of cluster stability,
and a good discussion of these can be found in Ref. 125.

Determining the number of clusters to include in a clustering algorithm is similar
in some ways to the problem of choosing the number of parameters to fit in a super-
vised learning problem. If too many clusters are chosen, there is a risk of overfitting
the data—for example, consider the extreme case in which every data point is
assigned to its own cluster. Contrarily, if too few clusters are chosen, then the clusters
might not represent the data well. As in the case of supervised learning, these con-
cerns can be balanced by selecting the number of clusters that optimizes measures
such as the Akaike information criterion or Bayes information criterion (described in
the section on “Model Selection” for supervised learning).126 However this approach
requires some way of estimating the likelihood of the result returned by the clus-
tering algorithm. Several additional approaches have been developed to choose the
number of clusters for use in a clustering algorithm, and a good review of these can
be found in Ref. 127.

Prior Knowledge Prior knowledge of the data can aid in algorithm selection. For
instance, if the data generation is known to be statistical, a statistical clustering
method may provide the best results. If clusters are expected to have varying den-
sities and sizes, a mixture model might be a good choice. If the clusters are nonglobu-
lar in shape, a graphical model may provide adequate results. Also, certain algorithms
are known to provide good results at low computational cost for high‐dimensional
data. In practice, there are well‐established clustering methods that have become
popular, and they are often the first go‐to algorithms tested. These include two of the
algorithms described here: k‐means and hierarchical cluster analysis.

Sometimes prior knowledge can be incorporated in the clustering algorithm
through the use of constraints on the allowed results. This approach is analogous to

226 MACHINE LEARNING IN MATERIALS SCIENCE

restricting the hypothesis space in supervised learning. The clustering algorithm is
expressed as a constraint satisfaction problem, in which a set of constraints are placed
over the possible cluster labels for each data point. The constraints allow for the
integration of prior knowledge into the solution requirement and permit use of
information from different domains. For example, in the case of phase diagram gen-
eration, a constraint can be imposed to require that points clustered together in a
phase region should be similar in structure and inhabit a connected region of the ter-
nary composition space. Constraint satisfaction problems can be expressed in a con-
straint programming framework that provides an environment in which constraint
satisfaction problems can be stated and solved, without specifying any one solution
method. Constraint satisfaction problem algorithms can provide one solution, all
possible solutions, or the optimal solution given an objective function. More
information on constraint satisfaction problem and constraint programming can be
found in Ref. 128.

Dimensionality Reduction

The type of clustering algorithm used is typically determined by the dimensionality
of x. There are many effective algorithms for clustering low‐dimensional data,
 especially for the more easily visualized data of three dimensions or less, but higher‐
dimensional data falls prey to the “curse of dimensionality”—data points become
highly sparse due to the large volume of the data vector space, resulting in poor
 clustering analysis and increased computational costs.

Different solutions exist to deal with the curse of dimensionality. These solutions
provide a lower‐dimensional data representation that results in appropriate or
improved clustering results while reducing computational costs. One solution is
dimension reduction through latent variable analysis (LVA). This method relies on
the fact that the data points exist on or near a manifold of lower dimension than the
vector space. The manifold is described by a set of latent variables that are more
representative of the samples being clustered.

Another solution is to select a list of data structures, or features, that better repre-
sent the samples. The data is preprocessed using a set of feature extraction algorithms
and mapped to a lower‐dimensional feature space. Feature extraction requires prior
knowledge of the representative features. For example, rather than using a million
pixel image of a fingerprint to identify a unique user, the existence and location of
fingerprint features such as ridge terminations and ridge bifurcation can be identified
in the images and used to map and identify users in a lower‐dimensional fingerprint
feature space.

Latent Variable Analysis Latent variable analysis techniques comprise a subset of
unsupervised methods used for dimension reduction, compression, and data visuali-
zation. LVA is of particular interest for treating high‐dimensional data that exists on
or near a lower‐dimensional manifold described by “latent variables.” For example,
if a 1000 pixel image is padded with zeroes and then translated in its new borders to
produce a set of output images, the output images will exist on a two‐dimensional

UNSUPERVISED LEARNING 227

manifold associated with the latent variables of x and y translations. Identifying
the images with their location on the 2D manifold provides a low‐dimensional means
of representation. Furthermore, while visualizing the set of images in the 1000‐
dimensional space may be difficult, visualizing the images as points in 2D is not.

Principal Component Analysis One of the most popular methods for latent variable
analysis is principal component analysis (PCA). PCA identifies a linear subspace
onto which (i) orthogonal projections of data have a maximum variance and (ii)
which minimizes the mean squared distance between the data and its projections
(Figure 19). The subspace therefore is the best linear representation of the collection
of data.

The linear subspace is found by first normalizing the data. That is accomplished
by subtracting the mean of each M‐dimensional variable to get the normalized data
matrix Y, where the ith row of Y is x xi � . The covariance matrix S Y Y T is then
computed and evaluated for its eigenvectors ui and corresponding eigenvalues λi:

 Su ui i i= λ [63]

The PCA subspace of dimension D is given by selecting the D eigenvectors with
the largest eigenvalues. The eigenvectors are called principal components, and the
corresponding eigenvalues describe the data variance along that principal compo-
nent. The set of D principal components describes a subspace, within the original
data vector space, where the principal components are the orthogonal basis. Projecting
the data vectors onto this basis gives a reduced data representation of dimension D:

 y i iPCA
T

, y u [64]

where y x x= − . The original data can then be reconstructed by summing over the
contributions along each principal component:

x y u u x u u≈ () + ()

= =
∑ ∑
i

D

i i
i

D

i i
1 1

T T [65]

PC2

PC1

FIGURE 19 The first two principal components, PC1 and PC2, for data generated using a
Gaussian PDF.

228 MACHINE LEARNING IN MATERIALS SCIENCE

If the sums in Eq. [65] contain all principal components, then the right side repro-
duces x exactly. However if some of the principal components with the smallest
eigenvalues are left out of the sums, then the right side of Eq. [65] provides an
approximation for x. This approach is sometimes used to reduce the amount of noise
in a data set.

By choosing the first two or three principal components (setting D to 2 or 3), the
PCA representation can be used to visualize high‐dimensional data in the reduced
PCA space. As an example, samples of varying composition from the Fe–Co–Ni
material system were characterized for their powder patterns (integrated X‐ray
diffraction patterns) and are shown in Figure 20a.129 Five samples were drawn from
one region of the composition space (red) and five from another (blue) (color avail-
able in e‐book version). The powder patterns shown are each a list of 89 intensities
for corresponding 2θ values or each are 89‐dimensional vectors that are impossible
to visualize for analysis by inspection. The two‐dimensional (D = 2) PCA representa-
tion of these powder patterns is shown in Figure 20b. Here one can clearly see that
the 2D principal components describe a space in which the 10 powder patterns are
easily separated by their locations in the composition space.

Typically, the principal components can also be investigated as vectors them-
selves—vectors that describe the orthogonal basis of greatest variance in the original
vector space. The first two principal components are shown in Figure 21a.
Correspondence can be seen between the positive peaks of these PCA‐based powder
patterns and the original data. However, the first principal component does not rep-
resent a realistic powder pattern due to its negative values. Nonnegative matrix fac-
torization, described in the next section, is used when the components are required
to be positive definite.

(a)

(b)

42.6 43.6

5

0
–4 –2 0 2 4 6

–5

44.6
2θ

45.6 46.6

FIGURE 20 (a) Powder patterns for 10 samples from Fe–Co–Ni combinatorial library ternary
spread. (b) The powder patterns projected into first two principal components.

UNSUPERVISED LEARNING 229

When the number of data points N is smaller than the number of data dimensions
D, those data points inhabit an N‐dimensional subspace of the D‐dimensional vector
space. As a result, only N − 1 principal components will have nonzero variance and
nonzero eigenvalues. In this situation it is possible to reduce the computational cost
of eigenanalysis of the D2 matrix S, by replacing S with the matrix ′ =S XX()1/ TN
and ui with v Xui i . The new matrix S′ has reduced dimensions of N2, simplifying
eigenanalysis. Recovering the principal components only requires the simple compu-
tation (1/(Nλi)1/2)XTvi.

Nonnegative Matrix Factorization Non‐negative Matrix Factorization (NMF) is a
means of identifying components under the constraint that those components must be
positive definite. This method is typically used when the original data is positive
definite and one wants the components to resemble the original data. The first two
NMF components for the data in Figure 20a are shown in Figure 21b. While the first
two PCA components do not look like powder patterns, the first two NMF compo-
nents look very much like the two types of powder patterns in the original data.
Although useful in data analysis, NMF components are not unique as they are based
on the initial values used in determining the components.

Metric Multidimensional Data Scaling Metric multidimensional data scaling
(MMDS) methods project high‐dimensional data into a lower dimension while
attempting to preserve pairwise distances. This is done by minimizing a loss
function. An illustrative application of this method for phase diagram determination
using X‐ray diffraction data is presented in the section titled “Phase Diagram
Determination.”

For example, consider the specific case of classical multidimensional scaling,
also known as principal coordinate analysis. Let d(xi, xj) represent the distance

(a)

42.6 43.6 44.6 45.6

PCA component 1
PCA component 2

46.6

46.6

(b)

42.6 43.6 44.6 45.6

NMF component 1
NMF component 2

FIGURE 21 (a) The first two principal components for the powder diffraction patterns
shown in Figure 20. (b) The first two components for NMF, which look like original powder
patterns.

230 MACHINE LEARNING IN MATERIALS SCIENCE

between xi and xj, and let zi represent the projection of xi onto a lower‐dimensional
plane. The projection plane is chosen in a way that minimizes

 i j
i j i jd d

,
∑ ()− ()⎡

⎣
⎤
⎦x x z z, ,

2
 [66]

This problem can be solved in a way similar to principal component analysis,
except that the eigendecomposition of the dissimilarity matrix D is used in lieu of the
covariance matrix S. In general, metric multidimensional scaling, the dissimilarity
function d(xi, xj), can be any metric—it need not be the Euclidean distance.

Feature Extraction Feature extraction is the process of identifying pertinent struc-
tural information in data and is typically performed as a preprocessing step along with
operations such as noise smoothing and bias subtraction. Feature extraction can be
highly useful when comparing similar data from different instruments. It is also useful
when dealing with transformed images or crystals (see discussion in the section on
“Materials Property Predictions Based on Data from Quantum Mechanical
Computations”) where suitable distance metrics must be defined to account for such
transformations as well as for identifying grain boundaries and shapes in automated
micrograph analysis (see discussion in the section on “Automated Micrograph
Analysis”). Sets of data originating from different instruments can be reduced to
sample‐specific features, thereby removing the effects of the instruments, and then
mapped into the same feature space for shared analysis. Features are selected to
be both domain and task specific. For example, a surface topography image can be
reduced in both dimension and complexity to the single scalar value of average texture
for the task of comparing sample roughness. Alternatively, the same image could be
reduced to a histogram of peak heights for the task of comparing nanostructured sur-
faces. Feature extraction is commonly used to analyze images, where generic features
include 1D peaks and their 2D counterpart “blobs,” edges, corners, ridges, lines,
ellipses, and other shapes, as well as shapes of different scales and orientations.

Data Preprocessing: Noise Smoothing and Bias Subtraction Preceding feature
extraction, experimentalists frequently deal with issues of signal bias and noise in
high‐dimensional data. A bias is an unwanted systematic signal added to each
measurement, while noise is an unwanted statistical variance in the measurements;
both can come from a collection of different sources associated with the measurement
instrument and the sample itself. For instance, when measuring X‐ray diffraction,
unwanted background signal may appear due to the sample substrate (e.g., diffraction
peaks associated with a silicon substrate) as well as from the “background radiation”
associated with the instrument setup. Sample‐dependent bias and background bias
can be mitigated by subtracting the baseline signal measured from a “blank” sample.
Other instrument‐dependent biases and noise are typically characterized and dis-
cussed in the associated instrument literature.

When information about the bias is not known, a common method for quanti-
fying bias involves curve fitting, where the curve is typically a polynomial function

UNSUPERVISED LEARNING 231

of low degree or a spline function. If the desired measurement signal is positive with
a minimum of zero, the bias curve is fit to the bottom of the signal and then sub-
tracted. Alternatively, the bias is automatically removed when subtracting the mean
of each variable, a common data preprocessing technique for machine learning
algorithms.

While the bias is characterized by a signal, the noise is characterized with inten-
sity, often measured in decibels, as a function of frequency. When the noise profile
is known, data can be preprocessed with an appropriate band‐pass filter. Because
the analyst does not typically have access to the instrument characterization
information, various noise smoothing techniques are used to reduce the influence of
noise in a signal. One approach is to use a moving average filter, which replaces
each signal value with the average of its neighbors within a given range. Another is
to use a Gaussian smoothing filter, which convolves the signal with a windowed
Gaussian of given standard deviation (Figure 22). This method replaces each
original signal value with a weighted average of its neighbors, with closer neigh-
bors given a greater weight than those further away. Another technique involves
fitting a smoothing spline, which uses a least‐squares local fit to replace the original
signal with a series of continuous piecewise polynomials. Many other methods for
bias subtraction and noise smoothing exist; additional information can be found in
Refs. 130 and 131.

Cross‐Correlation and Wavelets Consider a situation in which the data can be
expressed as a continuous (or nearly continuous) function in space, such as a high‐
resolution image. We will call this function h(x). Now consider a feature in the form

(a)

2

1

0

0 10

h

20 30 40

40

20

0

k

g1

0

0 10 20 30 40

(b)

0 5

FIGURE 22 (a) An original noisy signal h with two Gaussian peaks. (b) The Gaussian filter
g and the convolved signal k = h * g with local maxima at the location of the original peaks and
reduced noise.

232 MACHINE LEARNING IN MATERIALS SCIENCE

of a localized pattern to be matched, expressed as a function g(x). Cross‐correlation
can be used to identify regions of the data that match the desired feature well. In one
dimension, the cross‐correlation is given by

h g x f x g x d* *()() = () +()∫

τ

τ τ [67]

and the integral is easily extended to multiple dimensions. Peaks in the output of the
cross‐correlation identify the location of the feature signal in the data. Similarly, for
discrete signals, the cross‐correlation is

h g n m n m

m
* *()() = [] +[]∑ h g [68]

where h*[m] represents the complex conjugate of the mth element of h and g[]n m�
represents the (n + m)th element of g. An example is given in Figure 22, where an
original noisy signal h with two Gaussian peak features of standard deviation 1 is
shown. To identify the peaks, a Gaussian feature signal g is convolved with h giving
the signal k with local maxima at the locations of the original peaks. Convolving a
signal with a Gaussian has an added benefit of noise smoothing.

This process can be generalized to identify a family of feature signals that vary in
properties such as scale and orientation through the use of wavelets. In Eq. [67] the
function g(x) is replaced with a parameterized “mother wavelet” wθ(x), where θ is a
set of parameters that control the size and/or shape of the wavelet.

A common wavelet for detecting 1D peaks and 2D round blobs of different
scales is the Laplacian of Gaussian (LoG) wavelet. In two dimensions, this wavelet
is given by

w x y

a
x y

a
ea

x y

a, () = − − +⎛

⎝
⎜

⎞

⎠
⎟

− +()
1

1
22

2 2
2 2

2
π

 [69]

This wavelet (shown in Figure 23) is the convolution of a Gaussian filter for noise
smoothing and a Laplacian for detection of sharp spatial derivatives. Peaks or blobs
of scale a are identified in the LoG output with sharp peaks at the center of the feature
in the original data.

Edges and Closed Boundaries It is sometimes important to identify different
regions in an image as, for instance, identifying boundaries between different grains.
These boundaries can then be extended and connected to detect regions of heteroge-
neity and to identify their shape.

A common method for edge detection in 2D data is the Canny algorithm. The
original image is first smoothed by convolving with a Gaussian filter to reduce the
effect of single pixel noise on edge detection. The “edge strength” and “edge angle”
of each pixel is then determined through the use of image gradients, computed by con-
volution with gradient masks. For example, the Sobel gradient masks are convolved

UNSUPERVISED LEARNING 233

with image h to give the x‐directional image gradient Gx and the y‐directional image
gradient Gy:

G Gx y=
− +
− +
− +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
+ + +

− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥

1 0 1

2 0 2

1 0 1

1 2 1

0 0 0

1 2 1

* ,h
⎥⎥

* h [70]

The edge strength G and the edge angle θ are then given as

G G G

G

Gx y
y

x
= + =

⎛

⎝
⎜

⎞

⎠
⎟2 2 , arctanΘ [71]

An upper edge strength threshold is used to identify the start of an edge. The edge
is then followed using its direction, until edge strength drops beneath a lower
threshold. Once edges have been identified, they can be used to identify closed
boundaries for cohesive analytically defined shapes such as ellipses through the
Hough transform or more general shapes through the generalized Hough transform.

(a)

(b)

–2 0 2 4

0.1

0

–0.1

–0.2

–0.3

–0.4

–4

FIGURE 23 (a) 1D Laplacian of Gaussian (LoG) with a = 1. (b) 2D LoG given by Eq. [69].

234 MACHINE LEARNING IN MATERIALS SCIENCE

Shape Identification with Moment Invariants Having identified closed boundaries,
the enclosed regions can be quantified for shape using moment invariants, so called
for their invariance to effects such as changes in location, scale, or orientation and in
some cases shear and dilation. For multiple images in which the object’s shape is
changing, moment invariants can also be used to quantify and track the change.

First, each object must be defined by an indicator function:

D r

r

ri
K

K
K() = ⎧⎨

⎩

1

0

for inside the object

for outside the object
 [72]

where Kr is a vector in the image space. The 2D moments of an object is then given by

 µpq
p qd rx y D r p q≡ () { }∈ +∫∫ 2 , , ' [73]

where the summation is performed over the object area A and both p and q are
positive integers. With respect to the center of mass of the object of interest, the
central moments are given by

µ

µ µ
pq

p q

d r x
A

y
A

D r≡ 2 10 01−⎛
⎝
⎜

⎞
⎠
⎟ −⎛
⎝
⎜

⎞
⎠
⎟ ()∫∫ [74]

These moments can be made invariant to the set of similarity transforms including
translations, rotations, and isotropic scaling or the larger set of affine transforms, which
also include homogenous shears and anisotropic dilations. A pair of invariant moments,
ω1 and ω2, have been used to identify and track particle shape in micrographs:132

ω

π µ µ
ω

π µ µ µ1

2

20 02
2

4

2
20 02 11

22 16
=

+()
=

−()
A A

 [75]

ω1 is invariant to similarity transforms, while ω2 is considered an absolute moment
invariant—invariant to the full set of affine transformations.

Computing these moments for an object of interest gives a point in the ω1, ω2
vector space as shown in Figure 24. The region’s shape is given by its location in the
ω1, ω2 space. Points along the curve ω ω2 1

2= indicate N‐sided symmetric polygons,
with lower symmetry shapes falling to the left of the curve, for example, rectangles
of different length–width ratios fall to the left of the (ω1, ω2) point indicated for the
square. A larger set of moment invariants, including higher‐order moments that can
distinguish between right‐ and left‐handed versions of noncentrosymmetric objects,
has also been used in automated micrograph analysis (discussed further in the section
“Automated Micrograph Analysis”).

N‐Point Cross‐Correlations for N‐Point Statistics N‐Point statistics are useful
when investigating spatial data containing multiple states, for example, a micrograph
of a three‐phase material. For such an image, the number of pixels of each state can
be counted and placed in a normalized histogram to give the relative probability of
finding any one state. This is called the 1‐point statistics of the data (Figure 25).

UNSUPERVISED LEARNING 235

A 2‐point statistics image gives the probability of finding a pixel of state A sepa-
rated from a pixel of state B (where B can equal A) by a vector of length R at an angle
θ. Such statistics give information about the uniformity of an image. This is useful
when characterizing material structural heterogeneity in a structure micrograph
(Figure 26). This concept is further discussed in the section on “Automated
Micrograph Analysis.”

150

16π2

4π

All rectangles

All ellipses

e

100

P

50

0

0 2 4 6

ω1

ω1

8 10 12

ω 2

FIGURE 24 The moment invariant vector space for shape identification. Reprinted from
Ref. 128, with permission from Elsevier.

(a) (b)

79%

7% 14%

β

β

γ

γ

α

α

FIGURE 25 (a) Image containing three state regions α, β, γ. (b) 1‐point statistics for state
probability in (a).

236 MACHINE LEARNING IN MATERIALS SCIENCE

The 2‐point statistics are given by evaluating the 2‐point cross‐correlation. For an
image containing Np particles, each particle is identified with an indicator function as
in Eq. [72]. The two‐point cross‐correlation for all pairs of particles is then given by

C r
V

D r D r
V

D r r D r r
i

N

i i
i

N

j
i j

N

i i j j() = () () + −() −(
= = =

≠

∑ ∑∑1 1

1 1 1

p p p

* *)) [76]

where “*” represents a convolution and V is the volume of the region of interest, in
this case the area of the image. The first sum contains the autocorrelation function for
each particle, giving a nonzero value in every direction from r 0 to r Dr , where Dr
is the diameter of the particle in the r direction. The second sum contains the cross‐
correlation between each particle and its neighbors, providing information about the
overlap volume of two particles as a function of their relative position. Figure 26
shows an image with two states: dark gray and light gray (red and blue in the e‐book
version). Figure 26b shows the 2‐point statistics of this image for a vector beginning

(a)

140

120

100

80

60

40

20

20 40 60 80 100 120 140

(b)

60 0.12

0.1

0.08

0.06

0.04

0.02

0

–0.02
–60 –40 –20 0 20 40 60

40

20

0

–20

–40

–60

FIGURE 26 (a) An image with two states: dark gray on light gray background (red on blue
background in color insert). (b) 2‐point statistics for a vector beginning and ending in a dark
gray (red in color insert) state. Reproduced from Ref. 169, with kind permission from Springer
Science and Business Media. (See insert for color representation of the figure.)

SELECTED MATERIALS SCIENCE APPLICATIONS 237

and ending in a red state. The lack of symmetric peaks, concentric to the image center
(similar to lattice diffraction), indicates a lack of periodicity in the red state. Also, the
center of Figure 26b contains a 2D symmetric peak of radius Dr, which corresponds
to the average radius of the red state domains.

SELECTED MATERIALS SCIENCE APPLICATIONS

The tutorial in the prior sections is intended to provide the mathematical background
needed to perform analysis of data and learning from data. Many of the techniques
and algorithms described have already been utilized within the materials science
community. In the following, we present an assortment of examples to illustrate how
these methods are used, including some of those described earlier in greater detail.

Phase Diagram Determination

An exciting arena in which data mining methods are expected to play an important
role is in the automated determination of phase diagrams using high‐throughput
combinatorial experiments.133 Using thin‐film compositional spreads, large fractions
of phase diagrams can be mapped out with a high density of data points on a single
wafer. We illustrate this concept using a recent assessment of the Fe–Ga–Pd ternary
system.3 Natural thin‐film composition spreads of Fe–Ga–Pd were deposited at room
temperature on oriented Si wafers, followed by postannealing and rapid characteriza-
tion. The composition spread wafer contained over 500 individual 1.75 × 1.75 mm2
samples with continuously varying composition across the wafer. X‐ray microdif-
fraction (XRD) was performed on each of these squares leading to a normalized
intensity versus 2θ angle for each square.

Because each XRD spectrum can be viewed as a vector (in 2θ space), clustering
analysis becomes a viable option to distinguish between spectra and to group spectra.
The first step in this process is to select a suitable “distance” measure definition bet-
ween any two given spectra (e.g., the Euclidean norm or 1−Pearson correlation coef-
ficient), leading to a distance matrix D (Eq. [50]). If there exist N spectra, D is an
N × N matrix, with each matrix element Dij representing the “distance” between
spectra i and j. The distance matrix may be used to cluster the N spectra, with each
spectrum being represented by a point in the visualization space; however, any
attempt to visualize the N points in a three‐dimensional plot leads to a problem,
because the visualization space is required to be (N − 1) dimensional. To better under-
stand this, let us consider two spectra, or rather the “points” corresponding to those
two spectra, S1 and S2. The first point may be placed in an arbitrary location, and the
second point at a distance D12 from the first point. Consider now a third spectrum,
represented by point S3, and place this at a distance D13 with respect to the first point
and D23 with respect to the second point. Repeating this process for successive spectra
leads to the problem that all interpoint distances can no longer be maintained in three‐
dimensional space. We could try to place successive points in the best possible loca-
tion, however, such that the chosen distances are the best approximations to the real

238 MACHINE LEARNING IN MATERIALS SCIENCE

distances. Although this procedure discards some of the real distance or similarity
information, it provides us with a way to visualize the distance matrix in regular
three‐dimensional space. A formal strategy to perform this is the metric multidimen-
sional data scaling (MMDS) scheme described previously, the results of which are
shown in Figure 27a for the example of the Fe–Ga–Pd ternary. Clusters of points are
color coded (in e‐book version) to make the grouping of spectra self‐evident.

A more rigorous procedure to determine the groupings is to use a dendrogram as
described in the section on “Hierarchical Cluster Analysis.” An example of this is
shown for the Fe–Ga–Pd system in Figure 27b. Each discrete point along the abscissa

(a)

(b)
1.0

0.8

D
is

ta
nc

e 0.6

0.4

0.2

0.0

FIGURE 27 (a) Two different 3D views of an approximation of the distribution of points
defined by the distance matrix, using metric multidimensional data scaling (MMDS). For this
system, MMDS approximates well the distance matrix, accounting for about 93% of the
information in the matrix. Each point in the MMDS plot corresponds to a spectrum. Points that
are close together correspond to spectra that are similar to each other, as measured using the
Pearson correlation coefficient. Color (e‐book version) is used to identify groups, and groups
are defined using the dendrogram. (b) A dendrogram based on the distance matrix. Points on
the x‐axis correspond to spectra. The height at which the lines leading from the spectra are
connected indicates their similarity. The cut level is set at 0.6, creating six major groups.
Reprinted with permission from Ref. 3. Copyright 2007, AIP Publishing LLC.

SELECTED MATERIALS SCIENCE APPLICATIONS 239

represents one of the spectra, and neighboring points are close in distance. Vertical
lines from each spectrum connect via horizontal lines at some height. The height at
which they connect is determined by the similarity between the spectra—the greater
the height at which the connection occurs, the larger is the distance between the
spectra. The groupings of the spectra then become self‐evident. If we stop making
groups at some threshold similarity level, we will be left with a small number of
groups. In Figure 27b, the threshold chosen is indicated by the long horizontal line,
leading to six distinct groups. The MMDS and the dendrogram schemes generally
lead to similar groupings.

The six groupings derived in Figure 27b indicate the possibility of six different
regions of similar structure. Identification of these regions can then be done by com-
paring the XRD spectra of the most representative member (i.e., the member having
the smallest distance to all other members) of a group of spectra to a set of reference
spectra from the NIST crystallographic databases. The result for the Fe–Ga–Pd
system is shown in Figure 28. The regions and boundaries are clearly revealed in the
phase diagram. This procedure is being adopted for the creation of phase diagrams in
an automated high‐throughput manner for several systems.133

Similarly, work is underway to automate the analysis of pure phases from these
phase response diagrams and to identify the phase mixture ratios for each sample.
These investigations include the use of high‐speed methods134 that as of yet still
require verification by a crystallographer to ensure agreement with physics princi-
ples (e.g., Gibbs phase rule) and offline methods that seek to integrate such physics

BCC Fe (110)
BCC and FCC Fe
FCC Fe (200)
FCC Fe-Pd and Hexagonal Fe-Ga
FCC Fe-Pd and BCC Fe
FCC Fe-Pd

Pd

Fe Ga

FIGURE 28 The distribution of diffraction patterns produced by using groups of spectra
derived from clustering analysis and comparing the most representative patterns from those
clusters with a database of reference patterns. Reprinted with permission from Ref. 3.
Copyright 2007, AIP Publishing LLC (color available in e‐book version).

240 MACHINE LEARNING IN MATERIALS SCIENCE

principles into the automated analysis through the use of constraints and similarity
preserving measures.109,135

The previous methods have been extended with new clustering algorithms to
provide on‐the‐fly analysis of combinatorial library diffraction data.12 Diffraction
data is imported, processed, and analyzed in real time during data collection to pro-
vide phase response diagrams to the user. These methods can also utilize critically
evaluated structure data from the Inorganic Crystal Structure Database to provide
improved phase response diagram results. With such high‐speed techniques, the
user can analyze a combinatorial library rapidly, identify potential phase bound-
aries, and then perform a focused study on those boundaries of interest, reducing
both analysis time and beam time.

Materials Property Predictions Based on Data from Quantum
Mechanical Computations

When confronted with a new material, it would be advantageous if its properties
could be predicted using past knowledge pertaining to other similar known materials,
rather than by resorting to new experiments or laborious calculations. As highlighted
earlier, this paradigm may be used to predict crystal structures of new compounds
knowing only the crystal structure information of other known compounds.

What if there is insufficient past information? If the goal is to derive an accurate
determination of intrinsic materials properties (in addition to the crystal structure),
one typically resorts to computations based on quantum mechanics. These are accu-
rate, versatile, and nonsystem‐specific methods but also time consuming. If quantum
mechanical data is already available for a number of compounds within a subclass,
can this information be used to predict properties of new systems within the same
subclass? This is the question we answer in this section using several recent publica-
tions as examples.6,7,136

The basic idea of how to predict properties using quantum‐derived data and
machine learning is depicted in Figure 29. We reduce materials within a subclass to
numerical fingerprints that represent the material uniquely. These are, of course, the
feature vectors in the parlance of the machine learning community. Various machine
learning methods may then be applied to map the fingerprints to properties. Once
such a mapping is accomplished using a set of training data, new materials prop-
erties can then be computed efficiently without resorting to quantum mechanical
calculations.

The biggest hurdle in creating such a prediction machine is the reliable definition
of a material fingerprint. That fingerprint must be invariant with respect to transla-
tional and rotational operations, as well as to the ordering of atoms of the system,
because the properties of the system are invariant with respect to such transforma-
tions (these issues will crop up again in a subsequent section on the development of
interatomic potentials, where the demands of fingerprint choices are even more strin-
gent). These issues were already recognized in the section on “Feature Extraction”
and are particularly severe in systems containing multiple numbers and types of
atoms. A good example of the need to satisfy fingerprint invariance is the work by

SELECTED MATERIALS SCIENCE APPLICATIONS 241

Rupp et al.136 The goal of that study was to predict accurate molecular atomization
energies quickly. The machine learning model used was based on kernel ridge regres-
sion (KRR) (see the section on “The Kernel Trick”) using Gaussian kernels. The
model was trained and tested on >7000 organic molecules containing up to seven
atoms (including H, C, N, O, and S). The molecular atomization energies for training
and testing were computed using density functional theory (DFT).137,138

Recall that KRR relies on the notion that two materials with similar fingerprints
have similar properties. Consider two systems I and J with fingerprints xi and xj. The
similarity of the two vectors may be measured in many ways, including the Euclidean
norm of the difference between the two vectors, || ||x xi j� , or the dot product of the
two vectors x xi j� . In this example we use the former and refer to it as |xij|. Clearly,
if | |xij 0, materials I and J are equivalent (insofar as we can conclude based on the
fingerprints), and their property values yi and yj should thus be the same. When
| |xij n 0, materials I and J are inequivalent; y yi j� is (usually) nonzero and depends
on |xij|, as prescribed by the KRR scheme.

The molecular fingerprint employed by Rupp et al. is based on the “Coulomb”
matrix M defined as

M

Z i j

R R
i jij

i

i j

i j

=

=

−

⎧

⎨
⎪

⎩
⎪

0 5 2 4. . for

Z Z
for ≠ [77]

Atomic
coordinates

Large-scale
exploration

xil

xil

xml xmf xmp

xif

xif

xip

xip

Prediction
validation

Machine learning

Quantum theory

Material

Material

Property

Property

Attribute
vectors

???

… …
… ……

……

… …

…
… …
… …
… …

H! = E!

FIGURE 29 A perspective on the role machine learning can play in accelerating quantum
mechanical computations.

242 MACHINE LEARNING IN MATERIALS SCIENCE

where Zi and Ri are the atomic number and position of atom i, respectively. The off‐
diagonal elements correspond to the Coulomb repulsion between atoms i and j, while
the diagonal elements are a polynomial fit of the atomic energies to nuclear charge.
M is diagonalized, and the eigenvalues, λi, are ordered with decreasing absolute
values. For matrices differing in dimensionality, the eigenvalue vector λ of the smaller
system is expanded in size by adding zeros (the dimensionality of M for a particular
molecule is equal to the number of atoms in the molecule). The λ vector constitutes
the fingerprint of a molecule. It should be noted that this fingerprint is invariant to
uniform translation, rotation, and atomic permutation of the molecule. The “distance”
between two molecules is then measured by the Euclidean (ℓ 2) norm of the difference
between two fingerprint vectors (see the section on “Regularized Least Squares”).
The fingerprints, or equivalently the distances, were then used by Rupp et al. within
a KRR method to establish a protocol for predicting molecular atomization energies.

Figure 30 displays the predictive capability of the machine learning (ML) scheme
and contrasts it to the predictions of other methods. In subsequent work, Hansen et
al. provide a deeper analysis of the KRR‐based prediction scheme and explore the
applicability of neural networks to accomplish such predictions.7 Using such machine
learning paradigms to predict properties other than the molecular atomization
energies has also been explored recently.7,15

The ML protocol for molecular systems is significant, but it does not address
critical issues associated with periodic solid state systems. More specifically, the
Coulomb matrix‐based fingerprint is not invariant with respect to translated unit

–0.5

–0.5

–1

–1

–1.5

–1.5

E ref (103 kcal/mol)

E
es

t (
10

3
kc

al
/m

ol
)

–2

–2

Bond counting

PM6
ML

FIGURE 30 Correlation of the DFT results (Eref) with the machine learning (ML) model
estimates (Eest) of atomization energies for a data set exceeding 7000 organic molecules, along
with a comparison of results from bond counting139 and semiempirical quantum chemistry
(PM6) calculations.140 Reprinted with permission from Ref. 136. Copyright 2012 by the
American Physical Society.

SELECTED MATERIALS SCIENCE APPLICATIONS 243

cell definitions; moreover, several degrees of freedom are “lost” when using the
eigenvalue vector of the Coulomb matrix, λ, as the fingerprint (note that the total
number of degrees of freedom of an N atom system is 3N − 6, but the dimension of
λ is just N).

A recent development obviates these issues within the context of one‐dimensional
infinite polymeric chains.6 For definiteness, let us assume that the building blocks of
these chains are drawn from a pool of the following seven possible molecular frag-
ments or building blocks: CH2, SiF2, SiCl2, GeF2, GeCl2, SnF2, and SnCl2. Setting
all the building blocks of a chain to be CH2 leads to polyethylene (PE), a common,
inexpensive polymeric insulator. The rationale in Ref. 6 for introducing the other
group 14 halides was to interrogate the beneficial effects (if any) those blocks might
have on various properties when included in a base polymer such as PE. The prop-
erties we focus here on include the atomization energy, the formation energy, the
lattice constant, the spring constant, the band gap, the electron affinity, and the optical
and static components of the dielectric constant.

The initial data set for 175 such polymeric chains containing four building blocks
per repeat unit was generated using DFT. Each infinite 1D polymer system was then
represented using a numerical fingerprint. One possibility for creating the finger-
print is to use the chemical and structural information associated with the building
blocks. Because the polymer systems consist of seven possible building units, the
fingerprint vector may be defined in terms of seven fractions, |f1, f2, f3, f4, f5, f6, f7⟩,
where fi is the fraction of building unit i, that is, the fragments CH2, SiF2, SiCl2,
GeF2, GeCl2, SnF2, and SnCl2. One can extend the components of the fingerprint
vector to include clusters of two or three building units of the same type occurring
together; such a fingerprint vector could be represented as |f1, …, f7; g1, …, g7; h1, …, h7⟩,
where gi and hi are, respectively, the fraction of building unit pairs of type i and the
fraction of building unit triplets of type i. We make the important observation that
this definition of fingerprint takes care of rotational and permutation invariance
requirements, as well as the translation and inversion invariance requirements encoun-
tered in infinite periodic systems.

Next, the DFT data is used to train a KRR‐based machine learning model. Of the
DFT‐derived data set consisting of 175 polymers, 130 were used in the training set
and the remainder in the test set to allow for validation of the machine learning
model. Once the machine has learned how to map between the fingerprints and the
properties using the training set, predictions were made and the model was vali-
dated. Furthermore, several systems with eight‐block repeat units were considered
(in addition to the 175 four‐block systems). Results for all eight properties are
shown in Figure 31. As can be seen, the level of agreement between the DFT and
the machine learning schemes is uniformly good for all properties across the four‐
block training and test set, as well as the “out‐of‐sample” eight‐block test set,
indicative of the high‐fidelity nature of this approach. The performance of the KRR
machine learning scheme, even when dealing with situations that may be inher-
ently highly nonlinear (e.g., the dependence of the band gap on chemistry), is not
surprising because Gaussian kernels based on an underlying similarity measure
were used.

Atomization energy (eV)

M
ac

hi
ne

 le
ar

ni
ng

Formation energy (eV) Spring constant (N/m) Bandgap (eV)

99.71%

99.58%

98.21%

96.30% 92.53% 95.38%

90.88%96.42%

c Lattice parameter (Å)

Density functional theory

Electron affinity (eV) Electronic dielectric constant

Total dielectric constant

Training
–11

–12

–13

–14

–15

–16

–17
–17 –16 –15 –14 –13 –12 –11 1.25 1.50 1.75 2.00 2.25 0 1 2 3 4 5 6

10–25 –20 –15 –10 –5 0 25 50 75 100 125 150 2 3 4 5 6 7

2 3 4 5 6

0 10 20 30 40 50

Test-4 blocks
Test-8 blocks

Training
Test-4 blocks
Test-8 blocks

Training
Test-4 blocks
Test-8 blocks

Training
Test-4 blocks
Test-8 blocks

Training
Test-4 blocks
Test-8 blocks

Training
2.25 6

5

4

3

2

1

0

7 50

40

30

20

10

0

1500

–5

–10

–15

–20

–25

125

100

75

50

25

0

6

5

4

3

2

1

6

5

4

3

2

2.00

1.75

1.50

1.25

Test-4 blocks
Test-8 blocks

Training
Test-4 blocks
Test-8 blocks

Training
Test-4 blocks
Test-8 blocks

FIGURE 31 Performance of machine learning for a set of eight properties of 1D polymeric chains made from CH2,
SiF2, SiCl2, GeF2, GeCl2, SnF2, and SnCl2 building blocks. The training set was composed of systems containing 4‐block
repeat units, and the test set involved systems with both
4‐block and 8‐block repeat units. Pearson’s correlation index is indicated in each of the panels to quantify the agreement
between the two schemes.

SELECTED MATERIALS SCIENCE APPLICATIONS 245

More recent developments provide additional evidence that machine learning
methods can effectively be used to perform accelerated property predictions.

Development of Interatomic Potentials

Many physical properties of materials are determined by the total potential energy:
the equilibrium structure of a molecule or a crystal is the one having the lowest total
energy; surfaces, interfaces, defects, and other (meta)stable structures correspond to
local minima in the total energy hypersurface in phase space (also referred to as the
potential energy surface or PES); the curvatures of the PES at energy minima are
related to the vibrational and phonon frequencies, force constants, and elastic mod-
uli; activation energies of chemical reactions, diffusion, and phase transitions are
“passes” in the PES between local minima (“valleys”) corresponding to the reactants
and products; and so on. Methods to determine the PES (or at least critical portions
of the PES) are thus extremely useful.

Strategies for determining PESs efficiently and deriving properties from those
PESs have been the focus of research over many years and across many disci-
plines. First principle methods based on quantum mechanics provide such a
strategy, but they can be time‐intensive, especially if the system contains more
than a 1000 atoms (the length‐scale challenge) or if the dynamics of even a small
system has to be studied over a long period of time (the time‐scale challenge).
One practical solution to circumvent such spatiotemporal challenges associated
with quantum methods is to use empirical and semiempirical interatomic poten-
tials (sometimes called force fields) to characterize the PES. These methods pre-
dict the PES of a collection of atoms using predecided and preparameterized
functional forms of the potential energy in terms of the atomic‐level geometry.
Because the Schrödinger equation is not solved, such methods come at a much
lower computational cost compared to quantum mechanics‐based methods. The
downside is that they also come with either reduced accuracy or a narrower
domain of applicability (i.e., parameterizations determined for a specific system
in a specific environment will not, in general, be transferrable to new systems or
new environments of the same system). Examples of such schemes include the
Lennard‐Jones potentials for noble gases, Stillinger–Weber, Tersoff, or Brenner
and Garrison potentials for covalent systems, and the embedded atom method
potentials for metals.141

The fidelity with which a given interatomic potential can predict properties
depends on the choice of the functional form of the potential and the associated
parameterization. While simplicity is desired, this also leads to inaccuracies and
a narrow domain of applicability. Moreover, real interatomic interactions are
intrinsically complex. A pathway to creating complex functional dependences of
the energy with respect to the geometry of the system (i.e., atomic positions) may
be provided by modern machine learning methods. This has, in fact, already been
exploited effectively via artificial neural networks8,9,142,143 with the energy function
trained using DFT data. In other words, the interatomic potentials constructed
from machine learning methods are trained to reproduce DFT results (of energies,

246 MACHINE LEARNING IN MATERIALS SCIENCE

forces, and dynamics), but those functions reproduce the PES at a small fraction
of the cost of DFT calculations.

Neural networks were discussed earlier in the section on “Supervised Learning
Algorithms” and will not be discussed in detail here. It suffices to say that Figure 32
is a schematic of a typical feed‐forward neural network that has been used in the
past to map the coordinates of a set of N atoms, Ri, i = 1 − N, to the total energy, Es,
of the system. Again, a critical ingredient that enters this scheme is the fingerprint
vector. Because the demands on the interatomic potentials for predicting energies
(and especially forces) are high, particular care must be taken in the choice of the
fingerprints. In keeping with the philosophy that interatomic potentials take the
atom type and position information as the starting point in the process of providing
energies and forces, it is tempting to use the Cartesian coordinates of the atoms and
the atom types as the fingerprints. However, because atomic Cartesian coordinates
are not invariant with respect to a rotation or translation of the system, such coor-
dinates cannot be directly used in this mapping process. Thus, a transformation of
the Cartesian coordinates to a more appropriate set of coordinates is required so
that the chemical environment of a given atom can be properly captured. “Symmetry
functions” offer one such set of coordinates. An example of a radial symmetry
function is

G ei

j i

Rij R f Rij=
≠

− −() ()∑ η s c
2

 [78]

Atomic
position
vectors

R1 G1

R2 G2

RN GN

Es,1

Es,2

Es,N

Es

Symmetry
function
vectors

Atomic
neural

networks

Atomic
energies

Total
energy

FIGURE 32 Structure of a high‐dimensional neural network (NN) potential based on an
expansion of the total energy as a sum of atomic energy contributions.

SELECTED MATERIALS SCIENCE APPLICATIONS 247

where η and Rs are parameters that define the Gaussians, Rij is the distance between
atoms i and j, and fc is a cutoff function defined as

f R

R

R
R R

R R
ij

ij
ij

ij

c s
c

c

for

for

() = ×
⎛

⎝
⎜

⎞

⎠
⎟ +

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤

>

⎧

⎨
0 5 1

0

. cos
π

⎪⎪⎪

⎩
⎪
⎪

 [79]

Likewise, angular symmetry functions can be defined. Symmetry functions are
essentially a set of functions of the atomic positions, allowing for a transformation of
the Ri vectors to the Gi vectors. Because the Gi vectors depend only on the inter-
atomic distances and angles, they are invariant to translations and rotations in molec-
ular as well as in periodic solid state systems. For a given spatial distribution of
atoms, the Gi vector components, corresponding to various choices of the parameters
η and Rs, represent (the environment of) atom i. Two atoms residing in exactly the
same chemical environment will have exactly the same symmetry function represen-
tations; moreover, the set of Gi vectors will be identical for all energetically equivalent
representations of the system.

An additional appeal of the neural network configuration of Figure 32 is that this
scheme allows for the partitioning of the total energy into atomic energies, as a map-
ping between each of the Gi vectors (corresponding to an atom i) is established with
the corresponding atomic energy Es,i (this neural network is hence called an “atomic”
neural network). The sum of all the Es,is is of course the total energy, Es, of the
system. Once trained on a set of atomic configurations, the atomic neural network is
capable of providing Es,i when the Gi of an atom in a new configuration is supplied
(regardless of the number of atoms in the new configuration). The neural network‐
based interatomic potential definition is thus complete.

Figure 33 compares the radial distribution function (RDF) of a silicon melt at
3000 K for a cubic 64‐atom cell obtained using MD simulations based on DFT, sev-
eral interatomic potentials (including the Bazant, Lenosky, and Tersoff potentials),
and the neural network potential.143 It can be seen that the RDF obtained from a
neural network potential‐based MD simulation best matches the DFT result, while
there are significant deviations for the other empirical potentials, attesting to the
versatility, fidelity, and efficiency of the neural network‐based potentials. Such
NN‐based schemes have been used in several applications to date ranging from
molecules, solids, and surfaces to elemental and compound systems (the latter
involves enhancements to deal with electrostatic interactions between atoms of
unlike types).9

Finally, we also note that paralleling the developments based on neural networks
is an alternate strategy based on KRR using Gaussian kernels as the learning
scheme.12 These potentials, referred to as Gaussian approximation potentials, or
GAP, also lead to a decomposition of the total energy into atomic energies and a
mapping of atomic environments (written in terms of a bispectrum, a 3‐point corre-
lation function) to atomic energies. Both the neural network and KRR‐based schemes
are capable of providing analytical forces and hence allow for efficient MD

248 MACHINE LEARNING IN MATERIALS SCIENCE

simulations. The GAP scheme competes with the neural network‐based approach in
terms of speed, versatility, and fidelity but has the attractive feature that its learning
model (unlike neural networks) is more physically motivated being based on the
concept of similarity. Figure 34 shows an example of the prediction of the coefficient
of thermal expansion of diamond using DFT and GAP potentials within the quasi-
harmonic approximation and by MD simulations utilizing the Brenner and GAP
potentials.12 Comparing the predicted results with experiment, it is evident that the
quasiharmonic approximation is inadequate at high temperatures (although GAP
potentials reproduce DFT results) and that MD simulations utilizing the GAP poten-
tials outperform all other schemes. Details of the GAP potential generation method
may be found elsewhere.12

0 500

6
× 10–6

4
2
0

α
(K

–1
)

1000

Temperature (K)

1500 2000

FIGURE 34 Linear thermal expansion coefficient of diamond in the GAP model (dashed
line) and DFT (dash‐dotted line) using the quasiharmonic approximation and derived from
MD (216 atoms, 40 ps) with GAP (solid) and the Brenner potential (dotted). Experimental
results are shown with squares. Reprinted with permission from Ref. 12. Copyright 2010 by
the American Physical Society.

3.0

2.5

2.0

1.5

R
D

F
(a

rb
. u

ni
ts

)

1.0

0.5

0.0
1.5 2.0 2.5 3.0

r (Å)

3.5 4.0 4.5 5.0 5.5

DFT
Bazant
Lenosky
Tersoff
NN

FIGURE 33 Radial distribution function of a silicon melt at 3000 K obtained from MD sim-
ulations based on DFT, empirical interatomic potentials (including those by Bazant, Lenosky
and Tersoff), and NN‐based potentials. Reprinted with permission from Ref. 143. Copyright
2007 by the American Physical Society. (See insert for color representation of the figure.)

SELECTED MATERIALS SCIENCE APPLICATIONS 249

A more recent development utilizes the capability to predict atomic forces directly
given just the atomic configuration [Refs. 1 and 2]. Such a capability may then be
used within large‐scale geometry optimizations and molecular dynamics simula-
tions. The basic premise of such a scheme is that the behavior of an atom in a mole-
cule, liquid or solid is governed by the force it experiences. Within this development,
a recipe has been proposed to numerically represent atomic environments, which can
be mapped to vectorial quantities such as the atomic force using machine learning
methods. What results then is a force field. Several examples are provided as to how
such a force field for Al can be used to go far beyond the length‐scale and time‐scale
regimes presently accessible using quantum‐mechanical methods. It is argued that
pathways are available to systematically and continuously improve the predictive
capability of such a learned force field in an adaptive manner, and that this concept
can be generalized to include multiple elements. Strategies are also available to
develop, and use, such a force field on‐the‐fly during the course of a DFT based
molecular dynamics simulation, thus leading to hybrid DFT/ML molecular dynamics
simulations.

Crystal Structure Predictions (CSPs)

One of the greatest challenges in computational materials design is to predict the
crystal structure of a material that has not yet been synthesized.144,145 A straightfor-
ward approach to crystal structure prediction is to search the potential energy surface
of various atomic arrangements in an attempt to identify the atomic arrangement
(crystal structure) with the minimum energy. Such an approach can make use of
machine learning algorithms to predict the potential energy surface, as discussed in
the section on “Development of Interatomic Potentials.” However it is also possible
to directly use machine learning to predict crystal structure, by mining a database of
known crystal structures to determine the probability that a material with a given
composition will have a given structure type (e.g., spinel, fcc, etc.). Using this latter
approach, Fischer et al. developed a method for structure prediction called the “Data
Mining Structure Predictor” (DMSP).146

In the DMSP approach, the probability distribution over possible ground states for
a given chemical space (e.g., Al–Ti structures) is calculated using a truncated “cumu-
lant expansion”:

p
Z

p x
p x x

p x p xi
i

j k

j k

j k

x() = () ()
() ()∏ ∏1

,

,
 [80]

where x is the set of ground state structure types at different compositions in the
chemical space, p(xi) is the probability distribution over possible values for the ith
element of x, and p(xj, xk) is the joint probability distribution over possible values for
the jth and kth elements of x. The probability distributions p(xi) and p(xj, xk) were
calculated using a Bayesian analysis of structures in the Inorganic Crystal Structure
Database (ICSD),147 which contains over 100,000 known structures.

250 MACHINE LEARNING IN MATERIALS SCIENCE

The probabilities calculated using DMSP were used by Fischer et al. to generate
a ranked list of the structure types that are most likely to occur in different chemical
spaces. They demonstrated that 90% of the time, the experimentally observed struc-
ture type was in the top five structures identified by the DMSP ranking. This com-
pares favorably to just choosing the structure types that occur most frequently, which
have only a 62% success rate for the top five structures.

Hautier et al. extended the DMSP approach to ternary oxides, using it to predict
likely new ternary oxide compounds.4 After further filtering the list of likely com-
pounds using DFT calculations, they identified 355 ternary oxides that are likely to
exist but were not in the ICSD. To test these predictions they searched for the pre-
dicted structures in the PDF4+ database, a database of known diffraction data that
had not been used to parameterize the DMSP model. Of these 355 oxides, the PDF4+
database contained structural information for 146 (the remaining structures might
not exist or may not have been discovered yet). The known diffraction data matched
the predicted structure types in 140 of the 146 cases, suggesting that their method has
a high success rate in predicting the structures of new ternary oxides.

The drawback to the DMSP approach is that it is limited to known structure types
for which there is sufficient training data available, and it will never be able to predict
the existence of a structure type that has never been seen before. Thus it would be
difficult to effectively extend this method to the more complex space of materials
containing four or more components.

Developing and Discovering Density Functionals

We now consider the question as to whether the intrinsic accuracy of DFT computa-
tions can themselves be improved via machine learning. Among all quantum
mechanics‐based computational methods aimed at materials property predictions,
DFT presently offers the best trade‐off between computational cost and accuracy.
Several approximations are made to render the solution of the DFT Kohn–Sham
equations practical, the most critical involving the electron–electron exchange–
correlation interaction. While the Hohenberg–Kohn theorems of DFT demonstrate
the existence of a universal exchange–correlation functional of the electron density,
the explicit functional form is unknown. The fidelity of DFT results depends on this
approximation. In important cases (such as strongly correlated systems and systems
bound by weak van der Waals interactions), the currently used approximations—
such as the local density approximation (LDA), the generalized gradient approxima-
tion (GGA), or even more advanced hybrid‐ and meta‐GGA functionals—often fail.
Consequently, there is a never‐ending search for density functionals (especially
better approximations to them).148

Throughout this chapter we have seen that machine learning is a powerful tool for
finding patterns in high‐dimensional data, especially patterns that defy and evade
human intuition. Machine learning models can be trained on known good examples
to detect a pattern in a new situation or make predictions related to a new situation.
Within the context of the present discussion, if solutions are known for a subclass of
problems that connect the electron density to a set of properties (e.g., the

SELECTED MATERIALS SCIENCE APPLICATIONS 251

exchange–correlation energy, electronic kinetic, or total energy), this knowledge can
be used to train an machine learning scheme to make predictions of those properties
for new instances of the electron density (corresponding to new physical
situations).

In recent work, Snyder and coworkers consider a prototypical problem involving
N noninteracting spinless fermions confined to a one‐dimensional box, 0 < x < 1, with
hard walls.11 For continuous potentials v(x), the Schrödinger equation can be solved
numerically, the lowest N orbitals occupied, and the kinetic energy T and the electron
density n(x) may be computed (the latter is the sum of the squares of the occupied
orbitals). For a class of potentials v(x), this procedure provides examples of the rela-
tionships between the electron density n(x) and the kinetic energy T, represented here
as T[n] (where square brackets represent a functional). The aim of the machine
learning approach is then to construct T[n] that first completely bypasses the quantum
mechanical procedure (much like the examples provided in the section on “Materials
Property Predictions Based on Data from Quantum Mechanical Computations”;
cf. Figure 29) and second provides a kinetic energy functional.

In this regard, Snyder et al. consider up to four electrons in a one‐dimensional box
specified by potentials of the form

v x a e

i
i

x bi

ci() = −
=

− −()

∑
1

3
2

2 2
 [81]

They generated 2000 such potentials, randomly sampling 1 < ai < 10, 0.4 < bi < 0.6,
and 0.03 < ci < 0.1. For each potential, numerical solution of the Schrödinger equation
yields T and n(x). The T[n] mapping was then established using KRR, using 1000
densities in the test set, M others for training, and 10‐fold cross‐validation. The
authors show that for M > 80, the mean average error of the predicted kinetic energy
is under 1 kcal/mol, that is, “chemical accuracy” has been achieved.

The previous demonstration is gratifying as it heralds a pathway for determining
more accurate density functionals. But challenges remain. The authors show that a
straightforward application of their procedure does not guarantee that derivatives of
the relevant functionals, which are encountered in orbital‐free DFT implementa-
tions, are always predicted properly. They show this problem can be overcome by
using principal components to eliminate arbitrarily close electron densities, which
tend to add noise in the training data set. A further point to note is that the predictive
capability or domain of machine learning schemes depends on the example (or
training) set used. Thus, applying this scheme to molecules and solids will require
more realistic and diverse electron densities and properties.

Lattice Models

Many problems in materials science can be expressed in terms of periodic arrays of
sites where each site can exist in a variety of different states exemplified, for example,
by magnetic ordering where “spin‐up” or “spin‐down” states are assigned to sites on
a lattice (Figure 35a). If we let the variable si indicate the state of the ith site, the set

252 MACHINE LEARNING IN MATERIALS SCIENCE

of all such variables, denoted by s, gives the overall state of the material. A property
of the material can then be expressed as a function, f (s). Such functions are known as
lattice models.

One of the most widely studied lattice models is the Ising model,149 in which the
site states represent the electronic spin at a given site, with “up” spin indicated by
si 1 and “down” spin indicated by si = −1. If the interactions between two spin
moments are assumed to extend no farther than the nearest neighbor and all sites are
symmetrically equivalent, the magnetic energy of the system may be expressed as

f V V s V s s

i
i

i j nn
i js() = + +∑ ∑

() ∈
0 1 2

,
 [82]

where V0, V1, and V2 are coefficients and “nn” is the set of all pairs of nearest‐
neighbor sites.

In cluster expansion models,150 the Ising model approach is extended in the follow-
ing ways (Figure 35):

1. The site variables si may represent any state of the site, not just spin. In practice
they are commonly used to represent site occupancy in materials with substi-
tutional disorder. For example, in a Cu–Ni alloy, si 1 would indicate that Cu
is present at the ith site, and si = −1 would indicate the presence of Ni.

(a)

(b)

+1

+1

+1–1

–1

–1

–1

–1

–1 –1

–1

–1

+1

+1 +1

+1 +1 +1

+1

+1

+1

+1 +1

+1

+1

Cu

CuCu

Cu

Cu Cu

Cu Cu Cu Cu

Cu Cu

Cu

Cu

Cu

+1

+1–1

–1

Ni Ni

NiNi

NiNi

Ni

Ni Ni –1

–1

–1

–1 –1

–1

–1

+1

+1 +1

+1 +1 +1

+1

+1

+1

+1 +1

+1

FIGURE 35 Differences between (a) Ising model and (b) a typical cluster expansion.
Cluster expansions are applied to a variety of different types of problems but most commonly
used to study atomic order. An Ising model includes contributions from individual sites and
nearby pairs of sites (outlined in boxes on the right), whereas the cluster expansion can include
contributions from larger and more complex clusters of sites.

SELECTED MATERIALS SCIENCE APPLICATIONS 253

2. Interactions beyond nearest‐neighbor pairs are considered. This includes
3‐body, 4‐body, etc., interactions, as well as interactions between sites that
may be very far apart. Ducastelle et al. showed that if interactions between all
possible clusters of sites are considered, then the following expansion is exact
for a binary alloy:150

f V V s

i
is() = +∑ ∏

∈
0

α
α

α
 [83]

where α represents a cluster of sites, the sum is over all possible clusters of sites, and
the product is over all sites in the cluster. V0 is a constant term, and Vα is the coeffi-
cient for cluster α. The number of distinct coefficients in the expansion may be
reduced by acknowledging that values of all coefficients for symmetrically equivalent
clusters must be the same. The challenge is to determine the values for these unknown
coefficients, referred to as effective cluster interactions (ECI). Although Eq. [83] is
written for binary systems, a similar result can be obtained for higher‐order
systems.

Cluster expansions are commonly used to study systems exhibiting substitutional
disorder, where they are usually parameterized using a training set of DFT calcula-
tions. They are typically capable of rapidly calculating the energies of millions of
different arrangements of atoms within 10 meV per atom of DFT. This combination
of speed and accuracy makes them a useful tool for thermodynamic averaging (e.g.,
to generate alloy phase diagrams) or searching for structures with optimal property
values (e.g., ground state structures). The cost of generating a cluster expansion is
primarily the cost of generating the training data used to parameterize the expansion.
Hence there is great interest in finding ways to generate accurate cluster expansions
with minimal training set size.

To determine the unknown coefficients in a cluster expansion, it is necessary to
constrain and/or weight the hypothesis space. Historically, this has been done through
cluster selection, in which it is assumed that clusters that contain a large number of
sites and clusters that contain sites that are very far apart are likely to have small ECI.
Accordingly, those ECI can be set to zero with little loss of accuracy. The remaining
ECI are typically fit to DFT calculations using a least‐squares fit.

To facilitate the cluster selection process, van de Walle and Ceder introduced the
concept of cross‐validation into cluster expansions.151 They proposed that the set of
clusters to be included in the expansion should be those for which the cross‐validation
error was lowest. Other groups pursued similar efforts to improve the quality of
cluster expansions. For example, Drautz and Diaz‐Ortiz proposed introducing a reg-
ularization term into the objective function used to determine the ECI, in the form of

 α
α α∑w V2 2 [84]

where the sum is over all clusters in the expansion and wα is a weight assigned to
each set of symmetrically equivalent clusters.152 The weights could be determined by
minimizing the cross‐validation score. Similarly, Zunger and coworkers developed a

254 MACHINE LEARNING IN MATERIALS SCIENCE

“mixed‐basis” cluster expansion, in which the following regularization term was
applied to pair clusters:153,154

λ

α

λ
α1 2 2∑r V [85]

where r is the distance between sites in the pair and λ1 and λ2 are adjustable parame-
ters that may be determined by cross‐validation.

Mueller and Ceder demonstrated how all of the aforementioned approaches, and
others, could be interpreted in a Bayesian framework, in which the regularization
term was the negative log of a prior probability distribution placed over the ECI.155
In the Bayesian interpretation of the cluster selection approach, the prior probability
distributions for clusters excluded from the fit are effectively delta functions centered
at zero. For clusters that are included in the fit, an improper uniform prior is implic-
itly used.

Building off of the Bayesian interpretation, Mueller and Ceder demonstrated that
cluster expansions with reliably low prediction error could be generated by explicitly
incorporating physical insights into the fitting process. For example, the expected
magnitudes of the ECI for pair clusters can be expected to decrease with respect to
distance, resulting in a regularization term similar to the one in Eq. [85]. Similarly,
the expected magnitudes of the ECI can be expected to decrease as the number of
sites in the cluster increases.

The earlier insights can be incorporated into prior distributions for expected ECI
values, in which adjustable parameters determine how expected ECI magnitudes
decrease as cluster size increases. An example of such prior distributions, and a
comparison to the cluster selection approach, can be seen in Figure 36. The parameters
in the prior probability distributions can be adjusted to minimize the cross‐validation
score. It was demonstrated that prior distributions with fewer adjustable parameters
tend to produce more accurate cluster expansions than those with many adjustable
parameters. In other words, the optimization of the cluster expansion using cross‐
validation is less likely to overfit the data.

By using a multivariable Gaussian distribution (Eq. [26]) as the prior distribution
for the ECI values, the most likely ECI values can be rapidly determined using Eq.
[27].155 The advantage to this approach is that it is in practice only slightly more
expensive computationally than a simple least‐squares fit, and it allows the inclusion
of more distinct ECI in the cluster expansion than there are structures in the training
set (something that would lead to an ill‐posed problem if a simple least‐squares fit
were used). It was demonstrated that the off‐diagonal terms in the regularization
matrix Λ (Eq. [27]) could be used to introduce the concept of similarity into cluster
expansions.155 For example, a nearest‐neighbor pair three layers below the surface of
a material is not symmetrically equivalent to a nearest‐neighbor pair four layers
below the surface, so the corresponding ECI should not be identical. However it can
be expected that they will be similar, and accounting for this expected similarity in
the prior distribution can improve the accuracy of cluster expansions for surfaces and
nanoparticles significantly. Mueller extended this approach to allow for composition‐
dependent ECI in a cluster expansion of atomic order in 2 nm Au–Pd nanoparticles,

SELECTED MATERIALS SCIENCE APPLICATIONS 255

resulting in a cluster expansion capable of evaluating the energies of millions of
atomic arrangements per minute with an estimated prediction error of only 1 meV per
atom relative to DFT.156

A Bayesian approach that uses Laplace prior distribution over ECI values,
 resulting in ℓ 1 regularization of the ECI, has been demonstrated by Nelson et al.157
This approach is commonly referred to as “compressive sensing,” due to its origins in
signal processing. The ℓ 1 norm favors sparse solutions, in which the values of many
ECI are set to identically zero. Whether there is any advantages to using an ℓ 1 norm
in the context of cluster expansions is not clear,158 but it is reasonable to expect that
this approach should work well for cluster expansions in which there are relatively
few ECI that significantly differ from zero. This approach has recently been extended
to include the use of hyperpriors on the parameters that define the Laplace
distributions.159

2 P(V)
1.5

1

0.5

0
–0.04 –0.02

(a) (b)

0 0.02 0.04

2 P(V)
1.5

1

0.5

0
–0.04 –0.02 0 0.02 0.04

2 P(V)
1.5

1

0.5

0
–0.04 –0.02 0 0.02 0.04

2 P(V)
1.5

1

0.5

0
–0.04 –0.02 0 0.02 0.04

2 P(V)
1.5

1

0.5

0
–0.04 –0.02 0 0.02 0.04

2 P(V)
1.5

1

0.5

0
–0.04 –0.02 0 0.02 0.04

2 P(V)
1.5

1

0.5

0
–0.04 –0.02 0 0.02 0.04

2 P(V)

V

V

V

V

V V

V V

1.5

1

0.5

0
–0.04 –0.02 0 0.02 0.04

FIGURE 36 Representative prior probability distributions, P(V), for the ECI, V, for pair
clusters. In (a) the cluster selection approach is used, with only clusters up to the third nearest
neighbor included in the cluster expansion. In (b) a Bayesian approach is used that gradually
reduces the width of the prior probability distribution as the distance between sites increases.
The sites in the pair clusters are indicated in the left column. The vertical arrows indicate delta
functions, and the thick horizontal lines indicate improper uniform priors.

256 MACHINE LEARNING IN MATERIALS SCIENCE

There have also been a variety of methods proposed to incorporate active learning
into the generation of cluster expansions. Zunger et al. proposed building a training
set using “quasirandom structures” in which the average interactions among sites in
small clusters resemble that of a random alloy.160 Van de Walle and Ceder developed
an active learning approach to determine which structures should be included in the
training set of DFT calculations, based on the idea that structures should be chosen
in a way that maximizes the expected variance reduction per CPU hour spent gener-
ating the training data.151 Their method is closely related to the A‐optimality approach
described in the section entitled “The Training Data.” Mueller and Ceder have built
upon this work to demonstrate that in many cases, it is possible to derive exact
expressions for the expected variance reduction in cluster expansions.161 In parallel,
Seko and coworkers have proposed alternative approaches to select structures to be
included in cluster expansion training sets.162,163

Materials Processing and Complex Materials Behavior

Machine learning methods have enjoyed long‐term success in the general areas of
automated manufacturing,164 process control,165 and in the prediction of materials
behavior under complex conditions.17,166–168 Within the context of manufacturing,
precision machining of parts is a critical step. Neural networks, which can effectively
map complex nonlinear input/output relationships under these circumstances, have
been used extensively. Quantities of interest that are routinely predicted include sur-
face roughness and material removal rate (the outcome, or goals, of the machining
process) as a function of a variety of machining conditions. Exploiting learning
models such as neural networks thus significantly alleviates the burden on actual
time‐consuming repetitive experiments, not to mention wastage of parts that do not
meet a target requirement.

Neural networks have also been enormously successful in understanding complex
materials behavior, such as mechanical behavior (flow stress, hardness, tensile
strength, fracture strength, and fatigue behavior) of metal alloys subjected to certain
heat treatment and/or deformation procedures, as well as in the prediction of micro-
structures and phases resulting from heat treatment and/or deformation processes.
The most practical way to capture the complex dependence of a desired macroscopic
property on the various process parameters is through such learning methods.
Figure 37 shows an example of the application of backpropagation neural networks
to predict the flow stress of 42CrMo steel (which was subjected to deformation).164
The inputs to the neural network are the process parameters: deformation tempera-
ture, log strain rate, and strain.

More recently, attempts have been made to predict complex, but intrinsic, mate-
rials behavior using fundamental atomic‐level attributes of the material as the
starting point. The friction coefficient is one such complex materials property. In
recent work,78 the tribological properties of 38 ceramic materials were determined
using a variety of experimental methods. Sixteen materials properties (including
hardness, cation charge, percent ionicity, Madelung constant, melting temperature,
density, etc.) that could potentially control the friction coefficient were considered.

SELECTED MATERIALS SCIENCE APPLICATIONS 257

Feature reduction methods (as described in the section on “Latent Variable
Analysis”) were used to identify the most critical of these properties, which were
identified to be as follows: density, cation electronegativity, melting temperature,
cation–anion distance (Rij), Madelung constant, and cation radius. Based on these
identified features, a dendrogram (or decision tree, as described previously) was
created to aid in the prediction of the friction coefficient. Figure 38 shows both the
decision tree and a comparison of the predicted versus experimental values of the
friction coefficient.

Automated Micrograph Analysis

An existing bottleneck preventing rapid advanced material discovery is the process
of turning 2D sectional micrographs into actionable knowledge about material struc-
ture. Automation of this process will expedite our understanding of the relationships
between (i) material processing history, (ii) microstructure, and (iii) the resultant
functional properties. Optimally, the automation process would convert either single
micrographs or a series of sectional micrographs into a microstructure representation
that could be rapidly stored, searched, and mined for feature similarity. Furthermore,
the representation should take into account the statistical nature of the microstructure
and provide a means for identifying a representative volume element.

There are currently two dominant methods for automated microstructure
identification. The first involves quantifying the spatial arrangement of microstructure
“building blocks” such as grains, and the second involves quantifying the distribution
of their shapes. As an initial step for both methods, the micrograph is first converted

(a) (b)

ε = 0.5300
Experimental results

σ(
M

Pa
)

ANN prediction250

200

150

850 °C

950 °C

1050 °C

1150 °C

100

50

0
–6 –4 –2 0 2 4 6

Inε̇

300 ε = 0.5

250

200

150

100

50

0
800 900 1000

T(°C)
1100 1200

Experimental results

σ(
M

Pa
)

ANN prediction

50s–1

1s–1

0.01s–1

0.1s–1

10s–1

FIGURE 37 Comparison between the experimental and predicted flow stress of 42CrMo
steel: (a) effects of the deformation temperature, (b) effects of the deformation strain rates.
The predictions were made using a backpropagation artificial neural network (ANN) with the
deformation temperature, strain rate, and strain as input. Reprinted from Ref. 164, with per-
mission from Elsevier.

258 MACHINE LEARNING IN MATERIALS SCIENCE

into a collection of grain regions identified by structural properties such as texture and
crystal orientation by using feature extraction techniques (discussed in the section
“Feature Extraction”) including edge/blob detection and neural network and graphical
model‐based segmentation.169–173

IFDensity
≥6.9 g/cc

Density
< 6.9 g/cc

Density
< 5.6 g/cc

EN of
cation
≥1.9

Cation charge
≥ 3

Cation charge
<3

EN of
cation
< 1.9

Cation
radius

< 0.76 Å

0.8

(a)

(b)

0.7

0.6

0.5

0.4

0.3

Pr
ed

ic
te

d
fr

ic
tio

n
co

ef
fi

ci
en

t

0.2

0.1

0.0
0.0 0.1 0.2 0.3 0.4

Experimental friction coefficient

0.5 0.6 0.7 0.8

Cation
radius

≥0.76 Å

R2 = 0.8904
Rcv = 0.81932

Rij distance
≥ 2.345 Å

Rij distance
< 2.345 Å

Density
≥ 5.6 g/cc

Madelung
constant
≥–1.576

Melting
temperature

< 1511 K

Melting
temperature
≥1511 K

μ=0.0680
±0.0298

μ=0.2250
± 0.0159

μ=0.3221
± 0.0325

μ=0.3791
±0.0192

μ=0.4330
± 0.0286

μ=0.4602
±0.0576

μ=0.4410
±0.0820

μ=0.6016
±0.1072

μ=0.2381
±0.0487

Madelung
constant
< –1.576

FIGURE 38 (a) Decision tree (or dendrogram) for the prediction of friction coefficients of
materials based on six fundamental material level or atomic‐level features. (b) Comparison of
the predicted versus experimental friction coefficients. Reprinted from Ref. 78 with kind
 permission from Springer Science and Business Media.

SELECTED MATERIALS SCIENCE APPLICATIONS 259

Microstructure spatial arrangement can be rapidly computed through the use of
N‐point statistics (described in the section “N‐Point Cross‐Correlations for N‐Point
Statistics”), with accelerated computation through the use of fast Fourier trans-
forms.174 An example is shown in Figure 39a.169 Here an α–β Ti alloy with bimodal
microstructure is shown using electron backscattered diffraction. The image was pre-
processed using a combination of the generalized Hough transform and image
segmentation techniques to identify primary α particles (dark gray; red in e‐book
version) and secondary α particles (light gray; blue in e‐book version). Using 2‐point
statistics (Figure 39b) shows that the primary α particles are spatially uncorrelated
and have a volume fraction of 0.51, given by the proportion of the figure area with a
2‐point statistic value greater than approximately 0.3.

The N‐point statistics representation can be reduced to a lower‐dimensional rep-
resentation by multidimensional scaling and latent variable analysis techniques such
as principal component analysis. Using the first two or three principal components,
the N‐point statistics can then be visualized in a 2D or 3D space where processing–
structure–properties relationships are more easily visualized and understood.175 An
example is drawn from Ref. 169. In Figure 40 a set of segmented backscattered elec-
tron micrographs from five different heat treatments of Ti‐5553 were analyzed
using 2‐point statistics and then projected into a 3D space of the first three principal
components. In the 3D principal component space, the five groups of materials are
visually separable into clusters by heat treatment conditions, shown as different col-
ored hulls.

For microstructure representation based on grain shape, the shapes of the grain
regions can be computed using a set of moment invariants (described in the section
“Shape Identification with Moment Invariants”) that allow for shape identification
despite similarity and/or affine transformations. An example is drawn from Ref. 132.

600

(a) (b)

500

400

300

200

100

100 200 300 400 500 600 700 800

300 0.5

0.45

0.4

0.35

0.3

200

100

0

–100

–200

–300

–400 –200 0 200 400

FIGURE 39 (a) Electron backscattered diffraction (EBSD) of a α–β Ti alloy with bimodal
microstructure with primary α particles (dark gray; red in color insert) and secondary α parti-
cles (light gray; blue in color insert). (b) 2‐point statistics for the EBSD micrograph shows that
the primary α particles are spatially uncorrelated and have a 0.51 volume fraction. Reproduced
from Ref. 169 with kind permission from Springer Science and Business Media. (See insert
for color representation of the figure.)

260 MACHINE LEARNING IN MATERIALS SCIENCE

In Figure 41, a 2D phase field simulation for a Ni–Al binary is shown as the upper
left inset. The grains are then identified for shape through their projection into the
(ω1, ω2) moment invariant space. The distribution of grain shapes in (ω1, ω2) space
can also be used as a “fingerprint” to identify the most likely 3D particles observed
in the 2D micrograph.115 As an example drawn from Ref. 115, Figure 42 shows three
unique shape distributions for cube, octahedron, and tetrahedron particles. For series
micrographs, the particle shape distribution can also be tracked as a function of
processing parameters.132

The image processing techniques discussed are only a small subset of the broad
and rapidly growing area of computer vision. There are myriad of research opportu-
nities available in the application area of automated micrograph analysis.

Structure–Property Relationships in Amorphous Materials

It is now possible to use atomic‐scale calculations to predict many properties of
crystalline materials accurately, but amorphous materials pose a greater challenge due
to the lack of symmetry in their atomic structure. To make it computationally feasible
to calculate the properties of an amorphous material, the material may be approxi-
mated as having a pseudo‐amorphous structure, in which a large amorphous unit cell
is repeated periodically (Figure 43). However the amorphous structure of atoms
within this unit cell is not well defined—in many cases, a single pseudo‐amorphous
structure will not be sufficiently representative of the many possible atomic arrange-
ments that might occur in an amorphous material. In such cases, it is preferable to

HT1–20 images

(a) (b)

5
4
3

3

2
1

2
1

0

0

–1

–1

–2

–2

–3

–3

HT3–32 images

HT2–28 images

HT4–32 images

HT3–32 images

–200
–100

0
100

200
300

FIGURE 40 (a) Segmented backscattered electron micrographs for five different heat treat-
ments of Ti‐5553 (b) 3D vector space of the first three principal components of the 2‐point
micrograph statistics. The five groups of materials are clustered by heat treatment type.
Clusters are indicated by colored hulls (color available in e‐book version). Reproduced from
Ref. 165 with kind permission from Springer Science and Business Media.

SELECTED MATERIALS SCIENCE APPLICATIONS 261

calculate the properties of an ensemble of pseudo‐amorphous structures. Analyzing
the resulting data to determine the relationship between the atomic structure of amor-
phous materials and their properties is a task that is well suited for machine learning.

The utility of machine learning to study structure–property relationships in
amorphous materials was demonstrated by Mueller et al., in a study of

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6

−ω1

− ω 2

0.8 1.0

FIGURE 41 Inset of 2D phase field simulation for a Ni–Al binary. The grain shapes from
the micrograph are plotted in the ω1–ω2 vector space for shape identification. Reprinted from
Ref. 132, with permission from Elsevier.

Max

Cube

(a) (b) (c)

Octahedron TetrahedronMin

FIGURE 42 Characteristic micrograph shape distributions in the ω1–ω2 vector space for (a)
cubic particles, (b) octahedron particles, and (c) tetrahedron particles (color available in e‐book
version). Reproduced with permission from Ref. 115. © IOP Publishing. All rights reserved.

262 MACHINE LEARNING IN MATERIALS SCIENCE

hydrogenated nanocrystalline (nc‐Si:H) and amorphous (a‐Si:H) silicon.106
Hydrogenated amorphous silicon is a widely used thin‐film photovoltaic material,
but the efficiency of a‐Si:H solar cells is limited by the low hole mobility in this
material.177 The efficiency of a‐Si:H solar cells can be improved by using nc‐Si:H,
which consists of small crystalline Si particles surrounded by a‐Si:H. To identify
the structural features contributing to hole traps in nc‐Si:H, Mueller et al. used
density functional theory to calculate hole trap depths in an ensemble of more than
1000 nc‐Si:H structures; the approach was based on that used in Ref. 176. For each
sample, they also calculated 242 descriptors of the atomic structure (e.g., unit cell
volume, smallest Si–H bond length, etc.). They then used genetic programming
(described previously) to identify functions of the descriptors that best predicted
the hole trap depths.

By identifying a set of functions that relate the descriptors to hole trap depths,
the authors were able to determine which descriptors most influence hole trap
depths, even if the relationship is nonlinear. The best functions identified by the
genetic programming algorithm consistently contained descriptors that fell into
one of three classes: fivefold coordinated silicon (floating bonds), regions of
dense silicon, and Si–H–Si (bridge) bonds. Taken together, these results indicated
that holes were more likely to be trapped in the amorphous regions of the material.
The first two classes of structural features had been identified in previous
computational studies of hole traps in a‐Si:H,176,178–181 but the third (bridge
bonds) had not.

To confirm the relationship between bridge bonds and the DFT‐calculated hole
trap depths, the authors used the same methodology on an ensemble of 2700 a‐Si:H
calculations that had been generated for a previous publication.176 Extensive prior
examinations of this data set, using methods other than machine learning, had not
revealed a relationship between hole trap depths and bridge bonds. However,
within minutes, the genetic programming algorithm was able to identify a similar
relationship to the one it had found in the nc‐Si:H samples. Inspections of the loca-
tions of deep hole traps confirmed that they are located near bridge bonds, further
supporting this relationship.

FIGURE 43 Unit cells for three different model nc‐Si:H structures. Gray spheres represent
silicon, and white spheres represent hydrogen. In Refs. 106 and 176, properties for thousands
of such structures were calculated.

SUMMARY 263

As statistical sampling methods become more common in materials research, the
large volumes of data generated will become increasingly difficult for humans to
analyze using traditional methods. The examples presented in this section and
previous sections demonstrate how machine learning can play an important role in
facilitating the analysis of such large data sets, providing insights into complex mate-
rials that elude human researchers.

ADDITIONAL RESOURCES

There are many comprehensive resources available1 for readers interested in learning
more about machine learning algorithms and analysis. Two in particular are:

1. T. Hastie, J. Friedman, and R. Tibshirani, The Elements of Statistical Learning,
Springer, New York, 2009.

2. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New
York, 2007.

Open‐source machine learning packages exist for all the algorithms described
here. The Python package scikit‐learn (available at http://scikit‐learn.org/) has a
library of methods with appropriate documentation. The commercial product
MATLAB also has a library of methods as part of the toolboxes such as Statistics,
Optimization, Neural Networks, Signal Processing, Image Processing, and Computer
Vision. These methods come with extensive documentation including examples. For
methods specific to image and video processing, the package OpenCV (http://opencv.
org/) is extensive but may require background knowledge in machine learning. The
commercial software package Eureqa (http://www.nutonian.com/products/eureqa/)
provides a straightforward interface for genetic programming.

SUMMARY

This chapter addresses the role that data‐driven approaches, especially machine
learning methods, are expected to play in materials research in the immediate
future. Machine learning, an important part of artificial intelligence, has already
made monumental contributions to areas outside materials science (ranging from
commerce to gaming to search engines to drug design). These methods come in
many flavors under many names with a copious amount of jargon. Keeping these
aspects in mind, this chapter first provided the necessary mathematical background
(at a basic and unified level) to allow a materials researcher entering this field to

1 Certain commercial equipment, instruments, or materials are identified in this publication for informa-
tional purposes only. Such identification is not intended to imply recommendation or endorsement by
NIST, nor is it intended to imply that the materials or equipment identified are necessarily the best available
for the purpose.

264 MACHINE LEARNING IN MATERIALS SCIENCE

use these methods most effectively. The chapter then provided an assortment of
examples of recent machine learning applications within materials science and
discussed a range of emerging efforts, including high‐throughput phase diagram
and crystal structure determination methods, accelerated prediction of materials
properties, development of interatomic potentials and functionals for accelerating
materials simulations, and efficient and low‐cost methods for materials process
control.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Kenny Lipkowitz of the Office of Naval
Research for the opportunity and invitation to create this manuscript. RR acknowl-
edges financial support from the Office of Naval Research, which was instrumental
in initiating research related to machine learning in his group. TM acknowledges
financial support from the National Science Foundation under award number
1352373.

REFERENCES

1. R. LeSar, Stat. Anal. Data Min., 1, 372 (2009). Materials Informatics: An Emerging
Technology for Materials Development.

2. K. Rajan, Mater. Today, 8, 38 (2005). Materials Informatics.
3. C. J. Long, J. Hattrick‐Simpers, M. Murakami, R. C. Srivastava, I. Takeuchi, V. L. Karen,

and X. Li, Rev. Sci. Instrum., 78, 072217 (2007). Rapid Structural Mapping of Ternary
Metallic Alloy Systems Using the Combinatorial Approach and Cluster Analysis.

4. G. Hautier, C. C. Fischer, A. Jain, T. Mueller, and G. Ceder, Chem. Mater., 22, 3762 (2010).
Finding Nature’s Missing Ternary Oxide Compounds Using Machine Learning and Density
Functional Theory.

5. D. Morgan, S. Curtarolo, K. Persson, J. Rodgers, and G. Ceder, Phys. Rev. Lett., 91, 135503
(2003). Predicting Crystal Structures with Data Mining of Quantum Calculations.

6. G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and R. Ramprasad, Sci. Rep., 3, 1 (2013).
Accelerating Materials Property Predictions Using Machine Learning.

7. K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O. A. von Lilienfeld,
A. Tkatchenko, and K.‐R. Müller, J. Chem. Theory Comput., 9, 3404 (2013). Assessment
and Validation of Machine Learning Methods for Predicting Molecular Atomization
Energies.

8. K. Hansen, F. Biegler, R. Ramakrishnan, W. Pronobis, O. A. von Lilienfeld, K.‐R. Müller,
and A. Tkatchenko, J. Phys. Chem. Lett., 6, 2326 (2015). Machine Learning Predictions
of Molecular Properties: Accurate Many‐Body Potentials and Nonlocality in Chemical
Space.

9. T. D. Huan, A. Mannodi‐Kanakkithodi, and R. Ramprasad, Phys. Rev. B, 92, 014106
(2015). Accelerated Materials Property Predictions and Design Using Motif‐Based
Fingerprints.

REFERENCES 265

10. T. Morawietz and J. Behler, J. Phys. Chem. A, 117, 7356 (2013). A Density‐Functional
Theory‐Based Neural Network Potential for Water Clusters Including van der Waals
Corrections.

11. J. Behler, Phys. Chem. Chem. Phys., 13, 17930 (2011). Neural Network Potential‐Energy
Surfaces in Chemistry: A Tool for Large‐Scale Simulations.

12. A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi, Phys. Rev. Lett., 104, 136403
(2010). Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics,
Without the Electrons.

13. V. Botu and R. Ramprasad, Phys. Rev. B, 92, 094306 (2015). Learning Scheme to Predict
Atomic Forces and Accelerate Materials Simulations.

14. V. Botu and R. Ramprasad, Int. J. Quantum Chem., 115, 1074 (2015). Adaptive Machine
Learning Framework to Accelerate Ab Initio Molecular Dynamics.

15. J. C. Snyder, M. Rupp, K. Hansen, K.‐R. Müller, and K. Burke, Phys. Rev. Lett., 108,
253002 (2012). Finding Density Functionals with Machine Learning.

16. A. G. Kusne, T. Gao, A. Mehta, L. Ke, M. C. Nguyen, K.‐M. Ho, V. P. Antropov, C.‐Z.
Wang, M. J. Kramer, C. J. Long, and I. Takeuchi, Sci. Rep., 4, Article number: 6367
(2014). On‐the‐Fly Machine‐Learning for High‐Throughput Experiments: Search for
Rare‐Earth Free Permanent Magnets.

17. H. K. D. H. Bhadeshia, Stat. Anal. Data Min., 1, 296 (2009). Neural Networks and
Information in Materials Science.

18. T. Bayes and R. Price, Philos. Trans. (1683–1775), 53, 370 (1763). An Essay Towards
Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S.
Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S.

19. A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill‐Posed Problems, John Wiley & Sons,
Washington, DC, 1977.

20. R. E. Kass and L. Wasserman, J. Am. Stat. Assoc., 91, 1343 (1996). The Selection of Prior
Distributions by Formal Rules.

21. E. T. Jaynes, Phys. Rev., 106, 620 (1957). Information Theory and Statistical Mechanics.
22. G. Schwarz, Ann. Stat., 6, 461 (1978). Estimating the Dimension of a Model.
23. H. Akaike, IEEE Trans. Autom. Control, 19, 716 (1974). A New Look at the Statistical

Model Identification.
24. J. C. Spall, Introduction to Stochastic Search and Optimization: Estimation, Simulation,

and Control, John Wiley & Sons, Inc., Hoboken, NJ, 2005.
25. R. Horst, P. M. Pardalos, and N. V. Thoai, Introduction to Global Optimization, Kluwer

Academic Publishers, Dordrecht, the Netherlands, 2000.
26. R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, Ltd, Chichester, 2013.
27. I. Guyon, G. Cawley, G. Dror, and V. Lemaire, Results of the Active Learning Challenge,

in JMLR: Workshop and Conference Proceedings, 2011, vol 16, pp. 19–45. Workshop on
Active Learning and Experimental Design.

28. B. Settles, University of Wisconsin, Madison, (2010). Active Learning Literature Survey.
29. D. C. Montgomery, Design and Analysis of Experiments, 8th Edition, John Wiley & Sons,

Inc., New York, 2012.
30. D. D. Lewis and W. A. Gale, in Proceedings of the 17th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, Springer‐Verlag,
Inc., New York, 1994. A Sequential Algorithm for Training Text Classifiers.

266 MACHINE LEARNING IN MATERIALS SCIENCE

31. H. S. Seung, M. Opper, and H. Sompolinsky, in Proceedings of the Fifth Annual Workshop
on Computational Learning Theory, ACM, New York, 1992. Query by Committee.

32. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer,
New York, 2009.

33. H. Chernoff, Ann. Math. Stat., 24, 586 (1953). Locally Optimal Designs for Estimating
Parameters.

34. A. Wald, Ann. Math. Stat., 14, 134 (1943). On the Efficient Design of Statistical
Investigations.

35. J. Kiefer and J. Wolfowitz, Ann. Math. Stat., 30, 271 (1959). Optimum Designs in
Regression Problems.

36. E. A. Rady, M. M. E. Abd El‐Monsef, and M. M. Seyam, InterStat, 247, 1 (2009).
Relationships Among Several Optimality Criteria.

37. K. Chaloner and I. Verdinelli, Stat. Sci., 10, 273 (1995). Bayesian Experimental Design:
A Review.

38. A. DasGupta, in Handbook of Statistics, S. Ghosh and C. R. Rao, Editors, Elsevier,
Amsterdam, 1996, pp. 1099–1147. Review of Optimal Bayes Designs.

39. A. K. Kurtz, Pers. Psychol., 1, 41 (1948). A Research Test of the Rorschach Test.
40. C. I. Mosier, Educ. Psychol. Meas., 11, 5 (1951). The Need and Means of Cross Validation.

I. Problems and Designs of Cross‐Validation.
41. S. Geisser, J. Am. Stat. Assoc., 70, 320 (1975). The Predictive Sample Reuse Method with

Applications.
42. M. Stone, J. R. Stat. Soc. Ser. B Methodol., 36, 111 (1974). Cross‐Validatory Choice and

Assessment of Statistical Predictions.
43. B. Efron, Ann. Stat., 7, 1 (1979). Bootstrap Methods: Another Look at the Jackknife.
44. B. Efron and R. Tibshirani, J. Am. Stat. Assoc., 92, 548 (1997). Improvements on Cross‐

Validation: The .632+ Bootstrap Method.
45. B. Efron, J. Am. Stat. Assoc., 99, 619–642 (2004). The Estimation of Prediction Error:

Covariance Penalties and Cross‐Validation [With comments by P. Burman, L. Denby,
J. M. Landwehr, C. L. Mallows, X. Shen, H.‐C. Huang, J. Ye, and C. Zhang].

46. R. Kohavi, in IJCAI’95 Proceedings of the 14th International Joint Conference on
Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, 1995, vol
2, pp. 1137–1143. A Study of Cross‐Validation and Bootstrap for Accuracy Estimation
and Model Selection.

47. M. W. Browne, J. Math. Psychol., 44, 108 (2000). Cross‐Validation Methods.
48. S. Arlot and A. Celisse, Stat. Surv., 4, 40 (2010). A Survey of Cross‐Validation Procedures

for Model Selection.
49. B. Efron and G. Gong, Am. Stat., 37, 36 (1983). A Leisurely Look at the Bootstrap, the

Jackknife, and Cross‐Validation.
50. S. Borra and A. Di Ciaccio, Comput. Stat. Data Anal., 54, 2976 (2010). Measuring the

Prediction Error. A Comparison of Cross‐Validation, Bootstrap and Covariance Penalty
Methods.

51. A. E. Hoerl and R. W. Kennard, Technometrics, 12, 55 (1970). Ridge Regression: Biased
Estimation for Nonorthogonal Problems.

52. R. Tibshirani, J. R. Stat. Soc. Ser. B Methodol., 58, 267 (1996). Regression Shrinkage and
Selection via the Lasso.

REFERENCES 267

53. D. L. Donoho, IEEE Trans. Inf. Theory, 52, 1289 (2006). Compressed Sensing.

54. T. Goldstein and S. Osher, SIAM J. Imaging Sci., 2, 323 (2009). The Split Bregman
Method for L1‐Regularized Problems.

55. C. Cortes and V. Vapnik, Mach. Learn., 20, 273 (1995). Support‐Vector Networks.

56. C. J. C. Burges, Data Min. Knowl. Disc., 2, 121 (1998). A Tutorial on Support Vector
Machines for Pattern Recognition.

57. R. G. Brereton and G. R. Lloyd, Analyst, 135, 230 (2010). Support Vector Machines for
Classification and Regression.

58. P. Wolfe, Econometrica, 27, 382 (1959). The Simplex Method for Quadratic Programming.

59. M. Frank and P. Wolfe, Nav. Res. Logist. Q., 3, 95 (1956). An Algorithm for Quadratic
Programming.

60. J. A. K. Suykens and J. Vandewalle, Neural Process. Lett., 9, 293 (1999). Least Squares
Support Vector Machine Classifiers.

61. M. Aizerman, E. Braverman, and L. Rozoner, Autom. Remote Control, 25, 821 (1964).
Theoretical Foundations of the Potential Function Method in Pattern Recognition
Learning.

62. J. Mercer, Philos. Trans. R. S. Lond. A, 209, 415 (1909). Functions of Positive and
Negative Type, and Their Connection with the Theory of Integral Equations.

63. N. Aronszajn, Trans. Am. Math. Soc., 68, 337 (1950). Theory of Reproducing Kernels.

64. B. Schölkopf, R. Herbrich, and A. J. Smola. in Computational Learning Theory, Springer‐
Verlag, Berlin, 2001, pp. 416. A Generalized Representer Theorem.

65. G. S. Kimeldore and G. Wahba, Ann. Math. Stat., 41, 495 (1970). A Correspondence
Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines.

66. C. Saunders, A. Gammerman, and V. Vovk, in (ICML‐1998) Proceedings of the 15th
International Conference on Machine Learning, Morgan Kaufmann, San Francisco, CA,
1998, pp. 515–521. Ridge Regression Learning Algorithm in Dual Variables.

67. W. S. McCulloch and W. Pitts, Bull. Math. Biophys., 5, 115 (1943). A Logical Calculus of
the Ideas Immanent in Nervous Activity.

68. F. Rosenblatt, Psychol. Rev., 65, 386 (1958). The Perceptron: A Probabilistic Model for
Information Storage and Organization in the Brain.

69. P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Sciences, Harvard University, Cambridge, MA, 1974.

70. K.‐I. Funahashi, Neural Netw., 2, 183 (1989). On the Approximate Realization of
Continuous Mappings by Neural Networks.

71. D. F. Specht, IEEE Trans. Neural Netw., 2, 568 (1991). A General Regression Neural
Network.

72. B. Widrow and M. A. Lehr, Proc. IEEE, 78, 1415 (1990). 30 Years of Adaptive Neural
Networks: Perceptron, Madaline, and Backpropagation.

73. S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall PTR, Upper
Saddle River, NJ, 1998.

74. C. Kingsford and S. L. Salzberg, Nat. Biotechnol., 26, 1011 (2008). What Are Decision
Trees?

75. S. K. Murthy, Data Min. Knowl. Disc., 2, 345 (1998). Automatic Construction of Decision
Trees from Data: A Multi‐Disciplinary Survey.

268 MACHINE LEARNING IN MATERIALS SCIENCE

76. S. R. Safavian and D. Landgrebe, IEEE Trans. Syst. Man Cybern., 21, 660 (1991).
A Survey of Decision Tree Classifier Methodology.

77. W.‐Y. Loh, Wiley Interdiscip. Rev. Data Min. Knowl. Disc., 1, 14 (2011). Classification
and Regression Trees.

78. E. W. Bucholz, C. S. Kong, K. R. Marchman, W. G. Sawyer, S. R. Phillpot, S. B. Sinnott,
and K. Rajan, Tribol. Lett., 47, 211 (2012). Data‐Driven Model for Estimation of Friction
Coefficient via Informatics Methods.

79. D. A. Carr, M. Lach‐Hab, S. J. Yang, I. I. Vaisman, and E. Blaisten‐Barojas, Microporous
Mesoporous Mater., 117, 339 (2009). Machine Learning Approach for Structure‐Based
Zeolite Classification.

80. L. Hyafil and R. L. Rivest, Inf. Process. Lett., 5, 15 (1976). Constructing Optimal Binary
Decision Trees Is NP‐Complete.

81. J. Ross Quinlan, Mach. Learn., 1, 81 (1986). Induction of Decision Trees.

82. L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression
Trees, CRC Press, Boca Raton, FL, 1984.

83. Y. Wang and I. H. Witten, in Proceedings of the Ninth European Conference on Machine
Learning, Springer‐Verlag, London, 1997, pp. 128. Inducing Model Trees for Continuous
Classes.

84. J. Mingers, Mach. Learn., 4, 227 (1989). An Empirical Comparison of Pruning Methods
for Decision Tree Induction.

85. J. R. Quinlan, Int. J. Man Mach. Stud., 27, 221 (1987). Simplifying Decision Trees.

86. L. Breiman, Mach. Learn., 45, 5 (2001). Random Forests.

87. R. Polikar, IEEE Circuits Syst. Mag., 6, 21 (2006). Ensemble Based Systems in Decision
Making.

88. L. Rokach, Artif. Intell. Rev., 33, 1 (2010). Ensemble‐Based Classifiers.

89. R. Maclin and D. Opitz, arXiv preprint arXiv:1106.0257 (2011). Popular Ensemble
Methods: An Empirical Study.

90. L. Breiman, Mach. Learn., 24, 123 (1996). Bagging Predictors.

91. R. E. Schapire, Mach. Learn., 5, 197 (1990). The Strength of Weak Learnability.

92. Y. Freund and R. E. Schapire, J. Comput. Syst. Sci., 55, 119 (1997). A Decision‐Theoretic
Generalization of On‐Line Learning and an Application to Boosting.

93. P. M. Long and R. A. Servedio, Mach. Learn., 78, 287 (2010). Random Classification
Noise Defeats All Convex Potential Boosters.

94. N. L. Cramer, in Proceedings of the First International Conference on Genetic Algorithms,
L. Erlbaum Associates Inc., Hillsdale, NJ, 1985, pp. 183. A Representation for the Adaptive
Generation of Simple Sequential Programs.

95. J. R. Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection, MIT Press, Cambridge, MA, 1992.

96. J. R. Koza, in IJCAI’89 Proceedings of the 11th International Joint Conference on Artificial
Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, 1989, vol 1, pp. 768.
Hierarchical Genetic Algorithms Operating on Populations of Computer Programs.

97. B.‐T. Zhang and H. Mühlenbein, Evol. Comput., 3, 17 (1995). Balancing Accuracy and
Parsimony in Genetic Programming.

REFERENCES 269

 98. K. Rodriguez‐Vazquez, C. M. Fonseca, and P. J. Fleming, in Late Breaking Papers
at the 1997 Genetic Programming Conference, Morgan Kaufmann Publishers, San
Francisco, 1997. Multiobjective Genetic Programming: a Nonlinear System Identifica-
tion Application.

 99. A. H. Gandomi, A. H. Alavi, and M. G. Sahab, Mater. Struct., 43, 963 (2010). New
Formulation for Compressive Strength of CFRP Confined Concrete Cylinders Using
Linear Genetic Programming.

100. E. Ozbay, M. Gesoglu, and E. Guneyisi, Construct. Build Mater., 22, 1831 (2008).
Empirical Modeling of Fresh and Hardened Properties of Self‐Compacting Concretes by
Genetic Programming.

101. A. Baykasoglu, T. Dereli, and S. Tanis, Cem. Concr. Res., 34, 2083 (2004). Prediction of
Cement Strength Using Soft Computing Techniques.

102. A. H. Alavi, M. Ameri, A. H. Gandomi, and M. R. Mirzahosseini, Construct. Build
Mater., 25, 1338 (2011). Formulation of Flow Number of Asphalt Mixes Using a Hybrid
Computational Method.

103. M. Kovacic, P. Uratnik, M. Brezocnik, and R. Turk, Mater. Manuf. Processes, 22, 634
(2007). Prediction of the Bending Capability of Rolled Metal Sheet by Genetic
Programming.

104. M. Brezocnik, M. Kovacic, and M. Ficko, J. Mater. Process. Technol., 157, (2004).
Prediction of Surface Roughness with Genetic Programming.

105. M. Brezocnik and M. Kovacic, Mater. Manuf. Processes, 18, 475 (2003). Integrated
Genetic Programming and Genetic Algorithm Approach to Predict Surface Roughness.

106. T. Mueller, E. Johlin, and J. C. Grossman, Phys. Rev. B, 89, 115 (2014). Origins of Hole
Traps in Hydrogenated Nanocrystalline and Amorphous Silicon Revealed Through
Machine Learning.

107. R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza, A Field Guide to Genetic
Programming, Lulu.com, 2008.

108. I. J. Good, Philos. Sci., 50, 283 (1983). The Philosophy of Exploratory Data Analysis.
109. L. A. Baumes, M. Moliner, and A. Corma, Chem. Eur. J., 15, 4258 (2009). Design of a

Full‐Profile‐Matching Solution for High‐Throughput Analysis of Multiphase Samples
Through Powder X‐Ray Diffraction.

110. S. Kullback, Information Theory and Statistics, Courier Dover Publications, Dover, 2012.
111. S. Kullback and R. A. Leibler, Ann. Math. Stat., 22, 79 (1951). On Information and

Sufficiency.
112. H. Jeffreys, Proc. R. Soc. Lond. A Math. Phys. Sci., 186, 453(1946). An Invariant Form

for the Prior Probability in Estimation Problems.
113. J. Puzicha, T. Hofmann, and J. M. Buhmann, in Computer Vision and Pattern Recognition,

1997. Proceedings, 1997 IEEE Computer Society Conference on, IEEE, New York,
1997. Non‐parametric Similarity Measures for Unsupervised Texture Segmentation and
Image Retrieval.

114. D. Comaniciu, V. Ramesh, and P. Meer, IEEE Trans. Pattern Anal. Mach. Intell., 25, 564
(2003). Kernel‐Based Object Tracking.

115. P. G. Callahan, J. P. Simmons, and M. De Graef, Model. Simul. Mater. Sci. Eng., 21,
015003 (2013). A Quantitative Description of the Morphological Aspects of Materials
Structures Suitable for Quantitative Comparisons of 3D Microstructures.

270 MACHINE LEARNING IN MATERIALS SCIENCE

116. C. W. Niblack, R. Barber, W. Equitz, M. D. Flickner, E. H. Glasman, D. Petkovic, P.
Yanker, C. Faloutsos, and G. Taubin, in IS&T/SPIE’s Symposium on Electronic Imaging:
Science and Technology. International Society for Optics and Photonics, Bellingham
WA, 1993. QBIC Project: Querying Images by Content, Using Color, Texture, and
Shape.

117. H. Sakoe and S. Chiba, IEEE Trans. Acoust. Speech Signal Process., 26, 43 (1978).
Dynamic Programming Algorithm Optimization for Spoken Word Recognition.

118. Y. Rubner, C. Tomasi, and L. J. Guibas, in Sixth International Conference on Computer
Vision. IEEE, New York, 1998, pp. 59–66. A Metric for Distributions with Applications
to Image Databases.

119. Y. Rubner, C. Tomasi, and L. J. Guibas, Int. J. Comput. Vis., 40, 99 (2000). The Earth
Mover’s Distance as a Metric for Image Retrieval.

120. G. Al‐Naymat, S. Chawla, and J. Taheri, in Proceedings of the Eighth Australasian
Data Mining Conference. Australian Computer Society, Inc., Sydney, 2009, vol 101,
pp. 117. SparseDTW: a Novel Approach to Speed up Dynamic Time Warping.

121. S. Salvador and P. Chan, Intell. Anal., 11, 561 (2007). Toward Accurate Dynamic Time
Warping in Linear Time and Space.

122. O. Pele and M. Werman, in 2009 IEEE 12th International Conference on Computer
Vision, IEEE, New York, 2009, pp. 460. Fast and Robust Earth Mover’s Distances.

123. D. Comaniciu and P. Meer, IEEE Trans. Pattern Anal. Mach. Intell., 24, 603 (2002).
Mean Shift: A Robust Approach Toward Feature Space Analysis.

124. P. Macnaughton‐Smith, W. T. Williams, M. B. Dale, and L. G. Mockett, Nature, 202,
1034 (1964). Dissimilarity Analysis: A New Technique of Hierarchical Sub‐Division.

125. U. Von Luxburg, Clustering Stability, Now Publishers Inc, Hanover, MA, 2010.
126. C. Goutte, L. K. Hansen, M. G. Liptrot, and E. Rostrup, Hum. Brain Mapp., 13, 165

(2001). Feature‐Space Clustering for fMRI Meta‐Analysis.
127. C. A. Sugar and G. M. James, J. Am. Stat. Assoc., 98, 750 (2003). Finding the Number

of Clusters in a Dataset.
128. A. Niederliński and Wydawnictwo Pracownia Komputerowa Jacka Skalmierskiego, A

Quick and Gentle Guide to Constraint Logic Programming via ECLiPSe, Jacek
Skalmierski Computer Studio, Gliwice, 2011.

129. Y. K. Yoo, Q. Xue, Y. S. Chu, S. Xu, U. Hangen, H.‐C. Lee, W. Stein, and X.‐D. Xiang,
Intermetallics, 14, 241 (2006). Identification of Amorphous Phases in the Fe–Ni–Co
Ternary Alloy System Using Continuous Phase Diagram Material Chips.

130. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete‐Time Signal Processing,
Prentice‐Hall, Englewood Cliffs, NJ, 1989.

131. J. S. Lim and A. V. Oppenheim, Advanced Topics in Signal Processing, Prentice‐Hall,
Englewood Cliffs, NJ, 1987.

132. J. P. MacSleyne, J. P. Simmons, and M. De Graef, Acta Mater., 56, 427 (2008). On the
Use of 2‐D Moment Invariants for the Automated Classification of Particle Shapes.

133. M. L. Green, I. Takeuchi, and J. R. Hattrick‐Simpers, J. Appl. Phys., 113, 231101 (2013).
Applications of High Throughput (Combinatorial) Methodologies to Electronic,
Magnetic, Optical, and Energy‐Related Materials.

134. C. J. Long, D. Bunker, X. Li, V. L. Karen, and I. Takeuchi, Rev. Sci. Instrum., 80, 103902
(2009). Rapid Identification of Structural Phases in Combinatorial Thin‐Film Libraries
Using x‐Ray Diffraction and Non‐negative Matrix Factorization.

REFERENCES 271

135. R. LeBras, T. Damoulas, J. M. Gregoire, A. Sabharwal, C. P. Gomes, and R. Bruce Van
Dover, in Principles and Practice of Constraint Programming–CP 2011, Springer,
Berlin, 2011, pp. 508–522. Constraint Reasoning and Kernel Clustering for Pattern
Decomposition with Scaling.

136. M. Rupp, A. Tkatchenko, K.‐R. Müller, and O. A. von Lilienfeld, Phys. Rev. Lett., 108,
058301 (2012). Fast and Accurate Modeling of Molecular Atomization Energies with
Machine Learning.

137. W. Kohn and L. J. Sham, Phys. Rev., 140, A1133 (1965). Self‐Consistent Equations
Including Exchange and Correlation Effects.

138. P. Hohenberg and W. Kohn, Phys. Rev., 136, 864 (1964). Inhomogeneous Electron Gas.

139. W. Sidney, J. Chem. Educ., 42, 502 (1965). Benson, III—Bond Energies.

140. J. J. P. Stewart, J. Mol. Model., 13, 1173 (2007). Optimization of Parameters for
Semiempirical Methods V: Modification of NDDO Approximations and Application to
70 Elements.

141. I. Torrens, Interatomic Potentials, Elsevier, Amsterdam, 2012.

142. J. Behler, J. Chem. Phys., 134, 074106 (2011). The Atom‐Centered Symmetry Functions
for Constructing High‐Dimensional Neural Network Potentials.

143. J. Behler and M. Parrinello, Phys. Rev. Lett., 98, 146401 (2007). Generalized Neural‐
Network Representation of High‐Dimensional Potential‐Energy Surfaces.

144. S. M. Woodley and R. Catlow, Nat. Mater., 7, 937 (2008). Crystal Structure Prediction
from First Principles.

145. J. Maddox, Nature, 335, 201 (1988). Crystals from First‐Principles.

146. C. C. Fischer, K. J. Tibbetts, D. Morgan, and G. Ceder, Nat. Mater., 5, 641 (2006).
Predicting Crystal Structure by Merging Data Mining with Quantum Mechanics.

147. Fiz Karlsruhe, Inorganic crystal structure database (http://www.fiz‐karlsruhe.de/icsd.
html, accessed October 9, 2015).

148. K. Burke, J. Chem. Phys., 136, 150901 (2012). Perspective on Density Functional
Theory.

149. E. Ising, Zeitschrift für Physik, 31, 253 (1925). Beitrag zur Theorie des Ferromagnetismus.

150. J. M. Sanchez, F. Ducastelle, and D. Gratias, Physica, 128A, 334 (1984). Generalized
Cluster Description of Multicomponent Systems.

151. A. van de Walle and G. Ceder, J. Phase Equilib., 23, 348 (2002). Automating First‐
Principles Phase Diagram Calculations.

152. R. Drautz and A. Diaz‐Ortiz, Phys. Rev. B, 73, 224207 (2006). Obtaining Cluster
Expansion Coefficients in Ab Initio Thermodynamics of Multicomponent Lattice‐Gas
Systems.

153. D. B. Laks, L. G. Ferreira, S. Froyen, and A. Zunger, Phys. Rev. B, 46, 12587 (1992).
Efficient Cluster Expansion for Substitutional Systems.

154. V. Blum and A. Zunger, Phys. Rev. B, 70, 115108 (2004). Mixed‐Basis Cluster Expansion
for Thermodynamics of bcc Alloys.

155. T. Mueller and G. Ceder, Phys. Rev. B, 80, 024103 (2009). Bayesian Approach to Cluster
Expansions.

156. T. Mueller, Phys. Rev. B, 86, 144201 (2012). Ab Initio Determination of Structure–
Property Relationships in Alloy Nanoparticles.

272 MACHINE LEARNING IN MATERIALS SCIENCE

157. L. J. Nelson, G. L. W. Hart, F. Zhou, and V. Ozolins, Phys. Rev. B, 87, 035125 (2013).
Compressive Sensing as a Paradigm for Building Physics Models.

158. T. Mueller, in Department of Materials Science and Engineering, Massachusetts Institute
of Technology, Cambridge, MA, 2007, p. 199. Computational Studies of Hydrogen
Storage Materials and the Development of Related Methods.

159. L. J. Nelson, V. Ozoliņš, C. Shane Reese, F. Zhou, and G. L. W. Hart, Phys. Rev. B, 88,
155105 (2013). Cluster Expansion Made Easy with Bayesian Compressive Sensing.

160. A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, Phys. Rev. Lett., 65, 353–356
(1990). Special Quasirandom Structures.

161. T. Mueller and G. Ceder, Phys. Rev. B, 82, 184107 (2010). Exact Expressions for
Structure Selection in Cluster Expansions.

162. A. Seko, Y. Koyama, and I. Tanaka, Phys. Rev. B, 80, 165122 (2009). Cluster Expansion
Method for Multicomponent Systems Based on Optimal Selection of Structures for
Density‐Functional Theory Calculations.

163. A. Seko and I. Tanaka, Phys. Rev. B, 83, 224111 (2011). Grouping of Structures for
Cluster Expansion of Multicomponent Systems with Controlled Accuracy.

164. Y. C. Lin, J. Zhang, and J. Zhong, Comput. Mater. Sci., 43, 752 (2008). Application of
Neural Networks to Predict the Elevated Temperature Flow Behavior of a Low Alloy
Steel.

165. R. K. Jain, V. K. Jain, and P. K. Kalra, Wear, 231, 242 (1999). Modelling of Abrasive
Flow Machining Process: A Neural Network Approach.

166. T. Sourmail, H. K. D. H. Bhadeshia, and D. J. C. MacKay, Mater. Sci. Technol., 18, 655
(2002). Neural Network Model of Creep Strength of Austenitic Stainless Steels.

167. M. A. Yescas, H. K. D. H. Bhadeshia, and D. J. MacKay, Mater. Sci. Eng. A, 311, 162
(2001). Estimation of the Amount of Retained Austenite in Austempered Ductile Irons
Using Neural Networks.

168. E. A. Metzbower, J. J. DeLoach, S. H. Lalam, and H. K. D. H. Bhadeshia, Sci. Technol.
Weld. Joining, 6, 116 (2001). Neural Network Analysis of Strength and Ductility of
Welding Alloys for High Strength Low Alloy Shipbuilding Steels.

169. S. R. Kalidindi, S. R. Niezgoda, and A. A. Salem, JOM, 63, 34 (2011). Microstructure
Informatics Using Higher‐Order Statistics and Efficient Data‐Mining Protocols.

170. V. H. C. de Albuquerque, A. R. de Alexandria, P. C. Cortez, and J. M. R. S. Tavares,
NDT&E Int., 42, 644 (2009). Evaluation of Multilayer Perceptron and Self‐Organizing
Map Neural Network Topologies Applied on Microstructure Segmentation from
Metallographic Images.

171. J. P. Simmons, P. Chuang, M. Comer, J. E. Spowart, M. D. Uchic, and M. De Graef,
Model. Simul. Mater. Sci. Eng., 17, 025002 (2009). Application and Further Development
of Advanced Image Processing Algorithms for Automated Analysis of Serial Section
Image Data.

172. J. Waggoner, Y. Zhou, J. Simmons, M. De Graef, and S. Wang, IEEE Trans. Image
Process., 22(12), 5282 (2013). 3D Materials Image Segmentation by 2D Propagation: A
Graph‐Cut Approach Considering Homomorphism.

173. L. Huffman, J. Simmons, M. De Graef, and I. Pollak, in Proceedings of IEEE Statistical
Signal Processing Workshop, 2011, pp. 28–30. Shape Priors for MAP Segmentation of
Alloy Micrographs Using Graph Cuts.

REFERENCES 273

174. D. T. Fullwood, S. R. Kalidindi, S. R. Niezgoda, A. Fast, and N. Hampson, Mater. Sci.
Eng. A, 494, 68 (2008). Gradient‐Based Microstructure Reconstructions from
Distributions Using Fast Fourier Transforms.

175. K. Rajan, Informatics for Materials Science and Engineering: Data‐Driven Discovery
for Accelerated Experimentation and Application, Butterworth‐Heinemann, Waltham,
MA, 2013.

176. E. Johlin, L. K. Wagner, T. Buonassisi, and J. C. Grossman, Phys. Rev. Lett., 110, 146805
(2013). Origins of Structural Hole Traps in Hydrogenated Amorphous Silicon.

177. V. Avrutin, N. Izyumskaya, and H. Morkoç, Superlattices Microstruct., 49, 337 (2011).
Semiconductor Solar Cells: Recent Progress in Terrestrial Applications.

178. D. A. Drabold, Y. Li, B. Cai, and M. Zhang, Phys. Rev. B, 83, 045201 (2011). Urbach
Tails of Amorphous Silicon.

179. Y. Pan, F. Inam, M. Zhang, and D. A. Drabold, Phys. Rev. Lett., 100, 206403 (2008).
Atomistic Origin of Urbach Tails in Amorphous Silicon.

180. Y. Pan, M. Zhang, and D. A. Drabold, J. Non Cryst. Solids, 354, 3480 (2008). Topological
and Topological‐Electronic Correlations in Amorphous Silicon.

181. P. A. Fedders, D. A. Drabold, and S. Nakhmanson, Phys. Rev. B, 58, 15624 (1998).
Theoretical Study on the Nature of Band‐Tail States in Amorphous Si.

