
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Testing IoT Systems 
 

Jeff Voas  
Computer Secuirty Division 

NIST 
Gaithersburg, USA 
jeff.voas@nist.gov 

Rick Kuhn 
Computer Secuirty Division 

NIST 
Gaithersburg, USA 

rkuhn@nist.gov 

Phil Laplante 
Great Valley School of Graduate and Professional Studies 

Penn State 
Malvern, USA 

plaplante@psu.edu 

   

Abstract— This article presents challenges and solutions to 
testing systems based on the underlying products and services 
commonly referred to as the Internet of ‘things’ (IoT). 
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I. INTRODUCTION 
Can you test the Internet? No - it is unbounded. Can you 

test the Internet of Things (IoT)?  Same answer. 

You could test sub-nets of the IoT and other bounded 
components of it. The Internet and its ‘things’ are only bound-
able for mere instants in time, therefore testing is problematic. 
Testing systems-at-rest is easier than testing systems 
reorganizing themselves in real-time and at massive scale. The 
Internet at time zero is different than the Internet at time zero + 
x, where x is a millisecond.  

We argue that testing the Internet and the IoT is not 
feasible. We further argue that we can use the concept of a 
Network of ‘Things’ (NoT) [1] to create testing schemes that 
are practical. This definition allows for measurement, and 
allows for one NoT to be compared to another.  In addition, 
this definition allows for estimating the testability1 of a specific 
NoT, which when said slightly differently, asks the question: is 
this NoT testable, meaning is testing even worth the effort you 
will put into it?  

The general concept behind the term Network of ‘Things’ 
involves communication, computation, sensing, and actuation. 
These are simple ideas that have existed in distributed 
computing for years. But what makes IoT and NoT different 
from previous large-scale distributed computing systems is 
scale, heterogeneity, data integrity, sensing, and possible non-

                                                           
1Testability here refers to the likelihood that defects can be discovered during 
testing [3]; testability is clearly a function of what type of testing is occurring 
and how test cases are selected. 

ownership of the assets in a purposed and proprietary NoT. By 
‘non-ownership’ of assets, we include leased cloud services, 
leased data from vendor sensors, leased wireless 
communications, leased hardware and 3rd party software, and 
so on. This paper uses the concept of a NoT as the entity under 
test. 

II. UNDERSTANDING A NETWORK OF ‘THINGS’ 
To address such concerns, the National Institute of 

Standards (NIST) Special Publication 800-183 [1] offered a 
scientific foundation to describe the underpinnings of a 
Network of ‘things.’  It breaks these four activities into core 
distributed system components termed “primitives.” The 
document then defines a simple class of “elements” that allow 
for the foreshadowing of the trustworthiness of systems built 
from IoT-based components, services, and commercial 
products. (NIST has not released a specific definition for IoT at 
this time). 

The primitives proposed in [1] are: 1) Sensor, 2) 
Aggregator, 3) Communication channel, 4) eUtility, and 5) 
Decision trigger. Here are their descriptions from the 
document: 

1. A sensor is an electronic utility that digitally measures 
physical properties (e.g. temperature, acceleration, weight, 
sound, etc.) and outputs raw data.  

2. An aggregator is a software implementation based on 
mathematical function(s) that transforms/consolidates groups 
of raw data into intermediate data.  

3. A communication channel is a medium by which the 
data is transmitted (e.g., physical via USB, wireless, wired, 
verbal, etc.) between sensor, aggregator, communication 
channel, decision trigger, or eUtility.  



4. An eUtility (external utility) is a software or hardware 
product or service, providing computing power that 
aggregators will likely network of ‘things’ have.  

5. A decision trigger creates the final result(s) needed to 
satisfy the purpose, specification, and requirements of a 
specific network of ‘things.’ 

III. TESTABILITY OF A NETWORK OF ‘THINGS’ 
A specific, purposed network of ‘things’ is likely to have a 

dynamic and rapidly changing dataflow and workflow. It will 
likely have numerous inputs from a variety of sources.  This 
will, in turn, create a massive internal state space of data states 
created throughout the computational workflow of a NoT, and 
a vast number of potential interactions among components.  

One way to think about the testing problems from this 
state-space explosion is by trying to answer the question: Do 
NoTs of large scale have an impact on testability? To answer 
that, we will first look at the Domain Range Ratio (DRR) 
[2][3] metric, first proposed in the 1990s by Voas and Miller. 

We contend that the DRR metric addresses the inherent 
problem of testing networks that employ IoT-based 
components and services, e.g. clouds. The DRR is simply the 
cardinality of the set of all possible test cases for that system 
divided by the cardinality of the set of all possible outputs. A 
fundamental issue is that a particular network of ‘things’ is 
likely to process large amounts of data for the purpose of 
making rather limited output decisions, such as ‘actuate’ or ‘do 
not actuate.’ This situation makes it difficult to observe internal 
failures due to corrupted internal data during testing time.  

For example, Fig. 1 represents a simplistic NoT purposed 
to buy or not buy a certain stock. (Figure 1 is not intended to 
represent real NoTs, but rather to highlight the primitives in 
[1].)  This NoT has 15 sensors clustered into 3 groups, 5 
aggregators, and 3 eUtilities (2 clouds, and 1 laptop). Note that 
Sensor 5 and Sensor 6 are blue, illustrating that they are 
sending out data of suspicious integrity. This NoT has 22 
communication channels that carry the data that eventually gets 
aggregated and then fed into the NoT’s decision trigger.  The 
decision trigger is binary –a value of ‘1’ means buy the stock, a 
value of ‘0’ means do not. Stated simply, the combinatorics of 
faults and internal failures that can go wrong with 15 sensors, 5 
aggregators, 3 eUtilities, and 22 communications channels is 
quite large. 

Now assume that each binary value of the decision trigger 
variable is obtained approximately 50% of the time. Because of 
this minimal output space size, a fair coin toss also has a 50-50 
chance of providing a correct output for any given input. Hence 
building a system that generates a random ‘1’ or ‘0’ result via a 
coin flip is equivalent to and cheaper than building this 
complex and expensive NoT.  Worse, consider the scenario 
where ‘1’ and ‘0’ are not evenly distributed, e.g., the 
specification states that for 1 million unique test cases only 10 
should produce a ‘1’ and the other 999,990 should produce a 
‘0’.  One could build a NoT to compute this function or one 
could write a piece of code that just says: for all inputs output 
(‘0’). This incorrect code is still 99.999 reliable, and it would 
be nearly impossible to discover the defect in the code with a 

handful of random tests sampled from the 1 million. In short, 
random testing here has a minimal probability of detecting this 
fault because each test case has a very low probability of 
revealing the defective logic due to the tiny output space, and 
its probability density function for each output. Note also that 
this argument likely applies to aggregators – if an aggregator is 
fed much sensor data and reduces that data to a single output 
value, in particular a binary value, this problem is the same.   

 

Fig. 1.  A Simple NoT With a Feed-Back Loop 

Furthermore, in this system, corrupted data (regardless of 
the reason for the corruption) can travel through any of the 
communication channels – it can originate from eUtilities, 
aggregators, sensors, and even communication channels. Given 
the many data-related events that happen before a decision 
trigger is executed, how does a system-level test of a NoT give 
assurance and confidence to the prior event’s trustworthiness?   
This is the same question that resulted in the concept of 
software unit testing. We apply the same principles here to 
NoTs. We will discuss this situation further using assertions. 

IV. THE ORACLE PROBLEM FOR NETWORKS ‘THINGS’ 
The traditional software testing problem of having access to 

a usable oracle can be paraphrased as follows: if you do not 
know if an output is correct after a test is performed, what is 
the point of testing? Further, this problem can be subdivided 
into two problems: (1) a defective oracle, and (2) not having an 
oracle at all.  

For NoTs, the oracle problem is exacerbated by this: it is 
unlikely that the intended functionality of a general-purpose, 
short-lived NoT will remain static long enough for an oracle to 
be built. (Hopefully for most security-critical and safety-critical 
properties of NoTs, this concern can be avoided.) This problem 
exists because NoTs offer more extensibility and malleability 
of the intended functionality than in previous distributed 
systems. For example, the sensors, eUtilities, and 
communication channels can all be quickly swapped out and 
replacements swapped in; and the algorithms and the software 
(in the aggregators, communication channels, and decision 
trigger) can be continuously tweaked when the purpose of a 
NoT changes.  



The ability to “modify-on-the-fly” a NoT is one of the 
advantages of this advancement in distributed computing and 
control but is problematic for testing using oracles. Hence, 
testing efficiency is critical. Using the Template 

V. ASSERTIONS 
Three conditions are necessary for software to fail: (1) a 

fault is executed, (2) a defective internal data state is created, 
and (3) the defective state propagates causing incorrect output 
(failure). By testing internal data states using assertions, we 
observe whether (2) occurs if the assertion is correctly coded 
and placed. 

Assertions are internal self-tests that probe either: (1) the 
output of a component or function, or (2) data states that exist 
anytime during computation. Assertions increase testability by 
increasing the size of the range [4][5]. The goal is not to test 
the functionality of eUtilities, aggregators, sensors, and 
communication channels, but rather to test the data they 
produce.  

To do this, the notion of wrappers connected to interfaces 
(between primitives) is possibly the easiest implementation 
approach for building assertions. For example, in the interface 
between a sensor and an aggregator, insert a wrapper on the 
data leaving the sensor before it rides on the communication 
channel, or insert a wrapper before it leaves the communication 
channel and enters the aggregator, or both (if there is concern 
something might go wrong during transmission). Tests at the 
interface points offer two advantages for NoTs: (1) this testing 
can be done even if most of the primitive ‘things’ are black-
box entities, and (2) no access to any software or algorithms is 
required. 

VI. COMBINATORIAL TESTING 
Among the unique challenges of testing NoTs, one of the 

most significant is the potential for an enormous number of 
interactions. Instead of two, or a few, components sending and 
receiving data, NoTs may have 10s or 100s of nodes 
interacting. While internet e-commerce and information 
systems include thousands of nodes, interactions are typically 
client-server. NoTs, in contrast, may require cooperation 
among a much larger set of nodes to meet their design 
objectives.  The difficulty of testing these networks has led to 
recognition of the need for combinatorial test methods 
[12][13], which are designed specifically for testing complex 
interactions.  

Software faults may involve one or multiple factors 
interacting.  For example, a device failure that occurs only 
when pressure < 10 AND volume > 300 AND velocity = 5 
(where pressure, volume and velocity are integer variables) is a 
3-way interaction fault.  Interaction faults remain dormant until 
the particular combination of values is encountered in practice.  
Combinatorial testing (CT) is an increasingly popular method 
for reducing the cost of finding such complex faults. The 
empirical basis for CT’s effectiveness was shown in a series of 
NIST studies [6][7][8][9] that demonstrated the following: 
most faults involve a single parameter or two parameters; and 
progressively fewer interaction faults involve 3, 4, 5, and 6 

parameters (a fault involving more than six parameters has not 
been seen) [8]. This empirical finding, referred to as the 
interaction rule, has important implications for software 
testing, because it means that compressing t-way combinations 
into a small number of tests can provide more efficient fault 
detection than conventional methods.  

Matrices known as covering arrays [10] are used to 
produce tests covering t-way combinations of values, for some 
specified level of t ≥ 2; e.g., if t = 3, then the covering array 
contains all 3-way combinations of variable values.  The key 
property of a covering array is that it includes all t-way 
combinations of values at least once, and algorithms developed 
in the past 10-15 years can efficiently generate test arrays for 
high-order interactions, typically up to t=6. (In the past, nearly 
all combinatorial testing had been limited to pair-wise, or t=2.) 
For example, suppose we want to test a module for a lighted 
text display, which might be controlled using an Arduino board 
or similar small system. The function allows 10 effect settings 
for enhancing the text, each of which has two possible settings:  
flashing (on, off), size (large, small), three light colors that can 
each be on or off to produce different effects, a "glow" effect 
(on, off), etc.  Testing all combinations would require 210, or 
1024 tests.  The 10 effects are labeled A through J. If we 
represent “on” as 1, and “off” as 0, then the array in Fig. 2 
provides a compact test set that covers all 3-way combinations.    

 
 

 

 

 

 

 

 

 

 

Fig. 2.  3-way covering array 

Fig. 2 shows a 3-way covering array for 10 variables with 
two values each, where each row represents a test and each 
column specifies values for a variable setting.  The interesting 
property of this array is that any three columns contain all eight 
possible values for three binary variables.  For example, taking 
columns D, E, and G, we can see that all eight possible 3-way 
combinations (000, 001, 010, 011, 100, 101, 110, 111) occur 
somewhere in the three columns together.  In fact, any 
combination of three columns chosen in any order will also 
contain all eight possible values.  Collectively, therefore, this 
set of tests will exercise all 3-way combinations of input values 
in only 13 tests, as compared with 1,024 for exhaustive 
coverage.  Similar arrays can be generated to cover up to all 6-
way combinations.  The larger the problem, the greater the 
improvement over exhaustive testing, because for a given 
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interaction strength, the number of rows (tests) in a t-way 
covering array increases with log n, for n parameters, while the 
exhaustive test set size of course increases exponentially.  
(Note that covering arrays are not restricted to binary variables; 
these are used here to simplify the presentation.) For example, 
with 34 on-off switches, there are approximately 17 billion 
possible combinations, but all 3-way settings can be covered 
with only 33 tests, and all 4-way combinations with 85 tests.  

An extensive body of empirical work shows that these 
methods are highly cost effective.  In practical applications, 
combinatorial testing has been shown to provide significant 
advantages, with reduced cost and greater fault detection 
[10][11]. Fortunately, these methods can solve some of the 
unique problems of testing NoTs. 

VII. APPLYING COMBINATORIAL TESTING TO THE EXAMPLE 
How can we adequately test NoTs, given the constraints 

identified by the DRR for these systems?  Consider again the 
example for which 10 inputs from an input domain of 10 
million produce a ‘1’, with the rest producing ‘0’. For any 
computed result, there must be some specification that defines 
the conditions under which each possible result is produced. In 
general, these conditions will be specified by some logical 
predicate, especially for NoTs, where decision predicates 
receive inputs from various sensors and generated values 
elsewhere in the system. One such example is shown in figure 
1. Here we have the decision trigger  “if g(x,y) > 100 then buy 
Z shares of stock S”. In this example, an expression of two 
values, x and y, is used in the decision; we assume different 
combinations of x and y values not shown in the figure may 
generate different results. For decision triggers in the network, 
many additional expressions with different combinations of 
values may be used in decision triggers.  It is easy to produce 
positive tests for this example:  simply specify values to make 
the expression g(x,y) > 100 true. But what if we want to ensure 
that “buy Z shares of stock S” action is not triggered under 
some other conditions? If the DRR tells us that there is only a 
small portion of the input space for which this action is correct, 
how will it be possible to test the huge portion of inputs for 
which the result should not be to buy Z shares of stock S?    

One approach to achieving this assurance is to use the 
pseudo exhaustive test method described in [14], where we 
have a small set of possible outputs. This method produces two 
test arrays for each possible output, or class of outputs. One 
array includes tests for each condition where a particular result 
should be produced. For example, suppose a decision trigger is 
“x+y > 200 && x >100 || x < 100 && y > 500 || y  > 1000  
then R1”, where R1 is a Boolean output corresponding to some 
action that the system performs. Only three positive tests are 
needed, one for each conjunct within the expression. A more 
difficult challenge is showing that the code implementing the 
expression does not generate the result for some combination 
of variables inappropriately. This expression is in disjunctive 
normal form, where each term contains at most two variables, 
so it is in 2-DNF.  By generating a 2-way covering array of 
values for x and y, but excluding the positive cases, we have a 
test set with all possible 2-way combinations of values where 
R1 should not be produced. Thus we address the oracle 
problem by verifying that results for tests in each array are 

equivalent, rather than specifying a set of inputs and 
determining the output specifically for each one. In the first 
array, we should see R1 as the output for each test, and the 
second array we should not see R1. Because we verify positive 
and negative results for each output Ri, (i=1,2,3,…), we have a 
sound and complete set of tests without the conventional test 
oracle problem of computing outputs for each set of inputs.  

To see the power of this method, consider the example 
introduced previously, with roughly one million possible 
inputs, where 10 produce an output of '1' and all others produce 
an output of '0'.  This could occur with a system of 20 Boolean 
parameters, for example, resulting in 220 = 1,048, 576 possible 
inputs. From the specification, we derive the conditions under 
which '1' is produced, in the form of if-then-else rules or a 
decision tree.  Transforming these rules into k-DNF form, we 
produce a set of conjunctions that result in the '1' output. 
Suppose that the 10 conditions that result in an output of '1' 
contain at most three Boolean literals (e.g., x && ~a  && y).  It 
is easy to produce tests to verify this output for each of the 10 
conditions, but how can we ensure that none of the other 1,048, 
566 inputs will produce a '1' instead of the correct value of '0'? 
Surprisingly, we can verify this for all 3-way combinations of 
inputs with only 28 tests, by generating a covering array of all 
3-way combinations, excluding the 10 conditions that should 
produce '1' [14]. The test arrays will also catch a large 
proportion of combinations with more than three Booleans, or 
we can generate arrays up to 6-way with less than 400 tests. 
This method is not restricted to Boolean inputs, but may be 
applied to complex conditionals as well, and as a result is 
especially well suited to testing complex conditionals in 
decision triggers.  

Given a formal specification of the conditions for each 
decision trigger, the test arrays described above can be 
produced mechanically, but many tests will still be needed. 
Thus, even though a conventional test oracle is not needed 
(because each of the two arrays should produce the same 
result), the large number of tests may be prohibitive in some 
applications. The DRR calculation can be used to identify the 
most difficult to test interface points, helping to establish 
priorities and allocate testing resources. 

VIII. SUMMARY 
We believe that because of the necessary role of decision 

triggers, specifically purposed NoTs have testability concerns. 
We explained how the testing oracle problem applies to NoTs 
as well as other distributed systems, and that the problem may 
be worse compared with other complex IT systems due to 
“leased assets.” And finally, we described applications of 
combinatorial testing and the domain range ratio, and how 
these methods provide a practical approach to IoT testing 
complexities.  

We hope this review of challenges and potential solutions 
will offer new insights into how to more efficiently test NoTs. 
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