BFRL FIRE PUBLICATIONS, 1993

Nora H. Jason
Building and Fire Research Laboratory
National Institute of Standards and Technology
Gaithersburg, MD 20899

April 1994
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>1. Literature Citations Arranged by First Author</td>
<td>1</td>
</tr>
<tr>
<td>2. Author Index</td>
<td>27</td>
</tr>
<tr>
<td>3. Keyword Index</td>
<td>29</td>
</tr>
</tbody>
</table>
ABSTRACT

BFRL Fire Publications, 1993 contains references to the publications prepared by the members of the Building and Fire Research Laboratory (BFRL) fire research staff, by other National Institute of Standards and Technology (NIST) personnel for BFRL, or by external laboratories under contract or grant from the BFRL during the calendar year 1993. Building program staff citations will appear in a combined publication entitled Building and Fire Research Laboratory Publications, 1993; it will be published later.

NIST report series are available for purchase from either the Government Printing Office (GPO) or the National Technical Information Service (NTIS).

GPO documents, e.g., the NIST Technical Note series, are obtained by writing directly to the Superintendent of Documents, U. S. Government Printing Office, Washington, DC 20402-9325. They also may be contacted by telephone; the Order Desk telephone number is (202) 783-3238.

NTIS documents, e.g., the NISTIR series, are obtained by writing directly to the National Technical Information Service, Springfield, VA 22161. They also may be contacted by telephone; the Order Desk telephone number is (800) 553-6847 or (703) 487-4650.
1. Author Index Arranged by First Author

A

1. Atreya, A.
 Extinguishment of Combustible Porous Solids by Water Droplets. Annual
 Progress Report.
 Michigan State Univ., East Lansing
 Available from National Technical Information Services
 PB93-198893
 porous solids; extinguishment; diffusion flames; fire extinguishing; fire
 suppression; flame spread; droplets; water; infrared photography;
 polymethylmethacrylate

B

2. Babrauskas, V.
 Bench-Scale Predictions of Mattress and Upholstered Chair Fires:
 Similarities and Differences.
 National Institute of Standards and Technology, Gaithersburg, MD
 Available from National Technical Information Services
 PB93-186005
 mattresses; upholstered furniture; fire hazards; fire tests; heat release
 rate; scaling; fire spread; prisions

3. Babrauskas, V.
 Letter to the Editor.
 National Institute of Standards and Technology, Gaithersburg, MD
 1993.
 fire models; surveys

4. Babrauskas, V.
 Specimen Heat Fluxes for Bench-Scale Heat Release Rate Testing.
 National Institute of Standards and Technology, Gaithersburg, MD
 Interscience Communications Ltd.; National Institute of Standards and
 Technology; Building Research Establishment; and Society of Fire Protection
 fire safety; fire science; cone calorimeters; heat release rate; heat flux;
 radiant heating; corner tests; room fires; upholstered furniture; wall
 fires
5. Babrauskas, V.
Ten Years of Heat Release Research With the Cone Calorimeter.
National Institute of Standards and Technology, Gaithersburg, MD
Tsukuba Building Test Laboratory, Center for Better Living, Japan Symposium
W14/93/2 (J), Tsukuba, Japan, III/1-8 pp, 1993.
heat release; fire hazard; cone calorimeters; standards; databases; heat
release rate

6. Babrauskas, V.; Twilley, W. H.; Parker, W. J.
Effects of Specimen Edge Conditions on Heat Release Rate.
National Institute of Standards and Technology, Gaithersburg, MD
heat release rate; cone calorimeters; fire models

Time-Dependent Mass Loss rate Behavior of Wall Materials Under External
Radiation.
Pennsylvania State Univ., University Park, PA
walls; mass loss; data analysis; enclosures; flammability

8. Bukowski, R. W.
National Institute of Standards and Technology, Gaithersburg, MD
Available from National Technical Information Services
PB94-108388
containment; fire detectors; fire risk; reliability; sprinklers

9. Bukowski, R. W.
National Institute of Standards and Technology, Gaithersburg, MD
Interscience Communications Ltd.; National Institute of Standards and
Technology; Building Research Establishment; and Society of Fire Protection
fire safety; fire science; risk assessment; fire risk
10. Bukowski, R. W.
 Studies Assess Performance of Residential Detectors.
 National Institute of Standards and Technology, Gaithersburg, MD
 smoke detectors; heat detectors; residential buildings; standards;
 technology utilization

C

 Experimental and Numerical Studies on Two-Dimensional Gravity Currents in a
 Horizontal Channel.
 California Institute of Technology, Pasadena, CA
 Available from National Technical Information Services
 compartment fires; fire models; fire research; gravity current; inclined
 tests; room fires; smoke

 Simultaneous Optical Measurement of Soot Volume Fraction and Temperature.
 National Institute of Standards and Technology, Gaithersburg, MD
 Combustion Institute/Central and Eastern States Section. Combustion
 Fundamentals and Applications. Joint Technical Meeting. March 15-17,
 soot; optical measurement; volume fraction; temperature

13. Cooper, L. Y.
 Combined Buoyancy- and Pressure-Driven Flow Through a Horizontal Vent:
 Theoretical Considerations.
 National Institute of Standards and Technology, Gaithersburg, MD
 Available from National Technical Information Services
 PB94-103694
 vents; building fires; compartment fires; computer models; fire models;
 mathematical models; zone models

14. Cooper, L. Y.
 Discharge of Fire Suppression Agents From a Pressurized Vessel: A
 Mathematical Model and Its Application to Experimental Design.
 National Institute of Standards and Technology, Gaithersburg, MD
 Available from National Technical Information Services
 PB93-198927
 fire extinguishment; fire suppression; aircraft safety; fire safety;
 discharge pressure; halons
15. Cooper, L. Y.
Dispersion of Fire Suppression Agents Discharged From High Pressure
Vessels: Establishing Initial/Boundary Conditions for the Flow Outside the
Vessel.
National Institute of Standards and Technology, Gaithersburg, MD
NISTIR 5219; September 1993.
Available from National Technical Information Services
PB94-103660
agents; aircraft safety; discharge pressure; fire extinguishment; fire safety; halons

16. Cooper, L. Y.
Some Factors Affecting the Design of a Furniture Calorimeter Hood and
Exhaust.
National Institute of Standards and Technology, Gaithersburg, MD
Available from National Technical Information Services
PB94-139193
furniture calorimeter; exhaust systems; buoyant plumes; calorimeters; fire plumes; flame length; wall flows

D

17. Dawson, H.; diMarzo, M.
Experimental Study of Multiple Droplet Evaporative Cooling. Final Report.
Maryland Univ., College Park
Available from National Technical Information Services
PB93-198463
cooling; drop sizes; droplets; evaporation; solid surfaces; water

18. Deal, S.
Evaluating Small Board and Care Homes: Sprinklered vs. Nonsprinklered Fire Protection.
National Institute of Standards and Technology, Gaithersburg, MD
Available from National Technical Information Services
board and care homes; sprinklers; fire protection; computer models; hazard analysis; evacuation time; fire detection; compartmentation; safety; toxicity
19. Duffin, W. J., Editor
National Institute of Standards and Technology, Gaithersburg, MD
Available from National Technical Information Services
PB94-121324
fire research; burning rate; fire detection; hazard analysis; fire models;
fire risk; fire tests; flame spread; halons; plumes; suppression; water;
smoke

20. Evans, D. D.
Sprinkler Fire Suppression Algorithm for HAZARD.
National Institute of Standards and Technology, Gaithersburg, MD
U.S./Japan Government Cooperative Program on Natural Resources (UJNR).
Fire Research and Safety. 11th Joint Panel Meeting. October 27-November
2, 1992, NISTIR 5254, Tsukuba, Japan, Building Research Inst., Ibaraki,
Available from National Technical Information Services
PB94-103678
sprinklers; fire suppression; hazard analysis; cribs; crib fires; fire
protection

21. Fernandez-Pello, A. C.
Fire Propagation in Concurrent Flows. Annual Progress Report. September 1,
California Univ., Berkeley
fire spread; gas flow; oxygen concentration; experiments; turbulent flow;
laminar flow

22. Forney, G. P.; Bukowski, R. W.; Davis, W. D.
Field Modeling: Effects of Flat Beamed Ceilings on Detector and Sprinkler
Report. Year 1.
National Institute of Standards and Technology, Gaithersburg, MD
Available from National Fire Protection Research Foundation, Batterymarch
Park, Quincy, MA 02269
fire detection; ceilings; detector response; sprinkler response; equations;
turbulence; heat transfer; case histories; data analysis
23. Fowell, A. J.
Developments Needed to Expand the Role of Fire Modeling in Material Fire Hazard Assessment.
National Institute of Standards and Technology, Gaithersburg, MD
DOT/FAA/CT-93/3.
Available from National Technical Information Services
aircraft interiors; fire resistant materials; test methods; fire safety; fire hazard; hazard assessment; fire models; validation; databases

24. Fowell, A. J.
Fire Hazard Model Developments and Research Efforts at NIST.
National Institute of Standards and Technology, Gaithersburg, MD
fire safety; research facilities; fire research; fire hazards; validation; databases

G

Agent/System Compatibility for Halon 1301 Aviation Replacement.
National Institute of Standards and Technology, Gaithersburg, MD
halons; ozone; halon 1301; compatability; residues; storage; stability; combustion products; corrosion; elastomers; exposure

Dispersion and Deposition of Smoke Plumes Generated in Massive Fires.
Massachusetts Institute of Technology, Cambridge
National Institute of Standards and Technology, Gaithersburg, MD
plumes; dispersion; smoke
27. Gmurczyk, G.; Grosshandler, W. L.; Peltz, M.; Lowe, D. L.
 Facility for Assessing Suppression Effectiveness in High Speed Turbulent
 Flames.
 National Institute of Standards and Technology, Gaithersburg, MD
 Combustion Institute/Eastern States Section. Chemical and Physical
 Processes in Combustion. Fall Technical Meeting, 1993. October 25-27,
 turbulent flames; suppression; halon 1301; aircraft engines; nacelle fires;
 fire protection; nitrogen

28. Groner, N. E.
 Guide to Board and Care Fire Safety Requirements in the 1991 Edition of the
 George Mason Univ., Fairfax, VA
 Available from National Technical Information Services
 PB93-220820
 board and care homes; codes; egress; elderly persons; evacuation; fire
 emergency planning; fire safety; handicapped; NFPA 101; residential
 buildings; sprinklers

29. Grosshandler, W. L.
 RADCAL: A Narrow-Band Model for Radiation Calculations in a Combustion
 Environment.
 National Institute of Standards and Technology, Gaithersburg, MD
 NIST TN 1402; 52 p. April 1993.
 Available from Government Printing Office
 SN003-003-03215-8
 PB93-200889
 models; radiation; combustion; radiative heat transfer; spectra; spectral
 absorptivity; spectral emissivity

30. Grosshandler, W. L.; Braun, E.
 Early Detection of Room Fires Through Acoustic Emission.
 National Institute of Standards and Technology, Gaithersburg, MD
 Available from National Technical Information Services
 PB94-112257
 acoustic properties; acoustic sensors; fire detection; ionization
 detectors; walls; ceilings; noise (sound)
Agent Screening for Halon 1301 Aviation Replacement.
National Institute of Standards and Technology, Gaithersburg, MD
U. S. Environmental Protection Agency, Environment Canada and United
National Environmental Program. International CFC and Halon Alternatives
Conерence, 1993. Stratospheric Ozone Protection for the 90's. October
halons; ozone; halon 1301; thermal properties; dispersions; fluid
mechanics; flame extinguishment; flammable materials

32. Grosshandler, W. L.; Lowe, D. L.; Rinkinen, W. J.; Presser, C.
Turbulent Spray Burner for Assessing Halon Alternative Fire Suppressants.
National Institute of Standards and Technology, Gaithersburg, MD
93-WA/HT-23;
American Society of Mechanical Engineers (ASME). Winter Annual Meeting.
halons; halon 1301; in-flight fires; fire protection; air velocity;
injection; nitrogen; pressure

33. Grosshandler, W. L.; Presser, C.; Lowe, D. L.
Validation of a Turbulent Spray Flame Facility for the Assessment of Halon
Alternatives.
National Institute of Standards and Technology, Gaithersburg, MD
University of New Mexico; New Mexico Engineering Research Institute; Center
for Global Environmental Technologies; National Association of Fire
Equipment Distributors, Inc.; Halon Alternative Research Corp.; Fire
Suppression Systems Assoc.; and Hughes Associates, Inc. Halon Alternatives
halons; validation; experiments; air velocity; injection; nitrogen; air
temperature

H

34. Hall, J. R., Jr.
U.S. Fires in "Board and Care" Homes Matrix Display of Selected Fatal
Fires. Special Analysis.
National Fire Protection Association, Quincy, MA
Available from National Technical Information Services
PB93-198869
board and care homes; building codes; building construction; building
fires; death; egress; evacuation; exits; fire investigations; fire
protection; human behavior
35. Hamins, A.
Soot.
National Institute of Standards and Technology, Gaithersburg, MD
Environmental Implications of Combustion Processes. Chapter 3, CRC Press,
soot; health hazards; flame radiation; carbon monoxide; soot formation;
flame research; smoke yield; smoke production

36. Hamins, A.; Yang, M. H.; Puri, I. K.
Structure of Inhibited Counterflowing Nonpremixed Flames.
National Institute of Standards and Technology, Gaithersburg, MD
Illinois Univ., Chicago
University of New Mexico; New Mexico Engineering Research Institute; Center
for Global Environmental Technologies; National Association of Fire
Equipment Distributors, Inc.; Halon Alternative Research Corp.; Fire
Suppression Systems Assoc.; and Hughes Associates, Inc. Halon Alternatives
halons; suppression; flame structure; methodology; flame extinguishment

37. Harrington, J. E.; Smyth, K. C.
Laser-Induced Fluorescence Measurements of Formaldehyde in a Methane/Air
Diffusion Flame.
National Institute of Standards and Technology, Gaithersburg, MD
diffusion flames; formaldehyde; lasers; fluorescence

J

38. Jaluria, Y.; Lee, S. H. K.; Mercier, G. P.; Tan, Q.
Visualization of Transport Across a Horizontal Vent Due to Density and
Pressure Differences.
Rutgers, The State University of New Jersey, New Brunswick
American Society of Mechanical Engineers (ASME). National Heat Transfer
Conference. August 1993, Atlanta, GA, Am. Soc. of Mechanical Engineers,
vents; water flow; air flow; flow visualization; experiments
39. Jason, N. H.
National Institute of Standards and Technology, Gaithersburg, MD
Available from National Technical Information Services
PB93-188845
fire research; building technology; earthquakes; refrigerants; fire suppression

40. Jason, N. H.
Evolution of a United States Information System.
National Institute of Standards and Technology, Gaithersburg, MD
National Fire Protection Association and International Association of Fire
Chiefs. inFIRE (international network for Fire Information and Reference
databases; fire engineering; fire research; fire safety; information
retrieval; information dissemination; libraries; information retrieval

41. Jason, N. H.
National Institute of Standards and Technology, Gaithersburg, MD
Available from National Technical Information Services
databases; fire engineering; fire research; fire safety; information
retrieval; information dissemination; manuals

42. Jason, N. H.
Information Transfer in the 21st Century.
National Institute of Standards and Technology, Gaithersburg, MD
Society of Fire Protection Engineers. International Fire Information
Conference, 1st. Proceedings. Cosponsored by International Fire
Information Conference (IFIC) and international network for Fire
Information and Reference Exchange (inFIRE). April 27-May 1, 1992,
Moreton-in-Marsh, England, Society of Fire Protection Engineers, Boston,
databases; fire engineering; fire research; fire safety; information
retrieval; information dissemination; libraries; technology transfer

43. Jason, N. H.
Locating Fire Engineering Information.
National Institute of Standards and Technology, Gaithersburg, MD
information retrieval; fire research; fire protection engineering; fire
science; databases; information storage
44. Jason, N. H.
National Institute of Standards and Technology, Gaithersburg, MD
NIST SP 838-2; 87 p. September 1993.
Available from Government Printing Office
Available from National Technical Information Services
SN003-003-03235-2
PB93-188845
fire research; building technology; earthquakes; large fires; refrigerants;
fire suppression

45. Jason, N. H.
National Institute of Standards and Technology, Gaithersburg, MD
Available from National Technical Information Services
PB94-121050
charring; combustion; fire models; fire research; flame spread; blowout
fires; hazards; ignition; polymers; soot; smoke; sprinklers

46. Jones, W. W.; Forney, G. P.
Improvement in Predicting Smoke Movement in Compartmented Structures.
National Institute of Standards and Technology, Gaithersburg, MD
smoke movement; structures; fire growth; smoke transport; toxic gases;
compartments; zone models; equations; buoyant flow

47. Jones, W. W.; Forney, G. P.
Modeling Smoke Movement Through Compartmented Structures.
National Institute of Standards and Technology, Gaithersburg, MD
Samgore Army Materials Research Conference, 9th, September 16-17, 1992,
Plymouth, MA, 1992 AND U.S./Japan Government Cooperative Program on
Natural Resources (UJNR), Fire Research and Safety. 11th Joint Panel
Meeting, October 27-November 2, 1992, Tsukuba, Japan, Building Research
smoke; compartment fires; fire growth; mathematical models; numerical
models; room fires; toxicity
48. Joshi, A. A.; Pagni, P. J.
Fire Induced Thermal Fields in Window Glass I - Theory.
California Univ., Berkeley
Available from National Technical Information Services
PB94-139722
glass; windows; computer models; fire models; mathematical models;
radiation; thermal stresses; vents; equations; temperature profiles; heat
flux

K

49. Kapoor, K.; Jaluria, Y.
Penetrative Convection of a Plane Turbulent Wall Jet in a Two-Layer
Thermally Stable Environment: A Problem in Enclosure Fires.
Rutgers, The State University of New Jersey, New Brunswick
International Journal of Heat and Mass Transfer, Vol. 36, No. 1, 155-167,
1993.
enclosures; turbulent jets; flow fields; heat transfer; flow visualization;
penetration

50. Kashiwagi, T.; Cleary, T. G.
Effects of Sample Mounting on Flammability Properties of Intumescent
Polymers.
National Institute of Standards and Technology, Gaithersburg, MD
Interscience Communications Limited. Heat Release and Fire Hazard. 1st U.
heat release; fire hazard; sampling; flammability; polycarbonates; cone
calorimeters; char; heat release rate; heat of combustion; soot; flame
spread; flame spread rate

51. Kashiwagi, T.; Cleary, T. G.; Davis, G. C.; Lupinski, J. H.
Non-Halogenated, Flame Retarded Polycarbonate.
National Institute of Standards and Technology, Gaithersburg, MD
General Electric Co., Schenectady, NY
DOT/FAA/CT-93/3.
Federal Aviation Administration (FAA). International Conference for the
Promotion of Advanced Fire Resistant Aircraft Interior Materials. February
Available from National Technical Information Services
aircraft interiors; fire resistant materials; test methods; fire safety;
polycarbonates; cone calorimeters; flame spread; furniture calorimeters;
siloxanes; heat release rate; ignition delay; char
52. Kloe, J. H.
Air Moving Systems and Fire Protection.
National Institute of Standards and Technology, Gaithersburg, MD
Available from National Technical Information Services
PB93-234722
 air movement; air conditioning; fire protection; fire safety; heating;
 smoke control; stairwells; ventilation systems

53. Kloe, J. H.
Design of Smoke Control Systems for Areas of Refuge.
National Institute of Standards and Technology, Gaithersburg, MD
NISTIR 5132; March 1993.
Available from National Technical Information Services
PB93-183754
 smoke control; refuge; elevators (lifts); evacuation; handicapped; life
 safety

54. Kloe, J. H.
Design of Smoke Control Systems for Areas of Refuge.
National Institute of Standards and Technology, Gaithersburg, MD
 smoke control; refuge; elevators (lifts); evacuation; handicapped; life
 safety

55. Kloe, J. H.
Method for Calculation of Elevator Evacuation Time.
National Institute of Standards and Technology, Gaithersburg, MD
 elevators (lifts); evacuation time; computer programs; people movement;
 time; emergencies

Fire Evacuation by Elevators.
National Institute of Standards and Technology, Gaithersburg, MD
 evacuation; elevators (lifts); smoke control; staging areas; human beings;
 water; sprinklers
Workshop on Elevator Use During Fires.
National Institute of Standards and Technology, Gaithersburg, MD
George Mason Univ., Fairfax, VA
Edward A. Donoghue Associates Inc., Salem, NY
Available from National Technical Information Services
elevators (lifts); smoke control; evacuation; staging areas

58. Kloe, J. H.; Forney, G. P.
Zone Fire Modeling With Natural Building Flows and a Zero Order Shaft
Model.
National Institute of Standards and Technology, Gaithersburg, MD
Available from National Technical Information Services
PB94-112166
zones models; air movement; fire models; smoke movement; stairwells

59. Kostreva, M. M.; Wiecek, M. M.
Time Dependency in Multiple Objective Dynamic Programming.
Clemson Univ., SC
Journal of Mathematical Analysis and Applications, Vol. 173, No. 1,
time; planning; algorithms

60. Koylu, U. U.; Dai, Z.; Tseng, C. K.; Faeth, F. M.
Radiation and Mixing Properties of Buoyant Turbulent Diffusion Flames.
Michigan Univ., Ann Arbor
Available from National Technical Information Services
diffusion flames; fire plumes; fire research; optical properties; Rayleigh
light scattering; soot

61. Lakhtakia, A.; Mulholland, G. W.
On Two Numerical Techniques for Light Scattering by Dielectric Agglomerated
Structures.
Pennsylvania State Univ., University Park
National Institute of Standards and Technology, Gaithersburg, MD
Journal of Research of the National Institute of Standards and Technology,
agglomerates; light scattering; smoke; equations
62. Lawson, J. R.
Fire Tests and Flooring Materials.
National Institute of Standards and Technology, Gaithersburg, MD
fire tests; flooring radiant panel test; hazard assessment; radiant flux profile

63. Levin, B. M.; Groner, N. E.; Paulsen, R.
Affordable Fire Safety in Board and Care Homes. A Regulatory Challenge.
Final Report.
George Mason Univ., Fairfax, VA
Available from National Technical Information Services
PB93-219723
board and care homes; egress; elderly persons; evacuation; fire safety codes; handicapped; NFPA 101; residential buildings; sprinklers

64. Lomakin, S. M.; Brown, J. E.; Breese, R. S.; Nyden, M. R.
Investigation of the Thermal Stability and Char-Forming Tendency of Cross-Linked Poly(methyl methacrylate).
National Institute of Standards and Technology, Gaithersburg, MD
polymethylmethacrylate; thermal stability; char formation; crosslinking; thermal degradation

65. McGrattan, K. B.; Putorti, A. D.; Twilley, W. H.; Evans, D. D.
Smoke Plume Trajectory From In Situ Burning of Crude Oil in Alaska.
National Institute of Standards and Technology, Gaithersburg, MD
NISTIR 5273; 70 p. October 1993.
Available from National Technical Information Services
PB94-114519
crude oil; oil spills; pool fires; smoke; fire plumes
66. Mitler, H. E.; Walton, G. N.
National Institute of Standards and Technology, Gaithersburg, MD
NIST SP 852; Volume 3; 169 p. August 1993.
Available from National Technical Information Services
Available from Government Printing Office
Available from U.S. Consumer Product Safety Commission, Washington, DC 20207
PB94-109014
- cigarettes; ignition; furniture; computer models; mathematical models;
 pyrolysis; simulation; smoldering; substrates

N

Comparison of Experimental and Computed Species Concentration and
Temperature Profiles in Laminar, Two-Dimensional Methane/Air Diffusion
Flames.
National Institute of Standards and Technology, Gaithersburg, MD
George Washington Univ., Washington, DC
Yale Univ., New Haven, CT
- laminar flames; diffusion flames; species concentrations; temperature
 profiles; flame structure

68. Notarianni, K. A.
Measurement of Room Conditions and Response of Sprinklers and Smoke
Detectors During a Simulated Two-Bed Hospital Patient Room Fire.
National Institute of Standards and Technology, Gaithersburg, MD
Available from National Technical Information Services
- sprinklers; fire research; fire tests; sprinkler response; smoke detectors;
 hospital fires; life safety

69. Notarianni, K. A.
Water Mist Fire Suppression Workshop Summary.
National Institute of Standards and Technology, Gaithersburg, MD
SFPE Bulletin, 8-9, Summer 1993.
- fire suppression; water fog; water mist; water sprays; fire research;
 droplets; drop size; fire extinguishment; sprinklers; aircraft
70. Notarianni, K. A.; Davis, W. D.
Use of Computer Models to Predict Temperature and Smoke Movement in High Bay Spaces.
National Institute of Standards and Technology, Gaithersburg, MD
Available from National Technical Information Services
computer models; temperature; smoke movement; clean rooms; computational fluid dynamics; detector response; field modeling; fire detection; fire models; forced air flow; fire plumes; fire tests; high bays; response time; sprinkler response

71. Notarianni, K. A.; Davis, W. D.
Use of Computer Models to Predict the Response of Sprinklers and Detectors in Large Spaces.
National Institute of Standards and Technology, Gaithersburg, MD
Society of Fire Protection Engineers and Worcester Polytechnic Institute.
computers; fire protection; computer models; sprinkler response; detector response; aircraft hangars; test fires; fire models

72. Notarianni, K. A.; Evans, D. D.; Walton, W. D.
Smoke Production From Large Oil Pool Fires.
National Institute of Standards and Technology, Gaithersburg, MD
fire safety; fire science; pool fires; smoke production; oil spills; crude oil; smoke yield

73. Notarianni, K. A.; Jason, N. H., Editors
National Institute of Standards and Technology, Gaithersburg, MD
NISTIR 5207; June 1993.
Available from National Technical Information Services
PB93-219780
fire suppression; water fog; water mist; water sprays; fire research; droplets; drop sizes; fire extinguishment; sprinklers; aircraft; electronic facilities; marine transportation
74. Nyden, M. R.; Brown, J. E.
Computer-Aided Molecular Design of Fire Resistant Aircraft Materials.
National Institute of Standards and Technology, Gaithersburg, MD
DOT/FAA/CT-93/3;
Federal Aviation Administration (FAA). International Conference for the
Promotion of Advanced Fire Resistant Aircraft Interior Materials. February
Available from National Technical Information Services
aircraft interiors; fire resistant materials; test methods; fire safety;
computer models; simulation; cone calorimeters; polyethylene; composite
materials; commercial aircraft; ceilings

75. Ohlemiller, T. J.; Cleary, T. G.; Brown, J. E.; Shields, J. R.
Assessing the Flammability of Composite Materials.
National Institute of Standards and Technology, Gaithersburg, MD
Sagamore Army Materials Research Conference, 39th. September 16-17, 1992,
composite materials; flammability; ignition source; bulkheads; heat release
rate; flame spread

76. Ohlemiller, T. J.; Shields, J. R.
One- and Two-Sided Burning of Thermally Thin Materials.
National Institute of Standards and Technology, Gaithersburg, MD
heat release rate; experiments; combustion; flammability; composite
materials

77. Ohlemiller, T. J.; Villa, K. M.; Braun, E.; Eberhardt, K. R.; Harris, R. H., Jr.;
Lawson, J. R.; Gann, R. G.
Test Methods for Quantifying the Propensity of Cigarettes to Ignite Soft
Furnishings. Volume 2.
National Institute of Standards and Technology, Gaithersburg, MD
NIST SP 851; Volume 2; 166 p. August 1993.
Available from National Technical Information Services
Available from Government Printing Office
Available from U.S. Consumer Product Safety Commission, Washington, DC 20207
PB94-108644
cigarettes; test methods; ignition; upholstered furniture; statistical
analysis
78. Parker, W. J.; Filipczak, R.
aircraft compartments; heat release rate; calorimeters; computer models

SN003-003-03194-1
compartment fires; fire growth; mathematical models; numerical models; room fires; toxicity

Verification of a Model of Fire and Smoke Transport. National Institute of Standards and Technology, Gaithersburg, MD Fire Safety Journal, Vol. 21, No. 2, 89-129, 1993. fire models; smoke transport; computer models; experiments; zone models; fire tests

82. Pitts, W. M.
83. Pitts, W. M.; Bryner, N. P.; Johnsson, E. L.
Production Mechanisms for Carbon Monoxide in Enclosure Fires.
National Institute of Standards and Technology, Gaithersburg, MD
Combustion Institute/Central and Eastern States Section. Combustion
Fundamentals and Applications. Joint Technical Meeting. March 15-17,
carbon monoxide; enclosures; experiments; entrainment; pyrolysis

84. Pitts, W. M.; Yang, J. C.; Breuel, B. D.; Cleveland, W.; Gmurczyk, G.
Dynamics of the Release of Alternate Halon Replacement Agents From
Pressurized Bottles.
National Institute of Standards and Technology, Gaithersburg, MD
University of New Mexico; New Mexico Engineering Research Institute; Center
for Global Environmental Technologies; National Association of Fire
Equipment Distributors, Inc.; Halon Alternative Research Corp.; Fire
Suppression Systems Assoc.; and Hughes Associates, Inc. Halon Alternatives
halons; experiments; halon 1301; military facilities; military aircraft;
nacelle fires

85. Portier, R. W.
National Institute of Standards and Technology, Gaithersburg, MD
Available from National Technical Information Services
PB93-182038
computers; databases; cone calorimeters; furniture calorimeters

86. Puri, R.; Richardson, T. F.; Santoro, R. J.; Dobbins, R. A.
Aerosol Dynamic Processes of Soot Aggregates in a Laminar Ethene Diffusion
Flame.
Pennsylvania State Univ., University Park
Brown Univ., Providence, RI
diffusion flames; laminar flames; aerosols; soot; data analysis
87. Quintiere, J. G.
National Institute of Standards and Technology, Gaithersburg, MD
1993.
Available from National Technical Information Services
PB91-143305
mass fires; energy transfer; forest fires; smoke emissions

88. Rehm, R. G.; Baum, H. R.; Tang, H. C.; Lozier, D. C.
Finite-Rate Diffusion-Controlled Reaction in a Vortex.
National Institute of Standards and Technology, Gaithersburg, MD
flame fronts; formulations; equations; diffusion flames

89. Richards, C. D.; Pitts, W. M.
Global Density Effects on the Self-Preservation Behavior of Turbulent Free
Jets.
National Institute of Standards and Technology, Gaithersburg, MD
density effects; turbulent jets; flow fields; turbulent flow

90. Saito, K.
Study of Fire Induced Flow Along the Vertical Corner Wall. Part 2. Final
Report.
Kentucky Univ., Lexington
Available from National Technical Information Services
PB93-205623
corner tests; walls; building fires; flame height; flame spread rate; heat
flux; infrared photography; room fires

21
91. Santoro, R. J.
Fundamental Mechanisms for CO and Soot Formation in Diffusion Flames.
Annual Progress Report and Quarterly Report. April 1, 1992-August 31,
Pennsylvania State Univ., University Park, PA
diffusion flames; carbon monoxide; soot formation; hydroxyl radicals;
sampling; laminar flames; probes

92. Smyth, K. C.; Harrington, J. E.; Johnsson, E. L.; Pitts, W. M.
Greatly Enhanced Soot Scattering in Flickering CH4/Air Diffusion Flames.
National Institute of Standards and Technology, Gaithersburg, MD
diffusion flames; soot; laminar flames

93. Snell, J. E.
Elements of a Framework for Fire Safety Engineering.
National Institute of Standards and Technology, Gaithersburg, MD
Interscience Communications Ltd.; National Institute of Standards and
Technology; Building Research Establishment; and Society of Fire Protection
fire safety; fire science; safety engineering; decision making; life safety

94. Snell, J. E.
Forum for International Cooperation on Fire Research.
National Institute of Standards and Technology, Gaithersburg, MD
VTT-Technical Research Center of Finland and Forum for International
Development and Verification of Tools for Performance Codes. August
fire safety; safety engineering; codes; fire research; technology transfer

95. Snell, J. E.
Status of Performance Fire Codes in the USA.
National Institute of Standards and Technology, Gaithersburg, MD
VTT-Technical Research Center of Finland and Forum for International
Development and Verification of Tools for Performance Codes. August
fire safety; safety engineering; codes; fire codes; regulations
96. Tartarini, P.; Liao, Y.; diMarzo, M.
Maryland Univ., College Park
Available from National Technical Information Services
PB93-189421
droplets; evaporation; solid fuels; thermal conductivity; water;
vaporization

97. Tartarini, P.; Liao, Y.; Kidder, C.; diMarzo, M.
Maryland Univ., College Park
Available from National Technical Information Services
computer programs; cooling; droplets; evaporation; solid surfaces; water

98. Urbas, J.; Parker, W. J.
Surface Temperature Measurements on Burning Wood Specimens in the Cone
Calorimeter and the Effect of Grain Orientation.
Weyerhaeuser Co., Washington, DC
Fire Technology Consultant, Germantown, MD
wood; surface temperature; combustion; cone calorimeters; thermocouples;
pyrometers; temperature measurement

99. Walton, W. D.
In Situ Burning of Oil Spills: Mesoscale Experiments and Analysis.
National Institute of Standards and Technology, Gaithersburg, MD
Available from National Technical Information Services
PB94-101839
oil spills; crude oil; burning rate; particle size distribution; plumes;
fire tests; heat release rate; pool fires; smoke yield
100. Walton, W. D.
In-Situ Burning of Oil Spills: Mesoscale Experiments.
National Institute of Standards and Technology, Gaithersburg, MD
PB94-142973
oil spills; burning rate; crude oil; fire tests; heat release rate;
particle size distribution; plumes; pool fires; smoke yield; water sprays

Madrzykowski, D.; Putorti, A. D.; Rehm, R. G.; Koseki, H.; Tennyson, E. J.
In Situ Burning of Oil Spills: Mesoscale Experiments and Analysis.
National Institute of Standards and Technology, Gaithersburg, MD
Fire Research Institute, Tokyo, Japan
Minerals Management Service, Herndon, VA
Environment Canada. Arctic and Marine Oil Spill Program Technical Seminar,
oil spills; experiments; crude oil; water; instruments; burning rate;
particle size distribution; temperature; carbon dioxide; plumes;
visibility; mathematical models; equations

Madrzykowski, D.; Putorti, A. D.; Rehm, R. G.; Koseki, H.; Tennyson, E. J.
In Situ Burning of Oil Spills: Mesoscale Experiments and Analysis.
National Institute of Standards and Technology, Gaithersburg, MD
Fire Research Institute, Tokyo, Japan
Minerals Management Service, Herndon, VA
Environment Canada. Arctic and Marine Oil Spill Program Technical Seminar,
oil spills; experiments; crude oil; water; instruments; burning rate;
particle size distribution; temperature; carbon dioxide; plumes;
visibility; mathematical models; equations

103. Walton, W. D.; Notarianni, K. A.
Comparison of Ceiling Jet Temperatures Measured in an Aircraft hanger Test
Fire With Temperatures Predicted by the DETACT-QS and LAVENT Computer Models.
National Institute of Standards and Technology, Gaithersburg, MD
Available from National Technical Information Services
computer models; ceiling jets; temperature; aircraft hangers; building
technology; detector response; fire models; fire plumes; fire tests; pool
fires; response time; sprinkler response

24
104. Wilson, M. R.
Time Dependent Vector Dynamic Programming Algorithm for the Path Planning Problem.
Clemson Univ., SC
Available from National Technical Information Services
computer programs; building fires; egress; escape; fire models; fire research

Y

Heat Transfer From Radiatively Heated Material in a Low Reynolds Number Microgravity Environment.
Nagoya Univ., Japan
National Institute of Standards and Technology, Gaithersburg, MD
Osaka Univ., Japan
heat transfer; reynolds number; microgravity; mathematical models; vapor phases; equations; fluid flow

106. Yang, J. C.
Heterogeneous Combustion.
National Institute of Standards and Technology, Gaithersburg, MD
 heterogeneous combustion; droplets; sparys; coal; smoldering combustion

107. Yang, J. C.; Breuel, B. D.; Grosshandler, W. L.
Solubilities of Nitrogen and Freon-23 in Alternative Halon Replacement Agents.
National Institute of Standards and Technology, Gaithersburg, MD
ahalons; nitrogen; thermodynamic properties; solubility
108. Yang, M. H.; Puri, I. K.; Hamins, A.
Extinction of Inhibited, Stretched and Diluted Counterflowing Flames.
Illinois Univ., Chicago
National Institute of Standards and Technology, Gaithersburg, MD
Combustion Institute/Central and Eastern States Section. Combustion
Fundamentals and Applications. Joint Technical Meeting. March 15-17,
flame research; methodology; kinetics; flame extinguishment

Z

109. Zhang, X.; Ghoniem, A. F.
Computational Model for the Rise and Dispersion of Wind-Blown,
Massachusetts Institute of Technology, Cambridge
Available from National Technical Information Services
PB94-143427
buoyant flows; computation; entrainment; fire phases; large fires;
simulation; urban fires; wildland fires; wind effects

110. Zhou, L.; Fernandez-Pello, A. C.
Turbulent, Concurrent, Ceiling Flame Spread: The Effect of Buoyancy.
California Univ., Berkeley
flame spread; ceilings; air flow; polymethylmethacrylate; turbulence; air;
buoyancy; flame fronts
2.0 AUTHOR INDEX

A
Atreya, A. 1

B
Babrauskas, V. 2-6
Baum, H. R. 26,88,101,102,105
Braun, E. 25,30,77
Breese, R. S. 64
Brehob, E. G. 7
Breuel, B. D. 84,107
Brown, J. E. 64,74,75
Bryner, N. P. 83
Bukowski, R. W. 8-10,22,79,81

C
Chan, W. R. 11
Choi, M. Y. 12
Cleary, T. G. 25,50,51,75
Cleveland, W. 84
Cooper, L. Y. 13-16

D
Dai, Z. 60
Davis, G. C. 51
Davis, W. D. 22,70,71
Dawson, H. 17
Deal, S. 18,56,57
diMarzo, M. 17,96,97
Dobbins, R. A. 86
Donoghue, E. A. 56,57
Duffin, W. J., Editor 19

E
Eberhardt, K. R. 77
Evans, D. D. 20,65,72,101,102

F
Faeth, F. M. 60
Fernandez-Pello, A. C. 21,110
Filipczak, R. 78
Forney, G. P. 22,46,47,58,80
Fowell, A. J. 23,24
G
Gann, R. G. 25,31,77
Ghoniem, A. F. 26,109
Gmurczyk, G. 27,84
Groner, N. E. 28,56,57,63
Grosshandler, W. L. 27,29,33,107

H
Hall, J. R., Jr. 34
Hamins, A. 12,31,35,36,108
Harrington, J. E. 37,92
Harris, R. H., Jr. 25,77
Horkay, F. 25

J
Jaluria, Y. 38,49
Jason, N. H. 39-45,73
Johnsson, E. L. 83,92
Jones, W. W. 46,47,79,81
Joshi, A. A. 48

K
Kapoor, K. 49
Kashiwagi, T. 12,50,51,105
Kidder, C. 97
Klote, J. H. 52-58
Knio, O. 26
Koseki, H. 101,102
Kostreva, M. M. 59
Koylu, U. U. 60
Kubota, T. 11
Kulkarni, A. K. 7
Kushida, G. 105

L
Lakhtakia, A. 61
Lawson, J. R. 62,77
Lee, S. H. K. 38
Levin, B. M. 56,57,63
Liao, Y. 96,97
Linteris, G. T. 25
Lomakin, S. M. 64
Lowe, D. L. 27,32,33
Lozier, D. C. 88
Lupinski, J. H. 51
M
Madrzykowski, D. 101,102
McGrattan, K. B. 65,101,102
McKenna, G. B. 25
Mercier, G. P. 38
Miller, J. H. 67
Mitler, H. E. 66
Mulholland, G. W. 61

N
Nakabe, K. 105
Norton, T. S. 67
Notarianni, K. A. 68-73,103
Nyden, M. R. 25,31,64,74

O
Ohlemiller, T. J. 75-77

P
Pagni, P. J. 48
Parker, W. J. 62,78,98
Paulsen, R. 63
Peacock, R. D. 25,79-81
Peltz, M. 27
Pitts, W. M. 31,82-84,89,92
Portier, R. W. 80,85
Presser, C. 32,33
Puri, I. K. 35,36,106,108
Puri, R. 86
Putorti, A. D. 65,101,102

Q
Quintiere, J. G. 87

R
Rehm, R. G. 26,88,101,102
Reneke, P. A. 79,80
Richards, C. D. 89
Richardson, T. F. 86
Rinkinen, W. J. 32

S
Saito, K. 90
Santoro, R. J. 86,91
Shields, J. R. 75,76
Smooke, M. D. 67
Smyth, K. C. 37,67,92
Shell, J. E. 93-95
Stoudt, M. R. 25

T
Tan, Q. 38
Tang, H. C. 88
Tartarini, P. 96,97
Tennyson, E. J. 101,102
Tseng, L. K. 60
Twilley, W. H. 6,65,101,102

U
Urbas, J. 98

V
Villa, K. M. 77

W
Waldron, W. K. 25
Walton, G. N. 66
Walton, W. D. 72,99-103
Wiecek, M. M. 59
Wilson, M. R. 104

Y
Yamashita, H. 105
Yang, J. 31
Yang, J. C. 84,106,107
Yang, M. H. 36,108

Z
Zachariah, M. 31
Zhang, X. 26,109
Zhou, L. 110
Zukowski, E. E. 11
3.0 KEYWORD INDEX

A
acoustic properties 30
acoustic sensors 30
aerosols 86
agents 15
agglomerates 61
air 32,33,38,52,58,70,110
air conditioning 52
air flow 38,70,110
air movement 52,58
air velocity 32,33
aircraft 14,15,23,27,51,69,71,73,74,78,84,103
aircraft compartments 78
aircraft engines 27
aircraft hangars 71
aircraft hangers 103
aircraft interiors 23,51,74
aircraft safety 14,15
algorithms 59
axisymmetric jets 82

B
board and care homes 18,28,34,63
building codes 34
building construction 34
building fires 13,90,104
building technology 39,44
bulkheads 75
buoyancy 110
buoyant flow 46
buoyant flows 109
buoyant plumes 16
burning rate 19,99-102

C
calorimeters 4-6,16,50,51,74,78,85,98
carbon dioxide 101,102
carbon monoxide 35,83,91
case histories 22
celling jets 103
ceilings 22,30,74,110
char 50,51,64
char formation 64
charring 45
cigarettes 66,77
clean rooms 70
coal 106
codes 28,34,63,94,95
combustion 25,29,45,50,76,82,98,106
combustion products 25
commercial aircraft 74
compartment fires 11,13,47,80
compartmentation 18
compartment 46,78
compatibility 25
composite materials 75
computation 109
computer models 13,18,48,66,70,71,74,78,81,103
computer programs 55,97,104
computers 71,85
concentration measurement 82
cone calorimeters 4-6,51,74,85,98
containment 8
cooling 17,97
corner tests 4,90
corrosion 25
crib fires 20
cribs 20
crosslinking 64
crude oil 65,99-102

D
data analysis 7,22,86
databases 5,23,24,41,43,85
death 34
decision making 93
density effects 89
detector response 22,70,103
diffusion flames 1,37,60,67,82,86,88,91,92
discharge pressure 14,15
dispersion 26
dispersions 31
drop size 69
drop sizes 17,73
droplets 1,17,69,73,96,97,106

E
earthquakes 39,44
egress 28,34,63,104
elastomers 25
everly persons 28,63
elevators (lifts) 53-57
emergencies 55
enclosures 7,49,83
energy transfer 87
entrainment 83,109
equations 22,46,48,61,88,101,102
escape 104,105
evacuation 18,28,34,53-57
evacuation time 18,55
evaporation 17,96,97
exhaust systems 16
exits 34
experiments 21,33,38,76,81,83,84,101,102
exposure 25
extinguishment 1,14,15,31,36,69,73,108

F
field modeling 70
fire codes 95
fire detection 18,19,22,30,70
fire detectors 8
fire engineering 41
fire extinguishing 1
fire extinguishment 14,15,69,73
fire growth 46,47,80
fire hazards 2,24
fire investigations 34
fire models 3,6,11,13,19,23,45,48,58,71,81,103,104
fire phases 109
fire plumes 60,65,70,103
fire protection 18,27,32,43,52,71,79
fire protection engineering 43
fire research 11,19,24,39,41,43-45,60,68,69,73,94
fire resistant materials 23,51,74
fire risk 8,9,19
fire safety 4,9,14,23,24,28,41,51,52,63,72,74,93-95
fire science 4,9,72,93
fire spread 2,21
fire suppression 14,20,44,69,73
fire tests 2,19,62,68,70,81,99,100,103
flame extinguishment 31,36,108
flame fronts 88,110
flame height 90
flame length 16
flame radiation 35
flame research 35,108

flame spread 1,19,45,50,51,75,90,110
flame spread rate 50,90
flame structure 36,67
flammability 7,50,75,76
flammable materials 31
flooring radiant panel test 62
flow fields 17,82,89
flow visualization 38,49
fluid flow 105
fluorescence 37
forced air flow 70
forest fires 87
formaldehyde 37
formulations 88
furniture 2,4,16,51,66,77,85
furniture calorimeter 16
furniture calorimeters 51,85

G
gas flow 21
glass 48
gravity current 11

H
halon (1301) 25,27,31,32,84
halons 14,15,19,25,31-33,36,84,107
handicapped 28,53,54,63
hazard analysis 19,20,79
hazard assessment 23,62
health hazards 35
heat detectors 10
heat flux 4
heat of combustion 50
heat release 2,4-6,50,51,75,76,79,99,100
heat release rate 4,6,50,51,76,79,99,100
heat transfer 22,29,49,105
heating 4,52
heterogeneous combustion 106
high bays 70
hospital fires 68
human behavior 34
human beings 56
hydroxyl radicals 91

I
ignition 45,51,66,75,77
ignition delay 51
ignition source 75
in-flight fires 32
information dissemination 40-42
information retrieval 40,43
information storage 43
infrared photography 1,90
injection 32,33
instruments 101,102

K
kinetics 108

L
laminar flames 67,86,91,92
laminar flow 21
large fires 44,109
lasers 37
libraries 40,42
life safety 68,93
light scattering 60,61,82

M
manuals 41
marine transport 73
mass fires 87
mass loss 7
mathematical models 13,47,48,66
mattresses 2
methodology 36,108
microgravity 105
military aircraft 84
military facilities 84
models 3,6,11,13,18,19,23,29,45-48,58,66,70,71,74,78,80,81,101-105

N
nacelle fires 27,84
NFPA 101 28,63
nitrogen 27,32,33,107
noise (sound) 30
numerical models 80

O
oil spills 65,72,99-102
optical measurement 12
optical properties 60
oxygen concentration 21
ozone 25,31

P
particle size distribution 99-102
passenger vehicles 79
penetration 49
people movement 55
planning 28,59
plumes 16,19,26,60,65,70,99-103
polycarbonates 17,51
polyethylene 74
polymers 45
poly(methylmethacrylate) 1,64,110
pool fires 65,72,99,100
porous solids 1
pressure 14,15,32
prisons 2
probes 91
pyrolysis 66,83
pyrometers 98

R
radiant heating 4
radiation 29,35,48
radiative heat transfer 29
rayleigh light scattering 82
refrigerants 39,44
refuge 53,54
regulations 95
reliability 8
research facilities 24
residential buildings 10,63
residues 25
response time 70,103
reynolds number 105
risk assessment 9,79
room fires 4,11,47,90

S
safety 4,9,14,15,18,23,24,28,41,51-54,63,68,72,74,93-95
safety engineering 93-95
sampling 50,91
scaling 2
siloxanes 51
simulation 66,74,109
smoke 10,11,19,26,35,45-47,52,53,54-58,61,65,68,70,72,81,87,99,100
smoke control 52-54,56,57
smoke detectors 10,68
smoke emissions 87
smoke movement 46,58,70
smoke production 35, 72
smoke transport 46, 81
smoke yield 35, 72, 99, 100
smoldering 66, 106
smoldering combustion 106
solid fuels 96
solid surfaces 17, 97
solubility 107
soot 12, 35, 45, 50, 60, 86, 91, 92
soot formation 35, 91
spars 106
species concentrations 67
spectra 29
spectral emissivity 29
sprinkler response 22, 68, 70, 71, 103
sprinklers 8, 18, 20, 28, 45, 56, 63, 68, 69, 73
stability 26, 64
staging areas 56, 57
stairwells 52, 58
standards 5, 10
storage 25, 43
structures 46
substrates 66
suppression 1, 14, 19, 20, 27, 36, 39, 44, 69, 73
surface temperature 98
surveys 3

t technology transfer 42, 94
technology utilization 10
temperature 12, 33, 48, 67, 70, 98, 101, 102
temperature measurement 98
temperature profiles 48
test fires 71
test methods 23, 51, 74, 77
thermal conductivity 96
thermal degradation 64
thermal properties 31
thermal stability 64
thermal stresses 48
thermocouples 98
thermodynamic properties 107
time 18, 55, 59, 70, 103
toxic gases 46
toxicity 18, 47, 80
transportation 73, 79
turbulence 22, 110
turbulent combustion 82
turbulent flames 27
turbulent flow 21, 89
turbulent jets 49, 89
turbulent mixing 82

U
upholstered furniture 2, 4, 77
urban fires 109

V
validation 23, 24, 33
vaporization 96
velocity measurement 82
ventilation systems 52
vents 13, 38, 48
visibility 101, 102
volume fraction 12

W
wall flows 16
walls 7, 30, 90
water 1, 17, 19, 38, 56, 69, 73, 96, 97, 101, 102
water flow 38
water fog 69, 73
water mist 69, 73
water sprays 69, 73, 100
wildland fires 109
wind effects 109
windows 48
wood 98

Z
zone models 13, 46, 58, 81
BFRL FIRE PUBLICATIONS, 1993

RECOMMENDED FOR NIST PUBLICATION

- JOURNAL OF RESEARCH (NIST JRES)
- J. PHYS. & CHEM. REF. DATA (JPCRD)
- HANDBOOK (NIST HB)
- SPECIAL PUBLICATION (NIST SP)
- TECHNICAL NOTE (NIST TN)
- MONOGRAPH (NIST MN)
- NATL. STD. REF. DATA SERIES (NIST NSRDS)
- FEDERAL INF. PROCESS. STDS. (NIST FIPS)
- LIST OF PUBLICATIONS (NIST LP)
- NIST INTERAGENCY/INTERNAL REPORT (NISTIR)

RECOMMENDED FOR NON-NIST PUBLICATION (CITE FULLY)

- U.S.
- FOREIGN

PUBLISHING MEDIUM

- PAPER
- DISKETTE (SPECIFY)
- OTHER (SPECIFY)
- CD-ROM

ABSTRACT (A 1500-CHARACTER OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBLIOGRAPHY OR LITERATURE SURVEY, CITE IT HERE. SPELL OUT ACRONYMS ON FIRST REFERENCE.) (CONTINUE ON SEPARATE PAGE, IF NECESSARY.)

BFRL Fire Publications, 1993 contains references to the publications prepared by the members of the Building and Fire Research Laboratory (BFRL) fire research staff, by other National Institute of Standards and Technology (NIST) personnel for BFRL, or by external laboratories under contract or grant from the BFRL during the calendar year 1993. NIST report series are available for purchase from either the Government Printing Office (GPO) or the National Technical Information Service (NTIS). GPO documents, e.g., the NIST Technical Note series are obtained by writing directly to the Superintendent of Documents, U. S. Government Printing Office, Washington, DC 20402-9325. They also may be contacted by telephone; the Order Desk telephone number is (702) 783-3238. NTIS documents, e.g., the NISTIR series, are obtained by writing directly to the National Technical Information Service, Springfield, VA 22161. They also may be contacted by telephone; the Order Desk telephone number is (800) 553-6847 or (703) 487-4650.

KEY WORDS (MAXIMUM 8 KEY WORDS; 28 CHARACTERS AND SPACES EACH; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES)

- fire research
- evacuation
- information transfer
- room fires
- databases
- smoke control
- fire models
- elderly persons
- oil spills
- fire tests
- water mist
- carbon monoxide
- halons

AVAILABILITY

- UNLIMITED

NOTE TO AUTHOR(S) IF YOU DO NOT WISH THIS MANUSCRIPT ANNOUNCED BEFORE PUBLICATION, PLEASE CHECK HERE.