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ABSTRACT. In this paper, we look at long geometric progressions 
on diferent model of elliptic curves, namely Weierstrass curves, Edwards 
and twisted Edwards curves, Huf curves and general quartics curves. By 
a geometric progression on an elliptic curve, we mean the existence of 
rational points on the curve whose x-coordinate (or y-coordinate) are in 
geometric progression. We fnd infnite families of twisted Edwards curves 
and Huf curves with geometric progressions of length 5, an infnite family 
of Weierstrass curves with 8 term progressions, as well as infnite families 
of quartic curves containing 10-term geometric progressions. 

1. INTRODUCTION 

Recently, several researchers have explored arithmetic and geometric pro-
gressions on various families of plane curves. By a progression on a curve, we 
mean there is a sequence of rational points on the curve whose x-coordinates 
(or y-coordinates) form an arithmetic or geometric progression. The histor-
ical motivation for this problem on elliptic curves seems to be an apparent 
connection between long progressions and high ranks for the corresponding 
Mordell-Weil groups (see [10, 18] for a lengthier discussion). Perhaps for this 
reason, much of the work in this area has pertained to elliptic (or hyperelliptic) 
curves. 

Bremner [4], Campbell [7], Garcia-Selfa and Tornero [10], have looked at 
arithmetic progressions on elliptic curves defned by Weierstrass equations, 
while Campbell [7], MacLeod [15] and Ulas [21] have investigated progres-
sions on curves represented by quartic models. Alvarado [1] and Ulas [22] 
extended similar results to genus 2 curves. In addition, Moody considered 
some alternate models of elliptic curves, Edwards curves [16] and Huf curves 
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[17], fnding infnite families with long arithmetic progressions. Choudry [8], 
Bremner [5], and Gonzalez-Jimenez [12] also studied arithmetic progressions 
on Edwards and Huf curves. 

While not having been explored quite as intensively, some researchers have 
also looked at geometric progressions on certain curves. Berczes and Ziegler 
[2] examined geometric progressions on the set of solutions of Pell equations. 
They found infnitely many Pell equations containing geometric progressions 
of length 5. Bremner and Ulas [6] showed that for integers n ≥ 3, there exist 

2 npolynomials a, b ∈ Z[t] such that the curve defned by y = a(t)x + b(t) 
contains fve points in geometric progression. They also show that there exist 

2infnitely many parabolas y = ax + b which contain fve points in geometric 
progression. Gonzalez-Jimenez [11] studied geometric progressions on the set 

2 2of solutions of the Markof-Rosenberger equation ax + by2 + cz = dxyz. 
In this work, we look at fnding long geometric progressions on diferent 

models of elliptic curves, including Weierstrass curves, Edwards curves, Huf 
curves and quartic curves. The main result of this paper is to show infnite 
families of (twisted) Edwards curves, and Huf curves containing 5 points 
in geometric progression, an infnite family of Weierstrass curves containing 
eight points in progression, as well as infnite families of quartic curves with 
a 10-term progression. 

2. EDWARDs CURVEs 

2 = 0, 1.An Edwards curve [9] is given by Ed := x +y2 = 1+dx2y2, with d  
The main result of this section is to show infnitely many Edwards curves with 
geometric progression of length 4. It is notable that with only one parameter, 
we obtain a progression almost as long as the Weierstrass case (which had 
four parameters). 

THEOREM 2.1. There are infnitely many choices for d such that the Ed-
wards curve Ed contains 4 points in geometric progression (of the x-coordinates). 

PROOF. If we set the point (g, y1) to be on Ed, then we can solve for d, 
2 2g + y1 − 1 

d = .2g2y1 
2Using this value of d, we seek to force (g , y2) to be on the Edwards curve Ed. 

This leads to the constraint of 
2 2 2 2 2 2 2−g y2 + g y1 − y1 y2 + y1 = 0. 

This is a quadratic equation in y1 and y2, with parametric solutions given by 
22mg2 − g2 − 1 + 2m − m

y1 = − ,
1 − m2 + g2 

22mg2 − g2 − 1 + 2m − m
y2 = − . 

g2 + 1 − 2m + m2 
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3We now seek to force (g , y3) to be on the curve Ed. Some simple arithmetic 
leads to a quadratic in y3, whose discriminant modulo squares is   

4 2 3 4(g + g 2 + 1) (g 2 − g + 1)m 2 + (−2g 2 − 2)m + 1 + g + 2g + g + g   
2 3 4· (g + g + 1)m 2 + (−2g 2 − 2)m + 1 − g + 2g 2 − g + g . 

3The point (g , y3) will be a rational point on Ed if and only if the discriminant 
2is a square. A simple computation shows that we can take m = 2(g + g + 

41))(g2 − g + 1)(g2 + 1)/(g6 +2g + g2 + 1). With this value of m, then we get 
2 3points with x-coordinates 1, g, g , and g all on the Edwards curve, leading 

to infnitely many 4-term geometric progressions. We were not able to extend 
this to a 5-term progression. 

EXAMPLE 2.2. Let g = 2, so then m = 210/101. Then the points (1, 0), 
(2, 23399/1381), (4, 23399/10537), and (8, 23399/11481) are all on the Ed-
wards curve Ed, with d = 138308671/547513201. 

2The curve Ed is birationally equivalent to the Weierstrass curve E : y = 
x3 + 1371643744/547513201x2 + 167448347372520900/299770705269266401x. 
The point (1, 0) corresponds to a point of order 4 on E, while the other 
three points with x-coordinates 2, 4, and 8 map to three linearly independent 
points with x-coordinates −363594243/547513201, −620366415/2190052804, 
and −2237109903/8760211216. The independence was checked by computing 
(using SAGE [19]) the determinant of the height pairing matrix, which is 
145.76009242 = 0. 

Using Silverman's specialization theorem [20, III.11.4], Example 2.2 yields 
a lower bound on the rank of the free part of Ed over Q(g), where d = d(g) is 
as given in Theorem 2.1. As we had three linearly independent points when 
g = 2, the rank is at least 3. 

3. TWIsTED EDWARDs CURVEs 

2 2A twisted Edwards curve [3] is given by Ea,d : ax + y2 = 1+ dx2y , with 
ad(a − d) = 0. Edwards curves are thus a special case of twisted Edwards 
curves where a is set to 1. We can get a 5 term geometric progression by 
considering twisted Edwards curves, although we do so working with the y-
coordinates. 

THEOREM 3.1. There are infnitely many twisted Edwards curves contain-
ing 5 points in geometric progression (of the y-coordinates). 

PROOF. Note that the point (0, 1) is always on the curve. To build a 
longer progression, we require the points (x1, g) and (x2, g

2) to be on the 
curve Ea,d. This leads to a system of two equations in the curve parameters 
a and d, which we solve: 

2 2 2 2 2x1 + g x1 − g x2 a = ,2 2x1x2 
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2 2 2 2x1 + g x1 − x2d = .2 2g2x1x2 

To extend the progression, we seek to have the point (x3, 1/g) on the curve. 
This is equivalent to the expression 

4 2 2 2 4 2 2 2 2 2 2 2 2 2 2 2 2−g x3x2 + x3g x1 − x2x1g 2 + 2x3x1g 2 − g x3x2 − x3x2 + x3x1 = 0. 

We obtain a solution by the parameterization 
2 4 2 2gx3(4m g4 + 4g m + 4g m2 + 4g m − g2 + 4m2 + 4m) 

= − ,x1 
4m(g2 + 1)(2mg4 + 2mg2 − g2 + 2m) 

2 4 2 2g(g2 + 1)x3(4m g4 + 4g m + 4g m2 + 4g m − g2 + 4m2 + 4m) 
x2 = − . 

8m2g8 + 20g6m2 − 4g6m + 28m2g4 − 4g4m + g4 + 20g2m2 − 4g2m + 8m2 

Finally, if the point (x4, 1/g2) on the curve, then we will have a 5-term progres-
sion. This leads to a quadratic equation in the variable x3. The discriminant 
of this quadratic will be square, provided that 

4 4 316(5g 4+9g 2 + 5)(g + g 2 + 1)2 m 4 + 32(g + g 2 + 1)(g 8 − g 4 + 1)m 
2(3.1) + (16g 12 + 40g 10 + 96g 8 + 120g 6 + 96g 4 + 40g 2 + 16)m 

4 4− 8g 2(g + g 2 + 1)2 m + g 4(g + g 2 + 1) 

is square. We now show that if 5g4 +9g2 +5 is square, then we can make the 
quartic (3.1) square. To do so, set 

16g8 + 44g6 + 59g4 + 44g2 + 16 
m = − . 

8(5g4 + 9g2 + 5)(2g4 + 3g2 + 2) 

A simple calculation verifes that (3.1) yields a square, provided 5g4 +9g2 +5 
is square. By Lemma 3.2 (which will be proved below), we see that we have an 
infnite number of values of g such that 5g4 +9g2 +5 is square. We therefore 
have an infnite number of twisted Edwards curves with y-coordinates y = 

21/g2 , 1/g, 1, g, and g . 

LEMMA 3.2. There are infnitely many values of g such that 5g4 +9g2 +5 
is square. 

2PROOF. Note the point (g, v) = (2, 11) is on the curve 5g4 +9g2 +5 = v . 
Using standard transformations (see, for example, [23]), we have this curve 

2is birationally equivalent to the elliptic curve E : y = x3 − 127x − 546. By 
SAGE, it can be verifed that the curve E has rank one. Given a point (x, y) 
on E, set 

23x − 11y + 176 
g0 = 2 . 

98x + 11y + 626 
4 2From the birationality, we have that 5g0 +9g0 +5 will be square. For example, 

from the generator P = (97/4, 825/8) of the free part of E(Q) we obtain 
g = −1282/6619 and 5g4 +9g2 + 5 = (101284931/43811161)2 . As the rank of 
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E is positive, we have an infnite number of rational points and thus infnitely 
many values of g as desired. 

2EXAMPLE 3.3. We are free to select g and x4, provided 5g4 + 9g + 
5 is a square. So we set g = 2 and x4 = 1. We then compute m = 
−503/2783, which leads to the points (1, 1/4), (166902131/159143645, 1/2), 
(0, 1), (166902131/202822175, 2), and (166902131/196487183, 4) on the twisted 
Edwards curve Ea,d, with a = 28488726729454945/27856321332341161, d = 
37974807686161705/27856321332341161. 

It is straightforward to check that the four points with y-coordinates 
1/4, 1/2, 2, and 4 are linearly independent on the curve Ea,d. To do so, we 
mapped the curve to the Weierstrass curve and used SAGE to compute the 
determinant of the height pairing matrix, which was 8394.4755918 = 0. 

By the specialization in Example 3.3, we see that there is an infnite family 
of twisted Edwards curves with fve points in geometric progression which has 
rank at least 4. 

4. HUFF CURVEs 

An elliptic curve in the Huf model [13, 14] can be written in the form 

Ha,b : ax(y 2 − 1) = by(x 2 − 1), 

with ab(a2 − b2) = 0. In this section, we construct a geometric progression on 
such curves. In fact, we show a construction which yields an infnite family 
of Huf curves containing fve points in geometric progression. 

THEOREM 4.1. There exists infnitely many Huf curves which contain a 
geometric progression of length fve (of the x-coordinates). 

PROOF. Let Ha,b be a Huf curve. Without loss of generality, we may 
assume that b = 1. We begin by observing that if the point (x, y) is on 
Ha,1, then so is (1/x, −y). Since (1, 1) is trivially on the curve, to produce a 

2geometric progression of length 5 it thus sufces to ensure that x = g, g are 
both valid x-coordinates of rational points on Ha,1. 

2 2The requirement that (g, y1) is on Ha,1 is equivalent to ag y1 − gy1 − 
ay1 + g = 0. Solving for a, we fnd 

y1(g
2 − 1) 

a = .2g(y − 1)1 

2We now search for conditions so that the point (g , y2) will also be on the 
Huf curve (using this value of a). Some simple arithmetic leads to 

2 2 2 2 2(4.2) g y2y1 − gy 2 y1 − g y2 + y2y1 + gy1 − y2 = 0. 

This is a quadratic equation in g, with discriminant 
4 2 2 4 2 2 2 2D := y2 y1 − 4y2 y1 + 6y2 y1 − 4y2 + y1 . 
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In order to have a rational solution, we need the discriminant to be square. 
Setting D to equal a square w2, we may view the equation as defning an 
elliptic curve E in y2 and w (with parameter y1). The curve E has a rational 
point with y2-coordinate 

2 22y1 (y1 − 1) 
y2 = .2 4(y + 1)(y + 1) 1 1 

Substituting this value into the quadratic equation (4.2) in g thus allows the 
equation to be factored, leading to the root 

6 4 2y1 − y1 − y1 + 1 
(4.3) g = − ,42y1(y + 1) 1 

or its inverse. 
As we have infnitely many choices for y1, we therefore have constructed 

an infnite number of geometric progressions on the Huf curve with fve terms. 
More concretely, for any value y1 = 0, ±1, we defne g as in equation (4.3). 

2
12y (y 

+y

2
1−1) 
+y

2
1−1),1: ( 

1 
2 , − g y

We then have the following points on H ),y1 (g2−1)/g(y 6
1

4
1

2
1+1 

2y (y 
+y

2
1 −1) 

+y

2
12(1/g, −y1), (1, 1), (g, y1), and (g , ).6

1
4
1

2
1+1y

EXAMPLE 4.2. Let y1 = −2, then g = 45/68 and a = 2599/4590. If 
we consider the curve H2599,4590, the points (1/g2 , −24/85), (1/g, 2), (1, 1), 

2(g, −2), and (g , 24/85) are all on the curve. 
2The curve Ha,b can be transformed into the Weierstrass curve y = 

2x(x + a)(x + b). Checking with SAGE, the points (g, −2) and (g , 24/85) 
are linearly independent since the determinant of their height pairing matrix 
is 15.597467634 = 0. 

From the specialization in Example 4.2, we see that the rank of the free 
part of the Huf curve family in Theorem 4.1 is at least 2 over Q(y1). Note 
the construction of the geometric progression used that if (x, y) is on the 
Huf curve, then so is (1/x, −y). These points are linearly dependent, as 
(x, y) + (1/x − y) is a point of order 2. This explains why the lower bound on 
the rank is not higher, as might be otherwise expected if it were to be assumed 
the non-trivial points in the geometric progression were independent. 

5. \EIERsTRAss MODELs 

We begin by looking for geometric progressions on the cubic curve Cb,c,d : 
2 3y = x +bx2 +cx+d which is slightly more general than the traditional short 

2 3Weierstrass form written as E : y = x +ax+b. We construct infnitely many 
such Weierstrass curves with 6 points in geometric progression. 

Under the birational transformation (x, y) → (ax, ay) with a = 0, the 
2 3 'curve Cb,c,d can be put into the form Ca,b,c1,d1 : y = ax + bx2 + c x + d' 

'while still preserving any geometric progression. Here c = c/a and d' = d/a2 . 
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Thus, it is equivalent to fnd a geometric progression on a curve of the form 
Ca,b,c,d. 

THEOREM 5.1. There are infnitely many Weierstrass curves of the form 
C(b, c, d) : y2 = x3 + bx2 + cx + d containing a geometric progression of length 
8 (of the x-coordinates). 

PROOF. Consider the polynomial 

33 
−(2i+1)),f(x) = (x − g 2i+1)(x − g 

i=0 

4 3 2which is a degree 8 polynomial in x. We now let h(x) = x + c3x + c2x + 
c1x + c0, for some unknowns ci, and compute f(x) − h(x)2 : 

7 6 5f(x) − h(x)2 = d7(g, c3)x + d6(g, c2, c3)x + d5(g, c1, c2, c3)x 
4+ d4(g, c0, c1, c2, c3)x + j(x). 

Here the polynomials dk are linear in ck−4 for k = 7, . . . , 4, and j(x) is a degree 
3 polynomial. Accordingly, by setting d7, d6, and d5 successively to zero we 
can recursively solve for c3, c2, c1, and c0 in terms of g. That is, we frst 
obtain c3 by setting d7 = 0 and then replace this value of c3 in d6 = 0 to then 
obtain c2. We continue this process and recover c1 and c0. Then evaluating 

±(2i+1)) isthe equation f(x) − h(x)2 = j(x) at the roots g±(2i+1) yields −j(g
square (for i = 0, ..., 3). 

2Therefore, on the elliptic curve y = −j(x) we have a geometric progres-
5 7sion of length eight: x = 1/g7 , 1/g5 , 1/g3 , 1/g, g, g3, g , g . As g is arbitrary, 

we see that have an infnite number of such progressions. We note that any 
length 8 geometric progression could be used, however the resulting formula 
for j(x) is much simpler for the progression we chose. 

EXAMPLE 5.2. By setting g = 2, and after removing square factors, we 
have the curve 

2C2 : y 2 =12658624685959387545600x 3 + 164489992792118352412672x 

+ 11602227863520826181273600x + 509740584746551687568673361. 

The curve C2 has rational points with x-coordinates 1/128, 1/32, 1/8, 1/2, 2, 8, 32, 128. 
A computation in SAGE shows that the frst seven of these eight points are 
linearly independent, as the determinant of their height pairing matrix is 
non-zero. 

Thus, by the Silverman specialization theorem again, we can conclude the 
free part of the infnite family of curves with an eight term progression given 
in Theorem 5.1 has rank at least 7 over Q(g). 
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6. QUARTIC MODELs 

2A quartic genus 1 curve is defned by an equation C : y = f(x), where 
f is a polynomial of degree 4 without multiple roots. It is well known that 
if a rational point exists on C, then C is birationally equivalent to an elliptic 
curve in Weierstrass form. This section deals with fnding infnite families of 
quartic curves containing 10 term geometric progressions. 

THEOREM 6.1. There are infnitely many quartic elliptic curves of the 
2 4 2form E : y = ax + bx3 + cx + dx + e containing a geometric progression of 

length 10 (of the x-coordinates). 

PROOF. We use the same technique as in the previous section. Consider 
the polynomial 

43 
−(2i+1)),f(x) = (x − g 2i+1)(x − g 

i=0 

5 4 3which is a degree 10 polynomial in x. We now let h(x) = x + c4x + c3x + 
2c2x + c1x + c0, for some unknowns ci, and compute f(x) − h(x)2 . Similar 

to the proof of Theorem 5.1, dk is linear in ck−5 for k = 9, . . . , 5. Thus 
we can recursively solve for c4, c3, c2, c1, and c0 (in terms of g), so that the 
polynomial j(x) = f(x)−h(x)2 will be a quartic polynomial. By construction, 
−j(g±(2i+1)) is square (for i = 0, ..., 4). 

We thus have an infnite number of geometric progressions of length ten. 
We note that any length 10 geometric progression could be used, however the 
resulting formula for j(x) is much simpler for the progression we chose. 

We omit providing an example, as the coefcients of the quartic are quite 
large even for small g. For g = 2, we computed the height pairing matrix 
determinant and found that nine of the points are linearly independent. We 
therefore conclude that a lower bound on the rank of the free part of the 
family of quartic curves in Theorem 6.1 is 9 (considered over Q(g)). 

7. CONCLUsION 

In this work, we have examined geometric progressions on elliptic curves. 
Future work would be to improve the length of the geometric progressions 
found for each of the diferent models of curve families. Recall one of the 
original motivations for fnding (arithmetic) progressions on curves seemed to 
be to fnd curves with high rank. It would be interesting to see if the families 
described in this paper lead to elliptic curves with high rank, above that given 
by the lower bounds we gave. Intuitively, it would seem that the points in 
geometric progression might be independent with high probability. 
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