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Abstract 
Following a critical review of the field, a comprehensive analysis is provided of the internal pressure 
of fluids and fluid mixtures and its determination in a wide range of temperatures and pressures. 
Further, the physical meaning is discussed of the internal pressure along with its microscopic 
interpretation by means of calorimetric experiments. A new relation is explored between the internal 
pressure and the isochoric heat capacity jump along the coexistence curve near the critical point. 
Various methods (direct and indirect) of internal pressure determination are discussed. Relationships 
are studied between the internal pressure and key thermodynamic properties, namely expansion 
coefficient, isothermal compressibility, speed of sound, enthalpy increments, and viscosity. Loci of 
isothermal, isobaric, and isochoric internal pressure maxima and minima were examined in addition 
to the locus of zero internal pressure. Details were discussed of the new method of direct internal 
pressure determination by a calorimetric experiment that involves simultaneous measurement of the 
thermal pressure coefficient ( )VTP ∂∂ / , i.e. internal pressure ( )TVUP ∂∂= /int  and heat 
capacity ( )VV TUc ∂∂= / . The dependence of internal pressure on external pressure, temperature and 
density for pure fluids, and on concentration for binary mixtures is considered on the basis of 
reference (NIST REFPROP) and crossover EOS. The asymptotic scaling behavior of the internal 
pressure near the critical point was studied using a scaling type EOS.  
Keywords: Coexistence curve; Critical point; Equation of state; Internal pressure; Internal energy; 
Isochoric heat capacity; Thermal pressure coefficient; Vapor pressure 
Note: Contribution of the National Institute of Standards and Technology, not subject to copyright in 
the USA. 
 
17.1 Background 
For liquids, the concept of cohesion is important because intermolecular interactions are intense in 
the liquid phase. The internal pressure provides an estimate of magnitude of cohesive forces. 
Cohesion (or intermolecular forces) creates a pressure within a liquid which typically falls in the 
range 102 to 103 MPa. As a liquid is compressed, internal pressure typically decreases and becomes 
large and has a negative sign. This means that repulsive forces in the liquid become predominant. 
Hildebrand1 discussed the importance of internal pressure, especially to aid an   understanding the 
phenomenon of solubility in a liquid. Internal pressure provides useful information to better 
understand the nature of intermolecular interactions and the structure of liquids. In the most basic 
sense, internal pressure is a part of the total pressure which is caused by intermolecular interactions, 
i.e., it quantifies the effect of intermolecular interactions on a measurement of the total external 
pressure. Internal pressure is a valuable thermodynamic quantity that provides direction and 
guidance to study intermolecular interactions through macroscopic properties. Haward2 and Haward 
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and Parker3 have shown how the concept of internal pressure, in terms of the modified van der 
Waals EOS for liquids, helps one to separate the attractive and repulsive parts of the external 
pressure. Suryanarayana and co-authors4-8 have discussed the importance of internal pressure for 
understanding both pure liquids and strong electrolyte solutions. Richards9 has pointed out the 
importance of internal pressure in understanding the properties of liquids. The thermal pressure 
coefficient ( )VTP ∂∂ /  and internal pressure ( )TVUP ∂∂= /int are directly related by the EOS for a liquid. 
In addition, for binary mixtures, internal pressure aids in the interpretation of structural changes as a 
function of composition. 
 
17.2 Thermodynamic and Statistical Mechanical Definition of the Internal 
Pressure  
The basic thermodynamic relationship between the internal pressure (energy-volume coefficient) 
and the external pressure and the temperature derivatives (thermal-pressure coefficient), ( )VTP ∂∂ / , is 
Equation (17.1) below:    
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where T is the temperature, V is the specific volume, P is the external pressure, U is the internal 
energy, intP is the internal pressure, TK  is the isothermal compressibility, and pα  is the isobaric 

coefficient of thermal expansion. Since intP  is directly related to the first temperature derivative of 
external pressure, ( )VTP ∂∂ / , any EOS that correctly represents the internal pressure will also provide 
accurate predictions of caloric properties such as entropy, enthalpy, internal energy, according to a 
well-known Maxwell relation and Clausius-Clapeyron equation, 
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Therefore, it follows from Equation (17.1), the internal pressure describes the sensitivity of internal 
energy ( )VTU ,  to a change in volume (isothermal expansion or compression) at isothermal 
conditions, i.e., isochoric influence of temperature on the intermolecular interaction energy. From a 
physical point of view, the internal pressure provides insight into dispersion, repulsion, and dipole–
dipole interactions as it varies rapidly with intermolecular separation; therefore, intP  reflects these 
interactions and can be obtained by using the thermodynamic equation of state. The internal pressure 
is result of attractive and repulsive forces. The decrease of internal pressure with temperature is 
associated with an increase in disorder which might result in a decrease of the attractive interactions 
if these are directional (H-bonds or dipole-dipole). Thusly, direct measurements of the internal 
pressure of fluids and fluid mixtures are known to give valuable insight regarding the nature of 
intermolecular interactions. Not only is internal pressure important to better understand the nature of 
molecular interactions but also for understanding   the theory of liquid and liquid mixtures.  
The statistical mechanical definition of the internal energy and internal pressure is:  
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where ( )rφ is the potential energy between a pair of molecules separated by a distance r and ( )rg  is 
the radial distribution function (probability of finding a molecule at a distance r from the reference 
molecule). The relations (17.3) and (17.4) can be used for modeling the intermolecular interaction 
and structural properties of fluids and fluid mixtures on the basis of measured internal pressure data 
by using molecular simulation techniques. It is obvious that for an ideal gas, the internal pressure is 
zero (no interaction between the molecules), while for real gases and liquids it deviates significantly 
from zero and is much greater than the external pressure. Changing the volume does work against 
the cohesive forces which cause changes in the internal energy.  
The cohesive energy of low molecular weight compounds can be expressed as:10 

 ( ) ( ) VPTHTU ∆−∆= Svapcoh .    (17.5) 
where SP  is the vapor pressure and vapH∆ is the enthalpy of vaporization. At low vapor pressure 
conditions the saturated vapor behaves as ideal gas, i.e., RTVP ≈∆S , thus we have  

( ) ( ) RTTHTU −∆= vapcoh . The internal pressure can be approximately calculated as:    
     VUP ∆≈ /cohint       (17.6) 
Although, intP and VU ∆/coh  have the same units, they represent different physical quantities. 
Actually, internal pressure intP represents only a part of the total value of cohesive energy 
density VU ∆/coh . Only at low pressures (around atmospheric pressure) does the 
approximation VUP ∆≈ /cohint  hold. When we evaporate liquid, most of the required energy is used to 
separate the molecules from each other from close packing to distances characteristic of when they 
are far apart. The cohesive energy density roughly corresponds to the amount of work required to 
change 1 cm3 of molecules from liquid to gas. In other words, we can say the internal pressure is 
approximated by the internal energy ( )TU∆  increment needed to remove a molecule from its 
nearest neighbors, divided by the volume change caused by the removed molecule, i.e. , ( )TUPS ∆=int  at 

V∆ =1 cm3. 
 
17.3 Internal Pressure and Intermolecular Forces 
The physical interpretation of the internal pressure is based on molecular interaction forces. The 
intermolecular potential ( )rφ  can be divided into two parts, a smoothly varying long-range 
attraction ( )rAφ  and steep short-range repulsion ( )rRφ  (see Figure 17.1, left): 

( )rφ = ( )rAφ + ( )rRφ .     
 (17.7) 

Since changes of volume related with average intermolecular distance changes (anharmonic effect), 
3rV ∝ , then by analogy with intermolecular potential function ( )rφ , the internal energy as a 

function of specific volume ( )VU  may be divided into two parts ( )VU = ( )VU A + ( )VUR . 
Therefore, differentiation of this relation at constant temperature with respect to volume gives:  

( ) ( ) ( ) RARAint /// PPVUVUVUP TTT +=∂∂+∂∂=∂∂= ,   (17.8) 
where AU and RU are the attraction and repulsion internal energies, respectively; AP = ( )TVU ∂∂ /A  > 0 
and RP = ( )TVU ∂∂ /R < 0 (Figure 17.1, right). The sign of internal pressure can be either positive or 
negative, depending on the temperature and density. Therefore, depending on temperature and 
density either AP  or RP  dominates. The volume dependence of the internal pressure can be 
presented as  

( ) ( ) ( )
mnint ,

V
Tb

V
TaTVP += .     (17.9) 
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Equation (17.9) splits the repulsive AP  and attractive RP  contributions of the total experimentally 
observed internal pressure. Thus, the volume dependence of the internal energy can be derived by 
integrating Equation (17.1): 

( ) ( ) ( ) m1n1

m1n1
, −−

−
+

−
=∆ VTbVTaTVU ,    (17.10) 

where ( ) ( ) ( )TUTVUTVU 0,, −=∆ . The specific volume dependence of internal pressure for pure water 
calculated from fundamental equation of state (IAPWS formulation11) are presented in Figure 17.2 
(right) for two selected isotherms: critical (647.096 K) and supercritical (800 K). The values of 
internal energy of pure water calculated from Equation (17.10) are presented in Figure 17.2 (left).  
Attractive forces are exerted between molecules at distances where the molecules do not touch each 
other: molecules located near the wall are thereby drawn inward. As a result the actual pressure to 
the wall is somewhat reduced as compared with the case of an ideal gas. The amount of such a 
reduction is estimated to be proportional to the product between the density of the molecules near 
the wall (

V
P 1

≈≈ ρ ) and that in the inner part. This effect leads us to replace 
2V

aPP +→ in the 

ideal gas equation of state. For van der Waals fluids at constant temperature the internal energy can 
be presented as: 

( ) ( )
V
aTUTVU −= 0, ,     (17.11) 

where ( )∫−= 12
2

121222 drrrua π . This van der Waals caloric Equation of state (EOS) (17.11) shows 
that we have to put in energy in order to move molecules farther apart. Therefore, this means that 
there is an attractive force between the molecules (see Figure 17.1). The configurational energy per 
particle in term of the radial pair distribution function is: 
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1 drrrru πρ is the integral over shells. The structure of simple liquids is 

largely determined by the molecular packing which is dominated by the repulsive interactions. The 
attractive interactions may thus be treated as a uniform background potential (van der Waals theory 
of mean-field approximation, ( )i

1
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liquid but does not affect its structure. If one assumes that the particles are hard spheres with a 
diameter σ then the excluded volume for a pair of particles is 3

exc 3
4 πσ=V  . In van der Waals 

approximation the total excluded volume is NbvNV =≈ excexc 2
, where constant 3

3
2 πσ=b . Using the 

statistical thermodynamic consideration, the van der Waals EOS can presented as (at a=0): 
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For a rigid sphere of diameter of 02r  (no attraction between molecules, a=0), i.e., ( ) +∞=> 02φ rr  and 
( ) 02φ 0 =< rr :    
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03

4 rπω = is the volume of the rigid sphere. The potential energy of one molecule due to 

surrounding molecules is: 
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where n is the number of molecules in 1 cm3 (constant); ( )rφ  is the potential energy of two 
molecules, drrd 24πτ = is the volume element, drrn 24π is the number of molecules in τd , and 
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dr τω φ  is the dimension of energy times volume. Thus, the total potential energy due to N 

molecules in volume V is:  
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Therefore, according to van der Waals caloric EOS Equation (17.11) 
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i.e., volume integral of the energy between two molecules divided by 2.  

The heat of vaporization is proportional to the potential energy 
2
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which is the cohesive energy density. This is the same as the additional (internal) pressure due to 
molecular interaction in the van der Waals equation of state.  
Ravi et al.12 derived the structure factor ( )QS  of liquid using internal pressure. They generalized an 
EOS for hard-sphere fluid to a real fluid (pseudo van der Waals equation) given as: 

( ) int
32 g
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where σ  is the hard - core diameter of fluids. Since intPP << ,  
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This equation provides a relation between the ( )σg of a hard-sphere fluid and the internal pressure 
for real liquids. The static structure factor is the Fourier transform of the pair distribution function 
as: 

( ) ( ) ( ) 121212 expg1 rdrkirkS 
−−= ∫ρ ,    (17.22) 

( )kS


 can be determined experimentally from neutron or X-ray scattering. The inverse transform 
gives the distribution function as: 
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Thus, the statistical structure factor ( )QS of a liquid can be presented through the internal pressure 
as: 
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where X=-3.1266, σQx = . As follows from Equation (17.24), ( )QS  increases with intP .  The 
Fourier transform ( )QC  of the Ornstein-Zernike direct correlation function and statistical structure 
factor ( )QS  is related as:  

( ) ( )[ ] 1C1 −−= QQS ρ .     (17.25) 
Figure 17.3 shows  ( )QS  versus Q for carbon dioxide, methane, and n-heptane at selected 
temperature and for various densities or for various values of internal pressure. As shown in Figure 
17.3, the peak height of ( )QS  increases with density (for positive values of internal pressure). Figure 
17.3 illustrates how the internal pressure effects the statistical structure factor ( )QS . Therefore, 
internal pressure can be used as a tool to measure structural changes in liquids.  
 
17.4 Methods for Internal Pressure Measurements 
All available methods of internal pressure measurements can be divided into two groups: the 
direct measurement of ( )VTP ∂∂ /  by using Equation (17.1) and an indirect determination of 
internal pressure through thermal expansion, pα , and isothermal compressibility, TK , by using 
Equation (17.2). Most reported internal pressure data were derived using the indirect method, based 
on pα and TK data [see above Equation (17.2)]. In most cases the derivative ( )VTP ∂∂ /  (thermal-
pressure coefficient) is calculated from an EOS, such as the Tait type, cubic, or multiparameter 
EOS. Direct measurements of the derivative ( )VTP ∂∂ /  are very rare. Usually, the values of TK  and 

Pα  are derived from speed of sound and PVT measurements. 
A popular direct method described by Dack13,14 and Barton15 evaluates the derivative ( )VTP ∂∂ /  from 
experimentally determined heat of vaporization measurements by using the equation,  

( ) )/(vapint MRTHP ρ−∆= ,    (17.26) 
where M is the molecular weight, ρ is the density, and vapH∆  is the enthalpy of vaporization. This is 
the most frequently used direct method. Dack13 used a constant volume apparatus to determine the 
internal pressure of several liquids at 25 °C. The uncertainty in intP determination in this method is 
about 2 %. Grant-Taylor and Macdonald16 determined thermal-pressure coefficient of an acetonitrile 
+ water mixture at temperatures between (298 and 328) K using 25 mL glass constant volume cell. 
The measured P-T isochores were fitted with the linear equation ( ) C/ +∂∂= TTPP V , where C is 
constant. The measured values of ( )VTP ∂∂ / were used to derive the energy-volume ( )TVU ∂∂ / (internal 
pressure) coefficient and other thermodynamic quantities. The uncertainty of the derived values of 
( )VTP ∂∂ /  is 2 %. Macdonald and Hyne17 reported thermal pressure and energy-volume coefficient 
measurements for dimethyl sulfoxide + water mixtures at temperatures between (13 and 55) °C and 
at atmospheric pressure by using the same technique. Westwater et al.18 and Smith and Hildebrand19 
directly measured ( )VTP ∂∂ /  using a constant volume thermometer apparatus. The coefficient 
( )VTP ∂∂ / is found directly as the slope of a graph of pressure against temperature for liquid in such 
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apparatus. McLure and Arriaga-Colina20 reported thermal-pressure coefficient measurements for 
ethanenitrile, propanenitrile, and butanenitrile from (297 to 398) K. Measurements were made with 
an apparatus consisting of a constant volume thermometer in which the pressure is controlled and 
measured for a series of temperatures at a series of different constant densities. McLure et al.21 also 
measured the thermal-pressure coefficient for five dimethyl siloxane oligomers in the temperature 
range from (298 to 413) K. Thermal pressure coefficients were measured in Pyrex cells 
(dilatometers). The uncertainty in thermal pressure coefficient measurements is about 1.0 %. 
Bianchi et al.22 determined the internal pressure for carbon tetrachloride, benzene, and cyclohexane 
by direct measurements of ( )VTP ∂∂ / . They studied temperature dependence of intP from (293 to 333) 
K. Direct measurements of thermal pressure coefficient ( )VTP ∂∂ /  of neopentane near the coexistence 
curve were reported by Few and Rigby.23 These data together with reported PVT data were used to 
determine the intP  along the coexistence curve from the triple point to the critical point.  
Calorimetry is another direct method to determine the internal pressure. The calorimetric method 
was developed in our lab as reported previously.24-27 To accurately calculate the values of the 
internal pressure, ( )TVU ∂∂ / , the pressure (P) and it temperature derivative, ( )VTP ∂∂ /  were 
simultaneously measured. This method was applied for pure fluids diethyl ether (DEE) and fluid 
mixtures (CO2+n-C10H22 and H2O+NH3). The measurements were performed using the same 
apparatus as employed for the isochoric heat capacity, ( VTxcV ), and (PVTx) measurements.24,25 This 
is a high-temperature and high-pressure nearly constant volume adiabatic piezo-calorimeter. In this 
work we proposed a new technique of internal pressure measurement in a calorimetric experiment 
by simultaneous measurements of the thermal pressure coefficient ( )VTP ∂∂ /  and heat 
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experimental details (physical basis and the theory of the method, the apparatus, procedures of the 
measurements, and the uncertainty assessment) of the simultaneous isochoric heat capacity ( Vc ) and 
thermal pressure coefficient, ( )VTP ∂∂ / , measurements have also been described in our earlier 
publications.24-27 The pressure (P) and temperature derivative of the pressure at constant volume, 
( )VTP ∂∂ / , were measured with calibrated extensometer. The measurements of pressure in the piezo-
calorimeter were performed at constant temperature before each isochoric heat capacity 
measurement. Then, after turning on the working heater, temperature changes (thermograms, τ−T , 
reading of the resistance platinum thermometer PRT, τ−TU ) and pressure changes (barograms, 

τ−P , readings of the transducer, τ−PU ) were synchronously recorded with a strip-chart recorder. 
Using the records of the thermo-barograms the changes in temperature T∆ and in pressures P∆ , and 
thus the derivative ( )VTP ∂∂ / = ( )VT

TP ∆∆
→∆

/lim
0

 was calculated as a function of elapsed time. Each 

measured τ−T  and τ−P  isochore was fitted with the linear equations τdcT +=  and τbaP += , 
where a,b,c, and d are fitting parameters. Therefore, the temperature derivative of pressure can be 
estimated as ( )VTP ∂∂ / = (b/a). 
The measurements were made by isochoric heating of the system at quasi-equilibrium conditions. 
The rate of the temperature change was less than 5×10-4 K s-1. The sample under study was 
vigorously mixed using a stirrer. The mixing was performed by rotating the calorimeter about the 
vertical axis with a frequency of 1 Hz. Therefore, at these conditions, the measured quantities 
( )VTQ ∆∆ /  and ( )VTP ∆∆ /  can be replaced by the partial derivatives ( )TVU ∂∂ /  and ( )VTP ∂∂ / , 
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respectively. Thus, measured values of derivatives ( )TVU ∂∂ /  (isochoric heat capacity) and ( )VTP ∂∂ /  
(internal pressure) together with PVT measurement in the same experiment were used to determine 
the values of internal pressure by using the relation (17.1) and isochoric heat capacity, ( )VV TUc ∂∂= / . 
Thus, in the same experiment we can simultaneously evaluate partial derivatives of the internal 
energy ( )VV TUc ∂∂= /  (caloric property) and ( )TVUP ∂∂= /int  (thermal property). The uncertainty is 
smaller for the direct measurements of temperature increments T∆ and pressure increments P∆ than 
for the measurements of their absolute values (T and P). Therefore, the uncertainty in 
( )VTP ∂∂ / measurements is within 0.12 to 1.5 % depending on the temperature increment ( T∆ changes 
within 0.02 to 0.10 K). The uncertainty in pressure increment measurements is about 0.2 %.  
In addition to the above direct methods, we may discuss indirect methods. The acoustic method is 
one indirect method to determine the internal pressure; it has been reviewed by Zorębski30. Some 
authors28,29 have used Equation (17.2) to derive values of thermal pressure coefficient from 
measurements of the isothermal compressibility TK  and isobaric coefficient of thermal expansion 

Pα . In most cases, values of TK and Pα  are calculated from density measurements.  Zorębski28 
studied the effect of external pressure on the internal pressure. Zorębski and Gepper-Rybczyńska31 
reported density, kinematic viscosity and speed of sound of binary (1-butanol+1,4-butanediol) 
mixtures over the temperature range from (298.15 to 318.15) K. The measured values together with 
literature isobaric heat capacity data were used to calculate internal pressure using Equation (17.2). 
The concentration and temperature dependences of the internal pressure, ( )xTP ,int , at atmospheric 
pressure for the mixture were studied. They found that the concentration dependence of ( )xTP ,int  at 
constant temperature is almost linear. The excess internal pressures were also calculated using the 
approach proposed by Marczak.32 Goharshadi and Nazari33 also studied temperature and pressure 
effects on the internal pressure of liquids using a statistical mechanical EOS. Kumar et al.34 used 
measured ultrasonic velocity and density data to study internal pressure of binary mixtures (acetone-
CCl4 and acetone-benzene). The measured data were used to study the molecular interactions in 
binary liquid mixtures. Vadamalar et al.35 also used acoustic and viscometric parameters to 
accurately calculate the internal pressure for binary mixtures of tert-butanol and isobutanol with 
methyl methacrylate. Sachdeva and Nanda36 employed measured ultrasonic wave velocity and 
density measurements of normal paraffins to calculate the internal pressure. The acoustic method 
was used by Dzida37 to calculate the internal pressure of cyclopentanol at pressures up to 100 MPa 
and at temperatures from (293 to 318) K. Verdier and Anderson38 used an indirect method to 
estimate the values of internal pressure of mixtures, using thermal expansivity (determined by 
microcalorimeter) and isothermal compressibility (determined by density measurements). Korolev39 
studied internal pressure of alcohols using the values of volumetric coefficient (thermal expansion 
and isothermal compressibility coefficients). Shukla et al.40 studied the internal-pressure and its 
correlation with solubility and pseudo-Gruneisen parameters for binary and multicomponent liquid 
mixtures over a wide range of concentration at 298 K using the measured values of viscosity, 
density, and ultrasonic velocity. 
Singh and Kumar41 measured density, speed of sound, and refractive index of the ionic liquids (IL) 
[C8mim][Cl], [C4mim][C1PSO3], and [C4mim][C8OSO3] over the temperature range from (283 to 
343) K. The measured density and speed of sound data were used to calculate the internal pressure 
from Equation (17.2) where thermal expansion coefficient and isothermal compressibility were 
calculated using the measured values of density and speed of sound. The derived values of internal 
pressure of IL are higher than those of water and organic liquids, but lower than ordinary molten 
salt. Allen et al.42 determined the internal pressure for some compounds using speed of sound 
data. The authors studied the relation between intP and VU ∆/coh . They found that the values of 
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proportionality coefficient n in intP = VU ∆/n coh  is close to unity for nonpolar liquids. For polar 
liquids the values of n vary within the range (0.32 to 1.64). Acevedo et al.43 found that the values of 
n for associated fluids are less than n<1, while for non-polar liquids n is approximately 1. For 
strongly associated liquids (especially for H-bonded liquids), n is much less than 1. 
Piekarski et al.44 reported density, heat capacity, and speed of sound data for binary acetonitrile+2-
methoxyethanol mixture at 298.15 K in the whole composition range. The measured data were used 
to calculate the internal pressure of the mixture using Equation (17.2). Almost linear dependence of 
the internal pressure as a function of concentration was observed. Kannappan et al.45 measured 
speed of sound, density and viscosity of ternary mixture of alcohols with DMF and cyclohexane at 
three temperatures (303, 308, and 313) K. The measured data were used to calculate excess internal 
pressure; for all measured mixtures the excess internal pressure are negative.  
 
17.5 One-Phase Isochoric Heat Capacity and Internal Pressure 
The internal pressure, ( )TVU ∂∂ / = intP , and isochoric heat capacity, ( ) VcTU V =∂∂ / , i.e., volume and 
temperature derivatives of the internal energy, describes the sensitivity of internal energy U to a 
change in specific volume V and temperature T at the isothermal and isochoric processes, 
respectively. Therefore, direct simultaneous measurements of ( )VTP ,int  and ( )VTcV ,  provides the 
caloric equation of state ( )VTU , , which could yield more accurate calculations of thermal properties 
than a traditional thermal P(V,T) equation of state. Thus, the total differential of internal energy is 
defined through intP  and Vc is given by, 

( ) dVPdTcdV
V
UdT

T
UVTdU V

TV
int, +=
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∂
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= ,   (17.27) 

where heat capacity Vc and internal pressure intP  can be directly measured in the same calorimetric 
experiment. The caloric EOS can be derived by integrating relation (17.27). In our previous studies 
(see, for example24-27), we have developed a method of simultaneous measurements of ( )TVU ∂∂ /  and 
( )VTU ∂∂ / , i.e., internal pressure and isochoric heat capacity. 
Temperature dependency of the internal pressure (temperature coefficient of internal pressure) can 
be calculated directly from Equation (17.1) as: 

VV T
PT

T
P









∂
∂

=







∂
∂

2

2
int ,     (17.28) 

or, since,     
V

T
PT

V
c

T

V








∂
∂

=







∂
∂

2

2

      (17.29) 

TV
c

T
P V

V








∂
∂

=







∂
∂ int =

V
T
PT 








∂
∂

2

2

.    (17.30) 

The measured internal pressure as a function of temperature provides information on the second 

temperature derivative (curvature) of the real external pressure properties of the liquids, 
V

T
P









∂
∂

2

2

. As 

shown by Equation (17.30), the first temperature derivative of the internal pressure is related to the 
second temperature derivative of external pressure or, equivalently, it’s related to the volume 
dependence of the isochoric heat capacity at a fixed temperature. As careful experimental studies 
have shown,46-53 isochoric heat capacity measurements exhibit isothermal extrema (both maxima 
and minima) in the near- and supercritical regions along near- and supercritical isotherms. This 
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behavior, depicted in Figures 17.4(a-b), is due to critical fluctuations and isothermal minima47,50 at 
high densities ( C2ρ≈ ), where ( )TV Vc ∂∂ / =0. Therefore, the locus of Vc  extrema is the same as the 
extrema of the internal pressure, ( ) =∂∂ VTP /int 0. This means that the locus of isothermal maximum 
and minimum of the Vc  (or inflection point of the P-T isochores, where ( ) 0/ 22 =∂∂ VTP ) coincide with 
the isochoric maximums and minimums of the internal pressure, ( ) 0/int =∂∂ VTP . The locus of 
isochoric heat capacity extrema is an important characteristic curve for a fluid, as it also is the locus 
along which P-T isochores have an inflection, ( ) 0/ 22 =∂∂ VTP . Experimental P-T isochores have very 
small curvature which is close to impossible to accurately extract from direct PVT measurements. 
The analysis of the extrema properties of isochoric heat capacity and internal pressure is one way to 
study the qualitative behavior of the thermodynamic surface of fluids, especially near the critical and 
supercritical conditions where PVT surface shows anomalous behavior. The locus of isothermal 
maximum and minimum of internal pressure and Vc for some selected fluids in 

T−ρ and TP − projection are shown in Figures 17.5 to 17.9. As one can see from Figures 17.5 to 
17.9, the isothermal Vc  maxima (therefore isochoric intP  maxima) curves in the supercritical region 
do fall exactly on the critical isochore. The isothermal Vc  and isochoric intP maxima curves in the 
supercritical region start at the critical point and runs along a density minimum ( ≈minρ 0.95 Cρ ) to 
higher temperatures. The isothermal Vc  and intP maxima curve is intersected twice by the critical 
isochore at CTT =  and =T 1.1 CT  (Figure 17.9). A detailed discussion of the behavior of loci of 
isochoric heat capacity maxima (or isothermal internal pressure maxima) along supercritical 
isotherms near the critical density was provided by Abdulagatov et al.46 and Magee and 
Kobayashi.48 

Loci of Vc  and intP extrema are very sensitive to both the mathematical structure of an equation of 
state and the molecular structure of the fluid; therefore, they can be used to test the quality of an 
EOS and molecular theories of thermodynamic property behavior. Isochoric heat capacity and 

intP extrema data can enable a correlator to more correctly choose the structure of the EOS. 
 
17.6 Two-Phase Isochoric Heat Capacity and Internal Pressure 
Two-phase isochoric heat capacity is also directly related to the internal pressure along the 
saturation curve. For liquid-gas coexistence, the Yang and Yang76 relation for two-phase isochoric 
heat capacity is given by: 

 2
S

2

2

2

2 d
d

d
d

T
PVT

T
TcV +−=

µ ,  (17.31)  

where the second temperature derivative of chemical potential 
2

2

d
d
T
µ  and vapor pressure 

2
S

2

d
d

T
P  are 

functions of temperature only. Thus, by integrating Equation (17.31) we can derive a Yang and 
Yang caloric equation of state for two-phase system as: 

∫∫ +−=∆
T

T

T

T

dT
dT

PdTVdT
dT
dTU

00
2
S

2

2

2

2
µ ,           (17.32) 

where ( ) ( )02 TUTUU −=∆ , and the second temperature derivatives of chemical potential 2

2

d
d
T
µ

 and 

vapor pressure 2
S

2

d
d

T
P can be directly calculated from two-phase isochoric heat capacity measurements 
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as a function of temperature or using measured values of saturated properties ( ST , 'V , '
2Vc , "V , "

2Vc ) 
as:69,71,77,78  

 ( )VVT
VcVc

T
P "

V
'

V

′−′′
−

=
'

2
"

2
2
S

2

d
d    and     ( )VVT

cVcV
T
μ VV

′′−′
′−′′

=
"

2
'

2
2

2

d
d . (17.33) 

Internal pressure from the Yang and Yang two-phase caloric equation state (32) is:  

S
S

2
S

2
2

int P
dT
dPTdT

dT
PdT

V
UP

T
S −==








∂
∆∂

= ∫ .            (17.34)   

Thus, starting with the caloric equation of state Equation (17.32), based on Yang-Yang two-phase 
isochoric heat capacity Equation (17.31), we derived the equation for internal pressure along the 

vapor-pressure curve Equation (17.34) by using the slope of the vapor-pressure curve 
dT
dPS . Relation 

(17.34) is the definition of the internal pressure through the vapor-pressure equation by analogy to 
the equation of state Equation (17.1) for the one-phase region. Therefore, as follows from Equation 
(17.34), the internal pressure at saturation can be directly calculated from two-phase isochoric heat 
capacity measurements at saturation by using:  

∫ −
−

=
T

T

VV dT
VV
ccP

0
'"

'
2

"
22sat

int .        (17.35) 

It follows from Equation (17.34) that the first temperature derivative of the internal pressure at 
saturation diverges at the critical point as:  

α−∝= t
dT

PdT
dT

dP
2
S

22sat
int      (17.36) 

or can be calculated from two-phase heat capacity measurements ( "
2Vc , '

2Vc ) as: 

=
dT

dP 2sat
int

( )VV
cc '

VV

′−′′
− 2

"
2 .                 (17.37) 

Equation (17.37) shows that the slope of the saturated internal pressure equation 2sat
intP -T is 

proportional to the two-phase isochoric heat capacity difference ( '
2

"
2 VV cc − ) between the vapor ( "

2Vc ) 
and the liquid ( '

2Vc ) heat capacities at saturation. Equations (17.36) and (17.37) are the analogy of 

Equations (17.28) and (17.30) for 
VT

P








∂
∂ int in the one-phase region. Figures 17.10 to 17.12 depict 

comparisons of the values of 
dT

dPSint derived from the direct isochoric heat capacity measurements 

and calculated from the vapor-pressure data for selected compounds that have been carefully studied 
experimentally.  
As follows from well-known thermodynamic relations (Abdulagatov et al.,82,83,87 Polikhronidi et 
al.88), the one-phase partial temperature derivative of pressure at saturation is: 

V
V

c
dV
dT

TdT
dP

T
P

∆+=







∂
∂ 1S

sat

,     (17.38) 

or 

V
V

c
dV
dT

dT
dPT

T
PT ∆+=








∂
∂ S

sat

,    (17.39) 
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where
sat

VT
P









∂
∂  is the one-phase partial temperature derivative of total pressure at the saturation 

curve (or initial slope of the one-phase P-T curves (isochores) at saturation curve; 
dT
dPS  is the slope 

of the two-phase saturation curve (vapor-pressure curve); 
dV
dT  is the temperature derivative of the 

specific volume at saturation curve; and 12 VVV ccc −=∆  is the isochoric heat capacity jump at 
saturation. At each phase transition point (temperature) we have three thermal pressure coefficients: 

(1) slope of the one-phase liquid P-T isochore 
'

VT
P









∂
∂ ; (2) slope of the one-phase vapor P-T 

isochore 
"

VT
P









∂
∂ ; and (3) the slope of the vapor-pressure 

dT
dPS , which correspond to the three 

internal pressures, namely:  

S

'
'

int P
T
PTP

V

−







∂
∂

= ,      (17.40) 

S

"
"

int P
T
PTP

V

−







∂
∂

= ,      (17.41) 

S
S2sat

int P
dT
dPTP −






= ,      (17.42) 

It is apparent that 
'

VT
P









∂
∂ > 

dT
dPS >

"

V








∂
∂
T
P ( '

intP > "
intP > 2sat

intP ) , while at the critical point all of the 

slopes become equal, 
'

cVT
P









∂
∂ = 

c

S 







dT
dP =

"

cVT
P









∂
∂ , i.e., '

intP = "
intP = 2sat

intP . As follows from Equation 

(17.39), the internal pressure in the one-phase region at saturation is: 

Vc
dV
dTPP ∆+= sat2

int
sat1

int ,     (17.43) 

where sat2
intP can be calculated from Vc measurements by using Equation (17.35). As one can see from 

Equation (17.43), the internal pressure at saturation in the one-phase region sat1
intP defined from the 

two-phase internal pressure sat2
intP and isochoric heat capacity jump Vc∆  (or the difference). Other 

words, the internal pressure jump (or difference) at the phase transition:   
satPint∆ = 1

int
satP - 2

int
satP = Vc

dV
dT

∆ ,    (17.44) 

and completely defined from the isochoric heat capacity jump VC∆ and the slope of the coexistence 

curve 
dV
dT . The values of 1sat

intP and difference sat
intP∆ = 1sat

intP - sat2
intP , calculated from measured 

isochoric heat capacity data for some selected liquids and gases, are presented in Figures 17.13 to 
17.15, respectively. According to the scaling theory of critical phenomena, the coexistence curve 
slope, 

dT
d

dV
dT ρρ /2−=  αβ −−∝ 1t 0→  , goes to zero faster than ∞→∝∆ −αtcV  diverges at the critical 

point, then 1sat
intP - sat2

intP = Vc
dV
dT

∆
αβ −−∝ 1t =0 at the critical point (see Figure 17.15).  
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17.7 Internal Pressure as a Function of External Pressure, Temperature or 
Density from a Reference Equation of State 
It follows from Equation (17.1) that the internal pressure can be readily calculated from a thermal 
equation of state. Therefore, the temperature, external pressure, and density dependences of the 
internal pressure of fluids can be calculated from a reference EOS.81 In the present work we have 
calculated the internal pressure for some selected pure fluids and binary mixtures as a function of 
density, temperature, external pressure, and concentration (in the TP −int , ρ−intP , PP −int , and xP −int ) 
using reference equations of state (NIST, REFPROP81). 
Internal pressure is very sensitive to external pressure. Zorębski28,30 studied the effect of external 
pressure on the internal pressure behavior for alkanols. He observed that in general intP  increases 
with increasing external pressure, passing through a weak maximum. As illustrated by Figure 17.16, 
the internal pressure initially (at moderate pressures) increases with external pressure, then passes 
through a weak maximum and then decreases slightly at higher pressures. 
As was mentioned previously, the temperature dependency of the internal pressure is very important 
because of its close relation with isochoric heat capacity (see Equations 17.30, 17.35, 17.37, 17.43, 
and 17.44). The temperature dependence of the internal pressure at one atmosphere pressure is 
illustrated in Figure 17.17 for three n-alkanes, namely pentane, heptane and decane; the data were 
calculated with a reference EOS (REFPROP81). Also shown are experimental data for internal 
pressure at one atmospheric pressure as reported by Sachdev and Nanda,36 which are in good 
agreement. The isochoric temperature behavior of the internal pressure of carbon dioxide and water 
[water was calculated from the IAPWS fundamental EOS11] are shown in Figure 17.18. Sharp 
changes of intP near the phase transition temperature for near-critical isochores are related to the 

near-critical anomaly of the isochoric heat capacity, because the slope of 
VT

P








∂
∂ int is directly related to 

the isochoric heat capacity behavior Vc (see Equation 17.30). The isochoric temperature maximums 

of the internal pressure, where 0int =







∂
∂

VT
P , are exactly the same as the isochoric heat capacity 

maximum along the supercritical isotherms. The isochoric temperature maximum of intP ,  

0int =







∂
∂

=







∂
∂

T

V

V V
c

T
P , which agrees with the Vc maximum as shown in Figures 17.8 and 17.9 as 

discussed earlier.  
 
17.8 Locus of Zero Internal Pressure 
As was mentioned above, depending on temperature and density, the sign of total internal pressure 
can be either positive or negative (see, for example, Equation 17.1). It is apparent that if 

P
T
PT

V

<







∂
∂ , then as a result, 0int <P . Therefore, depending on temperature and density, either 

AP  or RP   can dominate, i.e., contributions of the AP  and RP  are quite different in different 
temperature and density ranges. Thus, there exist certain temperatures and densities where both AP  
and RP  are equal but have opposite signs, AP = - RP , i.e., total internal pressure is zero. In other 
words, the slopes of the internal energies ( )VUA  and ( )VUR  are equal with opposite signs, 

( ) ( )TT VUVU ∂∂−=∂∂ // RA . The evaluation of zero internal pressure, where P
T
PT

V

=







∂
∂ , takes place at 
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high pressures (in the high-density range). To illustrate this, we calculated the locus of zero internal 
pressure in the various projections ( ρ−T , TP − , and ρ−P ) for propane as shown in Figure 17.19. 
Figure 17.19 depicts a ρ−T projection that shows the locus of zero internal pressure is very nearly 
a straight line, a finding that could aid in predictions of this locus. Conversely, a TP −  projection at 
high pressures (above 500 MPa) shows that the temperatures on the locus of zero internal pressure 
increase sharply at high pressures. In the ρ−P projection, the pressure where intP = 0 decreases 
sharply at high densities. 
 
17.9 Simon’s Melting Curve Equation Parameters and Internal Pressure 
Simon96-100 proposed a semi-empirical equation for the melting curve, 

 0
0

1 P
T
TaP

c

+











−








= ,      (17.45) 

since aP <<0 , 

 











−








= 1

0

c

T
TaP ,      (17.46) 

where 0T , 0P  are the normal melting temperature and pressure, respectively; m
m

int P
dT
dPTPac −






=≈  

or cPa /int≈  is the internal pressure; c is the constant (Simon’s parameter). Simon’s equation 
describes the melting curve of a wide range of substances (gases, liquids, metals) to a good degree 
of approximation (see, for example, Babb101). The melting Equation (17.46) was proposed by 
Simon,96-100 after careful study of experimental melting curve data ( mP -T) for various substances. 
Most authors have successfully represented their own measured SLE mP -T data with Equation 
(17.46) (see, for example102,103). Simon’s melting curve parameter c can be determined from 
experimental straight line ( )aP +mln - Tln . Simon’s Equation (17.46) is very useful to represent 
experimental melting curve data ( mP -T) over wide temperature and pressure ranges. This equation 
fits all of the available experimental melting curve data for various fluids within reasonable 
deviations. The values of constant c varied for most studied fluids within 1.3 to 4.5, namely, (1.3 to 
1.6) for noble gases (monatomic gases, Ar, Kr, Xe, Ne, etc.); from (1.6 to 3.0) for diatomic gases 
(O2, N2, H2, etc.). There have been a number of attempts to arrive at a theoretical basis104-107 of 
Simon’s equation.  
A generalized Simon’s equation for the melting curve is given by,  

  
c

T
T

Pa
Pa









=

+
+

00

m ,     (17.47)  

where ( )00

0

PaV
Qc

+∆
=  and a  are Simon’s parameters; 0P , 0T , 0V∆ , and 0Q  are the triple-point 

properties (pressure, temperature, molar volume changes, and melting heat at the triple point), 

respectively. The parameter 
TV

Ua 







∂
∂

= is the internal pressure along the melting curve. Since 0Pa >> , 

therefore, 
0

0

V
Qac
∆

= . Thus, Simon’s melting equation can be rewritten as follows, 
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0

0

0

−







=

∆ aV
Q

m

T
T

a
P .     (17.48) 

This equation contains just one fitting parameter a and the other Simon’s parameter c  can be 
calculates using the triple point characteristics, 0T , 0V∆ , 0Q . For example, the value of Simon’s 
parameter for benzene calculated using triple-point characteristics is c=2.49. 
In order to estimate the values of Simon’s equation parameters from triple point data, Zhokhovskii 
and Bogdanov108 used the following approach, 

 
( )00

0

PbV
Hc

+∆
∆

=  and 
0

0
int V

HPac
∆
∆

== ,    (17.49) 

where 0H∆ =126.41 kJ kg-1 and 0V∆ =0.1318 cm3 g-1 (for benzene) are the enthalpy and specific 
volume changes of melting at the triple point, respectively. The value of parameter c calculated from 
this relation Equation (17.49) for benzene is c=2.313 Thus, the internal pressure a can be estimated 

using 0H∆ , 0V∆ , and Simon’s parameter c as intP = 
0

0

Vc
Ha

∆
∆

= . The same approach was used by 

Skripov and Faizullin109 to estimate the Simons’s parameter c by using, 

0int

0

VP
Hс
∆

∆
=

α ,      (17.50) 

where intP  =379.33 MPa28 ( intP =378.61 MPa from REFPROP81 from (379 to 381) MPa by 

Marcus110) is the internal pressure of benzene at room temperature (293.15 K), 1int ≈=
a

Pα . Thus, 

the value of  Simon’s parameter calculated from Equation (17.50) by using reference melting point 
properties, 0H∆  and 0V∆ , is c =(2.504 to 2.515 depending on the value of intP ), which is in good 
agreement (AAD=0.2 %) with the values derived from direct experimental melting curve data and 
other reported data. Therefore, the values of Simon’s parameters can be predicted using melting 
molar volume and enthalpy changes at the triple point and internal pressure at room temperature 
calculated from the equation of state. Figure 17.20 shows the comparison between the reported 
experimental melting point data for toluene, benzene, and cyclohexane and the values calculated 
from Simon’s Equation (17.46) with parameters predicted using internal pressure. This has 
illustrated how by applying the concept of internal pressure, we obtain a powerful method to fit a 
reliable model for the melting curve. 
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Figure 17.1. Schematic representation of potential ( )rφ  as a function of separation distance r. 
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Figure 17.2 Internal energy (left) and internal pressure (right) of water as a function of specific 
volume calculated from fundamental equation of state of water (IAPWS11 formulation) along the 
selected supercritical isotherms: (1 - 647.1) K (critical); (2 - 800) K. 
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Figure 17.3. Statistical structure factor ( )QS  versus Q for n-C7H16, CO2, and CH4 for various 
thermodynamic states. n-C7H16: dashed line for internal pressure of intP =110.73 MPa, 500=ρ  kg m-

3, and T=500 K; solid line for internal pressure of intP =27.61 MPa, 300=ρ  kg m-3, and T=550 K. 
CO2: dashed line for positive internal pressure ( intP =222.21 MPa, 1452=ρ  kg m-3, and T=310 K), 
solid line for negative internal pressure ( intP = - 45.68 MPa, 470=ρ  kg m-3, and T=310 K), and 
dashed-dotted line is for zero internal pressure. CH4: dashed line for positive internal pressure 
( intP =14.44 MPa, 400=ρ kg m-3, and T=600 K), solid line for negative internal pressure ( intP =-61.3 
MPa, 450=ρ kg m-3, and T=600 K). 
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Figure 17.4a. Measured and calculated isochoric heat capacities cV for argon (left) and carbon 
dioxide (right) as a function of density ρ in the supercritical region. Left: Symbols are reported by 
Anisimov et al..54,55 Solid curves are calculated from Tegeler et al.56 Right: Symbols are reported by 
Abdulagatov et al.57,58 and Amirkhanov et al.59-61; Solid curves are calculated from a crossover 
model.62 
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Figure 17.4b. Measured and calculated isochoric heat capacities cV for heavy water as a function of 
density ρ in the critical and supercritical regions. Symbols are reported by Polikhronidi et al.;66 solid 
curves are calculated from a crossover model;67 dashed curve is the isothermal VC  maximum loci. 
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Figure 17.5. Second temperature derivative of external pressure (or first temperature derivative of 
the internal pressure, ( )VTP ∂∂ /int ) as a function of density ρ along near- and supercritical isotherms 
for pure water calculated from a crossover equation of state.65 Symbols are experimental data from 
isochoric heat capacity measurements.63,64,67  
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Figure 17.6. Calculated from crossover equation of state62 values of ( )VTP ∂∂ /int for carbon dioxide 
as a function of density ρ along selected supercritical isotherms. Symbols are experimental data.57-61 
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Figure 17.7. Temperature dependence of the derivative ( )VTP ∂∂ /int for pure water along near-critical 
and supercritical isobars calculated from a crossover model.65 
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Figure 17.8. Isothermal Vc maximum and minimum loci (or isochoric temperature maximum and 
minimum of the internal pressure) for water and carbon dioxide calculated from a crossover 
equation of state.62,65 Dashed curves are isothermal maximum (CA) and minimum (AB) of Vc and 
isochoric maximum and minimum of the internal pressure, where ( ) =∂∂ VTP /int ( )TV Vc ∂∂ / =0. 
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Figure 17.9a. Isothermal Vc maximum for light and heavy water in T- ρ projection calculated from 
a scaling-type EOS (CREOS63,65). The solid curve is liquid-gas coexistence curve. Dashed curves 
are isothermal Vc maximum and isochoric maximum of internal pressure where 
( ) =∂∂ VTP /int ( )TV Vc ∂∂ / =0. 
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Figure 17.9b. Isothermal maxima and minima loci of Vc for n-pentane calculated from a crossover 
model75 in ρ−T and TP − planes. CB-isothermal Vc maxima loci; BD-isothermal Vc minima loci. 
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Figure 17.10. Temperature derivatives of the internal pressure along the vapor-pressure saturation 
curve derived from calorimetric measurements66,77,79,80 [Equation (17.38)] together with the values 
calculated from vapor pressure equation (REFPROP81) for light and heavy water. 
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Figure 17.11. Temperature derivatives of the internal pressure along the vapor-pressure saturation 
curve derived from calorimetric measurements57-61 [Equation (17.38)] together with the values 
calculated from vapor pressure equation (REFPROP81) for carbon dioxide. 
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Figure 17.12. Temperature derivatives of the internal pressure along the vapor-pressure saturation 
curve derived from calorimetric measurements82-86 (Equation 17.38) together with the values 
calculated from vapor pressure equation (REFPROP81) for n-alkanes. 
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Figure 17.13. Internal pressure for propane at one-phase saturation curve derived from isochoric 
heat capacity measurements together with the values calculated (Solid curves) from a reference 
equation of state (REFPROP81). The Dashed curve is the internal pressure along the two-phase 
vapor-pressure curve. CP-the critical point.  Symbols depict calorimetric measurements [Equations. 
(17.35 and 17. 43)].  
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Figure 17.14a. Internal pressure difference of light water along the coexistence curve. Solid line is 
calculated from a reference EOS (REFPROP81) for liquid-phase. Dashed line is the vapor-phase. 
The symbols are calculated from isochoric heat capacity measurements [Equation (17. 44)]. 
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Figure 17.14b. Internal pressure difference of heavy water along the coexistence curve. Solid line 
is calculated from a reference EOS (REFPROP81) for liquid-phase. Dashed line is the vapor-phase. 
The symbols are calculated from isochoric heat capacity measurements [Equation (17.44)]. 
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Figure 17.15. Measured sat

intP∆  versus Vc∆ plot for diethyl ether (DEE) and CO2. Symbols are 
derived from experimental isochoric heat capacity data.57-61,88 Solid lines are calculated from an 
EOS.81 Dashed line is extrapolated values. 
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Figure 17.16. Internal pressure intP for various molecular fluids as a function of external pressure 

extP along their critical isotherms calculated from a fundamental equation of state (REFPROP81): 
butane92; toluene94; carbon dioxide95; methanol93; light water–IAPWS11; methane89; ethane90; 
propane91; n-pentane.92 
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Figure 17.17. Internal pressure intP  for selected n-alkanes (n-pentane, n-heptane and n-decane) as 
a function of temperature at atmospheric pressure calculated (solid lines) from a reference EOS by 
using REFPROP81 together with the values derived from the speed of sound and density 
measurements (symbols) by Sachdev and Nanda.36 
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Figure 17.18. Internal pressure intP for carbon dioxide and light water as a function of temperature 
T along the various liquid and vapor isochores near the phase transition curve calculated from the 
crossover equation of state.62,65 Dashed-dotted curves are the isochoric temperature maxima loci of 
the internal pressure, ( ) 0/int =∂∂ VTP  from the calorimetric measurements.57-61,63,64,74 
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Figure 17.19. Locus of internal pressure zero points [ 0int =−







∂
∂

= P
T
PTP

V

] for propane in the (a) ρ -

T, (b) P-T, and (c) ρ -P planes calculated from EOS by Lemmon et al.91  
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Figure 17.20. Melting curve data for toluene, benzene and cyclohexane: Solid curve, predicted 
from Simon’s Equation (17.31); Symbols, published experimental data. 


