
	

	

	 	 	 	 	
	 	

	

	

User’s Guide to Running	 the Draft NIST	
SP	 800-90B Entropy	 Estimation	 Suite
19 April 2016

K. McKay

This is a brief introduction on how to run the Python command-line programs (hosted on GitHub at
https://github.com/usnistgov/SP800-90B_EntropyAssessment) that implement the statistical entropy
estimation methods found in Section 6 of the Second Draft NIST SP 800-90B (January 2016). It is not a
description or explanation of the methods themselves. Please refer to the draft SP for definitions and
descriptions of the methods and their rationales.

Disclaimer
This software was developed by employees of the National Institute of Standards and Technology
(NIST), an agency of the Federal Government. Pursuant to title 15 United States Code Section 105, works
of NIST employees are not subject to copyright protection in the United States and are considered to be in
the public domain. As a result, a formal license is not needed to use the software.

This software is provided by NIST as a service and is expressly provided "AS IS". NIST MAKES NO
WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT AND DATA ACCURACY. NIST does not warrant
or make any representations regarding the use of the software or the results thereof including, but not
limited to, the correctness, accuracy, reliability or usefulness of the software.

Permission to use this software is contingent upon your acceptance of the terms of this agreement.

The identification of any commercial product or trade name does not imply endorsement or
recommendation by the National Institute of Standards and Technology, nor is it intended to imply that
the materials or equipment identified are necessarily the best available for the purpose.

Requirements
The code should run on any OS with 64-bit Python 2.7 or Python 3.

Note that this tool does not come with a Python installation. If you do not already have Python installed
on your system, go to https://www.python.org and select “Download.” No additional modules or
packages are required to run the code. However, some routines will run faster if you have the numpy
package installed. You can get numpy at http://www.scipy.org. If you are running a Windows OS, you
can also find it here: http://www.lfd.uci.edu/~gohlke/pythonlibs. Alternatively, you can download the
entire scipy-stack, which includes numpy.

http://www.lfd.uci.edu/~gohlke/pythonlibs
http:http://www.scipy.org
http:https://www.python.org
https://github.com/usnistgov/SP800-90B_EntropyAssessment

	

	

	

	 	

	 	

	 	

Python	 Files
SP 800-90B breaks the process into two paths: an IID path and a non-IID path. The python files for each
path are listed below.

Both paths:
•	 util90b.py

o	 Contains utility functions, such as command line parser and loading data file
•	 restart.py

o	 Main file for the sanity checks on the restart dataset
•	 mostCommonValue.py

o	 Contains the most common value method for restart tests and the most common value
estimate for IID and non-IID paths

IID path:
•	 iid_main.py

o	 Contains main routine to give the independent and identically distributed (IID) entropy
estimate, if IID assumption holds

o	 Run permutation tests to determine if IID
o	 Run chi-square independence and goodness of fit tests to determine if IID
o	 Run longest repeated substring test
o	 Estimate min entropy if passes above tests

•	 permutation_tests.py
o	 Contains tests to determine if dataset is IID

•	 chi_square_tests.py
o	 Contains the chi square independence and goodness of fit for binary and non-binary data

•	 LRS.py
o	 Contains the length of the longest repeated substring (LRS) test

Non-IID path:
•	 noniid_main.py

o	 Contains main routine to compute the non-IID entropy estimate
o	 Runs ten methods to estimate min-entropy
o	 Assessed min-entropy is the lowest of the ten results

•	 noniid_collision.py
o	 Contains the collision estimate method

•	 markov.py
o	 Contains the Markov estimate method
o	 Only up to 6 bits per symbol are used for the Markov test

•	 maurer.py
o	 Contains the compression estimate method

•	 tuple.py
o	 Contains the t-tuple estimate method

•	 LRS.py
o	 Contains the length of the longest repeated substring (LRS) test

http:tuple.py
http:maurer.py
http:markov.py
http:noniid_collision.py
http:noniid_main.py
http:chi_square_tests.py
http:permutation_tests.py
http:iid_main.py
http:mostCommonValue.py
http:restart.py
http:util90b.py

	

	

	

	

	 	

	

• SP90Bv2_predictors.py
o Contains the prediction estimates:

§ Multi most common in window estimate
§ Lag prediction estimate
§ multiMMC prediction estimate
§ LZ78Y prediction estimate

Dataset
The code package expects the dataset to be a binary file where the symbols are stored as bytes. Each byte
may only belong to one symbol. For example, an 8-bit symbol would be represented by all 8 bits of a
byte, whereas a binary value would take up only the least significant bit of a byte (i.e., multiple bits
cannot be packed into a byte). The number of bits per symbol is supplied to the code package via
command line argument.

Restart	 Dataset
The code package expects the restart dataset to be a concatenation (denoted by ||) of 1000 sequences of
1000 samples. If three sequences generated after three consecutive restarts were s1, s2, and s3,
respectively, the restart dataset would be s1 || s2 || s3, in the format described above. In other words, this
is the row dataset described in Section 3.1.4.1 of draft SP 800-90B. The code package constructs the
column dataset from the row dataset.

Sample	 Dataset Files:
This code package contains three dataset files generated with TrueRand that should pass the IID tests.

• 1000000 data samples
o 1 bit per sample (truerand_1bit.bin)
o 4 bits per sample (truerand_4bit.bin)
o 8 bits per sample (truerand_8bit.bin)

There is also one file containing binary digits of pi:

• data.pi.bin (1165666 bytes)

Documentation
This user guide:

• user_guide.pdf

http:SP90Bv2_predictors.py

	

	

	 	 	

	 	

 	

Running the Code

Initial	Estimate 	for Non-IID 	Path
To obtain an entropy estimate using the non-IID path, the file noniid_main.py should be executed. The
help message for the non-IID tests is shown in the following example.

$ python noniid_main.py -h
usage: noniid_main.py [-h] [-u use_bits] [-v] datafile bits_per_symbol

Run the Draft NIST SP 800-90B (January 2016) non-IID Tests

positional arguments:
datafile dataset on which to run tests
bits_per_symbol number of bits used to represent sample output values

optional arguments:
-h, --help show this help message and exit
-u use_bits, --usebits use_bits

use only the N lowest order bits per sample
-v, --verbose verbose mode: show detailed test results

To run the code for the non-IID path, two arguments are required: the binary datafile and the number of
bits per symbol. The datafile is a binary file containing output from an entropy source, and
bits_per_symbol tells the program how many bits to use to construct each symbol. The program supports
bits_per_symbol values from 1 to 8. While SP 800-90B can be applied to sources with greater symbols
sizes, this program assumes that the reduction operation in Section 6.4 has been applied and the max
symbol size is a byte.

There are two flags that may be set as well. Setting the verbose flag (-v) enables the program to print
useful information about the progress of the computations and the results of individual estimation
methods. The use bits flag (-u) and accompanying value tell the program to only test the use_bits least
significant bits of each symbol for estimation. This can be useful if all of the entropy is in lower order
bits.

The following example shows the output for the initial non-IID entropy estimate, with the verbose flag
set. The data is stored in bytes.

$ python noniid_main.py -v truerand_8bit.bin 8

reading 1000000 bytes of data

Read in file truerand_8bit.bin, 1000000 bytes long.

Dataset: 1000000 8-bit symbols, 256 symbols in alphabet.

Output symbol values: min = 0, max = 255

Running entropic statistic estimates:
- Most Common Value Estimate: p(max) = 0.00428909, min-entropy = 7.86511
- Collision Estimate: p(max) = 0.0127255, min-entropy = 6.29613
- Markov Estimate (map 6 bits): p(max) = 1.13787e-223, min-entropy = 5.78597
- Compression Estimate: p(max) = 0.00872433, min-entropy = 6.84074
- t-Tuple Estimate: p(max) = 0.004124, min-entropy = 7.92174
- LRS Estimate: p(max) = 0.00391357, min-entropy = 7.9973

http:noniid_main.py
http:noniid_main.py

Running predictor estimates:
Computing MultiMCW Prediction Estimate: 100 percent complete
Pglobal: 0.003937
Plocal: 0.002136
MultiMCW Prediction Estimate: p(max) = 0.0039373, min-entropy = 7.98858

Computing Lag Prediction Estimate: 100 percent complete
Pglobal: 0.004073
Plocal: 0.002136
Lag Prediction Estimate: p(max) = 0.00407281, min-entropy = 7.93976

Computing MultiMMC Prediction Estimate: 100 percent complete
Pglobal: 0.004110
Plocal: 0.002136
MultiMMC Prediction Estimate: p(max) = 0.00410955, min-entropy = 7.92681

Computing LZ78Y Prediction Estimate: 100 percent complete
Pglobal: 0.004110
Plocal: 0.002136
LZ78Y Prediction Estimate: p(max) = 0.00410961, min-entropy = 7.92678

min-entropy = 5.78597

Don't forget to run the sanity check on a restart dataset using H_I = 5.78597

The output for the same computations without the verbose flag is:

$ python noniid_main.py truerand_8bit.bin 8
reading 1000000 bytes of data

min-entropy = 5.78597

Don't forget to run the sanity check on a restart dataset using H_I = 5.78597

The resulting H_I (in this example, 5.78597) is the initial entropy estimate. It is used as an input to the
restart test, described below.

If the entropy were all in the lower-order bits, then it would be desirable to use the –u flag. The following
example shows computations on the same data file, but using only the four low-order bits of each byte.

$ python noniid_main.py -v -u 4 truerand_8bit.bin 8
reading 1000000 bytes of data
Read in file truerand_8bit.bin, 1000000 bytes long.
Dataset: 1000000 8-bit symbols, 256 symbols in alphabet.
Output symbol values: min = 0, max = 255
* Using only low 4 bits out of 8. 16 symbols in reduced alphabet.
* Using output symbol values: min = 0, max = 15

Running entropic statistic estimates:
- Most Common Value Estimate: p(max) = 0.0635666, min-entropy = 3.97559
- Collision Estimate: p(max) = 0.0852737, min-entropy = 3.55175
- Markov Estimate: p(max) = 3.53812e-152, min-entropy = 3.93055
- Compression Estimate: p(max) = 0.0793228, min-entropy = 3.65612
- t-Tuple Estimate: p(max) = 0.0774597, min-entropy = 3.69041

http:noniid_main.py
http:noniid_main.py

- LRS Estimate: p(max) = 0.0676245, min-entropy = 3.88631

Running predictor estimates:
Computing MultiMCW Prediction Estimate: 100 percent complete

Pglobal: 0.062795
Plocal: 0.025391

MultiMCW Prediction Estimate: p(max) = 0.062795, min-entropy = 3.99321

Computing Lag Prediction Estimate: 100 percent complete
Pglobal: 0.063075
Plocal: 0.025391

Lag Prediction Estimate: p(max) = 0.0630754, min-entropy = 3.98678

Computing MultiMMC Prediction Estimate: 100 percent complete
Pglobal: 0.062967
Plocal: 0.046875

MultiMMC Prediction Estimate: p(max) = 0.0629669, min-entropy = 3.98926

Computing LZ78Y Prediction Estimate: 100 percent complete
Pglobal: 0.063162
Plocal: 0.046875

LZ78Y Prediction Estimate: p(max) = 0.0631618, min-entropy = 3.9848

min-entropy = 3.55175

Don't forget to run the sanity check on a restart dataset using H_I = 3.55175

After the non-IID estimate is returned, the sanity checks on the restart dataset must be applied as
described below.

Initial	Estimate 	for IID 	Path
To test whether a dataset is IID and obtain an entropy estimate for that dataset, the file iid_main.py should
be executed. The help message for the IID tests is shown is as follows:

$ python iid_main.py -h
usage: iid_main.py [-h] [-v] datafile bits_per_symbol

Run the Draft NIST SP 800-90B (January 2016) IID Tests

positional arguments:
datafile dataset on which to run tests
bits_per_symbol number of bits used to represent sample output values

optional arguments:
-h, --help show this help message and exit
-v, --verbose verbose mode: show detailed test results

To run the code for the IID path, two arguments are required: the binary datafile and the number of bits
per symbol. The following examples uses the datafile truerand_8bit.bin, which is provided with this
package, and the bits_per_symbol is 8. If the verbose flag is set, information about the dataset is provided.
This information includes the number of bytes, the number of bits per symbol, the number of unique
symbols observed, and the minimum and maximum values.

http:iid_main.py

	

	

	
	

 		

$ python iid_main.py -v truerand_8bit.bin 8
reading 1000000 bytes of data
Read in file truerand_8bit.bin, 1000000 bytes long.
Dataset: 1000000 8-bit symbols, 256 symbols in alphabet.
Output symbol values: min = 0, max = 255

The permutation tests take hours to compute. Unlike the code that was released with the 2012 draft, this
version of the 90B code package does not allow the user to reduce the number of permutations performed.
In addition, the permutation tests apply 10000 permutations on the full sequence, rather than 1000
permutations on ten data subsets as was done in the 2012 draft. While the permutation tests are running,
the status will be displayed when the verbose flag is set. This can be seen in the following incomplete
execution of the IID process.

$ python iid_main.py -v truerand_8bit.bin 8

reading 1000000 bytes of data

Read in file truerand_8bit.bin, 1000000 bytes long.

Dataset: 1000000 8-bit symbols, 256 symbols in alphabet.

Output symbol values: min = 0, max = 255

Calculating statistics on original sequence
Calculating statistics on permuted sequences
permutation tests: 31.10 percent complete

If the dataset passes all of the permutation tests, as is the case for truerand_8bit.bin, then the program
output indicates this and moves on to the Chi-square tests. If those are passed, the program output
indicates this and applies the length of the longest repeated substring test. If that passes, then the program
outputs “IID = True” and then provides an entropy estimate. If any of these tests fail, the program outputs
“IID = False” and exits.

$ python iid_main.py -v truerand_1bit.bin 1

reading 1000000 bytes of data

Read in file truerand_1bit.bin, 1000000 bytes long.

Dataset: 1000000 1-bit symbols, 2 symbols in alphabet.

Output symbol values: min = 0, max = 1

Calculating statistics on original sequence
Calculating statistics on permuted sequences
permutation tests: 99.99 percent complete
statistic C[i][0] C[i][1]

excursion 5486 0
numDirectionalRuns 4272 62
lenDirectionalRuns 1175 2368

numIncreasesDecreases 8992 44
numRunsMedian 8429 296
lenRunsMedian 1024 7
avgCollision 148 1
maxCollision 1307 366

periodicity(1) 7931 68
periodicity(2) 4035 78
periodicity(8) 3195 70

periodicity(16) 9532 26

http:iid_main.py
http:iid_main.py
http:iid_main.py

	

	

	

	

periodicity(32) 263 17
covariance(1) 1706 1
covariance(2) 1883 2
covariance(8) 1285 2

covariance(16) 2831 1
covariance(32) 657 0

compression 7153 62
(* denotes failed test)
** Passed IID permutation tests

Chi square independence
score = 1949.69, degrees of freedom = 2047, cut-off = 2250.43

** Passed chi-square independence test

Chi square goodness-of-fit
score = 2.56106, degrees of freedom = 9 cut-off = 27.877

** Passed chi-square goodness-of-fit test

** Passed chi square tests

LRS test
W: 36, Pr(E>=1): 1.0)

** Passed LRS test

IID = True
min-entropy = 0.995043

Don't forget to run the sanity check on a restart dataset using H_I =
0.995043

If the verbose flag is not set, the output shows only the final results. Specifically, whether IID is true or
false, and if true, what the min-entropy estimate is.

After the IID estimate is returned, the sanity checks on the restart dataset must be applied as described
below.

Restart	 Tests
The main file for the restart tests is restart.py, which requires two arguments and has an optional verbose
flag. The first required argument is the row dataset, as defined in Section 3.1.4.1 of draft SP 800-90B.
The program derives the column dataset from the row dataset, so restart.py only needs to be run once.

If the file truerand_8bit.bin were a row dataset, the restart tests would be performed as follows (with
verbose on).

$ python restart.py -v truerand_8bit.bin 8 5.78597

reading 1000000 bytes of data

Read in file truerand_8bit.bin, 1000000 bytes long.

Dataset: 1000000 8-bit symbols, 256 symbols in alphabet.

Output symbol values: min = 0, max = 255

Running sanity check on row dataset:
- F_R: 16
Running sanity check on column dataset:
- F_C: 15

http:restart.py
http:restart.py
http:restart.py

	

	

	

	

alpha: 1.953125e-08
z: 5.61610279
U: 41.815068515
Passed the restart tests
*** Final entropy estimate: 5.78597

Suppose that the initial entropy estimate had been 7.9. Then the restart tests would fail, as shown in the
following example.

$ python restart.py -v truerand_8bit.bin 8 7.9

reading 1000000 bytes of data

Read in file truerand_8bit.bin, 1000000 bytes long.

Dataset: 1000000 8-bit symbols, 256 symbols in alphabet.

Output symbol values: min = 0, max = 255

Running sanity check on row dataset:
- F_R: 16
Running sanity check on column dataset:
- F_C: 15
U: 15.653766
Failed the restart tests
*** Validation failed. No entropy estimate awarded.

http:restart.py

 090 Entr Assessment.git

2

4/22/2016 usnistgov/SP800-90B_EntropyAssessment: The SP800-90B_EntropyAssessment python package implements the min-entropy assessment methods included in …

https://github.com/
https://github.com/pulls
https://github.com/issues
https://gist.github.com/
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/.gitignore
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/bff468ca5e8ad7f19a66d3fdac41438e6d3d7fdd
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/IG-how-to.docx
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/README.md
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/48b220d37073684299d51f7e57946c91595b1bf0
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/UserGuide.docx
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/48b220d37073684299d51f7e57946c91595b1bf0
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/chi_square_tests.py
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/629d571ba60527796b7bb6e373bd5bc7f55d6b24
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/data.pi.bin
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/frequency.py
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/gui90b.py
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/iid_main.py
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/iid_tests.py
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/markov.py
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/60bc12166e63acbc84ba3f898b25dbe83008f495
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/maurer.py
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/noniid_collision.py
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/noniid_main.py
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/partial_collection.py
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/sanity_checks.py
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/shuffle_tests.py
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/truerand_1bit.bin
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/truerand_4bit.bin
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/truerand_8bit.bin
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/truerand_9bit.bin
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/user_guide.pdf
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/48b220d37073684299d51f7e57946c91595b1bf0
https://github.com/usnistgov/SP800-90B_EntropyAssessment/blob/master/util90b.py
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/efa58eab0b44dffa823144fc85ed7eb6960b19a2
https://github.com/notifications
https://github.com/new
https://github.com/kerrymckay
https://github.com/usnistgov/SP800-90B_EntropyAssessment/stargazers
https://github.com/usnistgov/SP800-90B_EntropyAssessment/network
https://github.com/usnistgov/SP800-90B_EntropyAssessment/watchers
https://github.com/usnistgov/SP800-90B_EntropyAssessment/subscription
https://github.com/usnistgov
https://github.com/usnistgov/SP800-90B_EntropyAssessment
https://github.com/usnistgov/SP800-90B_EntropyAssessment
https://github.com/usnistgov/SP800-90B_EntropyAssessment/issues
https://github.com/usnistgov/SP800-90B_EntropyAssessment/pulls
https://github.com/usnistgov/SP800-90B_EntropyAssessment/wiki
https://github.com/usnistgov/SP800-90B_EntropyAssessment/pulse
https://github.com/usnistgov/SP800-90B_EntropyAssessment/graphs
https://github.com/usnistgov/SP800-90B_EntropyAssessment/settings
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commits/master
https://github.com/usnistgov/SP800-90B_EntropyAssessment/branches
https://github.com/usnistgov/SP800-90B_EntropyAssessment/releases
https://github.com/usnistgov/SP800-90B_EntropyAssessment/graphs/contributors
https://github.com/usnistgov/SP800-90B_EntropyAssessment/upload/master
https://github.com/usnistgov/SP800-90B_EntropyAssessment/find/master
github-mac://openRepo/https://github.com/usnistgov/SP800-90B_EntropyAssessment
https://github.com/usnistgov/SP800-90B_EntropyAssessment/archive/master.zip
https://github.com/usnistgov/SP800-90B_EntropyAssessment/pull/new/master
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/48b220d37073684299d51f7e57946c91595b1bf0
https://github.com/usnistgov/SP800-90B_EntropyAssessment/commit/48b220d37073684299d51f7e57946c91595b1bf0
https://github.com/usnistgov/SP800-90B_EntropyAssessment
http:README.md

4/22/2016 usnistgov/SP800-90B_EntropyAssessment: The SP800-90B_EntropyAssessment python package implements the min-entropy assessment methods included in …

https://github.com/usnistgov/SP800-90B_EntropyAssessment 2/3

python package implements the min-entropy assessment methods included in the 2012 draft of Special Publication 800-
90B.

Disclaimer

This software was developed by employees of the National Institute of Standards and Technology (NIST), an agency of the
Federal Government. Pursuant to title 15 United States Code Section 105, works of NIST employees are not subject to
copyright protection in the United States and are considered to be in the public domain. As a result, a formal license is not
needed to use the software.

This software is provided by NIST as a service and is expressly provided "AS IS". NIST MAKES NO WARRANTY OF ANY
KIND, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT AND DATA ACCURACY. NIST does
not warrant or make any representations regarding the use of the software or the results thereof including, but not limited to,
the correctness, accuracy, reliability or usefulness of the software.

Permission to use this software is contingent upon your acceptance of the terms of this agreement.

Requirements

This code package requires Python 2.6+ or Python 3.

Basic Usage

There are two main files in this code package: iid_main.py and noniid_main.py. Brief usage descriptions are listed below. For
further details, please refer to the user guide.

Using iid_main.py

The file iid_main.py calls all of the tests that determine whether or not the input file appears to contain independent and
identically distributed (IID) samples, and if so, gives an entropy assessment. The program takes three arguments:

1. datafile: a binary file containing the samples to be tested.
2. bits_per_symbol: the number of bits required to represent the largest output symbol from the noise source. E.g., if the

largest value is 12, this would be 4.
3. number_of_shuffles: number of shuffles for the shuffling tests to determine whether data appears to be IID. Note that

too few shuffles will cause IID to fail the tests.

If the program outputs IID = False , try increasing number_of_shuffles (up to 1 000), or proceed to noniid_main.py.

Examples
An example that fails (too few shuffles):

> python iid_main.py truerand_4bit.bin 4 1
IID = False

The same data passing when more shuffles are added:

> python iid_main.py truerand_4bit.bin 4 10
IID = True
min‐entropy = 3.97271
sanity check = PASS

4/22/2016 usnistgov/SP800-90B_EntropyAssessment: The SP800-90B_EntropyAssessment python package implements the min-entropy assessment methods included in …

https://github.com/usnistgov/SP800-90B_EntropyAssessment 3/3

Using noniid_main.py

The file noniid_main.py calls all of the min-entropy estimation methods. The program requires two arguments:

1. datafile: a binary file containing the samples to be tested.
2. bits_per_symbol: the number of bits required to represent the largest output symbol from the noise source. E.g., if the

largest value is 12, this would be 4.

Example
Non-IID estimators applied to same data as above:

> python noniid_main.py truerand_4bit.bin 4
min‐entropy = 3.66238
sanity check = PASS

More Information

For more information on using this code, such as optional arguments, see the user guide in this repository. For more
information on the estimation methods, see draft SP at (http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf).

Contact Information
This code was originally developed by Tim Hall and is currently maintained by Kerry McKay and John Kelsey.

Status API Training Shop Blog About© 2016 GitHub, Inc. Terms Privacy Security Contact Help

http://csrc.nist.gov/publications/drafts/800-90/draft-sp800-90b.pdf
https://status.github.com/
https://developer.github.com/
https://training.github.com/
https://shop.github.com/
https://github.com/blog
https://github.com/about
https://github.com/site/terms
https://github.com/site/privacy
https://github.com/security
https://github.com/contact
https://help.github.com/

