
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Testing IoT Systems

Jeff Voas
Computer Secuirty Division

NIST
Gaithersburg, USA
jeff.voas@nist.gov

Rick Kuhn
Computer Secuirty Division

NIST
Gaithersburg, USA

rkuhn@nist.gov

Phil Laplante
Great Valley School of Graduate and Professional Studies

Penn State
Malvern, USA

plaplante@psu.edu

Abstract— This article presents challenges and solutions to
testing systems based on the underlying products and services
commonly referred to as the Internet of ‘things’ (IoT).

Keywords—Internet of Things, testing, Domain Range Ratio

I. INTRODUCTION
Can you test the Internet? No - it is unbounded. Can you

test the Internet of Things (IoT)? Same answer.

You could test sub-nets of the IoT and other bounded
components of it. The Internet and its ‘things’ are only bound-
able for mere instants in time, therefore testing is problematic.
Testing systems-at-rest is easier than testing systems
reorganizing themselves in real-time and at massive scale. The
Internet at time zero is different than the Internet at time zero +
x, where x is a millisecond.

We argue that testing the Internet and the IoT is not
feasible. We further argue that we can use the concept of a
Network of ‘Things’ (NoT) [1] to create testing schemes that
are practical. This definition allows for measurement, and
allows for one NoT to be compared to another. In addition,
this definition allows for estimating the testability1 of a specific
NoT, which when said slightly differently, asks the question: is
this NoT testable, meaning is testing even worth the effort you
will put into it?

The general concept behind the term Network of ‘Things’
involves communication, computation, sensing, and actuation.
These are simple ideas that have existed in distributed
computing for years. But what makes IoT and NoT different
from previous large-scale distributed computing systems is
scale, heterogeneity, data integrity, sensing, and possible non-

1Testability here refers to the likelihood that defects can be discovered during
testing [3]; testability is clearly a function of what type of testing is occurring
and how test cases are selected.

ownership of the assets in a purposed and proprietary NoT. By
‘non-ownership’ of assets, we include leased cloud services,
leased data from vendor sensors, leased wireless
communications, leased hardware and 3rd party software, and
so on. This paper uses the concept of a NoT as the entity under
test.

II. UNDERSTANDING A NETWORK OF ‘THINGS’
To address such concerns, the National Institute of

Standards (NIST) Special Publication 800-183 [1] offered a
scientific foundation to describe the underpinnings of a
Network of ‘things.’ It breaks these four activities into core
distributed system components termed “primitives.” The
document then defines a simple class of “elements” that allow
for the foreshadowing of the trustworthiness of systems built
from IoT-based components, services, and commercial
products. (NIST has not released a specific definition for IoT at
this time).

The primitives proposed in [1] are: 1) Sensor, 2)
Aggregator, 3) Communication channel, 4) eUtility, and 5)
Decision trigger. Here are their descriptions from the
document:

1. A sensor is an electronic utility that digitally measures
physical properties (e.g. temperature, acceleration, weight,
sound, etc.) and outputs raw data.

2. An aggregator is a software implementation based on
mathematical function(s) that transforms/consolidates groups
of raw data into intermediate data.

3. A communication channel is a medium by which the
data is transmitted (e.g., physical via USB, wireless, wired,
verbal, etc.) between sensor, aggregator, communication
channel, decision trigger, or eUtility.

4. An eUtility (external utility) is a software or hardware
product or service, providing computing power that
aggregators will likely network of ‘things’ have.

5. A decision trigger creates the final result(s) needed to
satisfy the purpose, specification, and requirements of a
specific network of ‘things.’

III. TESTABILITY OF A NETWORK OF ‘THINGS’
A specific, purposed network of ‘things’ is likely to have a

dynamic and rapidly changing dataflow and workflow. It will
likely have numerous inputs from a variety of sources. This
will, in turn, create a massive internal state space of data states
created throughout the computational workflow of a NoT, and
a vast number of potential interactions among components.

One way to think about the testing problems from this
state-space explosion is by trying to answer the question: Do
NoTs of large scale have an impact on testability? To answer
that, we will first look at the Domain Range Ratio (DRR)
[2][3] metric, first proposed in the 1990s by Voas and Miller.

We contend that the DRR metric addresses the inherent
problem of testing networks that employ IoT-based
components and services, e.g. clouds. The DRR is simply the
cardinality of the set of all possible test cases for that system
divided by the cardinality of the set of all possible outputs. A
fundamental issue is that a particular network of ‘things’ is
likely to process large amounts of data for the purpose of
making rather limited output decisions, such as ‘actuate’ or ‘do
not actuate.’ This situation makes it difficult to observe internal
failures due to corrupted internal data during testing time.

For example, Fig. 1 represents a simplistic NoT purposed
to buy or not buy a certain stock. (Figure 1 is not intended to
represent real NoTs, but rather to highlight the primitives in
[1].) This NoT has 15 sensors clustered into 3 groups, 5
aggregators, and 3 eUtilities (2 clouds, and 1 laptop). Note that
Sensor 5 and Sensor 6 are blue, illustrating that they are
sending out data of suspicious integrity. This NoT has 22
communication channels that carry the data that eventually gets
aggregated and then fed into the NoT’s decision trigger. The
decision trigger is binary –a value of ‘1’ means buy the stock, a
value of ‘0’ means do not. Stated simply, the combinatorics of
faults and internal failures that can go wrong with 15 sensors, 5
aggregators, 3 eUtilities, and 22 communications channels is
quite large.

Now assume that each binary value of the decision trigger
variable is obtained approximately 50% of the time. Because of
this minimal output space size, a fair coin toss also has a 50-50
chance of providing a correct output for any given input. Hence
building a system that generates a random ‘1’ or ‘0’ result via a
coin flip is equivalent to and cheaper than building this
complex and expensive NoT. Worse, consider the scenario
where ‘1’ and ‘0’ are not evenly distributed, e.g., the
specification states that for 1 million unique test cases only 10
should produce a ‘1’ and the other 999,990 should produce a
‘0’. One could build a NoT to compute this function or one
could write a piece of code that just says: for all inputs output
(‘0’). This incorrect code is still 99.999 reliable, and it would
be nearly impossible to discover the defect in the code with a

handful of random tests sampled from the 1 million. In short,
random testing here has a minimal probability of detecting this
fault because each test case has a very low probability of
revealing the defective logic due to the tiny output space, and
its probability density function for each output. Note also that
this argument likely applies to aggregators – if an aggregator is
fed much sensor data and reduces that data to a single output
value, in particular a binary value, this problem is the same.

Fig. 1. A Simple NoT With a Feed-Back Loop

Furthermore, in this system, corrupted data (regardless of
the reason for the corruption) can travel through any of the
communication channels – it can originate from eUtilities,
aggregators, sensors, and even communication channels. Given
the many data-related events that happen before a decision
trigger is executed, how does a system-level test of a NoT give
assurance and confidence to the prior event’s trustworthiness?
This is the same question that resulted in the concept of
software unit testing. We apply the same principles here to
NoTs. We will discuss this situation further using assertions.

IV. THE ORACLE PROBLEM FOR NETWORKS ‘THINGS’
The traditional software testing problem of having access to

a usable oracle can be paraphrased as follows: if you do not
know if an output is correct after a test is performed, what is
the point of testing? Further, this problem can be subdivided
into two problems: (1) a defective oracle, and (2) not having an
oracle at all.

For NoTs, the oracle problem is exacerbated by this: it is
unlikely that the intended functionality of a general-purpose,
short-lived NoT will remain static long enough for an oracle to
be built. (Hopefully for most security-critical and safety-critical
properties of NoTs, this concern can be avoided.) This problem
exists because NoTs offer more extensibility and malleability
of the intended functionality than in previous distributed
systems. For example, the sensors, eUtilities, and
communication channels can all be quickly swapped out and
replacements swapped in; and the algorithms and the software
(in the aggregators, communication channels, and decision
trigger) can be continuously tweaked when the purpose of a
NoT changes.

The ability to “modify-on-the-fly” a NoT is one of the
advantages of this advancement in distributed computing and
control but is problematic for testing using oracles. Hence,
testing efficiency is critical. Using the Template

V. ASSERTIONS
Three conditions are necessary for software to fail: (1) a

fault is executed, (2) a defective internal data state is created,
and (3) the defective state propagates causing incorrect output
(failure). By testing internal data states using assertions, we
observe whether (2) occurs if the assertion is correctly coded
and placed.

Assertions are internal self-tests that probe either: (1) the
output of a component or function, or (2) data states that exist
anytime during computation. Assertions increase testability by
increasing the size of the range [4][5]. The goal is not to test
the functionality of eUtilities, aggregators, sensors, and
communication channels, but rather to test the data they
produce.

To do this, the notion of wrappers connected to interfaces
(between primitives) is possibly the easiest implementation
approach for building assertions. For example, in the interface
between a sensor and an aggregator, insert a wrapper on the
data leaving the sensor before it rides on the communication
channel, or insert a wrapper before it leaves the communication
channel and enters the aggregator, or both (if there is concern
something might go wrong during transmission). Tests at the
interface points offer two advantages for NoTs: (1) this testing
can be done even if most of the primitive ‘things’ are black-
box entities, and (2) no access to any software or algorithms is
required.

VI. COMBINATORIAL TESTING
Among the unique challenges of testing NoTs, one of the

most significant is the potential for an enormous number of
interactions. Instead of two, or a few, components sending and
receiving data, NoTs may have 10s or 100s of nodes
interacting. While internet e-commerce and information
systems include thousands of nodes, interactions are typically
client-server. NoTs, in contrast, may require cooperation
among a much larger set of nodes to meet their design
objectives. The difficulty of testing these networks has led to
recognition of the need for combinatorial test methods
[12][13], which are designed specifically for testing complex
interactions.

Software faults may involve one or multiple factors
interacting. For example, a device failure that occurs only
when pressure < 10 AND volume > 300 AND velocity = 5
(where pressure, volume and velocity are integer variables) is a
3-way interaction fault. Interaction faults remain dormant until
the particular combination of values is encountered in practice.
Combinatorial testing (CT) is an increasingly popular method
for reducing the cost of finding such complex faults. The
empirical basis for CT’s effectiveness was shown in a series of
NIST studies [6][7][8][9] that demonstrated the following:
most faults involve a single parameter or two parameters; and
progressively fewer interaction faults involve 3, 4, 5, and 6

parameters (a fault involving more than six parameters has not
been seen) [8]. This empirical finding, referred to as the
interaction rule, has important implications for software
testing, because it means that compressing t-way combinations
into a small number of tests can provide more efficient fault
detection than conventional methods.

Matrices known as covering arrays [10] are used to
produce tests covering t-way combinations of values, for some
specified level of t ≥ 2; e.g., if t = 3, then the covering array
contains all 3-way combinations of variable values. The key
property of a covering array is that it includes all t-way
combinations of values at least once, and algorithms developed
in the past 10-15 years can efficiently generate test arrays for
high-order interactions, typically up to t=6. (In the past, nearly
all combinatorial testing had been limited to pair-wise, or t=2.)
For example, suppose we want to test a module for a lighted
text display, which might be controlled using an Arduino board
or similar small system. The function allows 10 effect settings
for enhancing the text, each of which has two possible settings:
flashing (on, off), size (large, small), three light colors that can
each be on or off to produce different effects, a "glow" effect
(on, off), etc. Testing all combinations would require 210, or
1024 tests. The 10 effects are labeled A through J. If we
represent “on” as 1, and “off” as 0, then the array in Fig. 2
provides a compact test set that covers all 3-way combinations.

Fig. 2. 3-way covering array

Fig. 2 shows a 3-way covering array for 10 variables with
two values each, where each row represents a test and each
column specifies values for a variable setting. The interesting
property of this array is that any three columns contain all eight
possible values for three binary variables. For example, taking
columns D, E, and G, we can see that all eight possible 3-way
combinations (000, 001, 010, 011, 100, 101, 110, 111) occur
somewhere in the three columns together. In fact, any
combination of three columns chosen in any order will also
contain all eight possible values. Collectively, therefore, this
set of tests will exercise all 3-way combinations of input values
in only 13 tests, as compared with 1,024 for exhaustive
coverage. Similar arrays can be generated to cover up to all 6-
way combinations. The larger the problem, the greater the
improvement over exhaustive testing, because for a given

Tests

A B C D E F G H I J

interaction strength, the number of rows (tests) in a t-way
covering array increases with log n, for n parameters, while the
exhaustive test set size of course increases exponentially.
(Note that covering arrays are not restricted to binary variables;
these are used here to simplify the presentation.) For example,
with 34 on-off switches, there are approximately 17 billion
possible combinations, but all 3-way settings can be covered
with only 33 tests, and all 4-way combinations with 85 tests.

An extensive body of empirical work shows that these
methods are highly cost effective. In practical applications,
combinatorial testing has been shown to provide significant
advantages, with reduced cost and greater fault detection
[10][11]. Fortunately, these methods can solve some of the
unique problems of testing NoTs.

VII. APPLYING COMBINATORIAL TESTING TO THE EXAMPLE
How can we adequately test NoTs, given the constraints

identified by the DRR for these systems? Consider again the
example for which 10 inputs from an input domain of 10
million produce a ‘1’, with the rest producing ‘0’. For any
computed result, there must be some specification that defines
the conditions under which each possible result is produced. In
general, these conditions will be specified by some logical
predicate, especially for NoTs, where decision predicates
receive inputs from various sensors and generated values
elsewhere in the system. One such example is shown in figure
1. Here we have the decision trigger “if g(x,y) > 100 then buy
Z shares of stock S”. In this example, an expression of two
values, x and y, is used in the decision; we assume different
combinations of x and y values not shown in the figure may
generate different results. For decision triggers in the network,
many additional expressions with different combinations of
values may be used in decision triggers. It is easy to produce
positive tests for this example: simply specify values to make
the expression g(x,y) > 100 true. But what if we want to ensure
that “buy Z shares of stock S” action is not triggered under
some other conditions? If the DRR tells us that there is only a
small portion of the input space for which this action is correct,
how will it be possible to test the huge portion of inputs for
which the result should not be to buy Z shares of stock S?

One approach to achieving this assurance is to use the
pseudo exhaustive test method described in [14], where we
have a small set of possible outputs. This method produces two
test arrays for each possible output, or class of outputs. One
array includes tests for each condition where a particular result
should be produced. For example, suppose a decision trigger is
“x+y > 200 && x >100 || x < 100 && y > 500 || y > 1000
then R1”, where R1 is a Boolean output corresponding to some
action that the system performs. Only three positive tests are
needed, one for each conjunct within the expression. A more
difficult challenge is showing that the code implementing the
expression does not generate the result for some combination
of variables inappropriately. This expression is in disjunctive
normal form, where each term contains at most two variables,
so it is in 2-DNF. By generating a 2-way covering array of
values for x and y, but excluding the positive cases, we have a
test set with all possible 2-way combinations of values where
R1 should not be produced. Thus we address the oracle
problem by verifying that results for tests in each array are

equivalent, rather than specifying a set of inputs and
determining the output specifically for each one. In the first
array, we should see R1 as the output for each test, and the
second array we should not see R1. Because we verify positive
and negative results for each output Ri, (i=1,2,3,…), we have a
sound and complete set of tests without the conventional test
oracle problem of computing outputs for each set of inputs.

To see the power of this method, consider the example
introduced previously, with roughly one million possible
inputs, where 10 produce an output of '1' and all others produce
an output of '0'. This could occur with a system of 20 Boolean
parameters, for example, resulting in 220 = 1,048, 576 possible
inputs. From the specification, we derive the conditions under
which '1' is produced, in the form of if-then-else rules or a
decision tree. Transforming these rules into k-DNF form, we
produce a set of conjunctions that result in the '1' output.
Suppose that the 10 conditions that result in an output of '1'
contain at most three Boolean literals (e.g., x && ~a && y). It
is easy to produce tests to verify this output for each of the 10
conditions, but how can we ensure that none of the other 1,048,
566 inputs will produce a '1' instead of the correct value of '0'?
Surprisingly, we can verify this for all 3-way combinations of
inputs with only 28 tests, by generating a covering array of all
3-way combinations, excluding the 10 conditions that should
produce '1' [14]. The test arrays will also catch a large
proportion of combinations with more than three Booleans, or
we can generate arrays up to 6-way with less than 400 tests.
This method is not restricted to Boolean inputs, but may be
applied to complex conditionals as well, and as a result is
especially well suited to testing complex conditionals in
decision triggers.

Given a formal specification of the conditions for each
decision trigger, the test arrays described above can be
produced mechanically, but many tests will still be needed.
Thus, even though a conventional test oracle is not needed
(because each of the two arrays should produce the same
result), the large number of tests may be prohibitive in some
applications. The DRR calculation can be used to identify the
most difficult to test interface points, helping to establish
priorities and allocate testing resources.

VIII. SUMMARY
We believe that because of the necessary role of decision

triggers, specifically purposed NoTs have testability concerns.
We explained how the testing oracle problem applies to NoTs
as well as other distributed systems, and that the problem may
be worse compared with other complex IT systems due to
“leased assets.” And finally, we described applications of
combinatorial testing and the domain range ratio, and how
these methods provide a practical approach to IoT testing
complexities.

We hope this review of challenges and potential solutions
will offer new insights into how to more efficiently test NoTs.

REFERENCES
[1] J. Voas, “Networks of ‘Things’”, NIST Special Publication SP 800-183

(July 2016), http://dx.doi.org/10.6028/NIST.SP.800-183.

[2] Voas, J.M. and Miller, K.W., “Semantic metrics for software
testability”, The Journal of Systems and Software, vol. 20, no. 3, March
1993, pp. 207-216.

[3] J. M. Voas and K. W. Miller, “Software testability: the new
verification”, IEEE Software, vol. 12, no. 3, March 1995, pp. 17-28.

[4] J. Voas, “Software Testability Measurement for Intelligent Assertion
Placement,” Software Quality Journal, vol. 6, no. 4, December 1997, pp.
327-335.

[5] J. Voas and L. Kassab, “Using Assertions to Make Untestable Software
More Testable,” Software Quality Professional, vol. 1, no. 4, September
1999, pp. 31-40.

[6] D. R. Wallace and D. R. Kuhn “Failure Modes in Medical Device
Software: an Analysis of 15 Years of Recall Data,” International
Journal of Reliability, Quality, and Safety Engineering, vol. 8, no. 4,
2001, pp. 351-371.

[7] D. R. Kuhn and M. J. Reilly, “An Investigation of the Applicability of
Design of Experiments to Software Testing,” 27th NASA/IEEE Software
Engineering Workshop, NASA Goddard Space Flight Center, 4-6
December, 2002, pp. 91-95 .

[8] D. R. Kuhn, D. R Wallace and A. Gallo, “Software Fault Interactions
and Implications for Software Testing,” IEEE Transactions on Software
Engineering, vol 30, no. 6, 2004, pp. 418-421.

[9] D. R. Kuhn and V. Okum, “Pseudo-exhaustive testing for software,”
30th Annual IEEE/NASA Software Engineering , 2006, pp. 153-158.

[10] Y. Lei, R. Kacker, R, Kuhn, V. Okun and J Lawrence, “IPOG: a
General Strategy for t-way Software Testing,” 14th Annual IEEE
International Conference and Workshops on the Engineering of
Computer-Based Systems, Tucson, Arizona, March 26-29, 2007, pp.
549–556.

[11] J. D. Hagar, T. L. Wissink, D. R. Kuhn, D. R. and R. N. Kacker,
“Introducing combinatorial testing in a large organization,” Computer,
vol. 48, no. 4, April 2015, pp. 64-72.

[12] A.H. Patil, N. Goveas, and K. Rangarajan, “Test Suite Design
Methodology Using Combinatorial Approach for Internet of Things
Operating Systems,” J. Software Eng.Applications, vol. 8, no. 7, 2015,
p. 303.

[13] G. Dhadyalla, N. Kumari, and T. Snell, “Combinatorial Testing for an
Automotive Hybrid Electric Vehicle Control System: A Case Study,”
Proc. IEEE 7th Int’l Conf. Software Testing, Verification and Validation
Workshops (ICSTW 14), 2014, pp. 51–57.

[14] D. R. Kuhn, V. Hu, D. Ferraiolo, R. Kacker, R. and Y. Lei, “Pseudo-
exhaustive Testing of Attribute Based Access Control Rule,” 5th
International Workshop on Combinatorial Testing, 2016, pp.1-10.

