The low-temperature structural behavior of sodium 1-carba-closo-decaborate: NaCB$_9$H$_{10}$

Hui Wu a, Wan Si Tang a,b, Wei Zhou a, Jacob D. Tarver a,c, Vitalie Stavila d, Craig M. Brown a, Terrence J. Udovic a,*

a NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899-6102, United States
b Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115, United States
c National Renewable Energy Laboratory, Golden, CO 80401, United States
d Energy Nanomaterials, Sandia National Laboratories, Livermore, CA 94551, United States

A R T I C L E I N F O

Article history:
Received 22 June 2016
Received in revised form 16 August 2016
Accepted 18 August 2016
Available online 21 August 2016

Keywords:
Density functional theory
Diffraction
Ionic conductors
Monocarba-closo-decaborates
Sodium borohydrides
Vibrational spectroscopy

A B S T R A C T

Two ordered phases of the novel solid superionic conductor sodium 1-carba-closo-decaborate (NaCB$_9$H$_{10}$) were identified via synchrotron x-ray powder diffraction in combination with first-principles calculations and neutron vibrational spectroscopy. A monoclinic packing of the large ellipsoidal CB$_9$H$_{10}^-$ anions prevails at the lowest temperatures, but a first-order transformation to a slightly modified orthorhombic packing is largely complete by 240 K. The CB$_9$H$_{10}^-$ anion orientational alignments and Na$^+$ cation interstitial sitings in both phases are arranged so as to minimize the cation proximities to the uniquely more positive C-bonded H atoms of the anions. These results provide valuable structural information pertinent to understanding the relatively low-temperature, entropy-driven, order-disorder phase transition for this compound.

1. Introduction

Complex-hydride-based compounds such as LiBH$_4$ and Na$_3$BH$_4$NH$_2$ have been shown over the past decade to be capable of fast-ion conduction, suggesting that these types of materials may have potential as solid-state electrolytes [1,2]. In the last few years, novel salts comprised of Li$^+$ and Na$^+$ cations and large polyhedral boron-hydrogen-based anions, such as B$_{12}$H$_{12}^{2-}$, B$_{10}$H$_{10}^{2-}$, CB$_{11}$H$_{12}^{2-}$, and CB$_9$H$_{10}^{10-}$, have emerged as particularly promising superionic electrolytes for next-generation, all-solid-state power devices [3–7]. Indeed, the most recently reported versions (with monovalent 1-carba-closo-decaborate CB$_9$H$_{10}^{10-}$ anions), LiCB$_9$H$_{10}$ and NaCB$_9$H$_{10}$, in their disordered hexagonal phases exhibit liquid-like polycrystalline ionic conductivities of 0.03 S cm$^{-1}$ at 354 K and 297 K, respectively [6].

Although the structural details for the disordered phases of these two compounds are known [6], no definitive information has been reported, as of yet, concerning their low-temperature ordered structures. The related Li$_2$B$_{10}$H$_{10}$ and Na$_2$B$_{10}$H$_{10}$ compounds with geometrically similar but divally charged decahydro-closo-decaborate B$_{10}$H$_{10}^{2-}$ anions are known to display ordered structures with respective hexagonal [8] and monoclinic symmetries [9,10]. Yet, one cannot assume that these same structural symmetries will apply to the ordered LiCB$_9$H$_{10}$ and NaCB$_9$H$_{10}$ phases, since one must take into account the structural consequences of the marked differences in anion valencies and charge polarizations between CB$_9$H$_{10}^-$ and B$_{10}$H$_{10}^{2-}$. For example, although Li$_2$B$_{12}$H$_{12}$ and Na$_2$B$_{12}$H$_{12}$ with divalent dodecahydro-closo-dodecaborate B$_{12}$H$_{12}^{2-}$ anions exhibit low-temperature ordered structures with respective cubic [11] and monoclinic symmetries [12], the related LiCB$_{11}$H$_{12}$ and NaCB$_{11}$H$_{12}$ compounds with monovalent monocarba-closo-decaborate CB$_{11}$H$_{12}^-$ anions both exhibit different ordered structures with orthorhombic symmetries [5].

In this paper, we focus on the structural behavior of (1-carba-) NaCB$_9$H$_{10}$. We have identified two low-temperature ordered structures for NaCB$_9$H$_{10}$ based on Rietveld model analysis of synchrotron x-ray powder diffraction (XRPD) data combined with first-principles calculations and corroborated by neutron vibrational spectroscopy (NVS).

2. Experimental Details

Sodium 1-carba-closo-decaborate (NaCB$_9$H$_{10}$) was obtained from Katchem [13]. (N.B., as there are two possible monocarba-
isomers, 1-carba- refers to carbon occupying an apical position; 2-carba- to carbon occupying one of the eight equatorial positions of the bicapped-square-antiprismatic $\text{CB}_9\text{H}_{10}^-$ anion. Throughout this paper, it should be assumed that we are investigating the salt of the 1-carba- isomer form.) This highly hygroscopic salt was annealed under vacuum at 473 K for about 16 h to ensure full dehydration. It contained a minor $\text{CB}_9\text{H}_{12}^2-$ anion molar impurity of 3% and was investigated without further purification.

XRDP patterns of NaCB_9H_{10} in a sealed quartz capillary were measured between 100 K and 298 K at the Advanced Photon Source on Beamline 17-BM-B at Argonne National Laboratory using a Si(111) monochromator ($\lambda=0.72768\text{Å}$). Differential scanning calorimetry measurements between 150 K and 350 K were made with a Netsch (STA 449 F1 Jupiter) TGA-DSC under He flow with Al sample pans. NVS measurements were performed at the National Institute of Standards and Technology Center for Neutron Research on the Filter-Analyzer Neutron Spectrometer (FANS) [14] using the Cu(220) monochromator with pre- and post-collimations of 20° of arc, yielding a full-width-at-half-maximum (fwhm) energy resolution of about 3% of the neutron energy transfer.

To assist the structural refinements, first-principles calculations were performed within the plane-wave implementation of the generalized gradient approximation to Density Functional Theory (DFT) using a Vanderbilt-type ultrasoft potential with Perdew-Burke-Ernzerhof exchange correlation [15]. A cutoff energy of 544 eV and a $2 \times 2 \times 2$ k-point mesh (generated using the Monkhorst-Pack scheme) were used and found to be enough for the total energy to converge within 0.01 meV/atom. For comparison with the NVS measurements, the phonon density of states (PDOS) was calculated for the DFT-optimized 0 K NaCB_9H_{10} structure using the supercell method (1 cell size) with finite displacements [16,17] and were appropriately weighted to take into account the H, Na, B, and C total neutron scattering cross sections. In addition, the PDOS of the isolated 1-CB9H_{10}^- anion was calculated for comparison using a 30 × 30 × 30 supercell and considering its C_{4v} molecular symmetry. Lastly, DFT calculations of the isolated 2-CB9H_{10}^- anion using a similar supercell construction were performed to estimate its relative stability.

All structural depictions were made using the VESTA (Visualization for Electronic and Structural Analysis) software [18]. For all figures, standard uncertainties are commensurate with the observed scatter in the data, if not explicitly designated by vertical error bars.

3. Results and discussion

The NaCB_9H_{10} capillary sample was cooled down to 100 K and held there for 1 h before collecting the initial XRPD pattern. Subsequently, the sample was heated to 298 K and a second XRPD pattern was collected. The resultant 100 K and 298 K patterns in Figs. 1 and 2 were indexed to respective monoclinic and orthorhombic structures. Assessment of the extinction symbols associated with the space groups of these two phases indicated the hombic structures. Analysis of the extinction symbols as associated with the space groups of these two phases indicated the hombic structures. Assessment of the extinction symbols as associated with the space groups of these two phases indicated the hombic structures. Assessment of the extinction symbols as associated with the space groups of these two phases indicated the hombic structures.

Fig. 1. Experimental (circles), fitted (line), and difference (line below observed and calculated patterns) synchrotron XRDP profiles for NaCB_9H_{10} at 100 K ($\lambda=0.72768\text{Å}$). Vertical bars indicate the calculated positions of the Bragg peaks. $R_{wp}=0.0352$, $R_p=0.0256$, $\chi^2=3.21$. Insets show some characteristic peak splitting in this monoclinic structure in comparison with the orthorhombic phase shown in Fig. 2. Individual Bragg reflections are noted.

Fig. 2. Experimental (circles), fitted (line), and difference (line below observed and calculated patterns) XRDP profiles for NaCB_9H_{10} at 298 K ($\lambda=0.72768\text{Å}$). Vertical bars indicate the calculated positions of the Bragg peaks. $R_{wp}=0.0402$, $R_p=0.0274$, $\chi^2=3.79$. Insets show some characteristic peak splitting for this pattern as in that for the 100 K monoclinic structure but without the peak splitting evident in the latter. Individual Bragg reflections are noted.

Calculations together with the lattice parameters were refined, yielding the agreement factors of $R_{wp}=0.0352$, $R_p=0.0256$, and $\chi^2=3.21$ for the 100 K pattern and $R_{wp}=0.0402$, $R_p=0.0274$, and $\chi^2=3.79$ for the 298 K pattern. Refined lattice parameters were $a=14.3713$ Å, $b=7.7224(2)$ Å, $c=19.6297(7)$ Å, and $\beta=132.608(1)^\circ$ for the 100 K orthorhombic phase, and $a=9.9830(3)$ Å, $b=10.6367(3)$ Å, and $c=7.8266(2)$ Å for the 298 K orthorhombic phase. At 298 K, a small fraction (∼3 wt %) of normally higher-temperature disordered hexagonal phase [7] was also explicitly determined from refinement. Similarly, the 100 K pattern contains a number of rather small impurity-related peaks (such as at 7.06°, 7.40°, and 7.58°), which we believe also reflect some disordered hexagonal phase (stabilized by incorporated CB11H_{12} impurity anions) and...
probably a small fraction of hydrate phases that are possible due to the extremely hygroscopic nature of this salt compound. Tables S1 and S2 summarizing the crystallographic details and the CIF files are included in the Supplementary Information (SI).

It should be noted that the monoclinic and orthorhombic structural differences are rather subtle, as reflected by the strong similarities in the XRPD patterns. The insets in Figs. 1 and 2 exemplify the main differences, i.e., that some of the Bragg peaks associated with the higher-symmetry orthorhombic structure are actually narrowly split in the lower-symmetry monoclinic structure.

Fig. 3 compares the crystal structures of both phases, depicting these subtle differences. The red and blue arrows mark the alignments of the anion long axes in the direction of the C atoms, in effect, illustrating two sets of anion cantings (both red and blue) for the monoclinic structure, which merge into one set of cantings (red) for the orthorhombic structure. Moreover, as seen in Figs. 4 and 5, this translates into two slightly different Na\(^+\) cation tetrahedral environments with respect to the anions for the monoclinic phase merging into only one Na\(^+\) cation tetrahedral environment for the orthorhombic phase. In both structures, each Na\(^+\) cation can be described as coordinated to two nearest-neighbor H atoms from each of the four surrounding anions, with Na-H distances ranging from 2.28 Å to 3.07 Å (averaging 2.54 Å) for the monoclinic structure and from 2.25 Å to 3.30 Å (averaging 2.57 Å) for the orthorhombic structure. Moreover, distances from Na\(^+\) to the anion geometric centers vary from 3.98 Å to 4.41 Å for the monoclinic structure (averaging 4.20 Å) and from 4.10 Å to 4.42 Å (averaging 4.24 Å) for the orthorhombic structure. We note that all distances are estimated based on the DFT-optimized structures. Better accuracy would require more rigorous structure refinement using neutron powder diffraction data of deuterated compounds, where relaxation of the anion rigid-body constraint is justified.

As in the case for ordered orthorhombic NaCB\(_{11}\)H\(_{12}\) [5], and as shown in Figs. 4 and 5, the Na\(^+\) cations favor positions that avoid close proximity to the more highly electropositive C-bonded H atoms [6], so none of these H atoms are nearest neighbors of the Na\(^+\) cations.

There are noteworthy similarities between the structural details of NaCB\(_{10}\)H\(_{10}\) and Na\(_2\)B\(_{10}\)H\(_{10}\) the latter which is comprised of geometrically similar building blocks. Although Na\(_2\)B\(_{10}\)H\(_{10}\) possesses divalent as opposed to monovalent anions and twice as many cations per formula unit as NaCB\(_{10}\)H\(_{10}\), it also displays monoclinic \(P2_1/c\) symmetry at low temperatures [10]. Moreover, each Na\(^+\) cation is also most closely coordinated to two H atoms from each of four surrounding anions, with similar ranges of Na-H
and Na-anion distances as observed for NaCB₉H₁₀. Nonetheless, there is no indication of an order-order transition for Na₂B₁₀H₁₀, as for NaCB₉H₁₀. Such a transition may be a consequence of the different distributions of charge on the H atoms of the CB₉H₁₀⁻ and B₁₀H₁₀²⁻ anions, although further insight probably requires theoretical analysis.

In order to determine where the monoclinic-orthorhombic transition actually occurs, we performed additional XRPD measurements between 163 K and 292 K and followed the progression of the Bragg peak located between 8.35° and 8.47° 2θ corresponding to the (20-4) monoclinic-phase and (200) orthorhombic-phase reflections (see Fig. 6). Analysis of this Bragg peak vs. temperature indicated that it was comprised of the reflections from both phases within the 210 K to 240 K transition region, signaling a first-order type transition. Fig. 6a clearly shows the dogleg progression in the peak position, signaling the small step change in the related d-spacing associated with these reflections. The sequence of intensity vs. 2θ plots with temperature for this Bragg peak is shown in Fig. S1 of the SI. Deconvolution of the two components allowed us to plot the intensity fraction of each component Bragg reflection vs. temperature in Fig. 6b. We note that this material is found to be thermodynamically "sluggish"
upon cooling, i.e., a period of annealing time is required after cooling down below the phase-transition region to transform the higher-temperature orthorhombic phase completely to the monoclinic phase. A relatively short annealing time of around 15 min at 100 K before collecting the data in Fig. 6 is why there was still about 12% of the orthorhombic phase present at 163 K prior to warming up the sample. No further attempt was made to measure the extent of this sluggishness or to determine any possible changes in the width of the transition region due to changes in the temperature ramp rate.

Fig. 7 shows the DSC heating scan from 150 K to 350 K after cooling the NaCB9H10 sample down to near 100 K and holding there for about 15 min. Despite using a large sample (14 mg) and ramp rate (20 K min\(^{-1}\)), there is no obvious endothermic feature in the expected monoclinic-orthorhombic transition region (210 K to 240 K), although the expected double-peak structure at higher temperatures signaling the order-disorder transition [6] is clearly evident. This suggests that the enthalpy change between the monoclinic and orthorhombic phases is extremely small.

The neutron vibrational spectrum for NaCB9H10 at 4 K is shown in Fig. 8 and compared with the simulated PDOSs of both the DFT-optimized \(P_2_1/c\) structure and the isolated \(CB_{9}H_{10}^-\) anion. In general, the PDOSs for \(closo\)-borate compounds, especially for the higher-energy modes, are known to be sensitive to the structural details [5,8,10,21]. This is also inferred by the observed differences in the calculated PDOSs between 75 meV and 125 meV for monoclinic NaCB9H10 and the isolated \(CB_{9}H_{10}^-\) anion. The overall good agreement between the experimental and calculated PDOSs for NaCB9H10 further corroborates the low-temperature monoclinic structure determined by XRPD. Further information about the characters and energies of the different phonon modes contributing to the simulated PDOSs can be found in the SI.

The temperature-dependent structural details of this NaCB9H10 compound are interesting both fundamentally and technologically speaking. It would be interesting to compare further the structural behavior of this sodium salt with that of the 2-carba- isomer. Although thermodynamically less favored [22], (our isolated-anion DFT calculations at 0 K indicate it is more unstable than the 1-carba- isomer by \(-812\) meV per anion) this version, if it could be synthesized in pure form, might have a relatively lower order-disorder transition temperature due to its relatively lower anion symmetry. The exact temperature will depend on the relative enthalpies of its ordered and disordered phases compared to those associated with its isomeric cousin.

4. Conclusion

Two ordered structures of NaCB9H10 were determined by X-ray powder diffraction in combination with first-principles computations and corroborated by neutron vibrational spectroscopy: a lower-temperature monoclinic phase that fully transforms to a structurally similar orthorhombic phase by around 240 K. These results provide a more complete picture of the NaCB9H10 temperature-dependent structural behavior. Such information will aid in developing a better theoretical understanding of the dramatic transformation to superionic conduction that occurs in this and the other various related \(closo\)-borate-type salt compounds.

Acknowledgments

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US DOE’s National Nuclear Security Administration under contract DE-AC04-94AL85000. J. D. T. gratefully acknowledges research support from the US DOE Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract no. DE-AC36-08GO28308. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US DOE Office of Science by Argonne National Laboratory, was supported by the US DOE under Contract no. DE-AC02-06CH11357.
Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.jssc.2016.08.024.

References

[13] The mention of all commercial suppliers in this paper is for clarity and does not imply the recommendation or endorsement of these suppliers by NIST.