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INTRODUCTION

Data‐to‐knowledge ideas are beginning to show enormous promise within materials 
science. Indeed, the concept of rationally designing materials through the effective 
use of data‐driven methods forms the core of the U. S. Materials Genome Initiative. 
This paradigm for studying the materials property space has the potential to mitigate 
the cost, risks, and time involved in an Edisonian approach to the lengthy preparation–
testing or the computation–experiment cycles that permeate current approaches to 
identify useful materials. Moreover, data‐centric approaches can also yield valuable 
insights into the fundamental factors underlying materials behavior and can lead to 
the discovery of Hume‐Rothery‐like rules.

To significantly accelerate the pace of discovery using such data‐driven para-
digms, efficient and effective methods to (i) generate, (ii) manage, and (iii) utilize 
relevant information are necessary. The last of these tasks can be accomplished in a 
systematic way through an approach known as “machine learning,” a branch of 
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artificial intelligence pertaining to the creation of models that can effectively learn 
from past data and situations. Machine learning schemes have already impacted areas 
such as cognitive game theory (e.g., computer chess), pattern (e.g., facial or finger-
print) recognition, event forecasting, and bioinformatics. They are beginning to make 
major inroads within materials science and hold considerable promise for materials 
research and discovery.1,2 Some examples of successful applications of machine 
learning within materials research in the recent past include accelerated and accurate 
predictions (using past historical data) of phase diagrams,3 crystal structures,4,5 and 
materials properties,6,7 as additional examples of prediction of materials properties,8,9 
development of interatomic potentials10–12 as additional examples of development of 
interatomic potentials13,14 and energy functionals15 for increasing the speed and accu-
racy of materials simulations, on‐the‐fly data analysis of high‐throughput experi-
ments,16 mapping complex materials behavior to set of process variables,17 and so on.

Machine learning algorithms can be separated into two broad classes: supervised and 
unsupervised learning. In both of these classes, the algorithm has access to a set of obser-
vations known as training data. However the nature of the training data, and hence what 
can be accomplished with the data, differs between the two. In supervised learning, the 
training data consists of a set of input values (e.g., the structures of different materials) 
as well as a corresponding set of output values (e.g., materials property values). With 
these training data, the machine learning algorithm tries to identify a function that can 
make accurate predictions about the output values that will be associated with new input 
values. In unsupervised learning, there are no output values in the training data, and the 
goal is to identify patterns in the input values. A list of different methods and materials‐
related applications for each of these classes of algorithms is provided in Table 1. There 
is a third class, semi‐supervised learning, in which some, but not all of the input values 
have corresponding output values. To date, semi‐supervised learning algorithms have 
seen little use in materials science and engineering, and we do not cover them here.

This chapter is written for a materials researcher with an interest in machine 
learning methods. These methods come in many flavors under many names with a 
generous amount of jargon (as can be gleaned from Table  1). To effectively use 

TABLE 1 Supervised and Unsupervised Learning Examples

Example Methods Selected Materials Applications

Supervised 
learning

Regularized least squares Predict processing structure–property 
relationships; develop model 
Hamiltonians; predict crystal 
structures; classify crystal 
structures; identify descriptors

Support vector machines
Kernel ridge regression
Neural networks
Decision trees
Genetic programming

Unsupervised 
learning

k‐Means clustering Analyze composition spreads from 
combinatorial experiments; analyze 
micrographs; identify descriptors; 
noise reduction in data sets

Mean shift theory
Markov random fields
Hierarchical cluster analysis
Principal component analysis
Cross‐correlation



188 MACHINE LEARNING IN MATERIALS SCIENCE

learning schemes, a familiarity with the underlying mathematical tools and technical 
jargon is necessary. Thus, the next two sections of this chapter are almost entirely 
devoted to building this familiarity in one unified treatment (although relevant mate-
rials science illustrations are provided throughout those sections). Subsequent sec-
tions provide a rich assortment of pedagogical examples of successful applications of 
machine learning methods within materials science, and recommendations for useful 
machine learning‐related resources.

SUPERVISED LEARNING

One of the fundamental goals of science is the development of theories that can be 
used to make accurate predictions. Predictive theories are generated through the 
scientific method. Here, existing knowledge is used to formulate hypotheses, which 
are then used to make predictions that can be empirically tested, with the goal of iden-
tifying the hypotheses that make the most accurate predictions. The scientific method 
can be expressed mathematically by considering predictive theory as a function f that 
maps a set of input data x to a predicted outcome y. The function may be relatively 
simple, as in Newton’s laws of motion, or it may be complex, as in models that pre-
dict the weather based on meteorological observations. The collection of known input 
(x) and output (y) values, called training data, may be generated through observa-
tions or controlled experiments. The goal of the scientist is to use such training data, 
as well as any other prior knowledge, to identify a function that is able to predict the 
output value for a new set of input data accurately. The process of identifying such a 
function from a set of known x and y values is called supervised learning. If the 
allowed output values y form a continuous range (e.g., melting points), then the pro-
cess of searching for a function is known as regression. If the allowed output values 
form a discrete set (e.g., space groups), the process is then known as classification.

The hypothesis space contains all hypotheses (i.e., functions) that could be returned 
by the learning algorithm. An appealing choice for a hypothesis space might be the 
space in which every possible function is considered to be equally viable. However 
there will be many functions in this space that exactly reproduce the training data 
(Figure 1), and there will be no way to determine which functions would make the most 
accurate predictions. Thus, to identify a predictive function, it is necessary to use a 
 hypothesis space that is constrained in a way that excludes some functions from 
consideration and/or is weighted to favor some functions more than others. For example, 
it is common to constrain the hypothesis space so that only functions expressing a 
linear relationship between the input and output values are considered (Figure 1d).

There may be no function in the hypothesis space that produces the observed 
output values for all possible sets of input values. This could happen for some 
combination of several reasons:

 The hypothesis space has been constrained in a way that excludes the function 
that perfectly maps the input values to the output values. For example, the hypo-
thesis space might be constrained to include only linear functions, whereas no 
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linear function of the input variables can reproduce the observed output values 
(Figure 1d).

 The observed output values are the result of a process that is inherently 
nondeterministic.

 Some input data that are relevant to calculating the correct output values are 
missing and/or unknown.

In these situations, any function in the hypothesis space will result in some error in the 
predicted values. To account for this error, the output values can be expressed as

 y f E= ( ) +x  [1]

where f is a function contained in the hypothesis space and E is a random error. We 
will let g represent the probability distribution from which E is drawn. In other words, 
g(a) is the probability density that y f a− =( )x . The distribution g may depend on the 
input data, but for simplicity we will generally assume that it does not. In general, 
both the function f and the probability distribution g are unknown.

A Formal Probabilistic Basis for Supervised Learning

For a given probability distribution g, we can estimate the probability density that a 
function f satisfies Eq. [1]. This probability density is expressed as P f g( | , )D , where 
D is the observed training data. This probability density can be evaluated using 
Bayes’ rule.18
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FIGURE 1 Four different functions (blue lines) fit to the same set of training data (black 
dots). (a), (b), and (c) reproduce the data, and (d) does not (color available in e‐book version).
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Bayes’ rule is a fundamental statistical theorem that can be derived from the fact 
that the probability of two events, A and B, occurring is given by the probability of B 
occurring times the conditional probability that A occurs given that B has occurred. 
Mathematically, this is written as

 P A B P B P A B, ( ) = ( ) ( )|  [2]

Similarly,

 P A B P A P B A, ( ) = ( ) ( )|  [3]

Combining Eqs. [2] and [3] yields Bayes’ rule

 
P A B

P B A

P B
P A|

|( ) = ( )
( ) ( ) [4]

In the context of supervised learning, Bayes’ rule yields

 
P f g

P f g

P g
P f g| ,

| ,

|
|D

D

D
( ) = ( )

( ) ( ) [5]

The probability distribution P f g( | ) gives the probability density that a function f 
satisfies Eq. [1] given g prior to the observation of any training data. For this reason, 
it is known as the prior probability distribution, which is sometimes simply referred 
to as the prior. The probability distribution P f g( | , )D  represents the probability of 
the same event after accounting for the training data. It is known as the posterior 
probability distribution. The distribution P f g( | , )D , commonly known as the 
likelihood function, is the probability of observing the training data D given f and g. 
The remaining term in Eq. [5], P g( | )D , does not depend on f and can effectively be 
treated as a normalization constant.

Bayes’ rule provides a natural and intuitive framework (or basis) for under-
standing learning. Initially, the hypothesis space is constrained and/or weighted 
through the prior probability distribution. All functions that are excluded from the 
hypothesis space are assigned a probability of zero, and functions that are not 
excluded are assigned nonzero prior probabilities. These probabilities represent the 
prior belief that any particular function satisfies Eq. [1]. As training data are observed, 
these probabilities are updated to account for the new knowledge, resulting in the 
posterior probability distribution—this is the learning step. If additional training data 
(D2) were to be observed, a reapplication of Bayes’ rule could be used to update the 
probability distributions further:

 
P f g

P f g

P g
P f g| , ,

| , ,

| ,
| ,D D

D D

D D
D2

2

2
( ) = ( )

( ) ( ) [6]

where the posterior distribution in Eq. [5] has become the prior distribution in Eq. [6]. 
Thus repeated application of Bayes’ rule can be used to update the likelihood that a 
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particular hypothesis is best as new data come in. An example of how the posterior 
distributions change with new data points is shown in Figure 2.

Because it can be awkward to deal with a probability distribution defined over 
many functions, learning algorithms will commonly return the single function f̂  that 
maximizes the posterior probability density:

 
ˆ argmax | ,f P f g

f
= ( )D  [7]

Combining Eq. [7] with Eq. [5] yields

 
ˆ argmax | , |f P f g P f g

f
= ( ) ( )⎡⎣ ⎤⎦D  [8]

Because the natural log function is monotonically increasing, Eq. [8] can be 
equivalently written

 
ˆ arg min ln | , ln |f P f g P f g

f
= − ( )( )− ( )( )⎡⎣ ⎤⎦D  [9]

The term in square brackets on the right side of Eq. [9] is the objective function to 
be minimized. The function with the maximum posterior probability of satisfying 
Eq. [1] is the function that minimizes the objective function. The idea of finding a 
function that minimizes an objective function is common to most machine learning 

P ( f |D,g)
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FIGURE 2 An example of how the posterior distribution changes with the addition of new 
training data points. In this example, f is a constant value indicated by the black triangle and g 
is a normal distribution with zero mean and known variance. The diamonds represent training 
data. Assuming a uniform prior in which all values for f are considered equally likely, the pos-
terior distributions for f after the addition of the first (orange), second (red), third (purple), 
fourth (blue), and fifth (green) training data points are shown. (See insert for color representa-
tion of the figure.)
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algorithms, and the Bayesian analysis enables interpretation of the components of 
the objective function. The first term, � ln( ( | , ))P f gD , represents the empirical risk, 
a measure of how well a given function reproduces the training data. The second 
term, � ln( ( | ))P f g , is the regularization term, representing the constraints and 
weights that are put on the hypothesis space before the training data are known.

Equation [9] shows a commonly used framework for supervised learning algorithms. 
To determine the function f̂  that is returned by the algorithm, there are five choices 
that typically need to be made. It is necessary to determine both what the hypo-
thesis space should be and how the empirical risk will be calculated. There must 
also be an optimization algorithm that is capable of selecting a function from the 
hypothesis space (e.g., by minimizing the objective function). In addition, it is 
sometimes necessary to select the input values to be included in the training data 
and to estimate the prediction error for the selected function. In the following 
sections, each of these five choices is discussed in more detail.

The Hypothesis Space It is through the prior probability distribution P f g( | ) that 
the hypothesis space is constrained and/or weighted. Thus selecting the prior prob-
ability distribution is equivalent to deciding which hypotheses will be considered 
and to what extent some hypotheses should be preferred over others. Hypotheses 
often take the form of models, or parameterized functions, for which the parame-
ters are unknown. Often the prior distribution is implicitly specified simply by 
choice of the model to be used; for example, the assumption that a function is 
linear (as in Figure 1d) implicitly assigns zero prior probability to all nonlinear 
functions.

The choice of the prior probability distribution can impact the effectiveness of the 
learning process significantly. Functions that are assigned a prior probability of zero 
are excluded from the hypothesis space and will not be considered no matter how 
strongly they are supported by the training data. On the other hand, a function that is 
assigned a small, but nonzero, prior probability could have a large posterior proba-
bility, provided it predicts the training data with relatively high accuracy. It is advan-
tageous to choose prior distributions that assign the highest probability to the most 
accurate functions, as these distributions will generally result in an accurate choice 
of f̂  with little (or no) additional training data.

The prior probability distribution is incorporated into the objective function 
through the regularization term, � ln( ( | ))P f g . This term is often described as a way 
to penalize functions that are unlikely to make good predictions, and the benefit of a 
regularization term can be derived independently from Bayesian analysis.19 The use 
of a regularization term can make an ill‐posed problem, in which there is no unique 
solution and/or the solution does not change continuously with the training data, into 
a problem that is well posed.

The act of choosing a prior probability distribution can be controversial because it 
can introduce a subjective element into the learning process. However the choice of 
a prior must be made, either implicitly (e.g., by constraining the hypothesis space to 
only include certain functions) or explicitly. Here we describe five common strat-
egies for selecting the prior probability distribution/regularization term.
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Uninformative Priors If no information is known about the process being modeled, 
a natural choice for the prior distribution would be one that makes the fewest assump-
tions about the relative merits of different candidate functions. Such prior probability 
distributions are known as uninformative priors. An uninformative prior distribution 
that assigns equal probabilities to all possible functions would make it impossible to 
differentiate between functions that perfectly reproduce the training data. Thus if an 
uninformative prior distribution is to be used among functions in the hypothesis 
space, it is necessary to constrain the hypothesis space to only include certain 
functions.

The appropriate choice of an uninformative prior may depend on the problem 
being modeled and the way in which the functions in the hypothesis space are param-
eterized. A number of different strategies have been proposed, and a thorough review 
of these can be found in Ref. 20. One strategy for choosing uninformative priors is 
the principle of maximum entropy, championed by E. T. Jaynes.21 This principle 
states that the prior probability distribution should be chosen in a way that maximizes 
the information entropy within the constraints of existing knowledge, where the 
information entropy of a probability density p is a measure of uncertainty defined as

 
S p p x p x dx( ) = − ( ) ( )( )

−∞

∞

∫ ln  [10]

Jaynes has made the case that the distribution that maximizes the information 
entropy is the “maximally noncommittal” probability distribution.21 For example, if 
a single scalar parameter is to be determined and nothing is known about it prior to 
the observation of the training data, then the principle of maximum entropy would 
state that the appropriate prior distribution is the uniform prior in which all possible 
values are considered equally likely.

A uniform prior that assigns equal prior probabilities to an infinite number of 
functions is an improper prior, in that it cannot be normalized to 1. In practice, such 
improper priors are widely used, as they may result in a proper (i.e., normalizable) 
posterior distribution.

Model Selection One strategy for selecting a prior distribution is to evaluate 
multiple possible priors and choose the one giving the posterior distribution with 
the lowest expected prediction error. To this end, the methods described in the sec-
tion “Estimating the Prediction Error” may be employed. A common variation of 
this approach is model selection, in which the learning process is broken into two 
steps. In the first step, a parameterized function (a.k.a. model) is selected, effec-
tively assigning zero prior probability to all other functions. (Different types of 
models are discussed in the section on “Supervised Learning Algorithms”; 
common examples include linear models, neural networks, etc.) In the second step 
the parameter values that minimize the objective function for the selected model 
are determined.

A general approach to model selection can be derived through a Bayesian anal-
ysis. For a given model and a given set of training data, different values of the model 
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parameters will result in different values for the empirical risk. Let r represent the 
minimum value of the empirical risk achievable within a given model for a given 
set of training data. Schwartz demonstrated that under a wide range of conditions, 
the model with the greatest expected posterior probability is the one for which the 
following value is smallest:

 2r k n+ ( )ln  [11]

where k is the number of parameters in the model and n is the number of elements 
(x, y pairs) in the training data.22 The expression in Eq. [11] is commonly known as 
the Bayesian information criterion (BIC). Separately, Akaike derived a similar term 
to be minimized for model selection, commonly known as the Akaike information 
criterion (AIC):23

 2 2r k�  [12]

Both the Bayesian information criterion and Akaike information criterion are 
valuable for revealing a general rule for model selection: among models that repro-
duce the training data equally well, the one with the fewest parameters can be 
expected to have the lowest prediction error. This result is similar to Occam’s razor, 
a commonly used heuristic that all else being equal, simple hypotheses should be 
favored over more complex ones. Intuitively, this insight can be understood by con-
sidering that if there are more parameters in a model, there is greater risk of selecting 
a function that happens to reproduce the training data well but has little predictive 
ability. This is known as overfitting the training data.

Prior Knowledge Determining the best way to constrain and/or weight the hypo-
thesis space can be accomplished by incorporating prior knowledge about the pro-
cess being modeled into the prior distribution. For example, physical arguments 
might suggest that the output value should be a linear function of a particular input 
value, or the expected magnitudes of some of the parameters that define the function 
might be known. The prior probability distribution can be constructed in a way that 
accounts for this knowledge, directing the learning process toward functions that are 
expected to be reasonable even before the observation of the training data. The use of 
a prior probability distribution that effectively takes into account external knowledge 
can significantly accelerate the learning process by making use of all available 
knowledge.

The principle of maximum entropy can be combined with prior knowledge to cre-
ate a prior distribution that incorporates existing knowledge in a “maximally non-
committal” way. For example, if estimates for the mean and the variance of a 
parameter’s value are available, then a Gaussian distribution over possible parameter 
values will maximize the information entropy and would therefore be the appropriate 
choice of a prior distribution for the parameter value under the principle of maximum 
entropy.

Prior knowledge can be especially useful for setting the mean of the prior proba-
bility distribution. If the prior probability distribution has a nonzero mean f , then the 
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learning process can be recast in terms of a prior probability distribution with zero 
mean by replacing the function f with

 ∆f f f= −  [13]

Accordingly, each value yi in the training data is replaced with

 ∆y y fi i i= − ( )x  [14]

For example, if f calculates the energy of a compound, then f  might be the 
 composition‐weighted average of the energies of the constitutive elements and Δf 
would be the formation energy.

The function Δf represents the difference between the actual function f and the 
expected function f . Because f is expected to resemble f , it can be expected that the 
norm of Δf, represented by ‖Δf‖, is more likely to be small than it is to be large. For 
this reason, it is common to use a term that monotonically increases with ‖Δf‖ as the 
regularization term.

A variety of different norms can be used, and some of the most popular take the 
form of the Lp norm, defined by

 
f f d

p p
= ( )( )∫ x x

1/
 [15]

where p ≥ 1 and the integral is over all values of x. The L1 and L2 norms are com-
monly used, as are smoothing norms that favor functions that vary smoothly with the 
input values (i.e., their higher‐order derivatives are small). An example of a widely 
used smoothing norm is the L2 norm of the second derivative of Δf.

It is generally a good idea to transform f to Δf if prior knowledge can be used to 
make a reasonable estimate for f ; otherwise f  0 is implicitly used. The approaches 
to supervised learning discussed in this chapter are equally applicable to f and Δf.

Hyperpriors An alternative approach to selecting a particular prior distribution is to 
assign a probability distribution over the space of possible prior distributions. Such a 
probability distribution is known as a hyperprior. For example, if a Gaussian distri-
bution with zero mean is used as the prior, a hyperprior could be constructed as a 
probability distribution over possible values of the variance of the Gaussian. The 
posterior distribution can then be calculated as a weighted average over prior 
distributions:

 
P f g

P f g

P g
P f g P P f g| ,

| ,

|
| |D

D
D

( ) = ( )
( ) ( ) ( )( )∫  [16]

where P f g( | ) is the prior, P P f g( ( | )) is the hyperprior, and the integral is over all 
possible prior distributions.

Many of the same challenges for determining a prior exist for determining a 
hyperprior, and there is an extra integration step that needs to be performed to arrive 
at the posterior. However the hyperprior allows for an extra layer of abstraction in 
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situations in which the posterior may be particularly sensitive to the choice of a 
prior. It is possible to similarly define hyperhyperpriors, etc., but in practice this is 
rarely done.

The Empirical Risk The empirical risk represents the negative log probability of 
observing the training data for a given f and g. Assuming that all of the observations 
in the training data are independent, from Eq. [1] and the definition of g, we can write

 
P f g g y f

i
i iD x| ,( ) = − ( )( )∏  [17]

where xi is the ith set of input values in the training set, yi is the ith output value, and 
the product is over all elements in the training set. Thus, under the assumption that 
the observations in the training set are independent of each other, the empirical risk 
can be written as

 
− ( )( ) = − − ( )( )( )∑ln | , lnP f g g y f

i
i iD x  [18]

where the sum is over all elements in the training set. For example, if g is assumed to 
be Gaussian, then the empirical risk would depend on the sum of the squared differ-
ences between yi and f(xi). This approach leads to least‐squares fitting, discussed in 
more detail in the section on “Regularized Least Squares.”

The empirical risk is sometimes written more generally as

 i
i iL y f∑ ( )( ), x  [19]

where L is a loss function that calculates the penalty (a.k.a. loss) for large differences 
between yi and f(xi). In practice many commonly used loss functions can be written 
in the form of Eq. [18], as a function of y fi i� ( )x .

Unlike the prior probability distribution, the empirical risk depends on the function 
g, which is in general unknown. As both f and g are unknown, it might make sense to 
treat the two similarly and to search for the pair of functions that together are most 
likely to satisfy Eq. [1]. The posterior and prior distributions would then be defined 
for the pair, (f, g), and application of Bayes’ rule would yield

 
P f g

P f g

P
P f g, |

| ,
D

D
D

( ) = ( )
( ) ( ),  [20]

as an alternative to Eq. [5]. However such an approach is not commonly used. Instead, 
it is more common to make the prior assumption that g, and hence the loss function, 
is known.

If a uniform prior probability distribution is used for all functions in the hypo-
thesis spaces, then the optimization of the objective function (Eq. [9]) can be accom-
plished by minimizing the empirical risk. This approach is known as empirical risk 
minimization. Empirical risk minimization is equivalent to selecting the function that 
maximizes the likelihood function P f g( | , )D  (i.e., the function that best reproduces 
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the training data). Although empirical risk minimization is a widely used method, 
there is a risk of overfitting training data. This risk can often be mitigated by replac-
ing the uniform prior used in empirical risk minimization with a prior distribution 
that favors simple functions or takes into account prior knowledge.

Optimization Algorithms Many machine learning algorithms involve the optimiza-
tion of an objective function, as in Eq. [9]. For practical purposes, the functions in the 
hypothesis space are typically characterized by a set of unknown parameters; for 
example, the functions may be expressed as a linear combination of basis functions, 
in which the linear expansion coefficients are unknown parameters. Thus the problem 
of searching for the optimal function becomes a problem of finding the set of param-
eters that minimize the objective function. Many algorithms have been developed to 
address such optimization problems (e.g., gradient descent approaches, simulated 
annealing, etc.), and the field of general optimization algorithms is too large to dis-
cuss here. Instead we refer the reader to some of the many comprehensive books on 
the subject (e.g., Refs. 24–26).

For some objective functions, there may be no known algorithm that is able to find 
the globally optimal function and/or verify whether a particular function is globally 
optimal with a reasonable computational cost. However many machine learning 
algorithms use an objective function and hypothesis space that have been designed to 
facilitate the rapid identification of the globally optimal function. The ways in which 
this is done are described in the context of individual machine learning algorithms in 
the section on “Supervised Learning Algorithms.”

The Training Data The training data may be generated by observations of external 
events that cannot easily be controlled, such as climatological data used in weather 
forecasting. However in many cases it is possible to generate training data through 
controlled experiments. In each experiment, a set of input values are evaluated, and 
the corresponding output value becomes known once the experiment is complete. 
Because the generation of training data can be an expensive and/or time‐consuming 
step in the learning process, it is desirable to minimize the total number of experi-
ments that must be performed to achieve an acceptable level of prediction error. The 
field of active learning, also known as design of experiments, deals with determining 
the best set of experiments to perform (i.e., determining the best elements to include 
in training data) to minimize the total cost of generating the training data.

There are many different approaches to active learning, and we will not review 
them all here. Good overviews can be found in Refs. 27–29. A common approach to 
active learning is uncertainty sampling,30 in which the next experiment is performed 
on input values for which there is a large amount of uncertainty in the predicted 
output value. A related approach is query by committee,31 in which several different 
models are trained on the same data, and the next experiment is performed on a data 
point about which there is the least agreement among the models. However this 
approach can result in the sampling of outlier data points that are not representative 
of the space of possible input values. Alternatively, if the distribution of all possible 
input values is known, the input values can be selected in a way that takes this 
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distribution into account. Such density‐weighted methods can result in significant 
performance improvements over methods that do not account for the distribution of 
possible input values.28

If the hypothesis space consists of parameterized functions, the training data 
may be chosen in a way that minimizes some measure of the variance of the esti-
mated parameter values. This is often accomplished by optimizing the observed 
information matrix, sometimes called simply the information matrix.32 The 
observed information matrix is the Hessian of the empirical risk with respect to the 
function parameters, and it is often evaluated at the parameter values that minimize 
the empirical risk. It is an indicator of how informative the current training data are 
about the parameter values.

A number of different criteria have been developed to optimize the observed 
information matrix. Among the most common are A‐optimality, in which the trace of 
the inverse information matrix is minimized, and D‐optimality, in which the determi-
nant of the information matrix is maximized.33–35 An overview of these and many 
other optimality criteria can be found in Ref. 36. As the information matrix does not 
take into account the prior probability distribution over possible parameter values, an 
alternative approach is to use the Hessian of the objective function in place of the 
information matrix. In this approach, sometimes referred to as Bayesian experi-
mental design,37,38 the same matrix optimality criteria (A‐optimality, D‐optimality, 
etc.) may be used. In materials science, optimization of the information matrix has 
been used to select training data for cluster expansion models, as described in the 
section on “Lattice Models.”

Estimating the Prediction Error The goal of a machine learning algorithm is to 
identify a function that makes accurate predictions for input values that are not 
included in the training data. Thus to evaluate the results of a learning algorithm, it 
is not sufficient to evaluate how well the function reproduces the training data (i.e., 
the empirical risk). Rather it is best to use a method that is capable of estimating the 
prediction error of a function over the distribution of all possible input values.

The estimation of the prediction error can be accomplished using resampling 
methods, in which functions are trained on one or more subsamples of the training 
data using the same learning algorithm that is used for the entire set of training data. 
These functions are then evaluated using subsamples of the training data on which 
they were not trained, providing an estimate of the predictive ability of the functions 
identified by the learning algorithm.

A common resampling technique is cross‐validation,39–42 in which the set of 
known observations are partitioned into two subsets. The first subset, the training set, 
is used to identify a likely function. The predictive power of this function is evaluated 
by calculating its prediction error when applied to the second subset, known as the 
test set. Averaging the cross‐validation prediction error over multiple different parti-
tions provides a measure of the estimated prediction error for a function trained on 
the entire known set of observations. A common variation of cross‐validation 
approach is k‐fold cross‐validation, in which the set of observations are partitioned 
into k different subsets, and the prediction error on each subset is evaluated for a 
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function trained on the k − 1 remaining subsets. When k equals the number of samples 
in the training set, this approach is known as leave‐one‐out cross‐validation.

Another popular resampling technique is bootstrapping,43–45 in which the sub-
samples are drawn from the set of training data with replacement, meaning the same 
element can appear in the subsample more than once. Functions trained on these 
subsamples are then compared to a function trained on the entire set of training data. 
Bootstrapping is commonly used to estimate statistics such as the bias and variance 
in the output of the learning algorithm. Additional details about cross‐validation, 
bootstrapping, and other resampling methods can be found in Refs. 46–50.

Resampling methods provide the best estimates of prediction error when the dis-
tribution of input values in the set of known observations is representative of the 
distribution of all possible input values. Training data that consist of uncontrollable 
empirical observations generally fit this description, provided the observations are 
effectively randomly drawn from the distribution of all possible input values. 
Alternatively, density‐weighted active learning methods can generate a set of obser-
vations that are representative of the distribution of possible input values and are well 
suited for use in cross‐validation algorithms.

Supervised Learning Algorithms

Many supervised learning algorithms have been developed, and it is not feasible to 
describe them all here. Instead, a brief overview of some of the most common 
approaches is provided. These approaches are all described in the context of the 
framework presented in the section entitled “A Formal Probabilistic Basis for 
Supervised Learning.” In each of these approaches, there is a hypothesis space, 
objective function, and optimization algorithm. There are also sometimes 
algorithm‐specific active learning methods used to generate an efficient set of 
training data. Approaches for estimating prediction error are fairly universal, so 
they will not be described in detail here.

Regularized Least Squares One of the most widely used methods for fitting a 
function to data is least‐squares regression. The least‐squares approach is character-
ized by the assumption that g is Gaussian:
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where the sum is over all elements in the training set. The loss function depends on 
the squared difference between the observed and predicted output values, and 
empirical risk minimization yields
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Equation [23] describes a least‐squares fit, in which the selected function mini-
mizes the sum of the squared errors over all of the elements in the training set. The 
loss function in Eq. [23], known as the squared error loss, is commonly used in 
machine learning algorithms. Under the assumptions that the errors are normally dis-
tributed with zero mean and constant variance (Eq. [21]), the least‐squares fit returns 
the function that maximizes the probability of observing the training data. Similarly, 
if a uniform prior is assumed for the functions in the hypothesis space, the least‐
squares fit returns the function that maximizes the posterior probability distribution.

The least‐squares fit is often a justifiable choice for function fitting. The assump-
tion that g is Gaussian can be justified using the principle of maximum entropy, and 
the use of a uniform prior can be justified on the grounds that it is uninformative and 
hence will not bias the results. Perhaps most importantly from a practical perspec-
tive, the least‐squares fit is conceptually simple and easy to implement. In a common 
implementation, known as linear least squares or ordinary least squares, the hypo-
thesis space is restricted to include only linear functions of the input values. The 
optimal set of coefficients, ÊE, is given by

 

ˆ argminββ ββ= −( )∑
β i

i iy x 2
 [24]

where xi is a row vector containing the input values and β is a column vector contain-
ing the unknown input values. From Eq. [24], the exact optimal solution can be 
calculated:

 β̂β = ( )−X X X yT T1
 [25]

where y is a column vector in which the ith element is yi and X is a matrix in which 
the ith row is xi. A unique solution to Eq. [25] only exists if the matrix XTX is 
nonsingular.

It is often possible to improve upon least‐squares fits by using a nonuniform prior 
distribution. For example, consider the situation in which a multivariate normal 
 distribution is used as the prior:

 P g eββ
ββ ββ

|( )∝
− TΛ
σ2 2  [26]

where Λ is a positive definite matrix. The set of coefficients that minimize the 
objective function is given by

 β̂β ΛΛ= +( )−X X X yT T1
 [27]

Equation [27] represents a type of regularized least‐squares fit known as Tikhonov 
regularization.19 When a normal least‐squares fit is ill posed (e.g., when XTX is 
singular), Tikhonov regularization can make the problem well posed, such that a 
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unique solution is guaranteed. Variants of Tikhonov regularization are popular in part 
because they are often easy to justify and robust and the optimal solution can be 
found with only slightly more computational cost than a least‐squares fit.

When Λ = λI in Eq. [27], where I is the identity matrix, it is known as ridge 
regression.51 Ridge regression is equivalent to using the squared ℓ 2 norm of the coef-
ficients as the regularization term, where the ℓ p norm for a vector is defined as
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for p ≥ 1. (It is the discrete version of the Lp norm described by Eq. [15].) Another 
popular form of regularized least squares includes the use of an ℓ 1 norm instead of an 
ℓ 2 norm. The use of the ℓ 1 norm often results in a minimizing vector of coefficients,  
ÊE, in which many elements are identically 0. This approach is sometimes known as 
the lasso estimator or compressive sensing,52,53 and it is useful when the solution is 
sparse. It is in general not as straightforward as using the ℓ 2 norm, but efficient algo-
rithms for finding the optimal set of coefficients exist.54 The ℓ 1 and ℓ 2 norms are 
revisited in the sections on “Similarity and Dissimilarity Measures” and “Lattice 
Models.”

Linear least squares is a particularly convenient method for active learning 
approaches (described in the section on “The Training Data”), as the information 
matrix is independent of the values of the coefficients and proportional to XTX. For 
Bayesian experimental design, the matrix X XT +ΛΛ may be used in place of XTX.

Support Vector Machines Classification problems differ from regression problems 
in that the set of allowed output values is discrete, with each allowed output value 
corresponding to a different class. The same general learning framework could be 
used for classification problems as for regression problems, but in practice it can be 
difficult to work with discontinuous output values. Many classification problems can 
be simplified by recognizing that different classes often correspond to different 
regions in input value space (Figure 3). Thus instead of searching for a discontinuous 
function that predicts the output values directly, it is possible to search instead for a 
continuous dividing surface between the regions corresponding to different classes.

For example, consider a situation in which there are two classes, corresponding to 
y  1 and y = −1. If the prior assumption is made that there is a linear hyperplane in 
the space of input values that divides the two different classes, then the classification 
function takes the form
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where the vector of coefficients w (commonly known as weights) and the offset b 
define the hyperplane that divides the two classes (Figure  3). Thus the discrete 
classification function, f(x), can be determined by learning the continuous function 
w x⋅ − b. We will call this continuous function h(x).
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The training data are linearly separable if there is at least one hyperplane that per-
fectly separates the two classes. There are usually many competing hyperplanes that 
can separate linearly separable data, and the goal of the learning algorithm is to find 
the one that is most likely to correctly separate data points that are not in the training 
set. One approach is to find the hyperplane that is farthest from the input values in the 
training data. In other words, the best hyperplane is the one with the longest support 
vectors, which are defined as the shortest vectors between the hyperplane and the 
nearest training data point of each class (Figure  3). Support vector machines are 
widely used supervised learning algorithms that identify such a hyperplane.55 If there 
are more than two different classes present, support vector machines can be used to 
find the hyperplanes separating all pairs of classes. A brief introduction to support 
vector machines is presented in the following text, and a more comprehensive review 
of different support vector machine approaches can be found in Refs. 56 and 57.

Hyperplanes are defined by the unknown parameters w and b, and the optimal 
values for these parameters can be found by minimizing an objective function similar 
to the one in Eq. [9]. The loss function (Eq. [19]) is given by
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and the regularization term is simply (1/2)‖w‖2. The loss function ensures that the 
plane separates the two classes, and the regularization term is minimized for the 
plane with the longest support vectors. This is a constrained quadratic optimization 
problem that can be solved using quadratic programming.58,59 A similar approach, 
least‐squares support vector machines (LS‐SVM),60 enables the calculation of the 
optimal weights by solving a linear system.

If the training data are not linearly separable, then the loss function in Eq. [30] 
will always be infinite for at least one element of the training set, and no optimal set 
of parameters will be found. This problem can be addressed by introducing 

FIGURE 3 A linearly separable data set containing two classes (gray and white). Each point 
corresponds to coordinates (x1, x2) given by the input values, and the colors are determined by 
the corresponding y values. The dashed line shows the dividing plane, and the short thick lines 
are the support vectors.
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nonnegative slack variables, ξi, that allow for some data points to be misclassified.55 
The slack variables effectively measure the distance between the hyperplane and the 
misclassified data points. The loss function becomes
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and the regularization term is ( / )1 2 2w + ∑C ii
ξ , where C is an adjustable param-

eter that determines how severely misclassification should be penalized. An 
alternative equivalent formulation is to use the hinge loss:
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where the corresponding regularization term is (1/2)‖w‖2. By comparing the loss 
functions in Eqs. [30] and [32], it can be seen that the hinge loss simply replaces the 
infinite penalty for misclassification with a penalty that scales linearly with the 
degree of misclassification.

The optimal set of weights for support vector machines can be found by solving 
the dual problem, in which the weights are written as
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i
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where the sum is over all elements in the training set. The vector of coefficients α is 
given by
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subject to the constraints

 

0

0

≤ ≤
=∑

α
α

i

i
i i

C

y

,
 [35]

where each sum is over all elements in the training set. The dual problem formulation 
makes it possible to use support vector machines to classify data that are not linearly 
separable using the kernel trick, in which the input variables are transformed in a way 
that makes the data linearly separable.

The Kernel Trick Linear least squares and support vector machines are popular due 
to their speed and simplicity, which come from the underlying assumption that the 
solution must be a linear function of the input variables. However in many cases this 
assumption is unrealistic. For example, consider the classification problem shown in 
Figure 4a. There is no linear plane that will separate the data, which means that a 
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linear support vector machine will fail to find a good solution. However it is possible 
to transform the original one‐dimensional input value (x1) to a two‐dimensional 
feature space, (x1, x1

2), in which linear separation is possible (Figure 4b). Such trans-
formations of the input variables are known as feature maps.

Feature maps can be used in machine learning algorithms by simply substituting 
the transformed input variables, φ(x), for the original input variables x. However in 
some cases, such as when the feature space has an infinite number of dimensions, it 
may not be practical to explicitly make such a transformation. Alternatively, many 
algorithms, including support vector machines (Eq. [34]) and linear least squares, 
can be expressed in a way that depends only on the input variables through inner 
products such as x x1 2� . In such cases, it is sufficient to find a kernel k(xi, xj) that 
returns the dot product between φ(xi) and φ(xj):

 
k i j i jx x x x, ( ) ( ) ⋅ ( )≡ ϕ ϕ  [36]

To use a learning algorithm in a given feature space, all that needs to be done is to 
use the kernel k(xi, xj) in place of the inner product x xi j�  throughout the learning 
algorithm. This is known as the kernel trick.61

The direct use of the kernel function saves the trouble of having to apply a 
feature map and calculate the inner products explicitly. When using the kernel 
trick, it is not even necessary to know which feature maps produce the kernel—
any symmetric, continuous, positive definite kernel can be used, as every such 
kernel corresponds to an inner product in some feature space.62 (A positive 
definite kernel is defined as a kernel for which c c ki j i jj

n
i
n

( )x x, ≥== ∑∑ 0
11  for any 

real‐valued {c1, …  , cn} and {x1, …  , xn}.) Such kernels are known as Mercer 
 kernels or reproducing kernels. Some examples of reproducing kernels are shown 
in Table 2.

(a)

(b)

FIGURE 4 (a) A one‐dimensional data set that is not linearly separable. (b) The same data 
set mapped to two dimensions using a feature map that makes it linearly separable. The dashed 
line is the separating plane.
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Reproducing Kernel Hilbert Spaces For a reproducing kernel k(x1, x2), consider the 
space of functions f that are given by

 
f k

j
j jx x x( ) ( )∑≡ α ,  [37]

where αj are scalar coefficients and the sum may contain any number of terms. The 
inner product ⟨⟩H on this space is defined such that
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This function space is known as a reproducing kernel Hilbert space (RKHS).63 
Each RKHS has a norm, ‖ f‖H, which is defined as
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The norm of the RKHS depends on the underlying kernel. For example, the norm 
of the linear RKHS is given by
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where f x wx( )  . Thus in a linear RKHS, functions with a steeper slope will have 
larger norms. The norm of the Gaussian RKHS is
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where F(ω) is the Fourier transform of f (x). Thus in the Gaussian RKHS, functions 
that fluctuate more rapidly will have larger norms.

Reproducing kernel Hilbert spaces have special properties that make them partic-
ularly useful for supervised machine learning. Consider a situation in which the hy-
pothesis space is an RKHS. If a Gaussian kernel is used, for example, the hypothesis 
space would consist of linear combinations of Gaussian functions. Let the regulari-
zation term be given by r(‖ f‖H), where r is a monotonically increasing function. Let 

TABLE 2 Examples of Symmetric, Continuous, Positive 
Definite Kernels

Name k(xi, xj)

Linear x xi j c⋅ +
Polynomial kernel with degree d ( )( )c ci j

d
1 2x x⋅ +

Gaussian e
i j− −x x 2

2 2σ

Laplacian e
i j− −x x

σ

The scalar parameters c, c1, c2, and σ are all adjustable, with the con-
straints that σ and c1 are positive and d is a positive integer.
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the empirical risk take the general form of L y fi ii
( , ( ))xx , where the sum is over all 

data points in the training set. The objective function is therefore
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The representer theorem then states that the function that minimizes this objective 
function must take the form

 
f̂ c k

i
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where the sum is over all elements of the training set.64,65 Thus the problem of find-
ing f̂  is reduced to the problem of finding the coefficients ci that minimize the 
objective function.

If a squared loss function is used and r f f∆ λ ∆
H H( ) = 2

 for some positive scalar 
λ, then it is straightforward to show that the objective function can be written as

 
1
2

2y Kc c Kc− + λ T  [44]

where K is a matrix in which K kij i j ( )x x,  for some xi and xj in the training data and c 
is a column vector in which the ith element is ci. The unique solution to this problem is

 ĉ K I= +( )−2 1λ  [45]

This approach is known as kernel ridge regression.66 It is similar to regularized 
linear least squares (Eq. [27]) with two major differences. The first is that it is no 
longer necessary to work in a hypothesis space of linear functions—this solution 
holds for any RKHS. The second is that the number of rows and columns in the 
matrix to be inverted is now equal to the number of elements in the training set, rather 
than the number of input variables. Thus although the calculations may take longer 
in situations in which there are a lot of training data, this approach can be used for a 
much wider variety of hypothesis spaces.

The flexibility and simplicity of kernel ridge regression have made it a popular 
tool in materials science. It has been used for a variety of ends, including the predic-
tion of materials properties from descriptors, development of model Hamiltonians, 
and generation of density functionals. These are described in more detail in the sec-
tions on “Materials Property Predictions Based on Data from Quantum Mechanical 
Computations,” “Development of Interatomic Potentials,” and “Developing and 
Discovering Density Functionals.”

Neural Networks An intuitive and effective approach to machine learning is to 
mimic the biological brain. This is the idea behind a class of machine learning algo-
rithms known as neural networks.67 In a neural network, artificial neurons (a.k.a. 
nodes) are linked together in a way that resembles the connections between neurons 
in the brain (Figure 5). The input values (x) are passed directly into a set of neurons 
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that comprise the first layer of the neural network, and these neurons use activation 
functions to calculate output values that are then used as input values by the next set 
of neurons. This process proceeds throughout the network until reaching a neuron 
that produce the final output value (y). Some networks may be constructed to output 
multiple values.

The hypothesis space in a neural network is defined by the topology of the con-
nections between nodes and the parameterized activation functions used by the 
nodes. One of the simplest neural networks, consisting only of a single node, is 
known as a perceptron (Figure 5a).68 The activation function of a perceptron com-
pares a weighted sum of the input values to a threshold value. If the weighted sum is 
larger than the threshold value, the perceptron produces “1” as the output value. If it 
is lower, the perceptron produces “0” as the output value. Mathematically, we write 
this activation function as
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where b is the threshold value and w is the vector of weights (Figure 6a). The percep-
tron is a linear classifier that is similar to a support vector machine, where the plane 
that separates two classes is determined by w. The weights in a perceptron are typi-
cally optimized using a gradient descent algorithm to minimize the squared loss.

(a)

x1 x2 x3
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a9
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a7 a8

x4

x1 x2 x3 x4

(b)

FIGURE 5 (a) A perceptron. (b) A multilayer neural network containing many perceptron‐
like nodes. Nodes representing input variables (x1, x2, …) are gray, and nodes with activation 
functions (a1, a2, …) are black.
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A perceptron is an example of a feed‐forward network, in which there are no loops. 
More complicated feed‐forward neural networks can be created by combining multiple 
perceptron‐like nodes in a multilayer network (Figure 5b). Such networks are some-
times referred to as multilayer perceptrons. The optimization of the weights of a 
multilayer perceptron is more complicated than that of single node, but it can be 
accomplished efficiently using a backpropagation algorithm that effectively minimizes 
the squared loss using gradient descent.69 However the backpropagation algorithm 
requires that the activation function is differentiable, which is not the case when using 
the function in Eq. [46]. To avoid this problem, in multilayer neural networks the dis-
continuous step function used in Eq. [46] is replaced by a continuous sigmoid function 
such as a logistic function (Figure  6b). The use of continuous activation functions 
results in neural networks that can output a continuous range of output values, making 
neural networks valuable tools for regression as well as classification.70,71

Multilayer perceptrons with sigmoid activation functions parameterized using 
backpropagation have been widely and successfully used for classification and 
regression. However there are a variety of alternatives to this approach. One alternative 
is recurrent neural networks, in which loops are allowed in the network, enabling the 
network to model dynamic processes. Different activation functions and optimization 
algorithms have also been developed to improve the performance of neural networks. 
A more extensive discussion of the different types of neural networks can be found in 
Refs. 72 and 73. Across all types of neural networks, regularization is typically done 
by penalizing the complexity of the network as measured by factors such as the 
number of nodes in the network and the norm of the network weights.

Neural networks have had a long history of success in materials science and engi-
neering, especially in the development of accurate interatomic potentials and in the 
mapping of complex materials behavior (flow stress, fatigue behavior, microstructure, 
etc.) to materials processing parameters (heat treatment, deformation, cold working, 
etc.). Examples touching on these developments can be found in the sections on 
“Development of Interatomic Potentials” and “Materials Processing and Complex 
Materials Behavior,” respectively.

Decision Trees Decision trees are among the oldest approaches to machine 
learning, particularly for classification problems. Historically they have been among 
the most widely studied machine learning methods, and more comprehensive reviews 

(a) (b)
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w · x – b
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FIGURE 6 (a) The discontinuous activation function in Eq. [46]. (b) A sigmoid activation 
function.
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of decision trees can be found in Refs. 74–77. Within materials science, decision 
trees have been recently used to predict tribological properties (specifically, the coef-
ficient of friction) of various materials based on easily accessible properties (or 
descriptors) of the materials and their constituents (e.g., melting point, Madelung 
constant, density, etc.),78 as described in the section on “Materials Processing and 
Complex Materials Behavior.” They have also been used to classify zeolite structures 
based on topological descriptors.79 Here we provide a brief overview of the idea 
behind decision trees and some common implementations.

Decision trees are similar to neural networks in that the function is represented as 
a network of connected nodes. However in a decision tree, the network takes a hier-
archical treelike structure, in which each node may only have a single parent node 
(Figure 7). The evaluation of the function starts at the topmost parent node, known as 
the root node, and proceeds down through the tree until reaching a node with no chil-
dren, known as the leaf node. At each node along the way, there are multiple possible 
branches, each of which leads to a different child node. The choice of which branch 
to follow at each node is determined by the value of one of the input variables. Thus 
the set of all input values determines the path through the tree, and the output value 
is determined by the leaf node that is reached at the end of the path. Decision trees 
are commonly used for classification, in which each leaf node corresponds to a dif-
ferent class. However they may also be used for regression, in which each leaf node 
corresponds to a different numerical value.

There will generally be many different decision trees that are capable of reproduc-
ing the training data. The most efficient trees will be those that have, on average, the 
shortest path between the root and leaf nodes. Unfortunately the problem of finding 
such trees is NP‐complete,80 meaning that it is unlikely that the globally optimal 
solution can be found using an algorithm that scales as a polynomial of the number 
of possible output values. Given the computational cost of finding a globally optimal 
solution, decision trees are commonly constructed using a greedy algorithm that 
finds a solution by making a locally optimal choice at each node. Some of the most 
successful algorithms are based on an approach known as top‐down induction of 

x

x1 < b1 ?

x2 = b2 ?

No Yes

No Yes

y3

y1 y2

FIGURE 7 An example of a simple decision tree. The leaf nodes are in black.
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decision trees (TDIDT ).81 In the TDIDT approach the tree is recursively built from 
the training data, starting at the root node. At each node an input variable is selected, 
and child nodes are created for each possible value of that variable. The training data 
are then divided into subsets based on the value of the input variable and passed to 
the appropriate child nodes. The process is then repeated at each child node, with 
each of the subsets divided and passed on to the next level of child nodes. If any of 
the subsets are empty, then a child node is not created, and if only one child node is 
created, then the node becomes a leaf node. A common constraint is that there can be 
no path through the tree in which the same variable is evaluated more than once.

The TDIDT approach provides a general framework for creating decision trees, 
but it does not specify the order in which the input variables should be selected. 
A common approach for classification problems is to choose the input variable that 
produces subsets with the lowest average information entropy, where the information 
entropy for a subset is given by

 
− ∑N p p

i
i iln  [47]

In Eq. [47] the sum is over all classes in the subset, N is the total number of ele-
ments in the subset, and pi is the fraction of elements in the subset that belong to the 
ith class. Information entropy is minimized for subsets that contain only one class 
and maximized for subsets that contain equal numbers of every class, and as a result 
this approach facilitates the rapid subdivision of the training data into subsets that are 
pure. A similar approach is to use the Gini index in place of the information entropy,82 
where the Gini index is defined as
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When using a decision tree for regression, there is a continuous range of allowed 
output values, and it is common for every element in the training set to have a differ-
ent output value. The objective of the decision tree is to provide an estimate of the 
output value that is close to the true output value. At each node in the tree, an estimate 
of the output value can be calculated based on the average of all output values in 
the leaf nodes below that node (Figure 8). The tree can then be constructed in a way 
that attempts to minimize the average estimation error along the path. One way to 
accomplish this within the TDIDT framework is to choose at each node the attribute 
that minimizes the average variance in output values within each of the subsets.82,83

There are two general strategies that can be used to improve the predictive accu-
racy of decision trees. The first is a regularization approach, in which the complexity 
of the tree is reduced by pruning, or removing, branches of the tree.82,84,85 The pruned 
branches are typically those that were poorly represented in the training data and/or 
are many layers from the root node. For regression, the pruned branches can be 
replaced by a function (e.g., using linear regression) that estimates the output values 
for the remaining set of input values. Resampling methods (described in the section 
on “Estimating the Prediction Error”) may be used to determine the optimal degree 
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of pruning. An alternative approach to improving the prediction power is to generate 
ensembles of decision trees. For example, in the random forest approach, an 
ensemble of decision trees is created by introducing a stochastic element into the 
algorithm for constructing trees.86 The prediction is then based on the mode (for 
classification) or average (for regression) of predictions made by the members of the 
ensemble. Variations of this approach, known as ensemble learning, are described in 
the next section.

Ensemble Learning In ensemble learning, the function f̂  is created by combining 
the outputs from an ensemble of different learning algorithms (e.g., by taking the 
average). This approach can be a simple and effective way to increase the size of the 
hypothesis space, and it often results in a function with greater predictive accuracy 
than any of the individual algorithms in the ensemble. It is particularly popular for 
classification problems.

Various approaches to ensemble learning are well reviewed in Refs. 87–89. Two 
of the most common classes of algorithms are bagging algorithms,90 in which the 
members of the ensemble are created by randomly resampling the training data, and 
boosting algorithms,91,92 in which the training data is resampled in a way that assigns 
extra weight to input values for which the losses (described in the section on “The 
Empirical Risk”) are particularly high. The performance of some boosting algo-
rithms can be adversely sensitive to random classification noise (i.e., erroneous 
classifications) in the training data.93

Genetic Programming It is often desirable to express a function symbolically, as a 
simple combination of variables and basic mathematical operators. For example, the 
simple formula F ma  is generally preferable to expressing force as a linear 
combination of many basis functions. The field of identifying such simple formulas 
that best predict the output values is known as symbolic regression. In symbolic 
regression the hypothesis space contains all symbolic formulas that combine the 
input variables with a set of mathematical operators, and the space is typically 

x

7

2

1 3 10 14

12

FIGURE 8 An illustration of how the output value could be estimated at each node in a 
regression decision tree trained on four output values.
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regularized in a way that favors simple formulas (e.g., formulas that contain fewer 
variables or operators). Functions are typically represented in a treelike structure,94 
where input variables and constant values are represented by the leaf nodes and the 
remaining nodes are mathematical operators or simple functions (e.g., trigonometric 
functions). An example of such a diagram is given in Figure 9.

As with other supervised learning methods, symbolic regression is typically accom-
plished by searching through hypothesis space to find the formula that minimizes an 
objective function. A common way to do this is through genetic programming,95,96 
in which the search for the optimal function is performed using a genetic algorithm. In 
genetic programming a population of candidate formulas evolves in a way that mimics 
the process of natural selection, favoring the formulas that are most fit, that is, formulas 
that produce the lowest values for the objective function. In a typical implementation, 
an initial population of candidate functions is created, and those that are least fit are 
discarded. The remaining functions are used to generate a new generation of functions 
by using crossover operations, in which features of the functions are combined to cre-
ate “children,” and mutation operations, in which a feature of the function is randomly 
changed. Examples of crossover and mutation are shown in Figure 10. Repetition of 
this process results in a series of increasingly fit generations of functions.

The genetic programming algorithm will generate a set of candidate functions 
with varying degrees of fitness and complexity. The complexity of the function may 
be measured by factors such as the number of nodes in the treelike representation of 
the function, and it is common for complexity to be measured in a way that penalizes 

1.8

+

/

2 x

FIGURE 9 A treelike representation of the expression 1 8 2. ( )� /x .

Crossover

(a) (b)

f(x) = 17x + e–2.3xf(x) = 3.2x2 + sin(x–1) f(x) = 3.2x2 + sin(x–1)

f(x) = 3.2x2 + cos(x–1)f(x) = 17x + sin(x–1)

Mutation

FIGURE 10 (a) An example of a crossover operation. (b) An example of a mutation 
operation.
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advanced operators such as acos more than simple operators like addition. Although 
it is possible to use a complexity‐dependent regularization term in the objective 
function,95,97 an alternative approach is to generate a Pareto frontier of the functions 
with respect to fitness and complexity.98 The Pareto frontier is defined as the set of 
all candidate functions for which there is no other known function that is both more 
fit and less complex. The Pareto frontier approach enables a transparent evaluation 
of  the fitness‐complexity trade‐off in the population of functions generated by the 
genetic programming algorithm (Figure 11).

In materials science and engineering, genetic programming has been used by sev-
eral researchers to develop predictive models of the properties of cement, 
concrete,99–101 asphalt,102 and the effects of processing parameters on metal 
alloys.103–105 It has also recently been applied at the atomic scale to determine the 
structural features of hydrogenated amorphous silicon that most strongly influence 
hole trap depths.106 This last application is described in more detail in the section on 
“Structure–Property Relationships in Amorphous Materials,” and a thorough review 
of genetic programming can be found in Ref. 107.

UNSUPERVISED LEARNING

While supervised learning is focused on finding the function (f) that maps a set of input 
data (x) to a corresponding output value (y), unsupervised learning focuses on finding 
the relationship among the input data x themselves. In other words, while supervised 
learning seeks to determine relationship between x and y through the conditional 
density P f y g| , ,x( ), unsupervised learning seeks to determine the properties of the 
joint marginal density P(x).

We illustrate these notions with an elementary example. Twenty data points are 
drawn from two Gaussian probability density functions (PDFs) of unit standard 
deviation, one centered at (−3, 0) and the other at (3, 0) (see Figure 12a). The points 

U
nf

itn
es

s

Complexity

FIGURE 11 The Pareto frontier for a set of functions with different levels of fitness and 
complexity. Each dot represents a function, and the black dots (lower left dots connected by 
dashed line) are the ones on the Pareto frontier.
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are color coded to identify their PDF of origin. Four additional points (indicated with 
diamonds) are drawn from each PDF and are appropriately labeled (i.e., y values are 
given). In other words, we are provided both x and y values for a subset of four data 
points and are asked to classify each of the other data points as to which PDF they 
came from. One of many supervised learning classification algorithms can be used to 
accomplish this task, with the resulting color coding shown in Figure 12b (color in 
e‐book version; light gray and dark gray in printed book version). The method used 
here was support vector machines (SVM) (described previously). It is clear that the 
SVM results are a perfect match to the true labels. However, it might also be apparent 
that the performance of the SVM method here is strongly dependent upon the training 
data used.

(a)

(b)

(c)
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FIGURE 12 (a) Data points generated from two Gaussian PDFs with unit standard deviation 
and means of −3 and 3. (b) Classification results using SVM with four labeled points indicated 
with diamonds. (c) Clustering results with k‐means.
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Alternatively, imagine that we are only told the number of classes (i.e., the number 
of PDFs used to generate the data), with no labels provided. We are then tasked with 
sorting the samples into potential clusters associated with the underlying PDFs. This 
is an example of unsupervised learning, as only the x values are provided. Applying 
the k‐means unsupervised learning algorithm, discussed in the section “Combinatorial 
(or k‐Means) Methods,” gives the results seen in Figure 12c. The clustering results 
can now be used to learn something about the underlying PDF.

In this chapter we group unsupervised learning algorithms into two broad classes: 
cluster analysis, in which the input data are grouped into clusters based on a simi-
larity measure, and dimensionality reduction, in which the data is represented in a 
simplified form. When applied to very large collections of data, both cluster analysis 
and dimensionality reduction are commonly considered data mining methods. These 
approaches are described in more detail in the following sections.

Cluster Analysis

Cluster analysis is the unsupervised parallel to classification. In classification, as dis-
cussed in the section on “Support Vector Machines,” a set of data with class labels is 
used to learn rules of data class membership. These rules can then be applied to deter-
mine the class membership of unlabeled data. If no labels are given, classification 
becomes more of an open problem, relying only on similarity measures to group data 
into clusters where data that share a cluster show greater similarity to each other than 
to data in other clusters. Due to the open nature of cluster analysis, it is generally per-
formed for the goals of either data complexity reduction or exploratory data analysis.

Complexity reduction is achieved by assigning one representative data value for 
each cluster that will be used to replace the values of all those in the cluster. This may 
be an original data point or a function of data in the cluster, such as the mean. For 
example, if structure micrographs are taken of multiple material samples, where each 
sample is one of N material types, those micrographs can be sorted into N clusters 
corresponding to the material types. One micrograph can then be chosen from each 
cluster to represent the members of that cluster.

Clustering for exploratory data analysis is used to “present the data to the analyst 
such that he or she can see patterns and formulate interesting hypotheses about the 
data.”108 If, in the case of the micrographs of N material types, the value of N were 
unknown, clustering analysis will provide an estimate of this number.

When performing cluster analysis, it is necessary to choose a similarity measure 
that will be used to group the data as well as a way to evaluate the performance of 
the algorithm. It is also often necessary to change the way in which the data are rep-
resented (i.e., through dimensionality reduction). Finally, it is necessary to choose 
the clustering algorithm that is most appropriate for the problem. Because the 
choice of data representation and measure can often have a greater impact on the 
final data analysis than do the clustering algorithms used, they should be selected 
with care. These topics are discussed in more detail in the following sections. 
Applications of these ideas are described in the later sections on “Phase Diagram 
Determination” and “Automated Micrograph Analysis.”
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Similarity and Dissimilarity Measures One of the most important decisions to be 
made in a clustering algorithm is the measure used to evaluate the similarity or dissim-
ilarity between data; this will be discussed further in the example in the section on 
“Phase Diagram Determination” (similarity measures are also important in supervised 
learning situations, e.g., within kernel ridge regression alluded to section “Reproducing 
Kernel Hilbert Spaces”; this will be discussed in the section on “Materials Property 
Predictions Based on Data from Quantum Mechanical Computations”). A dissimi-
larity measure takes the place of a distance metric when comparing two pieces of 
data—the more different the two pieces of data, the greater the value of the measure. 
Alternatively, a similarity measure increases with greater similarity.

A dissimilarity measure d(xi, xj) is a metric if it meets the following conditions:

 
d i jx x, nonnegativity( ) ≥ 0,

 

 
d i j i jx x x x, if identity of indiscernibles( ) = =0 ,

 

 
d di j j ix x x x, , symmetry( ) = ( ),  

 
d d di j i k k jx x x x x x, , , triangle inequality( ) ≤ ( ) + ( ),  

Measures that meet these conditions can be thought of as measures of distances 
between data points.

For low‐dimensional data, it is common to use the norm of the difference between 
two data points as a dissimilarity measure. In other words, the dissimilarity between 
xi and xj is given by

 
d i j i jx x x x, ( ) = −  [49]

Higher‐dimensional data may require a different choice of measure that preserves 
aspects of the data structure. For example, consider the situation shown in Figure 13a 
where each data point is a simple black‐and‐white image with 10 pixels. The vector 

(a) (b)

x1 = {0,1,0,0,0,0,0,1,0,0} x1 = {0,1,0,0,0,0,0,1,0,0}

x2 = {0,0,1,0,0,0,0,0,1,0} x2 = {0,0,1,0,0,0,0,0,1,0}

x3 = {0,0,0,0,1,1,0,0,0,0} x3 = {0,0,0,0,1,1,0,0,0,0}

FIGURE 13 (a) Three images that are equally dissimilar according to ℓ 1 and ℓ 2 measures. 
Neither measure properly represents the perceived similarities. (b) Histogram representation 
of the same data.
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x represents the colors of the pixels in the image, with xi representing the color of the 
ith pixel. While the image labeled x1 appears to be more similar to x2 than x3, the ℓ 2 
(and ℓ 1) measure between any two images gives the same value. For this case, we 
would prefer a measure that identifies x1 and x2 as more similar despite the slight 
shift in data structures, a common situation in high‐dimensional data. These impor-
tant issues are addressed in the section on “Bin‐by‐Bin and Cross‐Bin Measures.”

The choice of measure can greatly impact the efficacy and speed of a machine 
learning algorithm. This is especially important for complex, high‐dimensional data 
and those machine learning algorithms whose input is a dissimilarity matrix D, where

 
D dij i j= ( )x x,  [50]

There are many measures to choose from, and the decision of which to use gener-
ally depends on a cost–benefit analysis between the resultant algorithm performance 
and the computational cost of evaluating the dissimilarity matrix. For example, the 
use of dynamic time warping (DTW) greatly improves the analysis of diffraction 
patterns over the use of the ℓ 1 norm but comes at a significantly greater computa-
tional cost.109 In the following sections some common measures are described.

Bin‐by‐Bin and Cross‐Bin Measures The image example shown in Figure 13 falls 
into the broader class of situations in which x can be represented as a set of bins in a 
histogram (Figure  13b). Such situations include high‐dimensional vector data or 
image data as both can be represented as a list of numbers indexed by dimension or 
pixel. There are a great number of measures for differentiating between data points 
using a bin‐by‐bin comparison, in which the elements in the vector x1 are individu-
ally compared to the corresponding elements in another vector x2.

The most common bin‐by‐bin measure is the norm of the difference between the 
two data points, as shown in Eq. [49]. Particularly common choices are ℓ p norms 
(Eq. [28]). The ℓ 1 norm, also known as the taxicab distance, is often used for high‐
dimensional spectral or histogram data as it is less susceptible to outlier values. The 
ℓ 2 norm, or Euclidean distance, is typically used for 2D or 3D data.

Another measure is the information theory‐based Kullback–Leibler divergence, 
which describes the efficiency of coding one histogram h using another histogram k 
as the codebook:110,111
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However, this is nonsymmetric. A symmetric alternative is the Jeffreys 
divergence:112,113
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where m h ki i i= +( )/2 and the square root of the Jeffreys divergence is a metric.
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A measure for normalized histograms is the Hellinger distance, which was found 
to provide good performance in distinguishing between histograms while also having 
a low computational requirement:114,115

 
d h k

i
i iH , h k( ) = −∑1  [53]

An information theory‐ or statistics‐based metric is appropriate when dealing with 
histograms that represent probability densities. For instance, the 1‐point statistics of 
an image (or micrograph), discussed in the section on “N‐Point Cross‐Correlations 
for N‐Point Statistics,” is a normalized histogram that describes the probability of 
observing pixels of different states in the image (e.g., see Figure 25b). The 1‐point 
statistics can be used to represent each image when differentiating between samples 
of different statistical structures.

Although bin‐by‐bin measures are simple and easy to implement, they fare poorly 
when features in the data can undergo shifts between neighbor bins or pixels 
(Figure 13). Such a shift is a typical problem found in microscopy, where two images 
of the same sample might not be perfectly aligned. A related issue arises when the 
two histograms are of different lengths.

A solution to the problem of feature shifting and different histogram lengths is to 
introduce a term that provides an expected correspondence between bin numbers. 
This results in a cross‐bin measure. An example is the quadratic form distance:116

 dA h k h k A h k, T( ) = −( ) −( )  [54]

where the matrix A determines the similarity measure between bin indices. If the 
expected correspondence between bins is not known, a measure can be used that 
allows for some drift in features across neighboring bins or different histogram 
lengths. For example, if feature shifting is possible with a maximum shift length of 
L bins, A can be given by
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which allows for features to be compared over a window of L.

Structure‐Preserving Measures Two structure‐preserving measures are the dynamic 
time warping measure (DTW)117 and the earth mover’s distance (EMD).118 DTW 
began as a measure for analyzing temporal sequence data where two similar 
sequences may vary in time or speed. For example, DTW is used in automated speech 
recognition when speaking speed is an issue. DTW has recently found use in mate-
rials science for comparing diffraction patterns from samples that differ slightly due 
to lattice expansion, resulting in diffraction peak shifting and broadening.109 EMD is 
a popular technique for comparing images using histogram representations such as 
1‐point statistics, when issues like histogram length can be a problem.
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In dynamic time warping (DTW), the dissimilarity measure is determined by the 
amount of warping needed to map one histogram into another. This measure is, how-
ever, not a metric as it is nonsymmetric and does not obey the triangle inequality. For 
the two histograms h and k of length N and M, respectively, DTW begins with the 
construction of the cross‐bin dissimilarity matrix D (Eq. [50]). The minimum warp-
ing distance between ( , )i j  1 1  and ( , )i N j M   is then computed recursively 
using the function γ(hi, kj) defined by

 
γ γ γ γh k D h k h k h ki j ij i j i j i j, , , , ( ) = + ( ) ( ) ( ){ }− − − −min , ,1 1 1 1  [56]

A localization constraint can be included, requiring that features should only be 
considered similar within a window w, in which case the index j is restricted by

 j i w i w∈ −( ) … +( ){ }max min1 1, , , ,  [57]

An example is shown in Figure 14. The values of h and k are given in Figure 14a. 
For D h kij i j= − , the DTW path costs are shown in Figure 14b, and the path is shown 
in gray. The corresponding point‐by‐point mapping is shown in Figure 14c.

Another shift‐resilient measure that has proven popular in the computer vision 
community is the earth mover’s distance (EMD) or the Wasserstein metric.118 EMD 
measures the minimum amount of “work” needed to construct one histogram using 
another (Figure 15). This can be visualized by thinking of one histogram as a series 
of mounds of earth and the other as a series of holes. EMD calculates the minimum 
amount of work needed to transport the earth from the mounds to the holes, where 
the weight is given by the bin intensity and the distance is given by a measure of 
bin‐to‐bin or pixel‐to‐pixel distance. EMD obeys the conditions of a metric if the 
distance between bins (or pixels) is defined by a metric and if both histograms have 
the same total mass. For a more detailed description of the EMD algorithm, see 
Refs. 118 and 119.

The improved analysis performance achieved by utilizing the DTW or EMD 
 measures comes at the cost of a significantly increased computation. However, fast 
implementations of each can be found that greatly reduce their computational 
cost.120–122

For data features that undergo more extreme changes but still require a high mea-
sure of similarity, the data is typically first converted to a new representation, using 
feature extraction methods in which the feature changes become negligible and have 
minor impact on the measure. An appropriate moment invariant feature extraction 
method will allow for similar features to be identified despite changes in location, 
scale, orientation, shear, and/or dilation.

Clustering Algorithms Many types of clustering algorithms exist. While a theoret-
ical taxonomy of clustering methods has yet to be developed, there are several gen-
eral groupings of clustering methods. In the following sections, four of these general 
groups are described: combinatorial methods, mode seeking, mixture models, and 
hierarchical clustering.
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FIGURE 14 (a) Histograms h and k. (b) DTW mapping between h and k. (c) DTW path 
cost matrix with minimal cost path of 1 shown in gray.
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FIGURE 15 Histograms h and k with h shown as EMD earth mounds and k as holes.
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Combinatorial (or k‐Means) Methods Combinatorial methods utilize the similarity 
between data to sort the samples into clusters. This is accomplished by using a dis-
similarity matrix to achieve a minimization of intracluster scatter (or equivalently, 
maximizing the intercluster scatter), defined as

 
W C d

k

K

C i k C j k
i j( ) = ( )

= ( )= ( )=
∑ ∑ ∑1

2 1

x x,  [58]

where C is a function that assigns a cluster label to a data point, the outer sum is over 
all clusters, and the inner sums are over all pairs of points within each cluster.

Filtering through all possible clustering configurations for large data sets is 
infeasible, so most combinatorial methods rely on iterative greedy descent to opti-
mize clustering results. The most common combinatorial method, k‐means, uses 
this approach. In the k‐means algorithm, the intracluster scatter W(C) is defined as
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where xk is the mean of the points in cluster k. We assume here that the number 
of clusters K is known and that each point can be assigned only to one cluster. The 
k‐means algorithm minimizes W(C) with an iterative decent method.

The algorithm is initialized by first randomly distributing k cluster center points 
vk in the data vector space. Each data point is then assigned a cluster based on the 
nearest center point. For each cluster, the mean xk is calculated and the k cluster cen-
ters are moved to the cluster mean: v xk k . Each data point is then reassigned to a 
cluster based on proximity to the new set of center points. The process repeats until 
the assignments of all points remain constant. Because the results depend on the 
initial choice of the center points, this method is typically repeated with multiple 
initial random assignments, and the cluster configuration that minimizes W(C) is 
retained. An example of this algorithm is illustrated in Figure 16.

The k‐means algorithm assumes that clusters are spherical in shape and of similar 
size and density. For cases where these assertions are not true, k‐means will not 
 perform well. Outliers and empty clusters will also provide difficulty.

Statistical Techniques: Mixture Models and Mode Seeking Both mixture models and 
mode‐seeking methods assume the data are statistical in nature, and the probability of 
observing each data point is described by a probability density function (PDF) P(x) 
over the data vector space. The PDF is assumed to be the sum of class‐associated PDFs 
Pi(x) each associated with a different underlying classification. P(x) is then given by
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where πi are normalizing constants. Mixture models assume that the general type of 
each class‐associated PDF is known (e.g., Gaussian, Bernoulli, etc.); however, each 
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class‐associated PDF has a set of unknown parameters including its location in the 
vector space. The most likely values of these parameters are determined given the 
data x using a gradient descent method. Similarly the most likely generating class‐
associated PDF is determined for each datum, and the class association is used to 
determine cluster membership. In the particular case where all Pi(x) are Gaussians—
the Gaussian mixture model—P(x) can be rewritten:
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π µ& | ,Σ  [61]

(e)

(a)

(b)

(c)

(d)

FIGURE 16 k‐Means for simulated data with k = 2: (a) cluster centers indicated by “X” are 
initialized, (b) cluster assignment based on proximity to centers, (c) cluster centers computed, 
(d) cluster assignment recomputed, and (e) convergence.
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where the unknown parameters μi and Σi are the D‐dimensional mean (for an x of 
dimension D) and D × D‐dimensional covariance, respectively. These parameters are 
initialized and the most likely class association z K∈ …{ }1, ,  for each datum is deter-
mined by evaluating p z( | )x  given by
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[62]

The class assignments are then used to recalculate the PDF parameters. The cycle 
is repeated using a gradient descent method until convergence in parameter values 
and class associations.

Mode‐seeking methods also assume that P(x) is composed of class‐associated 
PDFs, but the general type of each Pi(x) is unknown other than that each Pi(x) has 
one major mode (i.e., the maximum of the PDF). Mode‐seeking methods utilize the 
local density of points to estimate the topology of P(x) empirically and assign each 
data point to the most likely mode and thus to a cluster.

For data of high dimension, evaluating the empirical PDF over the entire vector 
space can be infeasible. One solution is to evaluate the PDF only in the vicinity of 
data points. Mean shift theory,123 a popular mode‐seeking method, utilizes this 
technique to “walk” each data point toward its mode by following increasing local 
densities of data points. This is accomplished through the use of a window function 
to identify local regions of points. The window function has a nonzero value 
within the region and a value of zero otherwise. A typical window function is the 
truncated Gaussian. The algorithm begins by either partitioning the vector space 
in the vicinity of data points into regions enclosed by a window function or by 
centering a window function at each data point. Each point within each region is 
then assigned a mass by evaluating the window function at its location. The center 
of mass within the window is computed, and the window center is then shifted to 
this location. An illustration of this process can be found in Figure 17. The pro-
cess is repeated until the center of mass reaches a convergence point at a local 
density maximum for each starting region. Points that fall within the original 
regions are identified with their convergence point, and the convergence points 
are given class labels.

(a) (b)

FIGURE 17 An illustration of mean shift theory: (a) center of mass computed for region of 
interest indicated by circle and (b) region of interest is shifted to center of mass. Center of 
mass recomputed.
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Hierarchical Cluster Analysis Clustering algorithms can provide either flat results or 
hierarchical results. Flat methods provide only one clustering result as a function of 
algorithm parameters. It is up to the user to vary the algorithm parameters to achieve 
other clustering results. Hierarchical clustering analysis (HCA) provides a range of 
clustering resulting in a binary tree or dendogram (Figure 27). There are two methods 
of HCA—agglomerative, the bottom‐up approach, and divisive, the top‐down approach.

Agglomerative HCA begins with each data point in its own cluster. At each higher 
level in the tree, the two clusters with the smallest intercluster dissimilarity are 
merged. There are three common types of agglomerative HCA derived from the 
choice of dissimilarity metric (Figure 18). Single linkage agglomerative clustering 
defines cluster dissimilarity as the dissimilarity between the two points (one in each 
cluster) that have the minimum dissimilarity. Complete linkage HCA defines the 
cluster dissimilarity as that of the two points with the greatest dissimilarity. Group 
average HCA uses the average dissimilarity between the two groups. A discussion of 
the pros and cons of the different dissimilarity metrics can be found in Ref. 32.

Divisive HCA begins with all data points in one cluster. At each lower level in the 
tree, the cluster with the largest intracluster dissimilarity is split into two. Various 
methods have been proposed to accomplish this. One method is to use k‐means clus-
tering with k = 2. Another method proposed by Macnaughton et al.124 involves taking 
the data point with the largest average intracluster dissimilarity, removing it from the 
initial cluster A and placing it into a new cluster B. Points are moved one by one from 
A to B by selecting those points with the largest average dissimilarity to points in A 
minus the dissimilarity with points in B. The process ends once the remaining points 
in A are each less dissimilar to the others in A than to the points in B. Further 
discussion of the divisive algorithms can be found in Ref. 32.

Model Evaluation and Selection The variety of different clustering algorithms 
available presents a challenge of how to choose the best algorithm for a given problem. 
For some algorithms, such as k‐means, it is also necessary to choose the number of 

(a)

(b)

(c)

FIGURE 18 Agglomerative HCA cluster dissimilarities: (a) single linkage, (b) complete 
linkage, and (c) group average.
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clusters. Supervised learning methods have “teacher guidance” in the form of known 
output values (y) in the training set, whereas clustering analysis does not generally 
have labeled data. Thus in clustering analysis there is generally no way to evaluate the 
empirical risk associated with a particular choice of clusters or to use cross‐validation 
(described in the section on “Estimating the Prediction Error”) to evaluate model 
quality. For this reason, clustering evaluation is often accomplished by having an 
expert inspect the clustering results. In situations where data labels are provided for a 
small data subset or information is known of the function that generated the data, a 
testing scheme similar to cross‐validation can be used to determine performance. 
First, the algorithm is tested on simulated data with a similar generating function. 
Then the algorithm is tested on labeled data to evaluate performance. Finally, the 
algorithm is run on unlabeled experimental data and inspected by an expert.

An alternative approach that has become popular for evaluating clustering algo-
rithms is cluster stability. A clustering result is considered stable if similar results are 
obtained when the algorithm is tested on different sets of data drawn from the same 
underlying models. In that sense, this approach is similar to cross‐validation. For 
algorithms such as k‐means, in which the number of clusters is an unknown param-
eter that must be set, clustering stability is commonly implemented to select the 
number of clusters to use. There are a variety of different measures of cluster stability, 
and a good discussion of these can be found in Ref. 125.

Determining the number of clusters to include in a clustering algorithm is similar 
in some ways to the problem of choosing the number of parameters to fit in a super-
vised learning problem. If too many clusters are chosen, there is a risk of overfitting 
the data—for example, consider the extreme case in which every data point is 
assigned to its own cluster. Contrarily, if too few clusters are chosen, then the clusters 
might not represent the data well. As in the case of supervised learning, these con-
cerns can be balanced by selecting the number of clusters that optimizes measures 
such as the Akaike information criterion or Bayes information criterion (described in 
the section on “Model Selection” for supervised learning).126 However this approach 
requires some way of estimating the likelihood of the result returned by the clus-
tering algorithm. Several additional approaches have been developed to choose the 
number of clusters for use in a clustering algorithm, and a good review of these can 
be found in Ref. 127.

Prior Knowledge Prior knowledge of the data can aid in algorithm selection. For 
instance, if the data generation is known to be statistical, a statistical clustering 
method may provide the best results. If clusters are expected to have varying den-
sities and sizes, a mixture model might be a good choice. If the clusters are nonglobu-
lar in shape, a graphical model may provide adequate results. Also, certain algorithms 
are known to provide good results at low computational cost for high‐dimensional 
data. In practice, there are well‐established clustering methods that have become 
popular, and they are often the first go‐to algorithms tested. These include two of the 
algorithms described here: k‐means and hierarchical cluster analysis.

Sometimes prior knowledge can be incorporated in the clustering algorithm 
through the use of constraints on the allowed results. This approach is analogous to 
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restricting the hypothesis space in supervised learning. The clustering algorithm is 
expressed as a constraint satisfaction problem, in which a set of constraints are placed 
over the possible cluster labels for each data point. The constraints allow for the 
integration of prior knowledge into the solution requirement and permit use of 
information from different domains. For example, in the case of phase diagram gen-
eration, a constraint can be imposed to require that points clustered together in a 
phase region should be similar in structure and inhabit a connected region of the ter-
nary composition space. Constraint satisfaction problems can be expressed in a con-
straint programming framework that provides an environment in which constraint 
satisfaction problems can be stated and solved, without specifying any one solution 
method. Constraint satisfaction problem algorithms can provide one solution, all 
possible solutions, or the optimal solution given an objective function. More 
information on constraint satisfaction problem and constraint programming can be 
found in Ref. 128.

Dimensionality Reduction

The type of clustering algorithm used is typically determined by the dimensionality 
of x. There are many effective algorithms for clustering low‐dimensional data, 
 especially for the more easily visualized data of three dimensions or less, but higher‐
dimensional data falls prey to the “curse of dimensionality”—data points become 
highly sparse due to the large volume of the data vector space, resulting in poor 
 clustering analysis and increased computational costs.

Different solutions exist to deal with the curse of dimensionality. These solutions 
provide a lower‐dimensional data representation that results in appropriate or 
improved clustering results while reducing computational costs. One solution is 
dimension reduction through latent variable analysis (LVA). This method relies on 
the fact that the data points exist on or near a manifold of lower dimension than the 
vector space. The manifold is described by a set of latent variables that are more 
representative of the samples being clustered.

Another solution is to select a list of data structures, or features, that better repre-
sent the samples. The data is preprocessed using a set of feature extraction algorithms 
and mapped to a lower‐dimensional feature space. Feature extraction requires prior 
knowledge of the representative features. For example, rather than using a million 
pixel image of a fingerprint to identify a unique user, the existence and location of 
fingerprint features such as ridge terminations and ridge bifurcation can be identified 
in the images and used to map and identify users in a lower‐dimensional fingerprint 
feature space.

Latent Variable Analysis Latent variable analysis techniques comprise a subset of 
unsupervised methods used for dimension reduction, compression, and data visuali-
zation. LVA is of particular interest for treating high‐dimensional data that exists on 
or near a lower‐dimensional manifold described by “latent variables.” For example, 
if a 1000 pixel image is padded with zeroes and then translated in its new borders to 
produce a set of output images, the output images will exist on a two‐dimensional 
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manifold associated with the latent variables of x and y translations. Identifying 
the images with their location on the 2D manifold provides a low‐dimensional means 
of representation. Furthermore, while visualizing the set of images in the 1000‐
dimensional space may be difficult, visualizing the images as points in 2D is not.

Principal Component Analysis One of the most popular methods for latent variable 
analysis is principal component analysis (PCA). PCA identifies a linear subspace 
onto which (i) orthogonal projections of data have a maximum variance and (ii) 
which minimizes the mean squared distance between the data and its projections 
(Figure 19). The subspace therefore is the best linear representation of the collection 
of data.

The linear subspace is found by first normalizing the data. That is accomplished 
by subtracting the mean of each M‐dimensional variable to get the normalized data 
matrix Y, where the ith row of Y is x xi � . The covariance matrix S Y Y T  is then 
computed and evaluated for its eigenvectors ui and corresponding eigenvalues λi:

 Su ui i i= λ  [63]

The PCA subspace of dimension D is given by selecting the D eigenvectors with 
the largest eigenvalues. The eigenvectors are called principal components, and the 
corresponding eigenvalues describe the data variance along that principal compo-
nent. The set of D principal components describes a subspace, within the original 
data vector space, where the principal components are the orthogonal basis. Projecting 
the data vectors onto this basis gives a reduced data representation of dimension D:

 y i iPCA
T

,  y u  [64]

where y x x= − . The original data can then be reconstructed by summing over the 
contributions along each principal component:
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PC2
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FIGURE 19 The first two principal components, PC1 and PC2, for data generated using a 
Gaussian PDF.



228 MACHINE LEARNING IN MATERIALS SCIENCE

If the sums in Eq. [65] contain all principal components, then the right side repro-
duces x exactly. However if some of the principal components with the smallest 
eigenvalues are left out of the sums, then the right side of Eq. [65] provides an 
approximation for x. This approach is sometimes used to reduce the amount of noise 
in a data set.

By choosing the first two or three principal components (setting D to 2 or 3), the 
PCA representation can be used to visualize high‐dimensional data in the reduced 
PCA space. As an example, samples of varying composition from the Fe–Co–Ni 
material system were characterized for their powder patterns (integrated X‐ray 
diffraction patterns) and are shown in Figure 20a.129 Five samples were drawn from 
one region of the composition space (red) and five from another (blue) (color avail-
able in e‐book version). The powder patterns shown are each a list of 89 intensities 
for corresponding 2θ values or each are 89‐dimensional vectors that are impossible 
to visualize for analysis by inspection. The two‐dimensional (D = 2) PCA representa-
tion of these powder patterns is shown in Figure 20b. Here one can clearly see that 
the 2D principal components describe a space in which the 10 powder patterns are 
easily separated by their locations in the composition space.

Typically, the principal components can also be investigated as vectors them-
selves—vectors that describe the orthogonal basis of greatest variance in the original 
vector space. The first two principal components are shown in Figure  21a. 
Correspondence can be seen between the positive peaks of these PCA‐based powder 
patterns and the original data. However, the first principal component does not rep-
resent a realistic powder pattern due to its negative values. Nonnegative matrix fac-
torization, described in the next section, is used when the components are required 
to be positive definite.

(a)

(b)

42.6 43.6

5

0
–4 –2 0 2 4 6

–5

44.6
2θ

45.6 46.6

FIGURE 20 (a) Powder patterns for 10 samples from Fe–Co–Ni combinatorial library ternary 
spread. (b) The powder patterns projected into first two principal components.



UNSUPERVISED LEARNING 229

When the number of data points N is smaller than the number of data dimensions 
D, those data points inhabit an N‐dimensional subspace of the D‐dimensional vector 
space. As a result, only N − 1 principal components will have nonzero variance and 
nonzero eigenvalues. In this situation it is possible to reduce the computational cost 
of eigenanalysis of the D2 matrix S, by replacing S with the matrix ′ =S XX( )1/ TN  
and ui with v Xui i . The new matrix S′ has reduced dimensions of N2, simplifying 
eigenanalysis. Recovering the principal components only requires the simple compu-
tation (1/(Nλi)1/2)XTvi.

Nonnegative Matrix Factorization Non‐negative Matrix Factorization (NMF) is a 
means of identifying components under the constraint that those components must be 
positive definite. This method is typically used when the original data is positive 
definite and one wants the components to resemble the original data. The first two 
NMF components for the data in Figure 20a are shown in Figure 21b. While the first 
two PCA components do not look like powder patterns, the first two NMF compo-
nents look very much like the two types of powder patterns in the original data. 
Although useful in data analysis, NMF components are not unique as they are based 
on the initial values used in determining the components.

Metric Multidimensional Data Scaling Metric multidimensional data scaling 
(MMDS) methods project high‐dimensional data into a lower dimension while 
attempting to preserve pairwise distances. This is done by minimizing a loss 
function. An illustrative application of this method for phase diagram determination 
using X‐ray diffraction data is presented in the section titled “Phase Diagram 
Determination.”

For example, consider the specific case of classical multidimensional scaling, 
also known as principal coordinate analysis. Let d(xi, xj) represent the distance 

(a)

42.6 43.6 44.6 45.6

PCA component 1
PCA component 2

46.6

46.6

(b)

42.6 43.6 44.6 45.6

NMF component 1
NMF component 2

FIGURE  21 (a) The first two principal components for the powder diffraction patterns 
shown in Figure 20. (b) The first two components for NMF, which look like original powder 
patterns.
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between xi and xj, and let zi represent the projection of xi onto a lower‐dimensional 
plane. The projection plane is chosen in a way that minimizes

 i j
i j i jd d

,
∑ ( )− ( )⎡

⎣
⎤
⎦x x z z, ,

2
 [66]

This problem can be solved in a way similar to principal component analysis, 
except that the eigendecomposition of the dissimilarity matrix D is used in lieu of the 
covariance matrix S. In general, metric multidimensional scaling, the dissimilarity 
function d(xi, xj), can be any metric—it need not be the Euclidean distance.

Feature Extraction Feature extraction is the process of identifying pertinent struc-
tural information in data and is typically performed as a preprocessing step along with 
operations such as noise smoothing and bias subtraction. Feature extraction can be 
highly useful when comparing similar data from different instruments. It is also useful 
when dealing with transformed images or crystals (see discussion in the section on 
“Materials Property Predictions Based on Data from Quantum Mechanical 
Computations”) where suitable distance metrics must be defined to account for such 
transformations as well as for identifying grain boundaries and shapes in automated 
micrograph analysis (see discussion in the section on “Automated Micrograph 
Analysis”). Sets of data originating from different instruments can be reduced to 
sample‐specific features, thereby removing the effects of the instruments, and then 
mapped into the same feature space for shared analysis. Features are selected to 
be both domain and task specific. For example, a surface topography image can be 
reduced in both dimension and complexity to the single scalar value of average texture 
for the task of comparing sample roughness. Alternatively, the same image could be 
reduced to a histogram of peak heights for the task of comparing nanostructured sur-
faces. Feature extraction is commonly used to analyze images, where generic features 
include 1D peaks and their 2D counterpart “blobs,” edges, corners, ridges, lines, 
ellipses, and other shapes, as well as shapes of different scales and orientations.

Data Preprocessing: Noise Smoothing and Bias Subtraction Preceding feature 
extraction, experimentalists frequently deal with issues of signal bias and noise in 
high‐dimensional data. A bias is an unwanted systematic signal added to each 
measurement, while noise is an unwanted statistical variance in the measurements; 
both can come from a collection of different sources associated with the measurement 
instrument and the sample itself. For instance, when measuring X‐ray diffraction, 
unwanted background signal may appear due to the sample substrate (e.g., diffraction 
peaks associated with a silicon substrate) as well as from the “background radiation” 
associated with the instrument setup. Sample‐dependent bias and background bias 
can be mitigated by subtracting the baseline signal measured from a “blank” sample. 
Other instrument‐dependent biases and noise are typically characterized and dis-
cussed in the associated instrument literature.

When information about the bias is not known, a common method for quanti-
fying bias involves curve fitting, where the curve is typically a polynomial function 
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of low degree or a spline function. If the desired measurement signal is positive with 
a minimum of zero, the bias curve is fit to the bottom of the signal and then sub-
tracted. Alternatively, the bias is automatically removed when subtracting the mean 
of each variable, a common data preprocessing technique for machine learning 
algorithms.

While the bias is characterized by a signal, the noise is characterized with inten-
sity, often measured in decibels, as a function of frequency. When the noise profile 
is known, data can be preprocessed with an appropriate band‐pass filter. Because 
the analyst does not typically have access to the instrument characterization 
information, various noise smoothing techniques are used to reduce the influence of 
noise in a signal. One approach is to use a moving average filter, which replaces 
each signal value with the average of its neighbors within a given range. Another is 
to use a Gaussian smoothing filter, which convolves the signal with a windowed 
Gaussian of given standard deviation (Figure  22). This method replaces each 
original signal value with a weighted average of its neighbors, with closer neigh-
bors given a greater weight than those further away. Another technique involves 
fitting a smoothing spline, which uses a least‐squares local fit to replace the original 
signal with a series of continuous piecewise polynomials. Many other methods for 
bias subtraction and noise smoothing exist; additional information can be found in 
Refs. 130 and 131.

Cross‐Correlation and Wavelets Consider a situation in which the data can be 
expressed as a continuous (or nearly continuous) function in space, such as a high‐
resolution image. We will call this function h(x). Now consider a feature in the form 
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FIGURE 22 (a) An original noisy signal h with two Gaussian peaks. (b) The Gaussian filter 
g and the convolved signal k = h * g with local maxima at the location of the original peaks and 
reduced noise.
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of a localized pattern to be matched, expressed as a function g(x). Cross‐correlation 
can be used to identify regions of the data that match the desired feature well. In one 
dimension, the cross‐correlation is given by

 
h g x f x g x d* *( )( ) = ( ) +( )∫

τ

τ τ  [67]

and the integral is easily extended to multiple dimensions. Peaks in the output of the 
cross‐correlation identify the location of the feature signal in the data. Similarly, for 
discrete signals, the cross‐correlation is

 
h g n m n m

m
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where h*[m] represents the complex conjugate of the mth element of h and g[ ]n m�  
represents the (n + m)th element of g. An example is given in Figure 22, where an 
original noisy signal h with two Gaussian peak features of standard deviation 1 is 
shown. To identify the peaks, a Gaussian feature signal g is convolved with h giving 
the signal k with local maxima at the locations of the original peaks. Convolving a 
signal with a Gaussian has an added benefit of noise smoothing.

This process can be generalized to identify a family of feature signals that vary in 
properties such as scale and orientation through the use of wavelets. In Eq. [67] the 
function g(x) is replaced with a parameterized “mother wavelet” wθ(x), where θ is a 
set of parameters that control the size and/or shape of the wavelet.

A common wavelet for detecting 1D peaks and 2D round blobs of different 
scales is the Laplacian of Gaussian (LoG) wavelet. In two dimensions, this wavelet 
is given by
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This wavelet (shown in Figure 23) is the convolution of a Gaussian filter for noise 
smoothing and a Laplacian for detection of sharp spatial derivatives. Peaks or blobs 
of scale a are identified in the LoG output with sharp peaks at the center of the feature 
in the original data.

Edges and Closed Boundaries It is sometimes important to identify different 
regions in an image as, for instance, identifying boundaries between different grains. 
These boundaries can then be extended and connected to detect regions of heteroge-
neity and to identify their shape.

A common method for edge detection in 2D data is the Canny algorithm. The 
original image is first smoothed by convolving with a Gaussian filter to reduce the 
effect of single pixel noise on edge detection. The “edge strength” and “edge angle” 
of each pixel is then determined through the use of image gradients, computed by con-
volution with gradient masks. For example, the Sobel gradient masks are convolved 
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with image h to give the x‐directional image gradient Gx and the y‐directional image 
gradient Gy:
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The edge strength G and the edge angle θ are then given as
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An upper edge strength threshold is used to identify the start of an edge. The edge 
is then followed using its direction, until edge strength drops beneath a lower 
threshold. Once edges have been identified, they can be used to identify closed 
boundaries for cohesive analytically defined shapes such as ellipses through the 
Hough transform or more general shapes through the generalized Hough transform.
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FIGURE 23 (a) 1D Laplacian of Gaussian (LoG) with a = 1. (b) 2D LoG given by Eq. [69].
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Shape Identification with Moment Invariants Having identified closed boundaries, 
the enclosed regions can be quantified for shape using moment invariants, so called 
for their invariance to effects such as changes in location, scale, or orientation and in 
some cases shear and dilation. For multiple images in which the object’s shape is 
changing, moment invariants can also be used to quantify and track the change.

First, each object must be defined by an indicator function:
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where Kr  is a vector in the image space. The 2D moments of an object is then given by
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where the summation is performed over the object area A and both p and q are 
positive integers. With respect to the center of mass of the object of interest, the 
central moments are given by
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These moments can be made invariant to the set of similarity transforms including 
translations, rotations, and isotropic scaling or the larger set of affine transforms, which 
also include homogenous shears and anisotropic dilations. A pair of invariant moments, 
ω1 and ω2, have been used to identify and track particle shape in micrographs:132
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ω1 is invariant to similarity transforms, while ω2 is considered an absolute moment 
invariant—invariant to the full set of affine transformations.

Computing these moments for an object of interest gives a point in the ω1, ω2 
vector space as shown in Figure 24. The region’s shape is given by its location in the 
ω1, ω2 space. Points along the curve ω ω2 1

2=  indicate N‐sided symmetric polygons, 
with lower symmetry shapes falling to the left of the curve, for example, rectangles 
of different length–width ratios fall to the left of the (ω1, ω2) point indicated for the 
square. A larger set of moment invariants, including higher‐order moments that can 
distinguish between right‐ and left‐handed versions of noncentrosymmetric objects, 
has also been used in automated micrograph analysis (discussed further in the section 
“Automated Micrograph Analysis”).

N‐Point Cross‐Correlations for N‐Point Statistics N‐Point statistics are useful 
when investigating spatial data containing multiple states, for example, a micrograph 
of a three‐phase material. For such an image, the number of pixels of each state can 
be counted and placed in a normalized histogram to give the relative probability of 
finding any one state. This is called the 1‐point statistics of the data (Figure 25).
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A 2‐point statistics image gives the probability of finding a pixel of state A sepa-
rated from a pixel of state B (where B can equal A) by a vector of length R at an angle 
θ. Such statistics give information about the uniformity of an image. This is useful 
when characterizing material structural heterogeneity in a structure micrograph 
(Figure  26). This concept is further discussed in the section on “Automated 
Micrograph Analysis.”
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FIGURE 24 The moment invariant vector space for shape identification. Reprinted from 
Ref. 128, with permission from Elsevier.
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FIGURE 25 (a) Image containing three state regions α, β, γ. (b) 1‐point statistics for state 
probability in (a).
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The 2‐point statistics are given by evaluating the 2‐point cross‐correlation. For an 
image containing Np particles, each particle is identified with an indicator function as 
in Eq. [72]. The two‐point cross‐correlation for all pairs of particles is then given by
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where “*” represents a convolution and V is the volume of the region of interest, in 
this case the area of the image. The first sum contains the autocorrelation function for 
each particle, giving a nonzero value in every direction from r  0 to r Dr , where Dr 
is the diameter of the particle in the r direction. The second sum contains the cross‐
correlation between each particle and its neighbors, providing information about the 
overlap volume of two particles as a function of their relative position. Figure 26 
shows an image with two states: dark gray and light gray (red and blue in the e‐book 
version). Figure 26b shows the 2‐point statistics of this image for a vector beginning 
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background in color insert). (b) 2‐point statistics for a vector beginning and ending in a dark 
gray (red in color insert) state. Reproduced from Ref. 169, with kind permission from Springer 
Science and Business Media. (See insert for color representation of the figure.)
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and ending in a red state. The lack of symmetric peaks, concentric to the image center 
(similar to lattice diffraction), indicates a lack of periodicity in the red state. Also, the 
center of Figure 26b contains a 2D symmetric peak of radius Dr, which corresponds 
to the average radius of the red state domains.

SELECTED MATERIALS SCIENCE APPLICATIONS

The tutorial in the prior sections is intended to provide the mathematical background 
needed to perform analysis of data and learning from data. Many of the techniques 
and algorithms described have already been utilized within the materials science 
community. In the following, we present an assortment of examples to illustrate how 
these methods are used, including some of those described earlier in greater detail.

Phase Diagram Determination

An exciting arena in which data mining methods are expected to play an important 
role is in the automated determination of phase diagrams using high‐throughput 
combinatorial experiments.133 Using thin‐film compositional spreads, large fractions 
of phase diagrams can be mapped out with a high density of data points on a single 
wafer. We illustrate this concept using a recent assessment of the Fe–Ga–Pd ternary 
system.3 Natural thin‐film composition spreads of Fe–Ga–Pd were deposited at room 
temperature on oriented Si wafers, followed by postannealing and rapid characteriza-
tion. The composition spread wafer contained over 500 individual 1.75 × 1.75 mm2 
samples with continuously varying composition across the wafer. X‐ray microdif-
fraction (XRD) was performed on each of these squares leading to a normalized 
intensity versus 2θ angle for each square.

Because each XRD spectrum can be viewed as a vector (in 2θ space), clustering 
analysis becomes a viable option to distinguish between spectra and to group spectra. 
The first step in this process is to select a suitable “distance” measure definition bet-
ween any two given spectra (e.g., the Euclidean norm or 1−Pearson correlation coef-
ficient), leading to a distance matrix D (Eq. [50]). If there exist N spectra, D is an 
N × N matrix, with each matrix element Dij representing the “distance” between 
spectra i and j. The distance matrix may be used to cluster the N spectra, with each 
spectrum being represented by a point in the visualization space; however, any 
attempt to visualize the N points in a three‐dimensional plot leads to a problem, 
because the visualization space is required to be (N − 1) dimensional. To better under-
stand this, let us consider two spectra, or rather the “points” corresponding to those 
two spectra, S1 and S2. The first point may be placed in an arbitrary location, and the 
second point at a distance D12 from the first point. Consider now a third spectrum, 
represented by point S3, and place this at a distance D13 with respect to the first point 
and D23 with respect to the second point. Repeating this process for successive spectra 
leads to the problem that all interpoint distances can no longer be maintained in three‐
dimensional space. We could try to place successive points in the best possible loca-
tion, however, such that the chosen distances are the best approximations to the real 
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distances. Although this procedure discards some of the real distance or similarity 
information, it provides us with a way to visualize the distance matrix in regular 
three‐dimensional space. A formal strategy to perform this is the metric multidimen-
sional data scaling (MMDS) scheme described previously, the results of which are 
shown in Figure 27a for the example of the Fe–Ga–Pd ternary. Clusters of points are 
color coded (in e‐book version) to make the grouping of spectra self‐evident.

A more rigorous procedure to determine the groupings is to use a dendrogram as 
described in the section on “Hierarchical Cluster Analysis.” An example of this is 
shown for the Fe–Ga–Pd system in Figure 27b. Each discrete point along the abscissa 

(a)

(b)
1.0

0.8

D
is

ta
nc

e 0.6

0.4

0.2

0.0

FIGURE 27 (a) Two different 3D views of an approximation of the distribution of points 
defined by the distance matrix, using metric multidimensional data scaling (MMDS). For this 
system, MMDS approximates well the distance matrix, accounting for about 93% of the 
information in the matrix. Each point in the MMDS plot corresponds to a spectrum. Points that 
are close together correspond to spectra that are similar to each other, as measured using the 
Pearson correlation coefficient. Color (e‐book version) is used to identify groups, and groups 
are defined using the dendrogram. (b) A dendrogram based on the distance matrix. Points on 
the x‐axis correspond to spectra. The height at which the lines leading from the spectra are 
connected indicates their similarity. The cut level is set at 0.6, creating six major groups. 
Reprinted with permission from Ref. 3. Copyright 2007, AIP Publishing LLC.
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represents one of the spectra, and neighboring points are close in distance. Vertical 
lines from each spectrum connect via horizontal lines at some height. The height at 
which they connect is determined by the similarity between the spectra—the greater 
the height at which the connection occurs, the larger is the distance between the 
spectra. The groupings of the spectra then become self‐evident. If we stop making 
groups at some threshold similarity level, we will be left with a small number of 
groups. In Figure 27b, the threshold chosen is indicated by the long horizontal line, 
leading to six distinct groups. The MMDS and the dendrogram schemes generally 
lead to similar groupings.

The six groupings derived in Figure 27b indicate the possibility of six different 
regions of similar structure. Identification of these regions can then be done by com-
paring the XRD spectra of the most representative member (i.e., the member having 
the smallest distance to all other members) of a group of spectra to a set of reference 
spectra from the NIST crystallographic databases. The result for the Fe–Ga–Pd 
system is shown in Figure 28. The regions and boundaries are clearly revealed in the 
phase diagram. This procedure is being adopted for the creation of phase diagrams in 
an automated high‐throughput manner for several systems.133

Similarly, work is underway to automate the analysis of pure phases from these 
phase response diagrams and to identify the phase mixture ratios for each sample. 
These investigations include the use of high‐speed methods134 that as of yet still 
require verification by a crystallographer to ensure agreement with physics princi-
ples (e.g., Gibbs phase rule) and offline methods that seek to integrate such physics 
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FIGURE 28 The distribution of diffraction patterns produced by using groups of spectra 
derived from clustering analysis and comparing the most representative patterns from those 
clusters with a database of reference patterns. Reprinted with permission from Ref. 3. 
Copyright 2007, AIP Publishing LLC (color available in e‐book version).
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principles into the automated analysis through the use of constraints and similarity 
preserving measures.109,135

The previous methods have been extended with new clustering algorithms to 
provide on‐the‐fly analysis of combinatorial library diffraction data.12 Diffraction 
data is imported, processed, and analyzed in real time during data collection to pro-
vide phase response diagrams to the user. These methods can also utilize critically 
evaluated structure data from the Inorganic Crystal Structure Database to provide 
improved phase response diagram results. With such high‐speed techniques, the 
user can analyze a combinatorial library rapidly, identify potential phase bound-
aries, and then perform a focused study on those boundaries of interest, reducing 
both analysis time and beam time.

Materials Property Predictions Based on Data from Quantum 
Mechanical Computations

When confronted with a new material, it would be advantageous if its properties 
could be predicted using past knowledge pertaining to other similar known materials, 
rather than by resorting to new experiments or laborious calculations. As highlighted 
earlier, this paradigm may be used to predict crystal structures of new compounds 
knowing only the crystal structure information of other known compounds.

What if there is insufficient past information? If the goal is to derive an accurate 
determination of intrinsic materials properties (in addition to the crystal structure), 
one typically resorts to computations based on quantum mechanics. These are accu-
rate, versatile, and nonsystem‐specific methods but also time consuming. If quantum 
mechanical data is already available for a number of compounds within a subclass, 
can this information be used to predict properties of new systems within the same 
subclass? This is the question we answer in this section using several recent publica-
tions as examples.6,7,136

The basic idea of how to predict properties using quantum‐derived data and 
machine learning is depicted in Figure 29. We reduce materials within a subclass to 
numerical fingerprints that represent the material uniquely. These are, of course, the 
feature vectors in the parlance of the machine learning community. Various machine 
learning methods may then be applied to map the fingerprints to properties. Once 
such a mapping is accomplished using a set of training data, new materials prop-
erties can then be computed efficiently without resorting to quantum mechanical 
calculations.

The biggest hurdle in creating such a prediction machine is the reliable definition 
of a material fingerprint. That fingerprint must be invariant with respect to transla-
tional and rotational operations, as well as to the ordering of atoms of the system, 
because the properties of the system are invariant with respect to such transforma-
tions (these issues will crop up again in a subsequent section on the development of 
interatomic potentials, where the demands of fingerprint choices are even more strin-
gent). These issues were already recognized in the section on “Feature Extraction” 
and are particularly severe in systems containing multiple numbers and types of 
atoms. A good example of the need to satisfy fingerprint invariance is the work by 
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Rupp et al.136 The goal of that study was to predict accurate molecular atomization 
energies quickly. The machine learning model used was based on kernel ridge regres-
sion (KRR) (see the section on “The Kernel Trick”) using Gaussian kernels. The 
model was trained and tested on >7000 organic molecules containing up to seven 
atoms (including H, C, N, O, and S). The molecular atomization energies for training 
and testing were computed using density functional theory (DFT).137,138

Recall that KRR relies on the notion that two materials with similar fingerprints 
have similar properties. Consider two systems I and J with fingerprints xi and xj. The 
similarity of the two vectors may be measured in many ways, including the Euclidean 
norm of the difference between the two vectors, || ||x xi j� , or the dot product of the 
two vectors x xi j� . In this example we use the former and refer to it as |xij|. Clearly, 
if | |xij  0, materials I and J are equivalent (insofar as we can conclude based on the 
fingerprints), and their property values yi and yj should thus be the same. When 
| |xij n 0, materials I and J are inequivalent; y yi j�  is (usually) nonzero and depends 
on |xij|, as prescribed by the KRR scheme.

The molecular fingerprint employed by Rupp et al. is based on the “Coulomb” 
matrix M defined as
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FIGURE 29 A perspective on the role machine learning can play in accelerating quantum 
mechanical computations.
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where Zi and Ri are the atomic number and position of atom i, respectively. The off‐
diagonal elements correspond to the Coulomb repulsion between atoms i and j, while 
the diagonal elements are a polynomial fit of the atomic energies to nuclear charge. 
M is diagonalized, and the eigenvalues, λi, are ordered with decreasing absolute 
values. For matrices differing in dimensionality, the eigenvalue vector λ of the smaller 
system is expanded in size by adding zeros (the dimensionality of M for a particular 
molecule is equal to the number of atoms in the molecule). The λ vector constitutes 
the fingerprint of a molecule. It should be noted that this fingerprint is invariant to 
uniform translation, rotation, and atomic permutation of the molecule. The “distance” 
between two molecules is then measured by the Euclidean (ℓ 2) norm of the difference 
between two fingerprint vectors (see the section on “Regularized Least Squares”). 
The fingerprints, or equivalently the distances, were then used by Rupp et al. within 
a KRR method to establish a protocol for predicting molecular atomization energies.

Figure 30 displays the predictive capability of the machine learning (ML) scheme 
and contrasts it to the predictions of other methods. In subsequent work, Hansen et 
al. provide a deeper analysis of the KRR‐based prediction scheme and explore the 
applicability of neural networks to accomplish such predictions.7 Using such machine 
learning paradigms to predict properties other than the molecular atomization 
energies has also been explored recently.7,15

The ML protocol for molecular systems is significant, but it does not address 
critical issues associated with periodic solid state systems. More specifically, the 
Coulomb matrix‐based fingerprint is not invariant with respect to translated unit 
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FIGURE 30 Correlation of the DFT results (Eref) with the machine learning (ML) model 
estimates (Eest) of atomization energies for a data set exceeding 7000 organic molecules, along 
with a comparison of results from bond counting139 and semiempirical quantum chemistry 
(PM6) calculations.140 Reprinted with permission from Ref. 136. Copyright 2012 by the 
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cell definitions; moreover, several degrees of freedom are “lost” when using the 
eigenvalue vector of the Coulomb matrix, λ, as the fingerprint (note that the total 
number of degrees of freedom of an N atom system is 3N − 6, but the dimension of 
λ is just N).

A recent development obviates these issues within the context of one‐dimensional 
infinite polymeric chains.6 For definiteness, let us assume that the building blocks of 
these chains are drawn from a pool of the following seven possible molecular frag-
ments or building blocks: CH2, SiF2, SiCl2, GeF2, GeCl2, SnF2, and SnCl2. Setting 
all the building blocks of a chain to be CH2 leads to polyethylene (PE), a common, 
inexpensive polymeric insulator. The rationale in Ref. 6 for introducing the other 
group 14 halides was to interrogate the beneficial effects (if any) those blocks might 
have on various properties when included in a base polymer such as PE. The prop-
erties we focus here on include the atomization energy, the formation energy, the 
lattice constant, the spring constant, the band gap, the electron affinity, and the optical 
and static components of the dielectric constant.

The initial data set for 175 such polymeric chains containing four building blocks 
per repeat unit was generated using DFT. Each infinite 1D polymer system was then 
represented using a numerical fingerprint. One possibility for creating the finger-
print is to use the chemical and structural information associated with the building 
blocks. Because the polymer systems consist of seven possible building units, the 
fingerprint vector may be defined in terms of seven fractions, |f1, f2, f3, f4, f5, f6, f7⟩, 
where fi is the fraction of building unit i, that is, the fragments CH2, SiF2, SiCl2, 
GeF2, GeCl2, SnF2, and SnCl2. One can extend the components of the fingerprint 
vector to include clusters of two or three building units of the same type occurring 
together; such a fingerprint vector could be represented as |f1, …, f7; g1, …, g7; h1, …, h7⟩, 
where gi and hi are, respectively, the fraction of building unit pairs of type i and the 
fraction of building unit triplets of type i. We make the important observation that 
this definition of fingerprint takes care of rotational and permutation invariance 
requirements, as well as the translation and inversion invariance requirements encoun-
tered in infinite periodic systems.

Next, the DFT data is used to train a KRR‐based machine learning model. Of the 
DFT‐derived data set consisting of 175 polymers, 130 were used in the training set 
and the remainder in the test set to allow for validation of the machine learning 
model. Once the machine has learned how to map between the fingerprints and the 
properties using the training set, predictions were made and the model was vali-
dated. Furthermore, several systems with eight‐block repeat units were considered 
(in addition to the 175 four‐block systems). Results for all eight properties are 
shown in Figure 31. As can be seen, the level of agreement between the DFT and 
the machine learning schemes is uniformly good for all properties across the four‐
block training and test set, as well as the “out‐of‐sample” eight‐block test set, 
indicative of the high‐fidelity nature of this approach. The performance of the KRR 
machine learning scheme, even when dealing with situations that may be inher-
ently highly nonlinear (e.g., the dependence of the band gap on chemistry), is not 
surprising because Gaussian kernels based on an underlying similarity measure 
were used.
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More recent developments provide additional evidence that machine learning 
methods can effectively be used to perform accelerated property predictions.

Development of Interatomic Potentials

Many physical properties of materials are determined by the total potential energy: 
the equilibrium structure of a molecule or a crystal is the one having the lowest total 
energy; surfaces, interfaces, defects, and other (meta)stable structures correspond to 
local minima in the total energy hypersurface in phase space (also referred to as the 
potential energy surface or PES); the curvatures of the PES at energy minima are 
related to the vibrational and phonon frequencies, force constants, and elastic mod-
uli; activation energies of chemical reactions, diffusion, and phase transitions are 
“passes” in the PES between local minima (“valleys”) corresponding to the reactants 
and products; and so on. Methods to determine the PES (or at least critical portions 
of the PES) are thus extremely useful.

Strategies for determining PESs efficiently and deriving properties from those 
PESs have been the focus of research over many years and across many disci-
plines. First principle methods based on quantum mechanics provide such a 
strategy, but they can be time‐intensive, especially if the system contains more 
than a 1000 atoms (the length‐scale challenge) or if the dynamics of even a small 
system has to be studied over a long period of time (the time‐scale challenge). 
One practical solution to circumvent such spatiotemporal challenges associated 
with quantum methods is to use empirical and semiempirical interatomic poten-
tials (sometimes called force fields) to characterize the PES. These methods pre-
dict the PES of a collection of atoms using predecided and preparameterized 
functional forms of the potential energy in terms of the atomic‐level geometry. 
Because the Schrödinger equation is not solved, such methods come at a much 
lower computational cost compared to quantum mechanics‐based methods. The 
downside is that they also come with either reduced accuracy or a narrower 
domain of applicability (i.e., parameterizations determined for a specific system 
in a specific environment will not, in general, be transferrable to new systems or 
new environments of the same system). Examples of such schemes include the 
Lennard‐Jones potentials for noble gases, Stillinger–Weber, Tersoff, or Brenner 
and Garrison potentials for covalent systems, and the embedded atom method 
potentials for metals.141

The fidelity with which a given interatomic potential can predict properties 
depends on the choice of the functional form of the potential and the associated 
parameterization. While simplicity is desired, this also leads to inaccuracies and 
a narrow domain of applicability. Moreover, real interatomic interactions are 
intrinsically complex. A pathway to creating complex functional dependences of 
the energy with respect to the geometry of the system (i.e., atomic positions) may 
be provided by modern machine learning methods. This has, in fact, already been 
exploited effectively via artificial neural networks8,9,142,143 with the energy function 
trained using DFT data. In other words, the interatomic potentials constructed 
from machine learning methods are trained to reproduce DFT results (of energies, 
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forces, and dynamics), but those functions reproduce the PES at a small fraction 
of the cost of DFT calculations.

Neural networks were discussed earlier in the section on “Supervised Learning 
Algorithms” and will not be discussed in detail here. It suffices to say that Figure 32 
is a schematic of a typical feed‐forward neural network that has been used in the 
past to map the coordinates of a set of N atoms, Ri, i = 1 − N, to the total energy, Es, 
of the system. Again, a critical ingredient that enters this scheme is the fingerprint 
vector. Because the demands on the interatomic potentials for predicting energies 
(and especially forces) are high, particular care must be taken in the choice of the 
fingerprints. In keeping with the philosophy that interatomic potentials take the 
atom type and position information as the starting point in the process of providing 
energies and forces, it is tempting to use the Cartesian coordinates of the atoms and 
the atom types as the fingerprints. However, because atomic Cartesian coordinates 
are not invariant with respect to a rotation or translation of the system, such coor-
dinates cannot be directly used in this mapping process. Thus, a transformation of 
the Cartesian coordinates to a more appropriate set of coordinates is required so 
that the chemical environment of a given atom can be properly captured. “Symmetry 
functions” offer one such set of coordinates. An example of a radial symmetry 
function is
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where η and Rs are parameters that define the Gaussians, Rij is the distance between 
atoms i and j, and fc is a cutoff function defined as
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Likewise, angular symmetry functions can be defined. Symmetry functions are 
essentially a set of functions of the atomic positions, allowing for a transformation of 
the Ri vectors to the Gi vectors. Because the Gi vectors depend only on the inter-
atomic distances and angles, they are invariant to translations and rotations in molec-
ular as well as in periodic solid state systems. For a given spatial distribution of 
atoms, the Gi vector components, corresponding to various choices of the parameters 
η and Rs, represent (the environment of) atom i. Two atoms residing in exactly the 
same chemical environment will have exactly the same symmetry function represen-
tations; moreover, the set of Gi vectors will be identical for all energetically equivalent 
representations of the system.

An additional appeal of the neural network configuration of Figure 32 is that this 
scheme allows for the partitioning of the total energy into atomic energies, as a map-
ping between each of the Gi vectors (corresponding to an atom i) is established with 
the corresponding atomic energy Es,i (this neural network is hence called an “atomic” 
neural network). The sum of all the Es,is is of course the total energy, Es, of the 
system. Once trained on a set of atomic configurations, the atomic neural network is 
capable of providing Es,i when the Gi of an atom in a new configuration is supplied 
(regardless of the number of atoms in the new configuration). The neural network‐
based interatomic potential definition is thus complete.

Figure 33 compares the radial distribution function (RDF) of a silicon melt at 
3000 K for a cubic 64‐atom cell obtained using MD simulations based on DFT, sev-
eral interatomic potentials (including the Bazant, Lenosky, and Tersoff potentials), 
and the neural network potential.143 It can be seen that the RDF obtained from a 
neural network potential‐based MD simulation best matches the DFT result, while 
there are significant deviations for the other empirical potentials, attesting to the 
versatility, fidelity, and efficiency of the neural network‐based potentials. Such 
NN‐based schemes have been used in several applications to date ranging from 
molecules, solids, and surfaces to elemental and compound systems (the latter 
involves enhancements to deal with electrostatic interactions between atoms of 
unlike types).9

Finally, we also note that paralleling the developments based on neural networks 
is an alternate strategy based on KRR using Gaussian kernels as the learning 
scheme.12 These potentials, referred to as Gaussian approximation potentials, or 
GAP, also lead to a decomposition of the total energy into atomic energies and a 
mapping of atomic environments (written in terms of a bispectrum, a 3‐point corre-
lation function) to atomic energies. Both the neural network and KRR‐based schemes 
are capable of providing analytical forces and hence allow for efficient MD 
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simulations. The GAP scheme competes with the neural network‐based approach in 
terms of speed, versatility, and fidelity but has the attractive feature that its learning 
model (unlike neural networks) is more physically motivated being based on the 
concept of similarity. Figure 34 shows an example of the prediction of the coefficient 
of thermal expansion of diamond using DFT and GAP potentials within the quasi-
harmonic approximation and by MD simulations utilizing the Brenner and GAP 
potentials.12 Comparing the predicted results with experiment, it is evident that the 
quasiharmonic approximation is inadequate at high temperatures (although GAP 
potentials reproduce DFT results) and that MD simulations utilizing the GAP poten-
tials outperform all other schemes. Details of the GAP potential generation method 
may be found elsewhere.12
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line) and DFT (dash‐dotted line) using the quasiharmonic approximation and derived from 
MD (216 atoms, 40 ps) with GAP (solid) and the Brenner potential (dotted). Experimental 
results are shown with squares. Reprinted with permission from Ref. 12. Copyright 2010 by 
the American Physical Society.

3.0

2.5

2.0

1.5

R
D

F 
(a

rb
. u

ni
ts

)

1.0

0.5

0.0
1.5 2.0 2.5 3.0

r (Å)

3.5 4.0 4.5 5.0 5.5

DFT
Bazant
Lenosky
Tersoff
NN

FIGURE 33 Radial distribution function of a silicon melt at 3000 K obtained from MD sim-
ulations based on DFT, empirical interatomic potentials (including those by Bazant, Lenosky 
and Tersoff), and NN‐based potentials. Reprinted with permission from Ref. 143. Copyright 
2007 by the American Physical Society. (See insert for color representation of the figure.)



SELECTED MATERIALS SCIENCE APPLICATIONS 249

A more recent development utilizes the capability to predict atomic forces directly 
given just the atomic configuration [Refs. 1 and 2]. Such a capability may then be 
used within large‐scale geometry optimizations and molecular dynamics simula-
tions. The basic premise of such a scheme is that the behavior of an atom in a mole-
cule, liquid or solid is governed by the force it experiences. Within this development, 
a recipe has been proposed to numerically represent atomic environments, which can 
be mapped to vectorial quantities such as the atomic force using machine learning 
methods. What results then is a force field. Several examples are provided as to how 
such a force field for Al can be used to go far beyond the length‐scale and time‐scale 
regimes presently accessible using quantum‐mechanical methods. It is argued that 
pathways are available to systematically and continuously improve the predictive 
capability of such a learned force field in an adaptive manner, and that this concept 
can be generalized to include multiple elements. Strategies are also available to 
develop, and use, such a force field on‐the‐fly during the course of a DFT based 
molecular dynamics simulation, thus leading to hybrid DFT/ML molecular dynamics 
simulations.

Crystal Structure Predictions (CSPs)

One of the greatest challenges in computational materials design is to predict the 
crystal structure of a material that has not yet been synthesized.144,145 A straightfor-
ward approach to crystal structure prediction is to search the potential energy surface 
of various atomic arrangements in an attempt to identify the atomic arrangement 
(crystal structure) with the minimum energy. Such an approach can make use of 
machine learning algorithms to predict the potential energy surface, as discussed in 
the section on “Development of Interatomic Potentials.” However it is also possible 
to directly use machine learning to predict crystal structure, by mining a database of 
known crystal structures to determine the probability that a material with a given 
composition will have a given structure type (e.g., spinel, fcc, etc.). Using this latter 
approach, Fischer et al. developed a method for structure prediction called the “Data 
Mining Structure Predictor” (DMSP).146

In the DMSP approach, the probability distribution over possible ground states for 
a given chemical space (e.g., Al–Ti structures) is calculated using a truncated “cumu-
lant expansion”:
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where x is the set of ground state structure types at different compositions in the 
chemical space, p(xi) is the probability distribution over possible values for the ith 
element of x, and p(xj, xk) is the joint probability distribution over possible values for 
the jth and kth elements of x. The probability distributions p(xi) and p(xj, xk) were 
calculated using a Bayesian analysis of structures in the Inorganic Crystal Structure 
Database (ICSD),147 which contains over 100,000 known structures.
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The probabilities calculated using DMSP were used by Fischer et al. to generate 
a ranked list of the structure types that are most likely to occur in different chemical 
spaces. They demonstrated that 90% of the time, the experimentally observed struc-
ture type was in the top five structures identified by the DMSP ranking. This com-
pares favorably to just choosing the structure types that occur most frequently, which 
have only a 62% success rate for the top five structures.

Hautier et al. extended the DMSP approach to ternary oxides, using it to predict 
likely new ternary oxide compounds.4 After further filtering the list of likely com-
pounds using DFT calculations, they identified 355 ternary oxides that are likely to 
exist but were not in the ICSD. To test these predictions they searched for the pre-
dicted structures in the PDF4+ database, a database of known diffraction data that 
had not been used to parameterize the DMSP model. Of these 355 oxides, the PDF4+ 
database contained structural information for 146 (the remaining structures might 
not exist or may not have been discovered yet). The known diffraction data matched 
the predicted structure types in 140 of the 146 cases, suggesting that their method has 
a high success rate in predicting the structures of new ternary oxides.

The drawback to the DMSP approach is that it is limited to known structure types 
for which there is sufficient training data available, and it will never be able to predict 
the existence of a structure type that has never been seen before. Thus it would be 
difficult to effectively extend this method to the more complex space of materials 
containing four or more components.

Developing and Discovering Density Functionals

We now consider the question as to whether the intrinsic accuracy of DFT computa-
tions can themselves be improved via machine learning. Among all quantum 
mechanics‐based computational methods aimed at materials property predictions, 
DFT presently offers the best trade‐off between computational cost and accuracy. 
Several approximations are made to render the solution of the DFT Kohn–Sham 
equations practical, the most critical involving the electron–electron exchange–
correlation  interaction. While the Hohenberg–Kohn theorems of DFT demonstrate 
the existence of a universal exchange–correlation functional of the electron density, 
the explicit functional form is unknown. The fidelity of DFT results depends on this 
approximation. In important cases (such as strongly correlated systems and systems 
bound by weak van der Waals interactions), the currently used approximations—
such as the local density approximation (LDA), the generalized gradient approxima-
tion (GGA), or even more advanced hybrid‐ and meta‐GGA functionals—often fail. 
Consequently, there is a never‐ending search for density functionals (especially 
better approximations to them).148

Throughout this chapter we have seen that machine learning is a powerful tool for 
finding patterns in high‐dimensional data, especially patterns that defy and evade 
human intuition. Machine learning models can be trained on known good examples 
to detect a pattern in a new situation or make predictions related to a new situation. 
Within the context of the present discussion, if solutions are known for a subclass of 
problems that connect the electron density to a set of properties (e.g., the 
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exchange–correlation energy, electronic kinetic, or total energy), this knowledge can 
be used to train an machine learning scheme to make predictions of those properties 
for new instances of the electron density (corresponding to new physical 
situations).

In recent work, Snyder and coworkers consider a prototypical problem involving 
N noninteracting spinless fermions confined to a one‐dimensional box, 0 < x < 1, with 
hard walls.11 For continuous potentials v(x), the Schrödinger equation can be solved 
numerically, the lowest N orbitals occupied, and the kinetic energy T and the electron 
density n(x) may be computed (the latter is the sum of the squares of the occupied 
orbitals). For a class of potentials v(x), this procedure provides examples of the rela-
tionships between the electron density n(x) and the kinetic energy T, represented here 
as T[n] (where square brackets represent a functional). The aim of the machine 
learning approach is then to construct T[n] that first completely bypasses the quantum 
mechanical procedure (much like the examples provided in the section on “Materials 
Property Predictions Based on Data from Quantum Mechanical Computations”; 
cf. Figure 29) and second provides a kinetic energy functional.

In this regard, Snyder et al. consider up to four electrons in a one‐dimensional box 
specified by potentials of the form
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They generated 2000 such potentials, randomly sampling 1 < ai < 10, 0.4 < bi < 0.6, 
and 0.03 < ci < 0.1. For each potential, numerical solution of the Schrödinger equation 
yields T and n(x). The T[n] mapping was then established using KRR, using 1000 
densities in the test set, M others for training, and 10‐fold cross‐validation. The 
authors show that for M > 80, the mean average error of the predicted kinetic energy 
is under 1 kcal/mol, that is, “chemical accuracy” has been achieved.

The previous demonstration is gratifying as it heralds a pathway for determining 
more accurate density functionals. But challenges remain. The authors show that a 
straightforward application of their procedure does not guarantee that derivatives of 
the relevant functionals, which are encountered in orbital‐free DFT implementa-
tions, are always predicted properly. They show this problem can be overcome by 
using principal components to eliminate arbitrarily close electron densities, which 
tend to add noise in the training data set. A further point to note is that the predictive 
capability or domain of machine learning schemes depends on the example (or 
training) set used. Thus, applying this scheme to molecules and solids will require 
more realistic and diverse electron densities and properties.

Lattice Models

Many problems in materials science can be expressed in terms of periodic arrays of 
sites where each site can exist in a variety of different states exemplified, for example, 
by magnetic ordering where “spin‐up” or “spin‐down” states are assigned to sites on 
a lattice (Figure 35a). If we let the variable si indicate the state of the ith site, the set 
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of all such variables, denoted by s, gives the overall state of the material. A property 
of the material can then be expressed as a function, f (s). Such functions are known as 
lattice models.

One of the most widely studied lattice models is the Ising model,149 in which the 
site states represent the electronic spin at a given site, with “up” spin indicated by 
si  1 and “down” spin indicated by si = −1. If the interactions between two spin 
moments are assumed to extend no farther than the nearest neighbor and all sites are 
symmetrically equivalent, the magnetic energy of the system may be expressed as
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where V0, V1, and V2 are coefficients and “nn” is the set of all pairs of nearest‐
neighbor sites.

In cluster expansion models,150 the Ising model approach is extended in the follow-
ing ways (Figure 35):

1. The site variables si may represent any state of the site, not just spin. In practice 
they are commonly used to represent site occupancy in materials with substi-
tutional disorder. For example, in a Cu–Ni alloy, si  1 would indicate that Cu 
is present at the ith site, and si = −1 would indicate the presence of Ni.
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FIGURE  35 Differences between (a) Ising model and (b) a typical cluster expansion. 
Cluster expansions are applied to a variety of different types of problems but most commonly 
used to study atomic order. An Ising model includes contributions from individual sites and 
nearby pairs of sites (outlined in boxes on the right), whereas the cluster expansion can include 
contributions from larger and more complex clusters of sites.
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2. Interactions beyond nearest‐neighbor pairs are considered. This includes  
3‐body, 4‐body, etc., interactions, as well as interactions between sites that 
may be very far apart. Ducastelle et al. showed that if interactions between all 
possible clusters of sites are considered, then the following expansion is exact 
for a binary alloy:150
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where α represents a cluster of sites, the sum is over all possible clusters of sites, and 
the product is over all sites in the cluster. V0 is a constant term, and Vα is the coeffi-
cient for cluster α. The number of distinct coefficients in the expansion may be 
reduced by acknowledging that values of all coefficients for symmetrically equivalent 
clusters must be the same. The challenge is to determine the values for these unknown 
coefficients, referred to as effective cluster interactions (ECI). Although Eq. [83] is 
written for binary systems, a similar result can be obtained for higher‐order 
systems.

Cluster expansions are commonly used to study systems exhibiting substitutional 
disorder, where they are usually parameterized using a training set of DFT calcula-
tions. They are typically capable of rapidly calculating the energies of millions of 
different arrangements of atoms within 10 meV per atom of DFT. This combination 
of speed and accuracy makes them a useful tool for thermodynamic averaging (e.g., 
to generate alloy phase diagrams) or searching for structures with optimal property 
values (e.g., ground state structures). The cost of generating a cluster expansion is 
primarily the cost of generating the training data used to parameterize the expansion. 
Hence there is great interest in finding ways to generate accurate cluster expansions 
with minimal training set size.

To determine the unknown coefficients in a cluster expansion, it is necessary to 
constrain and/or weight the hypothesis space. Historically, this has been done through 
cluster selection, in which it is assumed that clusters that contain a large number of 
sites and clusters that contain sites that are very far apart are likely to have small ECI. 
Accordingly, those ECI can be set to zero with little loss of accuracy. The remaining 
ECI are typically fit to DFT calculations using a least‐squares fit.

To facilitate the cluster selection process, van de Walle and Ceder introduced the 
concept of cross‐validation into cluster expansions.151 They proposed that the set of 
clusters to be included in the expansion should be those for which the cross‐validation 
error was lowest. Other groups pursued similar efforts to improve the quality of 
cluster expansions. For example, Drautz and Diaz‐Ortiz proposed introducing a reg-
ularization term into the objective function used to determine the ECI, in the form of

 α
α α∑w V2 2 [84]

where the sum is over all clusters in the expansion and wα is a weight assigned to 
each set of symmetrically equivalent clusters.152 The weights could be determined by 
minimizing the cross‐validation score. Similarly, Zunger and coworkers developed a 
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“mixed‐basis” cluster expansion, in which the following regularization term was 
applied to pair clusters:153,154

 
λ

α

λ
α1 2 2∑r V  [85]

where r is the distance between sites in the pair and λ1 and λ2 are adjustable parame-
ters that may be determined by cross‐validation.

Mueller and Ceder demonstrated how all of the aforementioned approaches, and 
others, could be interpreted in a Bayesian framework, in which the regularization 
term was the negative log of a prior probability distribution placed over the ECI.155 
In the Bayesian interpretation of the cluster selection approach, the prior probability 
distributions for clusters excluded from the fit are effectively delta functions centered 
at zero. For clusters that are included in the fit, an improper uniform prior is implic-
itly used.

Building off of the Bayesian interpretation, Mueller and Ceder demonstrated that 
cluster expansions with reliably low prediction error could be generated by explicitly 
incorporating physical insights into the fitting process. For example, the expected 
magnitudes of the ECI for pair clusters can be expected to decrease with respect to 
distance, resulting in a regularization term similar to the one in Eq. [85]. Similarly, 
the expected magnitudes of the ECI can be expected to decrease as the number of 
sites in the cluster increases.

The earlier insights can be incorporated into prior distributions for expected ECI 
values, in which adjustable parameters determine how expected ECI magnitudes 
decrease as cluster size increases. An example of such prior distributions, and a 
comparison to the cluster selection approach, can be seen in Figure 36. The parameters 
in the prior probability distributions can be adjusted to minimize the cross‐validation 
score. It was demonstrated that prior distributions with fewer adjustable parameters 
tend to produce more accurate cluster expansions than those with many adjustable 
parameters. In other words, the optimization of the cluster expansion using cross‐
validation  is less likely to overfit the data.

By using a multivariable Gaussian distribution (Eq. [26]) as the prior distribution 
for the ECI values, the most likely ECI values can be rapidly determined using Eq. 
[27].155 The advantage to this approach is that it is in practice only slightly more 
expensive computationally than a simple least‐squares fit, and it allows the inclusion 
of more distinct ECI in the cluster expansion than there are structures in the training 
set (something that would lead to an ill‐posed problem if a simple least‐squares fit 
were used). It was demonstrated that the off‐diagonal terms in the regularization 
matrix Λ (Eq. [27]) could be used to introduce the concept of similarity into cluster 
expansions.155 For example, a nearest‐neighbor pair three layers below the surface of 
a material is not symmetrically equivalent to a nearest‐neighbor pair four layers 
below the surface, so the corresponding ECI should not be identical. However it can 
be expected that they will be similar, and accounting for this expected similarity in 
the prior distribution can improve the accuracy of cluster expansions for surfaces and 
nanoparticles significantly. Mueller extended this approach to allow for composition‐
dependent ECI in a cluster expansion of atomic order in 2 nm Au–Pd nanoparticles, 
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resulting in a cluster expansion capable of evaluating the energies of millions of 
atomic arrangements per minute with an estimated prediction error of only 1 meV per 
atom relative to DFT.156

A Bayesian approach that uses Laplace prior distribution over ECI values, 
 resulting in ℓ 1 regularization of the ECI, has been demonstrated by Nelson et al.157 
This approach is commonly referred to as “compressive sensing,” due to its origins in 
signal processing. The ℓ 1 norm favors sparse solutions, in which the values of many 
ECI are set to identically zero. Whether there is any advantages to using an ℓ 1  norm 
in the context of cluster expansions is not clear,158 but it is reasonable to expect that 
this approach should work well for cluster expansions in which there are relatively 
few ECI that significantly differ from zero. This approach has recently been extended 
to include the use of hyperpriors on the parameters that define the Laplace 
distributions.159
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FIGURE 36 Representative prior probability distributions, P(V ), for the ECI, V, for pair 
clusters. In (a) the cluster selection approach is used, with only clusters up to the third nearest 
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reduces the width of the prior probability distribution as the distance between sites increases. 
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There have also been a variety of methods proposed to incorporate active learning 
into the generation of cluster expansions. Zunger et al. proposed building a training 
set using “quasirandom structures” in which the average interactions among sites in 
small clusters resemble that of a random alloy.160 Van de Walle and Ceder developed 
an active learning approach to determine which structures should be included in the 
training set of DFT calculations, based on the idea that structures should be chosen 
in a way that maximizes the expected variance reduction per CPU hour spent gener-
ating the training data.151 Their method is closely related to the A‐optimality approach 
described in the section entitled “The Training Data.” Mueller and Ceder have built 
upon this work to demonstrate that in many cases, it is possible to derive exact 
expressions for the expected variance reduction in cluster expansions.161 In parallel, 
Seko and coworkers have proposed alternative approaches to select structures to be 
included in cluster expansion training sets.162,163

Materials Processing and Complex Materials Behavior

Machine learning methods have enjoyed long‐term success in the general areas of 
automated manufacturing,164 process control,165 and in the prediction of materials 
behavior under complex conditions.17,166–168 Within the context of manufacturing, 
precision machining of parts is a critical step. Neural networks, which can effectively 
map complex nonlinear input/output relationships under these circumstances, have 
been used extensively. Quantities of interest that are routinely predicted include sur-
face roughness and material removal rate (the outcome, or goals, of the machining 
process) as a function of a variety of machining conditions. Exploiting learning 
models such as neural networks thus significantly alleviates the burden on actual 
time‐consuming repetitive experiments, not to mention wastage of parts that do not 
meet a target requirement.

Neural networks have also been enormously successful in understanding complex 
materials behavior, such as mechanical behavior (flow stress, hardness, tensile 
strength, fracture strength, and fatigue behavior) of metal alloys subjected to certain 
heat treatment and/or deformation procedures, as well as in the prediction of micro-
structures and phases resulting from heat treatment and/or deformation processes. 
The most practical way to capture the complex dependence of a desired macroscopic 
property on the various process parameters is through such learning methods. 
Figure 37 shows an example of the application of backpropagation neural networks 
to predict the flow stress of 42CrMo steel (which was subjected to deformation).164 
The inputs to the neural network are the process parameters: deformation tempera-
ture, log strain rate, and strain.

More recently, attempts have been made to predict complex, but intrinsic, mate-
rials behavior using fundamental atomic‐level attributes of the material as the 
starting point. The friction coefficient is one such complex materials property. In 
recent work,78 the tribological properties of 38 ceramic materials were determined 
using a variety of experimental methods. Sixteen materials properties (including 
hardness, cation charge, percent ionicity, Madelung constant, melting temperature, 
density, etc.) that could potentially control the friction coefficient were considered. 
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Feature reduction methods (as described in the section on “Latent Variable 
Analysis”) were used to identify the most critical of these properties, which were 
identified to be as follows: density, cation electronegativity, melting temperature, 
cation–anion distance (Rij), Madelung constant, and cation radius. Based on these 
identified features, a dendrogram (or decision tree, as described previously) was 
created to aid in the prediction of the friction coefficient. Figure 38 shows both the 
decision tree and a comparison of the predicted versus experimental values of the 
friction coefficient.

Automated Micrograph Analysis

An existing bottleneck preventing rapid advanced material discovery is the process 
of turning 2D sectional micrographs into actionable knowledge about material struc-
ture. Automation of this process will expedite our understanding of the relationships 
between (i) material processing history, (ii) microstructure, and (iii) the resultant 
functional properties. Optimally, the automation process would convert either single 
micrographs or a series of sectional micrographs into a microstructure representation 
that could be rapidly stored, searched, and mined for feature similarity. Furthermore, 
the representation should take into account the statistical nature of the microstructure 
and provide a means for identifying a representative volume element.

There are currently two dominant methods for automated microstructure 
identification. The first involves quantifying the spatial arrangement of microstructure 
“building blocks” such as grains, and the second involves quantifying the distribution 
of their shapes. As an initial step for both methods, the micrograph is first converted 
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FIGURE 37 Comparison between the experimental and predicted flow stress of 42CrMo 
steel: (a) effects of the deformation temperature, (b) effects of the deformation strain rates. 
The predictions were made using a backpropagation artificial neural network (ANN) with the 
deformation temperature, strain rate, and strain as input. Reprinted from Ref. 164, with per-
mission from Elsevier.
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into a collection of grain regions identified by structural properties such as texture and 
crystal orientation by using feature extraction techniques (discussed in the section 
“Feature Extraction”) including edge/blob detection and neural network and graphical 
model‐based segmentation.169–173
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Microstructure spatial arrangement can be rapidly computed through the use of 
N‐point statistics (described in the section “N‐Point Cross‐Correlations for N‐Point 
Statistics”), with accelerated computation through the use of fast Fourier trans-
forms.174 An example is shown in Figure 39a.169 Here an α–β Ti alloy with bimodal 
microstructure is shown using electron backscattered diffraction. The image was pre-
processed using a combination of the generalized Hough transform and image 
segmentation techniques to identify primary α particles (dark gray; red in e‐book 
version) and secondary α particles (light gray; blue in e‐book version). Using 2‐point 
statistics (Figure 39b) shows that the primary α particles are spatially uncorrelated 
and have a volume fraction of 0.51, given by the proportion of the figure area with a 
2‐point statistic value greater than approximately 0.3.

The N‐point statistics representation can be reduced to a lower‐dimensional rep-
resentation by multidimensional scaling and latent variable analysis techniques such 
as principal component analysis. Using the first two or three principal components, 
the N‐point statistics can then be visualized in a 2D or 3D space where processing–
structure–properties relationships are more easily visualized and understood.175 An 
example is drawn from Ref. 169. In Figure 40 a set of segmented backscattered elec-
tron micrographs from five different heat treatments of Ti‐5553 were analyzed 
using 2‐point statistics and then projected into a 3D space of the first three principal 
components. In the 3D principal component space, the five groups of materials are 
visually separable into clusters by heat treatment conditions, shown as different col-
ored hulls.

For microstructure representation based on grain shape, the shapes of the grain 
regions can be computed using a set of moment invariants (described in the section 
“Shape Identification with Moment Invariants”) that allow for shape identification 
despite similarity and/or affine transformations. An example is drawn from Ref. 132. 

600

(a) (b)

500

400

300

200

100

100 200 300 400 500 600 700 800

300 0.5

0.45

0.4

0.35

0.3

200

100

0

–100

–200

–300

–400 –200 0 200 400

FIGURE 39 (a) Electron backscattered diffraction (EBSD) of a α–β Ti alloy with bimodal 
microstructure with primary α particles (dark gray; red in color insert) and secondary α parti-
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the primary α particles are spatially uncorrelated and have a 0.51 volume fraction. Reproduced 
from Ref. 169 with kind permission from Springer Science and Business Media. (See insert 
for color representation of the figure.)



260 MACHINE LEARNING IN MATERIALS SCIENCE

In Figure 41, a 2D phase field simulation for a Ni–Al binary is shown as the upper 
left inset. The grains are then identified for shape through their projection into the 
(ω1, ω2) moment invariant space. The distribution of grain shapes in (ω1, ω2) space 
can also be used as a “fingerprint” to identify the most likely 3D particles observed 
in the 2D micrograph.115 As an example drawn from Ref. 115, Figure 42 shows three 
unique shape distributions for cube, octahedron, and tetrahedron particles. For series 
micrographs, the particle shape distribution can also be tracked as a function of 
processing parameters.132

The image processing techniques discussed are only a small subset of the broad 
and rapidly growing area of computer vision. There are myriad of research opportu-
nities available in the application area of automated micrograph analysis.

Structure–Property Relationships in Amorphous Materials

It is now possible to use atomic‐scale calculations to predict many properties of 
crystalline materials accurately, but amorphous materials pose a greater challenge due 
to the lack of symmetry in their atomic structure. To make it computationally feasible 
to calculate the properties of an amorphous material, the material may be approxi-
mated as having a pseudo‐amorphous structure, in which a large amorphous unit cell 
is repeated periodically (Figure  43). However the amorphous structure of atoms 
within this unit cell is not well defined—in many cases, a single pseudo‐amorphous 
structure will not be sufficiently representative of the many possible atomic arrange-
ments that might occur in an amorphous material. In such cases, it is preferable to 
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FIGURE 40 (a) Segmented backscattered electron micrographs for five different heat treat-
ments of Ti‐5553 (b) 3D vector space of the first three principal components of the 2‐point 
micrograph statistics. The five groups of materials are clustered by heat treatment type. 
Clusters are indicated by colored hulls (color available in e‐book version). Reproduced from 
Ref. 165 with kind permission from Springer Science and Business Media.



SELECTED MATERIALS SCIENCE APPLICATIONS 261

calculate the properties of an ensemble of pseudo‐amorphous structures. Analyzing 
the resulting data to determine the relationship between the atomic structure of amor-
phous materials and their properties is a task that is well suited for machine learning.

The utility of machine learning to study structure–property relationships in 
amorphous materials was demonstrated by Mueller et al., in a study of 
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FIGURE 41 Inset of 2D phase field simulation for a Ni–Al binary. The grain shapes from 
the micrograph are plotted in the ω1–ω2 vector space for shape identification. Reprinted from 
Ref. 132, with permission from Elsevier.
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FIGURE 42 Characteristic micrograph shape distributions in the ω1–ω2 vector space for (a) 
cubic particles, (b) octahedron particles, and (c) tetrahedron particles (color available in e‐book 
version). Reproduced with permission from Ref. 115. © IOP Publishing. All rights reserved.
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hydrogenated nanocrystalline (nc‐Si:H) and amorphous (a‐Si:H) silicon.106 
Hydrogenated amorphous silicon is a widely used thin‐film photovoltaic material, 
but the efficiency of a‐Si:H solar cells is limited by the low hole mobility in this 
material.177 The efficiency of a‐Si:H solar cells can be improved by using nc‐Si:H, 
which consists of small crystalline Si particles surrounded by a‐Si:H. To identify 
the structural features contributing to hole traps in nc‐Si:H, Mueller et al. used 
density functional theory to calculate hole trap depths in an ensemble of more than 
1000 nc‐Si:H structures; the approach was based on that used in Ref. 176. For each 
sample, they also calculated 242 descriptors of the atomic structure (e.g., unit cell 
volume, smallest Si–H bond length, etc.). They then used genetic programming 
(described previously) to identify functions of the descriptors that best predicted 
the hole trap depths.

By identifying a set of functions that relate the descriptors to hole trap depths, 
the authors were able to determine which descriptors most influence hole trap 
depths, even if the relationship is nonlinear. The best functions identified by the 
genetic programming algorithm consistently contained descriptors that fell into 
one of three classes: fivefold coordinated silicon (floating bonds), regions of 
dense silicon, and Si–H–Si (bridge) bonds. Taken together, these results indicated 
that holes were more likely to be trapped in the amorphous regions of the material. 
The first two classes of structural features had been identified in previous 
computational studies of hole traps in a‐Si:H,176,178–181 but the third (bridge 
bonds) had not.

To confirm the relationship between bridge bonds and the DFT‐calculated hole 
trap depths, the authors used the same methodology on an ensemble of 2700 a‐Si:H 
calculations that had been generated for a previous publication.176 Extensive prior 
examinations of this data set, using methods other than machine learning, had not 
revealed a relationship between hole trap depths and bridge bonds. However, 
within minutes, the genetic programming algorithm was able to identify a similar 
relationship to the one it had found in the nc‐Si:H samples. Inspections of the loca-
tions of deep hole traps confirmed that they are located near bridge bonds, further 
supporting this relationship.

FIGURE 43 Unit cells for three different model nc‐Si:H structures. Gray spheres represent 
silicon, and white spheres represent hydrogen. In Refs. 106 and 176, properties for thousands 
of such structures were calculated.
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As statistical sampling methods become more common in materials research, the 
large volumes of data generated will become increasingly difficult for humans to 
analyze using traditional methods. The examples presented in this section and 
previous sections demonstrate how machine learning can play an important role in 
facilitating the analysis of such large data sets, providing insights into complex mate-
rials that elude human researchers.

ADDITIONAL RESOURCES

There are many comprehensive resources available1 for readers interested in learning 
more about machine learning algorithms and analysis. Two in particular are:

1. T. Hastie, J. Friedman, and R. Tibshirani, The Elements of Statistical Learning, 
Springer, New York, 2009.

2. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New 
York, 2007.

Open‐source machine learning packages exist for all the algorithms described 
here. The Python package scikit‐learn (available at http://scikit‐learn.org/) has a 
library of methods with appropriate documentation. The commercial product 
MATLAB also has a library of methods as part of the toolboxes such as Statistics, 
Optimization, Neural Networks, Signal Processing, Image Processing, and Computer 
Vision. These methods come with extensive documentation including examples. For 
methods specific to image and video processing, the package OpenCV (http://opencv.
org/) is extensive but may require background knowledge in machine learning. The 
commercial software package Eureqa (http://www.nutonian.com/products/eureqa/) 
provides a straightforward interface for genetic programming.

SUMMARY

This chapter addresses the role that data‐driven approaches, especially machine 
learning methods, are expected to play in materials research in the immediate 
future. Machine learning, an important part of artificial intelligence, has already 
made monumental contributions to areas outside materials science (ranging from 
commerce to gaming to search engines to drug design). These methods come in 
many flavors under many names with a copious amount of jargon. Keeping these 
aspects in mind, this chapter first provided the necessary mathematical background 
(at a basic and unified level) to allow a materials researcher entering this field to 

1 Certain commercial equipment, instruments, or materials are identified in this publication for informa-
tional purposes only. Such identification is not intended to imply recommendation or endorsement by 
NIST, nor is it intended to imply that the materials or equipment identified are necessarily the best available 
for the purpose.



264 MACHINE LEARNING IN MATERIALS SCIENCE

use these methods most effectively. The chapter then provided an assortment of 
examples of recent machine learning applications within materials science and 
discussed a range of emerging efforts, including high‐throughput phase diagram 
and crystal structure determination methods, accelerated prediction of materials 
properties, development of interatomic potentials and functionals for accelerating 
materials simulations, and efficient and low‐cost methods for materials process 
control.
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