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Finding Bugs in Cryptographic Hash Function 

Implementations 
Nicky Mouha, Mohammad S Raunak, D. Richard Kuhn, and Raghu Kacker 

Abstract—Cryptographic hash functions are security-critical 
algorithms with many practical applications, notably in digital 
signatures. Developing an approach to test them can be par-
ticularly diffcult, and bugs can remain unnoticed for many 
years. We revisit the NIST hash function competition, which was 
used to develop the SHA-3 standard, and apply a new testing 
strategy to all available reference implementations. Motivated 
by the cryptographic properties that a hash function should 
satisfy, we develop four tests. The Bit-Contribution Test checks 
if changes in the message affect the hash value, and the Bit-
Exclusion Test checks that changes beyond the last message bit 
leave the hash value unchanged. We develop the Update Test 
to verify that messages are processed correctly in chunks, and 
then use combinatorial testing methods to reduce the test set size 
by several orders of magnitude while retaining the same fault-
detection capability. Our tests detect bugs in 41 of the 86 reference 
implementations submitted to the SHA-3 competition, including 
the rediscovery of a bug in all submitted implementations of 
the SHA-3 fnalist BLAKE. This bug remained undiscovered for 
seven years, and is particularly serious because it provides a 
simple strategy to modify the message without changing the hash 
value returned by the implementation. We detect these bugs using 
a fully-automated testing approach. 

Index Terms—Cryptographic Algorithm, Cryptographic Hash 
Function, Combinatorial Testing, Metamorphic Testing, SHA-3 
Competition. 

I. INTRODUCTION 

A (cryptographic) hash function transforms a message of a 

variable length into a fxed-length hash value. Among other 

properties, it should be diffcult to invert the function or to 

fnd two messages with the same hash value (a collision). 

One of the earliest uses of hash functions was to create 

small, fxed-sized, collision-resistant message digests (MDs) 

that can stand in place of large variable-length messages in 

digital signature schemes. Later, these functions started to be 

routinely used in other applications including message au-

thentication codes, pseudorandom bit generation, and crypto-

graphic key derivation. Starting from the early 1990s, a series 

of related hash functions were developed including MD4, 

MD5, SHA-0, SHA-1, and the SHA-2 family. The SHA-2 

family, defned in Federal Information Processing Standard 

(FIPS) publication 180-4 [1], consists of four algorithms that 

produce MDs of lengths 224, 256, 384, and 512 bits. Over the 

years, many weaknesses [2], [3] of these functions have been 

discovered and attacks have been found that violate expected 

hash function security properties. Although no attack is known 
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on the SHA-2 family, these hash functions are in the same 

general family, and could potentially be attacked with similar 

techniques. 

In 2007, the National Institute of Standards and Technology 

(NIST) released a Call for Submissions [4] to develop the new 

SHA-3 standard through a public competition. The intention 

was to specify an unclassifed, publicly disclosed algorithm, to 

be available worldwide without royalties or other intellectual 

property restrictions. To allow the direct substitution of the 

SHA-2 family of algorithms, the SHA-3 submissions were 

required to provide the same four message digest lengths. 

Chosen through a rigorous open process that spanned eight 

years, SHA-3 became the frst hash function standard that 

resulted from a competition organized by NIST. Out of the 64 

initial submissions to the competition, 51 were selected for the 

frst round, and were made publicly available. All submissions 

had to provide hash values, also known as message digests, 

for a NIST-provided set of messages (known as ‘test vectors’), 

which we will refer to as the “SHA-3 Competition Test Suite.” 

Over a period of fve years, these submitted algorithms and 

implementations were analyzed in multiple rounds. Out of the 

51 frst-round candidates, 14 made it to the second round, and 

fve were selected for the third and fnal round. At the end of 

the process, the algorithm Keccak was selected as the winner, 

and subsequently became the SHA-3 standard [5]. 

The implementations of hash functions are vulnerable to 

implementation faults, also known as bugs. Designing test 

cases with high fault-fnding effectiveness for hash functions 

is particularly diffcult, because these functions fall into the 

category commonly known as “non-testable” programs [6], 

i.e., those lacking a test oracle to check their correctness. 

To alleviate the test oracle problem [7], we will develop 

a systematic testing methodology, which can be considered 

within the framework of metamorphic testing [8]–[11]. Meta-

morphic testing relies on identifying some relations in the 

underlying algorithm that allow two test cases to work as 

pseudo-oracles of each other. Given a particular test case t1 for 

a program p, a metamorphic relation would allow selection of 

another test case t2 such that the outputs produced by the two 

tests: p(t1) and p(t2) can validate each other. All the tests that 

we propose in this paper will make use of such a metamorphic 

relation: either equality (the hash values must be the same) or 

inequality (the hash values must be different). 

Traditional test selection strategies may use source code 

coverage information such as branch coverage or condition 

coverage. These strategies may not be effective in discovering 

certain types of bugs related to bit manipulations, which 

are very common in hash functions. Randomly selected test 

mailto:raunak@loyola.edu
mailto:nicky.mouha@nist.gov


2 

cases, on the other hand, are likely to be weak in their fault 

discovering ability, because random generation of test values 

makes it highly likely that some special combinations of inputs 

will be missed. 

In this paper, we will only focus on hash function imple-

mentations that follow the SHA-3 Competition API. Other 

algorithms and APIs are outside the scope of the research 

presented here. Furthermore, this work focuses only on the 

reference implementations of the SHA-3 candidates. Reference 

implementations are often the basis of other implementations, 

and it is reasonable to expect that the reference implemen-

tation can be used without modifcations. Bugs in reference 

implementations can have a serious impact for practical appli-

cations: for example, a bug in the RSA reference implemen-

tation [12] affected several commercial and non-commercial 

SSH implementations in 1999. Optimized implementations 

often contain sections that are specifc to a particular compiler, 

platform, or processor. As we restrict ourselves to a single 

build environment in this paper, the systematic testing of 

optimized implementations is out of scope, but nevertheless 

a very interesting topic for future work. 

Between the rounds of the SHA-3 competition, the sub-

mitters were able to update their submissions. We took all 

submissions and their updates from the NIST website [13], 

a total of 86 implementations, and ran our tests on them. 

Through the selection of test cases that specifcally target 

potential vulnerabilities in the implementations, we discovered 

a large number of bugs, many of which have never been 

discovered before, or remained hidden for years. 

We designed four sets of test cases, two of which are 

simple variations of each other, to investigate the effectiveness 

of better partitioning of the message space combined with a 

combinatorial approach in discovering bugs [14]. Our test that 

checks whether input differences affect the hash value, found 

errors in 19 out of 86 implementations. We also found 32 

implementations that incorrectly handle the processing of a 

message in chunks. Lastly, 17 implementations were found to 

have bugs where the hash value is not uniquely determined by 

the message. We should note that none of these 68 bugs were 

discovered by the SHA-3 Competition Test Suite. 

A. Outline 

The rest of the paper is organized as follows. After dis-

cussing related work and the limitations of existing approaches 

in Section II, we explain the background of hash function 

standardization and implementation validation in Section III. 

We introduce our new testing methods in Section IV, and apply 

them to all reference implementations submitted to the SHA-3 

competition in Section V. We explore some bugs in detail in 

Section VI, in order to give more intuition about the bugs in 

the implementations, and the diffculty in detecting them at 

an early stage using traditional methods. In Section VII, we 

perform a code coverage analysis of various test suites. We 

discuss our results in Section VIII, and conclude the paper in 

Section IX. 

II. RELATED WORK AND TRADITIONAL APPROACHES 

A. Related Work 

Implementations of cryptographic algorithms have been 

known to be a signifcant source of vulnerabilities for some 

time. Anderson [15], writing on why cryptosystems fail, cites 

a “senior NSA scientist” in 1993 as saying that “the vast ma-

jority of security failures occur at the level of implementation 

detail.” Despite recognition of problems with many implemen-

tations, relatively little research has been done on systematic 

test methods tailored to cryptographic implementations. Most 

testing in the feld follows established practices for general 

software testing, but cryptographic software may have several 

bit operations expressed in a few lines of code, with relatively 

few conditionals. As we discuss in this paper, cryptographic 

algorithms typically have characteristics quite different from 

other types of software, such that traditional test methods do 

not apply well. 

Braga and Dahab [16] note the prevalence of failures in 

cryptographic software, and the lack of widely accepted meth-

ods and tools to prevent such bugs. They also note that unique 

aspects of cryptographic code make ordinary static analysis 

tools less effective, and mention the need for functional testing. 

Nevertheless, their survey did not fnd systematic methods for 

deriving such tests. 

A 2014 study [17] investigated the distribution of faws in 

cryptographic software implementations, fnding 269 reported 

vulnerabilities, of which 223 were found in applications, 39 in 

protocols, and 7 in cryptographic primitives. The same study 

reviewed open problems in testing cryptographic primitives 

and included an example found in a popular algorithm im-

plementation, noting that conventional verifcation and testing 

methods do not address many low level operations used in 

cryptographic software and do not scale adequately. 

Among the approaches described in this paper, combi-

natorial testing has been applied to cryptographic functions 

for detection of Trojan Horse malware [18] and for appli-

cations using cryptographic library functions [19]. Model-

based testing (MBT) has also been shown to be effective for 

cryptographic components [20], including hash function usage. 

However, in [20] MBT is applied at the application level (e.g., 

sequence of hash function calls), rather than for cryptographic 

primitives. Metamorphic testing has been applied to various 

security-related applications [21], and some work has been 

done towards developing metamorphic relations for crypto-

graphic modules [22]. 

Very recently, Aumasson and Romailler [23] applied fuzz 

testing to compare two different implementations of the same 

cryptographic algorithm, and fnd several bugs in widely-used 

cryptographic libraries such as OpenSSL. Their technique is 

only effective when several implementations of an algorithm 

are available that do not all contain the same bug. In this paper, 

we look into techniques that overcome this limitation. 

B. Limitations of Traditional Approaches 

A large part of software testing is inherently a selection 

process, where a very small subset from an often infnite 

set of test cases is selected to execute the Implementation 
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Under Test (IUT). Due to our inability to perform ‘exhaustive 

testing’ in most cases and also due to the fact that software 

systems usually lack continuity, one can never use testing 

to prove the correctness of a system. As pointed out by 

Dijkstra [24], testing thus is primarily an approach to discover 

bugs. Consequently, the most effective test sets are those that 

are likely to discover the largest number of bugs or faults in 

the implementation. 

The test suite design process is driven by two overarching 

questions: 

1) How do we go about selecting the test cases from a 

practically infnite set of possible tests? 

2) How do we know when we have selected enough test 

cases to feel confdent about the discovery of all, or 

nearly all, bugs in the system? 

Over the last fve decades, testing researchers have tried to 

answer these questions by taking various approaches. Testing 

approaches can generally be characterized as either 1) white 

box or implementation-based testing; and 2) black box or 

specifcation-based testing. 

White box testing assumes access to the source code and 

selects test cases based on how well they exercise different 

structural elements such as statements, branches, and paths 

of the IUT [25]. Selecting test cases based on structural 

coverage of the source code is known as meeting a coverage 

criterion. Statement coverage, branch coverage, and covering 

some subsets of paths (e.g. all-def or all-use) are common 

coverage criteria used for selecting test cases. 

Black box testing, on the other hand, relies on the specifca-

tion of the IUT as opposed to its implementation. Test cases, 

in the case of black box testing, are selected based on the 

expected behavior as defned in the requirements specifcation 

of the system. A stopping-rule for selecting test cases here is 

guided by other criteria such as partitioning the input space 

and ensuring some type of coverage of those partitions. 

Test case selection for both white-box-based and black-box-

based coverage criteria often assume the presence of a test 

oracle – the mechanism through which one can defnitively 

conclude if an execution of the IUT has resulted in the 

expected behavior or not. In other words, the test oracle 

specifes when a test case has revealed a failure scenario. 

Unfortunately, not all systems have well-defned or easily 

implementable test oracles. Computational learning as well as 

many other artifcial intelligence related algorithms, simulation 

models, and cryptographic algorithms are some examples of 

programs where it is diffcult to develop test oracles, because 

the test oracle may need to be as complex as the IUT. This 

makes it harder for designing and improving test cases for 

these types of programs. 

The criteria based on covering structural elements of a 

program such as statements or branches are based on the 

observation that test cases that do not exercise a statement or a 

branch are unlikely to discover a bug in that structural element. 

Hence a simple objective is to select test cases that exercise 

all statements or branches. For complex programs, interactions 

of branches (specifc paths) that a specifc program execution 

traverses is also a good place to look for potential anomalies or 

bugs. Traditional approaches thus focus on test case selection 

that based on covering these structural elements. 

Special scenarios arise with cryptographic algorithms. First, 

these algorithm implementations are classic examples of pro-

grams without test oracles. It is usually not possible to 

ascertain if the output generated by a cryptographic function is 

correct or not. Second, cryptographic algorithms often include 

many bit manipulations as opposed to long, winding, or 

complex paths through the program, which is not necessarily 

a common scenario for the vast majority of software that are 

developed and tested by software engineers. Consequently, 

ensuring the exercise of every statement or every branch may 

result in a set of trivial test cases that are not very effective 

in discovering bugs, especially the ones hiding deep inside in 

the bit manipulations. 

These two characteristics make it particularly diffcult to 

design test cases for cryptographic algorithms. Consequently, 

it also becomes diffcult to know when to stop adding test 

cases to a test suite and how to measure the effectiveness of 

a test suite. 

III. BACKGROUND OF HASH FUNCTION 

STANDARDIZATION AND VALIDATION 

Before we elaborate our specifc approach and correspond-

ing results from testing cryptographic hash function algo-

rithms, a brief background discussion is necessary about how 

test cases were determined at NIST for testing cryptographic 

algorithms and their implementations. 

US federal agencies that use cryptography to protect sen-

sitive information must follow the standards and guidelines 

of the National Institute of Standards and Technology (NIST), 

and must validate their implementations, referred to as crypto-

graphic modules. 

To validate cryptographic modules according to 

FIPS 140-1 [26], Security Requirements for Cryptographic 

Modules, the Cryptographic Module Validation Program 

(CMVP) was established in 1995. Since the Federal 

Information Security Management Act (FISMA) of 2002, US 

federal agencies no longer have a statutory provision to waive 

FIPS. The Cryptographic Algorithm Validation Program 

(CAVP) [27] involves the testing of the implementations 

of FIPS-approved and NIST-recommended cryptographic 

algorithms, and is a prerequisite for the CMVP. The 

CAVP sends the inputs and possibly some intermediate 

computational state from a NIST reference implementation to 

the Implementation Under Test (IUT) and then compares the 

obtained and precomputed results. 

In 1997, NIST launched an open competition for an Ad-

vanced Encryption Standard (AES) block cipher, and made 

a formal call for algorithms [28]. By 1998, ffteen AES 

candidate algorithms were received. In 2000, NIST announced 

that it had selected Rijndael for the AES [29]. 

As clarifed in the Call for Submissions of the AES com-

petition [28], submitters were required to provide a single 

foppy disk with two types of test vectors: Known Answer 

Tests (KATs) and Monte Carlo Tests (MCTs). Testing using 

KATs and MCTs is the basis of the CAVP, and the underlying 
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ideas date back at least to 1977, when the National Bureau of 

Standards (NBS), the former name of NIST, published SP 500-

20 [30] to test the encryption and decryption operations of 

the Data Encryption Standard (DES). Originally, KATs were 

intended to “fully exercise the non-linear substitution tables” 

(S-boxes), whereas the MCTs contain “pseudorandom data to 

verify that the device has not been designed just to pass the 

test set.” 

In the context of the AES competition, a set of KAT inputs 

were provided by NIST, for which the submitters needed to 

generate the corresponding outputs. Clearly, NIST could not 

know at the time of submission whether these KAT inputs 

would fully excercise any tables used in an implementation of 

the submitted algorithm. Therefore, for algorithms that used 

tables, the submitters were additionally required to provide 

their own set of KATs that exercise every table entry. For the 

MCTs, the choice of the pseudorandom inputs was left to the 

submitters. 

Inspired by SP 500-20 [30], the NIST-provided KATs for 

the AES competition consist of all vectors where one input 

(the plaintext or the secret key) is kept constant, and the other 

input is the set of all bit strings with exactly one bit set. 

The MCTs are identical to those of SP 500-20: the submitters 

needed to iterate the algorithm four million times on a given 

input, while providing the outputs after every multiple of ten 

thousand iterations. 

During the NIST SHA-3 competition, the testing method-

ology was again borrowed from the CAVP, as the KATs and 

MCTs of the SHA-3 Competition Test Suite were based on 

the CAVP tests for SHA-2. In addition to this, the “Extremely 

Long Message Test,” not present in the CAVP for SHA-2, re-

quired the submitters to generate the hash value corresponding 

to a message with a length of 1 GiB. 

Of particular interest here is that the KATs provided by 

NIST to test hash functions never contain more than one test 

vector of any particular length. This is true for the SHA-2 

standard in the CAVP, as well as for the SHA-3 Competition 

Test Suite. As we will show later, this property will limit the 

ability to discover implementation bugs, as some bugs can 

only be revealed by testing two messages of the same length. 

The iteration used in the MCTs means that a large number 

of messages of the same length will be processed. But the 

MCTs required for the SHA-3 competition only process inputs 

of exactly 1024 bits, which will not reveal bugs that may be 

present for other message lengths. 

Besides this testing effort by NIST, the most notable exter-

nal testing effort of the SHA-3 candidate submissions came 

from Forsythe and Held of Fortify [31]. They downloaded all 

43 submission packages of the SHA-3 candidates that were 

not withdrawn at the time of their analysis, and tested all 

reference implementations. Their testing effort detected bugs 

in only fve submissions: Blender, CRUNCH, FSB, MD6 and 

Vortex. Four types of bugs were found: buffer overfows, out-

of-bound reads, memory leaks and null dereferences. 

IV. EXPERIMENTATION ON TESTING SHA-3 CANDIDATES 

To experiment with our test suite design and test case 

selection approaches, we have considered the SHA-3 compe-

tition for cryptographic hash functions and all the candidates 

submitted to it. A cryptographic hash function is designed 

to take an input string m of any size, and return a fxed-

sized bitstring as output, H(m). The input string is commonly 

known as the ‘message’ and the output is called the ‘message 

digest’ or ‘MD’. The message digest is also called the ‘digest’, 

‘hash value’, or ‘hash output’. 

A. Properties of cryptographic hash functions 

To design our test cases for this experiment, we need to 

understand and possibly utilize the required characteristics of 

a (cryptographic) hash function. Informally, a hash function is 

expected to have the following main properties [32]: 

1) Preimage resistance. Hash functions should be one-way 

functions. That is, given a message digest y, it should 

be infeasible to fnd a preimage, i.e., a message m for 

which H(m) = y. 

2) Second-preimage resistance. Given a message m and a 

message digest H(m), it should be infeasible to fnd a 
′ second message m (m =6 m ′ ) with the same message 

digest, i.e., H(m) = H(m ′). A one-way function is both 

preimage and second preimage resistant. However, it is 

possible to construct functions that are second-preimage 

resistant, but not preimage resistant [32, Note 9.20]. 

Due to this subtle difference, preimage resistance and 

second-preimage resistance are considered to be separate 

notions. 

3) Collision resistance. It should be infeasible to fnd 

two different messages that produce the same message 
′ digest, i.e., fnding m 6= m for which H(m) = H(m ′). 

Note that collisions necessarily exist due to the pigeon-

hole principle, however for a hash function it should 

be computationally infeasible to fnd them. Collision 

resistance implies second-preimage resistance, but it is 

a strictly stronger notion: the attacker can now choose 
′ both m and m ′ , instead of choosing only m (for a fxed 

m). 

4) Function behavior. There is always an implicit property 

that comes with any mathematical function. This func-

tion property would require that for any message m, the 

computed digest H(m) is always deterministic. If m is 

not altered, it should always produce the same H(m). 

We have designed three different sets of test cases for our 

experiments, to detect violations of some of these properties in 

a particular implementation of a hash function. Our test suites 

may seem nominally large, i.e., a large number of hash values 

computed while testing each IUT. However, we should note 

three important factors: 

1) Our test suites are comparable to the sizes of the SHA-3 

Competition Test Suite that each IUT needed to provide 

hash values for. 

2) The test suites could fnish executing in reasonable time, 

in the order of minutes or hours at most. 

3) The number of test cases in our test suite is still much 

smaller than any exhaustive testing even in a reasonably 

restricted domain of different sized messages. 
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TABLE I 
SHA-3 COMPETITION TEST SUITE SIZE (FOR EACH MESSAGE DIGEST 

SIZE)† 

Name of the Test # Message Digests 

Short Message KAT 2048 
Long Message KAT 513 
Extremely Long Message KAT 1 
Monte Carlo Test 100 000 

Total 102 562 
†Not a good indicator for runtimes as messages vary in size. 

TABLE II 
OUR TEST SUITE SIZES (FOR EACH MESSAGE DIGEST SIZE)† 

Name of the Test # Message Digests 

Bit-Contribution Test 2 100 225 
Bit-Exclusion Test 131 072 
Update Test 1 048 576 
Combinatorial Update Test 1510 

Total 3 281 383 
†Not a good indicator for runtimes as messages vary in size. 

In Tables I and II, we show the number of message digests 

that are computed for the SHA-3 Competition Test Suite, 

compared to our test suite. The numbers are given for one 

message digest size, and therefore need to be multiplied by 

four to fnd the total number of message digests per hash 

function implementation. 

Our test suite computes about 32 times more digests. 

However, our tests are roughly four times faster than the 

SHA-3 Competition Test Suite. The SHA-3 Competition Test 

Suite is dominated by the Extremely Long Message KAT. On 

the other hand our test suite’s most time-consuming part is 

the Bit-Contribution Test. It computes about 2 million digests 

with an average size of 1024 bits, whereas the Extremely 

Long Message KAT processes one message of 1 GiB, which 

corresponds to about 8 million blocks of 1024 bits. 

Furthermore, our test vectors are relatively short and inde-

pendent of each other and can thus be executed in parallel, 

which is not the case for the Extremely Long Message KAT 

and the Monte Carlo Test of the SHA-3 Competition Test 

Suite. The speed advantage in favor of our test suite compared 

to the SHA-3 Competition Test Suite therefore increases when 

more cores are available or when the testing is done simul-

taneously on multiple machines. In the following discussion, 

we explain our test suite for one digest size. These tests are 

performed for each of the four different digest sizes that are 

required for a valid SHA-3 submission: 224, 256, 384 and 512 
bits. 

B. Bit-Contribution Test 

The frst set of test cases is designed with respect to the 

second-preimage resistance mentioned in Section IV-A. We 

call this set of test cases Bit-Contribution Test. In this scenario, 

we take a fxed message m of size n and compute the message 

digest, H(m). We then systematically alter a single bit of m 
and compute H(m) again. We repeat the process for every 

single bit of m. As part of the test suite, we vary the size n 
from 0 to 2048. No bits are set in the degenerate case of n = 0, 

as this corresponds to the empty string. All these message 

digests are stored in a large table to then search for possible 

collisions. If no collisions are found, the Bit-Contribution Test 

is passed successfully. 

The idea for this test suite is based on the fact that any 

good hash function should have some contribution from each 

of the bits of a message m. Thus, any single bit altered in 

m should be refected in the digest H(m). We have combined 

this insight for test case designs with the additional expectation 

that the digests of two distinct messages should not collide, 

even if one message is only a single bit longer (or shorter) than 

the other message. This reasoning explains why all digests are 

inserted into the same large table (regardless of the length of 

the message), and why the zero-length string is included as 

well. 

A typical hash function will split a message into blocks 

of a particular size, after which processing is done on each 

block. Well-known hash functions such as MD5, SHA-1 and 

SHA-2 use block sizes of 512 or 1024 bits, and such block 

sizes are typical for many SHA-3 candidates as well. Our test 

suite thus stops at messages of 2048 bits, which is twice the 

largest commonly-used block size of 1024 bits. 

For messages of size 1, 2, . . ., 2048 bits, there are 2048 × 
(1 + 2048)/2 messages with exactly one bit set (one possible 

message of length one bit with one bit set, two possible 

messages of length two bits with one bit set, and so on). For 

the same range of messages, there are 2048 messages with all 

bits set to zero. We also add the empty string. This leads to 

2048 × (1 + 2048)/2 + 2048 + 1 ≈ 221 different hash values 

in our Bit-Contribution Test for each of the digests sizes of 

the IUT. 

C. Bit-Exclusion Test 

One of the requirements for the SHA-3 competition was 

that the candidate functions should properly handle mes-

sages whose sizes are not multiples of a byte. In other 

words, not only should the functions handle messages of size 

0, 8, 16, . . . 128, . . . , 512 bits etc.; they should also be able to 

handle message lengths of fractional byte sizes such as 5, 43 
or 509 bits. 

Even though a message size is specifed to be a fxed number 

of bits, i.e., not multiple of a byte, the SHA-3 Competition 

API [33] requires the message to be provided in an array 

of bytes. Furthermore, the C programming language does not 

prevent the programmer from going past the end of the array, 

which could result in an implementation that incorrectly reads 

past the last bit of the message. As the API clarifes that the 

data to be processed should be in the frst n bits, it is implied 

that the bit outside of the specifed message size n should be 

ignored. This is consistent with the function behavior property 

of Section IV-A. 

We therefore designed a set of test cases for various message 

lengths n, and then started altering bits outside of the specifed 

size; i.e., nth bit, (n+1)th bit, (n+2)th bit etc. (assuming bit 

indices start at 0), and computed the hash value for each of 

these messages. We then look for a case where the message 

digest changes due to a bit alteration beyond n, while the 
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message m within the specifed size of n bits remains the 

same. 

The idea behind the above scenario is that any bit outside 

the specifed size parameter should be excluded and should 

not contribute towards computing the digest. Consequently, 

perturbations beyond position n must not create a different 

digest for a particular message. As a concrete example, let 

us suppose that we provide a message of size 509. As the 

message is provided as a byte array, it is necessary for the 

calling application to store at least 512 bits of data. But the 

parameter to the Hash() function specifes that the digest 

H(m) is to be created based on the frst 509 bits. If we provide 

the same message with a bit fipped in the 509th position 

(assuming again that bit indices start at 0), this should not 

alter the message digest H(m). 
Our Bit-Exclusion Test suite computes 217 different mes-

sage digests for each digest size of the IUT. This number is 

derived from multiplying the range of message sizes (2048, 

namely from 0 to 2047 bits) and the number of bits outside the 

message size (which is 32 bits in our test), and then doubling 

this value as we always perform two hashes: one with, and 

one without the specifed bit set. 

D. Update Test 

For our third set of test cases, we took a close look at 

the SHA-3 Competition API specifcation [33] looking for 

potential metamorphic relations. The API specifed that each 

implementation will have to provide four different functions: 

Init(), Update(), Final() and Hash(). The specif-

cation of the Update() API is important; it states: 

This API uses a function called Update() to 

process data using the algorithm’s compression 

function. Whatever integral amount of data the 

Update() routine can process through the 

compression function is handled. Any remaining 

data must be stored for future processing. For 

example, SHA-1 has an internal structure of 512-bit 

data blocks. If the Update() function is called 

with 768-bits of data the frst 512-bits will be 

processed through the compression function (with 

appropriate updating of the chaining values) and 

256-bits will be retained for future processing. 

If 2048-bits of data were provided, all 2048-bits 

would be processed immediately. If incremental 

hashing is being performed, all calls to update will 

contain data lengths that are divisible by 8, except, 

possibly, the last call. 

HashReturn Update (hashState 
*state, const BitSequence *data, 
DataLength databitlen) 

Let us now look at the relevant sections of the Hash() 
function API specifcation, which states: 

This function shall utilize the previous three function 

calls, namely Init(), Update(), and Final(). 

Let us suppose we invoke the Hash() function of a 

candidate IUT with a message m of size n; and it produces the 

message digest y. Assume that we break the message m into 

multiple fractions such as m1, m2, . . ., mk where all sizes of 

any mi are multiples of 8 except possibly for mk. Let us sup-

pose an invocation of Init(), followed by Update(m1), 

Update(m2), . . ., Update(mk) and fnally ending with 
′ the invocation of Final() produces the message digest y . 

Following the API specifcation requirements, the two message 
′ digests created in the above described fashion, y and y must 

be the same. Note that this is actually again a manifestation 

of the function behavior property of Section IV-A. 

The API includes this incremental processing requirement 

as it is necessary for the processing of very large messages. 

Also, in the case of communication over a network, often a 

message may not be available as a whole as it is transferred 

through packets. A hash function implementation should not 

wait for the whole message to arrive completely before starting 

the computation of the hash value. 

Taking the above property into account, we designed our 

third set of test cases named Update Test. In this set of test 

cases we divide the message m into multiple fragments and 

invoke Init(), multiple Update(mi) and Final(). We 

compare the two message digests produced in this fashion. 

If they do not match, we have a scenario where the API 

requirements specifcation has not been met by the IUT. 

The frst and second fragments consist of message lengths 

ranging from 0 to 2047 bits, such that the frst fragment 

contains all lengths that are divisible by eight, and the second 

fragment contains all message lengths in the range. Two hashes 

are computed for each combination: one where the message 

is processed in two fragments, and another where the same 

message is processed in one fragment. Our Update Test suite 

therefore computes (2048/8) × 2048 × 2 = 220 different hash 

values for each digest size of the IUT. 

E. Combinatorial Update Test 

Our last set of test cases is a simple variation of the Update 

Test described above. It was developed by utilizing insights 

and methods from combinatorial testing. This approach in-

cludes two primary components: (1) design of an input model 

for partitioning the inputs into equivalence classes; and (2) 

use of a covering array or sequence covering array to map 

combinations of values from the input model into executable 

tests. A variety of methods can be used in developing the input 

model, including classifcation tree methods and traditional 

boundary value analysis. In this case we used the Update 

Test to select test variable values. The ACTS (Automated 

Combinatorial Testing for Software) tool [34] was used to 

produce a two-way covering array of the input values, and then 

each row of the covering array was converted to an executable 

test. This made possible a roughly 700:1 reduction in test set 

size, while still fnding all bugs discovered in the exhaustive 

testing discussed in Section IV-D. 

Combinatorial testing’s ability to reduce the test set size 

is based on the discovery that software faults “in the wild” 

involve only a few factors [14]. That is, most faults are trig-

gered by one or two factors interacting with each other, with 

progressively fewer faults getting discovered by three or more 

interacting factors. This empirical observation is sometimes 
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TABLE III 
INPUT MODEL FOR COVERING ARRAY TO DIVIDE THE MESSAGE INTO 

MULTIPLE FRAGMENTS 

Fragments Input values to be chosen for that fragment (in bits) 

Fragment 1 0, 8, 16, 24, 32, 30, 48, 56, 64 
Fragment 2 0, 8, 16, 24, 32, 30, 48, 56, 64 
Fragment 3 0, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 
Fragment 4 0, 1, . . ., 65, 127, 128, 129, 255, 256, 257, 511, 512, 513 

referred to as the interaction rule. So far no faults have been 

observed that involve more than six factors. Consequently, 

testing t-way combinations of variable values, for small t, can 

produce test sets that are as effective as exhaustive testing, but 

orders of magnitude smaller [35], [36]. 

To accomplish the judicious covering of the different mes-

sage fragments, we designed the input model shown in Ta-

ble III. In combinatorial testing parlance, the input model is a 

92101751 confguration (two variables of 9 values each, one 

variable of 10 values, and one variable of 75 values). From 

this model, we used the ACTS tool to generate a two-way 

covering array, which includes all two-way combinations of 

these values, containing 755 rows. Each row of the covering 

array is converted into a test, as described below. 

Let us consider a typical row in the two-way covering array 

created out of the input model shown in Table III (with input 

sizes given in bits): 64, 48, 512, 257. When we use this combi-

nation as a test case, we will compute Hash(m) on a message 

of size 881 bits. Then we will break that same message in four 

parts and invoke Init(), Update(m64), Update(m48), 

Update(m512), Update(m257), and Final(). Once we 

have the two message digests computed, we will compare them 

for equality. 

As mentioned above, this test suite is designed to detect the 

exact same types of failures as the test suite in Section IV-D; 

except with a tiny fraction of the number of test cases. Our 

test suite, in this case, computed 2 × 755 = 1510 message 

digests for each digest size of the IUT. In our experiments, 

we found that these 1510 digests detected the same faults as 

the Update Test of Section IV-D containing 1 048 576 digests. 

V. RESULTS 

Our four test suites discovered a number of failures for 

some of the test cases. We will list all IUTs that failed at 

least one test case in our test suites. Recall that there were 

64 candidates that were submitted to the competition. After 

initial requirements check in the submission package, 51 of the 

submissions were selected for the frst round. With multiple 

years of scrutiny, analyses, and feedback, 14 were chosen for 

the second round, out of which fve became fnalists. 

Through each of the rounds, the submitters were allowed to 

submit minor updates to their implementations. We considered 

all the 51+14+5=70 versions of the submissions. Additionally, 

some intermediate updates were submitted to the SHA-3 

competition, for example to provide an updated specifcation 

document or to fx a bug in the implementation. There were 16 

such updates with changes in the source code of the reference 

implementation, which brings our total number of IUTs to 86. 

Whenever possible, the compilation was performed on Win-

dows 7 using GCC version 5.4.0 under Cygwin. Compilation 

failed for the candidate ARIRANG because the reference 

implementation was incompatible with the SHA-3 Competi-

tion API; however this problem was fxed in an intermediate 

update. For all other submissions, we succeeded at compiling 

the reference implementations in our build environment. We 

consider a candidate implementation to have failed if one of 

our tests detects an inconsistency, if compilation fails due to 

an incompatibility with the API, or if the program crashes 

(e.g., due to a memory leak). 

Our results are shown in Tables IV and V. Out of the 86 

different candidate reference implementations, 19 failed the 

Bit-Contribution Test, 17 failed the Bit-Exclusion Test, and 

32 failed the Update Test. The Combinatorial Update Test 

discovered the same bugs as the Update Test, and is therefore 

not shown in the table. In Section VI, we will delve deeper 

into the nature of some of these bugs and why our approach 

was effective in revealing them. 

VI. SOME BUG DETAILS 

In this section we describe a few of the bugs found in some 

detail, in order to show why they escaped detection for many 

years. We focus mostly on bugs in the SHA-3 fnalists, but also 

consider some implementations of prominent frst-round and 

second-round submissions, in particular when they contained 

serious bugs that nevertheless remained undiscovered for a 

long time. 

A. BLAKE 

The hash function BLAKE [37] was submitted to the SHA-3 

competition by Aumasson et al., and was eventually selected 

as one of the fve fnalists. As mentioned earlier, there is an 

implementation bug that is still present today in the source 

code of all BLAKE implementations on the offcial SHA-3 

competition website [13], the frst of which appeared in 

2008. In 2015, the reference implementation on the BLAKE 

website [38] was updated with a rather cryptic statement 

saying that the update “fxed a bug that gave incorrect hashes 

in specifc use cases.” 

In a talk at TROOPERS 2016, Aumasson [39] confrmed 

that the bug remained unnoticed for seven years, after which 

it was “found by a careful user.” However, no information 

is provided on how the bug was found, and there is no 

information on the scenarios under which the bug could 

present itself, nor about the potential impact of the bug on 

real-world applications. 

In his talk, Aumasson explained that “test vectors are less 

useful” for detecting faults when the specifcation is not fol-

lowed. The SHA-3 Competition Test Suite has been ineffective 

in discovering this bug in BLAKE: it is present in all submitted 

implementations, and therefore all implementations (reference 

and optimized) produce the same results for those test vectors. 

We not only independently rediscovered this bug, but we 

also show that it can easily be found using our testing approach 

using only a small set of test vectors. In particular, the Update 

Test detects an inconsistency between processing the message 
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TABLE IV 
‡OUR TEST RESULTS FOR ALL SHA-3 COMPETITION REFERENCE IMPLEMENTATIONS

Name of the Submission 
Bit-Contribution 

Test 
Bit-Exclusion 

Test 
Update 

Test 
Summary 

Abacus passed failed passed failed 

ARIRANG failed failed failed failed 

ARIRANG Update passed passed passed passed 
AURORA passed passed passed passed 
BLAKE failed passed failed failed 

BLAKE Round 2 passed passed failed failed 

BLAKE Final Round passed passed failed failed 

Blender failed passed failed failed 

Blue Midnight Wish passed passed failed failed 

Blue Midnight Wish Round 2 passed passed failed failed 

BOOLE passed passed passed passed 
Cheetah failed passed failed failed 

CHI passed passed passed passed 
CHI Update passed passed passed passed 
CRUNCH failed failed failed failed 

CRUNCH Update passed passed failed failed 

CubeHash passed passed passed passed 
CubeHash Round 2 passed passed passed passed 
DCH passed passed passed passed 
Dynamic SHA passed failed passed failed 

Dynamic SHA2 passed failed passed failed 

ECHO passed passed passed passed 
ECHO Round 2 passed passed passed passed 
ECOH passed passed failed failed 

EDON-R passed passed failed failed 
EDON-R Update passed passed failed failed 

EnRUPT passed passed failed failed 

ESSENCE passed passed passed passed 
FSB passed passed passed passed 
Fugue failed failed passed failed 

Fugue Round 2 failed failed passed failed 

Fugue Round 2 Update passed failed passed failed 

Grøstl passed passed passed passed 
Grøstl Round 2 passed passed passed passed 
Grøstl Final Round passed passed passed passed 
Hamsi failed passed failed failed 

Hamsi Update failed passed failed failed 

Hamsi Round 2 passed passed failed failed 

JH failed failed failed failed 

JH Update passed failed failed failed 

JH Round 2 passed failed failed failed 

JH Final Round passed failed passed failed 

Keccak passed passed passed passed 
Keccak Round 2 passed passed passed passed 
Keccak Final Round passed passed passed passed 
Khichidi-1 failed passed passed failed 

LANE failed passed failed failed 

Lesamnta passed passed passed passed 
Luffa passed passed passed passed 
Luffa Round 2 passed passed passed passed 
LUX passed passed failed failed 

MCSSHA3 passed passed passed passed 
MD6 passed passed passed passed 
MD6 Update passed passed passed passed 
MeshHash passed passed passed passed 
NaSHA failed failed failed failed 

NaSHA Update failed failed failed failed 

SANDstorm passed passed passed passed 
SANDstorm Update passed passed passed passed 
Sarmal passed passed passed passed 
Sgàil passed passed passed passed 
Shabal passed passed passed passed 
Shabal Round 2 passed passed passed passed 
SHAMATA passed passed failed failed 

SHAvite-3 passed passed failed failed 

SHAvite-3 Update passed passed failed failed 

SHAvite-3 Round 2 passed passed passed passed 
SHAvite-3 Round 2 Update passed passed passed passed 
SIMD passed passed passed passed 

‡ The results of the Combinatorial Update Test are identical to those of the Update Test. 
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TABLE V 
‡CONTINUATION OF TABLE IV: OUR TEST RESULTS FOR ALL SHA-3 COMPETITION REFERENCE IMPLEMENTATIONS

Name of the Submission 
Bit-Contribution 

Test 
Bit-Exclusion 

Test 
Update 

Test 
Summary 

SIMD Update passed passed passed passed 
SIMD Round 2 passed passed passed passed 
Skein passed passed passed passed 
Skein Update passed passed passed passed 
Skein Round 2 passed passed passed passed 
Skein Final Round passed passed passed passed 
Spectral Hash failed passed failed failed 

Spectral Hash Update failed passed failed failed 

Stream Hash failed failed passed failed 

SWIFFTX passed passed passed passed 
Tangle passed passed passed passed 
TIB3 passed passed passed passed 
Twister failed passed failed failed 

Vortex failed failed failed failed 

Vortex Update passed failed failed failed 

WaMM passed passed passed passed 
Waterfall passed passed passed passed 

Total Failed 19 17 32 41 

‡ The results of the Combinatorial Update Test are identical to those of the Update Test. 

at once using Hash(), and processing it in variable-sized 

blocks using Init(), several calls to Update(), and then 

Final() to produce the message digest. 

This BLAKE bug affects all output sizes of the hash 

function. The Update32() function of the reference and 

optimized implementations contains the following incorrect 

statement: 

if( left && ( ((databitlen >> 3) & 0x3F) 
>= fill ) ) { 

The BLAKE design team proposes to fx the bug by 

omitting the & 0x3F, thereby correcting the statement as 

follows: 

if( left && ( ((databitlen >> 3) ) 
>= fill ) ) { 

The 224-bit and 256-bit output sizes of BLAKE use the 

Update32() function to process the message in blocks of 

64 bytes. As there are 23 = 8 bits in one byte, the shift 

operation (databitlen >> 3) represents the number of 

complete bytes of the message data that is to be processed by 

the Update32() function. Followed by & 0x3F, we have 

the number of complete bytes modulo the block size of 64 

bytes. 

In Update64(), which is used to provide the 384-bit and 

512-bit output sizes of BLAKE, the message is processed in 

blocks of 128 bytes. Here, we fnd the exact same bug in 

the reference and optimized implementations, except that the 

corresponding statement contains 0x7F instead of 0x3F. 

It seems unlikely that the & 0x3F and & 0x7F in BLAKE 

would raise suspicion during a careful line-by-line inspection 

of the source code. In fact, we could even say that the bug 

is not in these particular lines of code. Rather, the bug is due 

to the interaction with other parts of the code, which create a 

specifc corner case that is not handled correctly. 

To see this, let us describe an example input scenario where 

the bug manifests itself. First, assume that Update() is 

called on one byte. For a 224-bit or 256-bit output value, the 

call to Update() is passed on to Update32(). As one 

byte is clearly less than one complete block of 64 bytes, it 

will be necessary to store this byte in a buffer. Then, assume 

that Update32() is called again, this time on a full block 

of 64 bytes. 

The variable left in the BLAKE implementation keeps 

track of the number of bytes in this buffer, which in our case 

is one. The “unused” bytes in the buffer are stored in fill, 

which is set to 64 - left, or 63 in our example. Given 

that 64 & 0x3F equals zero, which is smaller than 63, the 

if-clause is not executed. 

Right after the if-clause, there is a while( databitlen 
>= 512 ) that will evaluate to true, as we process a block 

of 64 bytes, which is 512 bits. In this specifc case, a 64-

byte block is processed that contains the 64-byte input for 

the current call of Update32(), without taking the byte in 

the buffer into account. In fact, the byte in the buffer will 

be “forgotten,” as the variable state->datalen that keeps 

track of the number of bytes in the buffer is set to 0 at the 

end of Update32(). 

This creates an inconsistency with a single call to 

Update32() with a corresponding 65-byte message, and 

therefore results in an incorrect implementation. But the 

problem is actually worse, as we can now trivially create a 

second preimage: given one message and its corresponding 

hash value, it is easy to produce another message (processed 

using a specifc sequence of Update() calls) that results in 

the same hash value. 

To see this, recall from our example that the frst call to 

Update32() using a one-byte message has no effect when 

it is followed by a second call to Update32() on a 64-byte 

block. Therefore, we can omit this frst call Update32() 
without affecting the internal state of the hash function. When 

the hash value is calculated using Final(), it will be the 

same, regardless of whether the one-byte call to Update32() 
was performed. 
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B. LANE 

The hash function LANE was designed by Indesteege [40]. 

It was selected for the frst round of the SHA-3 competition, 

but did not advance to the second round. We independently 

rediscovered a bug in all implementations of LANE (refer-

ence and optimized) that are available on the offcial SHA-3 

competition website [13]. 

In 2009, Cornel Reuber informed the LANE designer of 

this particular bug [41]. Afterwards, the implementation on 

the LANE website [42] was updated, without mentioning the 

bug on the LANE website, the updated source code, or the 

supporting documentation. No public announcement was made 

either, and the LANE implementation on the SHA-3 website 

currently still contains this bug. For this reason, we expect that 

no more than a handful of people are currently aware that the 

implementation on the offcial SHA-3 website contains this 

particular bug. 

This bug in the LANE implementation is extremely dam-

aging, because it will ensure that the same hash value will be 

returned for all messages of a particular length, regardless of 

the content of the message. This makes it trivial to construct 

second preimages for the implementation of the hash function: 

for the problematic message lengths, any message of a partic-

ular length can be replaced by another message of the same 

length, without affecting the hash value. 

We easily rediscovered the bug using the Bit-Contribution 

Test, which fips the input bits of a message and checks if 

the output hash value is altered. We note that for LANE, all 

hash outputs are distinct in the SHA-3 Competition Test Suite. 

This is because the those KAT test vectors only contain one 

message of any particular length. The MCT contain several 

hash values for 1024-bit messages, however the bug that we 

will describe is not present for this message length. 

For now, let us consider LANE with 224-bit and 256-bit 

hash output sizes. A similar bug will appear for the 384-bit 

and 512-bit hash outputs, as we will briefy describe later. 

The message in LANE is processed in blocks of BLOCKSIZE 
bytes. For 224-bit and 256-bit outputs, BLOCKSIZE equals 

64. The bug that we will now describe, appears for messages 

whose length (in bits) is 505 to 511 modulo 512. Later, we 

will revisit the 384-bit and 512-bit output sizes, and describe 

a bug for messages of length (in bits) 1017 to 1023 modulo 

1024. 

The bug appears in the following line: 

const DataLength n =(((state->databitcount 
- 1) >> 3) + 1) & 0x3f; 

In the updated implementation on the LANE website, the 

bug is fxed as follows: 

const DataLength n =(((state->databitcount 
& 0x1ff) - 1) >> 3) + 1; 

As messages are processed in blocks of BLOCKSIZE bytes, 

the hash function implementation maintains a buffer to store 

incomplete blocks that still need to be processed. The variable 

n is intended to compute the number of bytes in this buffer. 

When state->databitcount is 505 to 511 modulo 

512, there are BLOCKSIZE bytes in the buffer. The incorrect 

implementation, however, returns 0 instead of BLOCKSIZE. 

For all other values of state->databitcount, the old 

and the updated implementation give the same value for n. 

Now, let us see what happens in the padding routine, which 

zeroes out the last BLOCKSIZE-n bytes of the buffer: 

memset(state->buffer + n, 0, BLOCKSIZE-n); 

For the problematic message lengths, this padding routine 

should not overwrite any data in the buffer. However, the 

incorrect implementation zeroes out the entire buffer. As a 

result of this, the hash value will be independent of the content 

of the message for these particular message lengths. 

When a 384-bit or 512-bit hash output is requested, the 

problematic code is also present, however with & 0x7f 
instead of & 0x3f. For these hash output sizes, every message 

of length 1017 to 1023 modulo 1024 will return the same hash 

value. 

We note that fxing this particular bug is not suffcient 

to guarantee that the implementation is correct. In fact, our 

Update Test found that the latest reference implementation of 

LANE contains another bug, which is currently still present 

on the SHA-3 competition website as well as on the designer’s 

website. 

C. Fugue 

Fugue [43] was designed by Halevi, Hall and Jutla of IBM 

T.J. Watson Research Center. It was submitted to the SHA-3 

competition, where it became one of the fourteen candidates 

that advanced to the second round in July 2009. 

In October 2009, Jutla made an announcement to the offcial 

SHA-3 competition mailing list, where he pointed out that 

Stefan Tillich discovered a bug in the Fugue implementation. 

In particular, for all messages for which the length (in bits) is 

not divisible by eight, the implementation erroneously zeroes 

out the last incomplete byte. Jutla clarifes that the bug is 

present in all implementations. 

This bug makes it trivial to generate second preimages 

for all Fugue implementations. In particular, if two messages 

contain a difference in the last incomplete byte, the difference 

will be zeroed out, and the hash output will be identical. 

We rediscovered this bug using the Bit-Contribution Test, 

which detects whether a difference in the last incomplete byte 

affects the hash output. The KATs that were submitted by the 

Fugue team to NIST were wrong, but they do not contain any 

collisions. This is perhaps not so surprising, as the SHA-3 

Competition KATs do not contain more than one message of 

a particular length. 

The bug is present in the following line in 

SHA3api_ref.c: 

memset((uint8*)state->Partial 
+ ((state->TotalBits&31)/8),0,need/8); 

When the number of bits in a message is not a multiple 

of eight, the number of bytes should be rounded up, instead 

of rounded down. This bug is corrected in the updated Fugue 

implementation as follows: 

memset((uint8*)state->Partial 
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+ (((state->TotalBits&31)+7)/8),0,need/8); 

Note that our Bit-Exclusion Test discovered another bug in 

the latest Fugue implementation, which will not be discussed 

in this paper. 

D. Hamsi 

Hamsi [44] is a hash function designed by Kuc¨ ¸ ük that 

advanced to the second round of the SHA-3 competition. 

All Hamsi implementations that were submitted to the frst 

round of the SHA-3 competition contained a very serious bug 

for the 384-bit and 512-bit hash outputs, due to the fact that 

only half of the message bits were processed. Using the Update 

Test, this bug can easily be discovered. Note that this particular 

Hamsi bug was already pointed out by Mouha [45], however 

he performed no systematic analysis of unused message bits 

for the SHA-3 candidate implementations. Subsequently, the 

designer fxed this bug in the second-round implementation. 

There are still bugs present in the latest second-round 

reference implementation on the SHA-3 competition website. 

To the best of our knowledge, this paper is the frst to explain 

these bugs. The bugs are related to the implementation of 

Update(), and were caught using the Update Test. 

In Hamsi, messages are processed in blocks of 

s_blocksize bits, which is 32 or 64 depending on size 

of the hash output. Incomplete blocks are stored in a buffer, 

and the Hamsi implementation uses state->leftbits 
to keep track of the number of bits in this buffer between 

subsequent calls to Update(). The bits2hash variable 

is initially the number of bits to be processed by the call to 

Update(), but this value is decreased when message bits 

are processed. 

We found that there are at least four different bugs in the 

second-round implementation of Update(), that all need to 

be fxed in order to pass the Update Test: 

• The state->leftbits = bits2hash statement at 

the end of the function is incorrect. For a zero-byte call to 

Update(), bits2hash would then be set to zero. But in 

that case, any data that might be in the buffer is discarded. 

The correct statement should be state->leftbits 
+= bits2hash. 

• A state->leftbits += bits2hash occurs ear-

lier in the code of Update(), but the bits2hash 
value is not set to zero. This leads to an inconsistency: in 

this code, the bits2hash bits have already been pro-

cessed (by moving them to the buffer), so bits2hash 
should be set to zero. 

• After processing a full block of data, there is a specifc 

case in which internal counter state->counter is not 

updated. This leads to an incorrect calculation of the 

length of the message (which is used in the padding), 

and therefore an incorrect hash output. 

• When data is copied to the buffer, the size of 

a block is expressed in bits instead of bytes. 

Therefore, s_blocksize should be replaced by 

s_blocksize/8. This causes a write to an array index 

that is out of bounds. This bug could have been detected 

by memory error detection tools (such as those used in 

the Fortify Report [31]). However, the offending code 

is not accessed by the SHA-3 Competition Test Suite, in 

which case it would not be detected by dynamic program 

analysis tools. 

E. JH 

The hash function JH [46] was designed by Hongjun Wu, 

and was selected as one of the fve fnalists of the SHA-3 

competition. We have found the presence of a bug in all 

submitted versions of JH to the competition. 

For messages that are not a multiple of eight bits, all 

JH implementations read bits outside of the bounds of the 

message. We detected this bug using the Bit-Exclusion Test, 

which fips input bits that are beyond the boundary of the 

message, and detects if the corresponding hash value has 

changed. 

For all JH implementations (reference and optimized) sub-

mitted to each round of the competition, the padding does not 

follow the JH specifcation. According to the specifcation, the 

bit ‘1’ should be appended to the end of the message, followed 

by a specifc number of zero bits. In the implementation of 

Final(), the bit ‘1’ is added, but no zero bits are added in 

case of a message that is not a multiple of eight bits. Instead, 

the implementation will use the input bits beyond the boundary 

of the message for the remainder of this byte. 

For the fnal-round submission of JH, a source code com-

ment was added inside the Update() function, which indi-

cates that the author is aware of this issue. More specifcally, 

it states: “assume that – if part of the last byte is not part of 

the message, then that part consists of 0 bits.” This assumption 

violates the SHA-3 Competition API specifcation, which does 

not assume that bits outside of the message are set to zero. 

No mention of this unexpected behavior is made in the 

change-log or the supporting documentation. Still, this behav-

ior should clearly be considered to be a bug: input bits that 

are not part of the message have an effect on the fnal hash 

value, which means that the implementation is not consistent 

with the SHA-3 Competition API specifcation. 

Interestingly, we found another bug in all frst-round and 

second-round implementations of JH, that was only fxed in 

the fnal-round implementation. Before the fnal round, the 

implementation only supported calls to Update() that are 

multiples of 512 bits, except for the last call to Update(). 

The functionality to handle other combinations of calls to 

Update() was not implemented. 

In the SHA-3 Competition KATs, only one call to 

Update() is performed. The MCTs perform many calls to 

Update(), but each call consists of a message of 1024 

bits. For this reason, the bug was not revealed in the SHA-3 

Competition Test Suite, although our Update Test detects it 

easily. Note that it is unlikely to detect this bug using test 

cases that are based only on code coverage criteria. Coverage 

analysis helps to detect source code that is unreachable with 

certain test vectors, but it cannot be used to detect missing 

code. 
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VII. CODE COVERAGE ANALYSIS 

To the best of our knowledge, there have not been any 

efforts to analyze the SHA-3 candidate implementations using 

code coverage analysis. The goal of code coverage analysis 

is to fnd areas of a program that are not exercised by 

the test vectors, and the creation of additional test cases 

to increase coverage, and thus to strengthen the test suite. 

Code coverage analysis is essential in verifcation of most 

safety or security-critical software, but may not be effective 

for some aspects of cryptographic algorithms. As noted by 

Langley [47]: “cryptographic functions result in abnormally 

straight line code, it’s common for a typical input to exercise 

every instruction.” 

Nevertheless, we have identifed an area where the code 

coverage is meaningful and could be improved compared to 

the SHA-3 Competition Test Suite, at least for some SHA-3 

candidate implementations. The SHA-3 Competition testing 

approach does not always access all instructions, in particular 

when the API is used to process a message “on-the-fy” in 

several chunks, instead of providing the entire message at 

once. 

Using GCC in combination with its gcov tool, we computed 

the statement coverage and branch coverage of the SHA-3 

Competition Test Suite for the SHA-3 fnalists, and compared 

them to the coverage of our Update Test. 

As shown in Table VI, for Grøstl, JH and Skein, the 

coverage of our Update Test is slightly higher than that of 

the SHA-3 Competition Test Suite. This is because our test 

reaches an additional corner case related to the processing of 

a message in chunks using multiple calls to Update(). For 

Keccak, the branch and statement coverage is the same for 

both test suites. Interestingly, for BLAKE, our tests cover one 

statement less, related to the handling of an overfow in a 

32-bit addition. This line is only executed when a very large 

message is processed, which does not happen in our test suite. 

NIST encouraged submissions that provide additional func-

tionalities, e.g., having not only a message input, but also an 

additional salt or key input. The C functions that implement 

such features are not part of the API, and are therefore not 

reached by the SHA-3 Competition Test Suite. Furthermore, 

some submissions support additional digest sizes (besides the 

four required ones), or messages that are longer than 264 − 1 
bits. To fnish our tests in a reasonable time, we turned on 

compiler optimizations (using the command-line fag -O3), 

which resulted in unreachable statements when functions are 

inlined. These are the main reasons why some source code 

fles in Table VI have a relatively low coverage. Nevertheless, 

we found that SHA-3 candidates typically achieve complete 

code coverage of all API-required functionality, as expected 

for cryptographic functions. 

VIII. DISCUSSION 

We have gained some important insights from our test suite 

design, experiment results, and from the detailed investigations 

of some of the bugs in the implementations. Ensuring the 

correctness of cryptographic algorithm implementations is of 

crucial importance to the security of information systems. To 

accomplish this goal for NIST-recommended cryptographic 

algorithms, the NIST Cryptographic Algorithm Validation Pro-

gram (CAVP) has been established [27]. Our objective was to 

determine if we can improve those tests by applying different 

methods, while ensuring that the new tests would be practical 

in terms of test development and execution resources. We 

found that we could produce signifcant improvements without 

requiring a prohibitive amount of time for test development, 

and the resulting test set size is practical for real-world use. 

Note that metamorphic testing has been shown to detect bugs, 

even in well-tested and mature software systems, because it is 

based on a “diverse” perspective that is not previously used 

by other testing techniques [48]. 

Another important goal of this effort was to provide a 

systematic approach to test cryptographic algorithm imple-

mentations, i.e., scientifc test and analysis techniques, which 

can be defned as “effcient, rigorous test strategies that will 

yield defensible results [49].” In practice, this can be achieved 

through approaches such as statistical testing and design of ex-

periments methods. Cryptographic software, particularly hash 

algorithms, tends to consist of many bit manipulations. As 

discussed earlier, measurable test criteria such as statement or 

branch coverage do not provide much assurance for the type of 

software we tested, as typical cryptographic implementations 

have full branch coverage of the functionality that is required 

by the API. Furthermore, due to the lack of a test oracle, the 

KATs and MCTs in the SHA-3 Competition Test Suite failed 

to detect the bugs that are pointed out in this paper. 

Despite the comprehensive SHA-3 Competition Test Suite, 

it did not include certain input combinations that are necessary 

to reveal bugs using our testing methodology. In particular, 

the SHA-3 Competition Test Suite either only performs one 

call to Hash() to process an entire message in the KATs, or 

processes a message in several calls to Update(), each with 

1024 bits of data, in the MCTs. In our Update Test, we cover 

a wide range of scenarios where a message is processed in 

chunks, combined with the metamorphic testing approach to 

check for consistency. Unlike the SHA-3 Competition KATs, 

we also test more than one message of a particular length, 

which allows additional bugs to be found. 

In our Bit-Contribution Test, we consider all messages of a 

particular size that have exactly one bit set (as in SP 500-20 

for DES, see Section III), but additionally we also include the 

all-zero vector. When the all-zero vector is present, it becomes 

possible to compare the hash values of two messages that differ 

in one bit, and confrm that the corresponding hash value is 

changed. 

We also introduce differences in the message buffer beyond 

the bits that are reserved for the message in the Bit-Exclusion 

Test, in order to check that the corresponding hash values are 

not changed. The use of memory error detection tools can 

detect out-of-bound byte reads, but they require access to the 

source code which may not be available. Furthermore, the Bit-

Exclusion Test also checks if the hash value is altered through 

out-of-bound bit reads inside the last byte, an API-specifc 

issue that cannot be revealed by memory error detection tools. 

The strategy of the SHA-3 Competition Test Suite was bor-

rowed from the CAVP for SHA-2. As explained in Section III, 
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TABLE VI 
§STATEMENT AND BRANCH COVERAGE OF THE SHA-3 COMPETITION TEST SUITE, COMPARED TO OUR UPDATE TEST SUITE

Name of the SHA-3 Finalist 
Statement Coverage 

Number of SHA-3 Test Update Test 
Statements Coverage Coverage 

Branch Coverage 
Number of SHA-3 Test Update Test 
Branches Coverage Coverage 

BLAKE 
⊢ blake_ref.c 348 96.26% 95.98% 116 92.24% 91.38% 

Grøstl 
⊢ Groestl-ref.c 152 94.08% 96.05% 157 89.17% 91.72% 

JH 
⊢ jh_ref.h 144 93.75% 100.00% 81 87.65% 97.53% 

Keccak 
⊢ KeccakF-1600-reference.c 127 72.44% 72.44% 60 73.33% 73.33% 
⊢ KeccakNISTInterface.c 30 93.33% 93.33% 18 66.67% 66.67% 
⊢ KeccakSponge.c 106 82.08% 82.08% 78 66.67% 66.67% 

Skein 
⊢ SHA3api_ref.c 38 68.42% 68.42% 18 38.89% 47.06% 
⊢ skein.c 270 20.74% 22.22% 102 19.61% 20.59% 
⊢ skein_block.c 183 30.60% 30.60% 42 33.33% 33.33% 

§ Several implementations have functions that are not part of the API, and are therefore not reached by the test suites. 

this test suite was designed to ensure structural coverage of 

any table that may be used in the implementation by exercising 

every table entry. We note that such structural coverage would 

still be ineffective for this type of programs due to the non-

existence of a test oracle. Simply observing a message digest 

or hash value produced by a test vector does not provide any 

information about its correctness. 

Our intention is not to criticize the existing approaches 

to testing cryptographic functions, but to point out their 

shortcomings and suggest several areas of improvement. Our 

approach provides insights into how to design highly effec-

tive test suites for testing cryptographic algorithms, and to 

signifcantly reduce the number of required test cases without 

sacrifcing their fault-fnding effectiveness. 

An interesting topic for future work is to extend our testing 

approach to other cryptographic algorithms. In general, when 

certain input bits must have a high probability to affect 

certain output bits, the Bit-Contribution Test may be used. 

When certain input bits should not affect the output, the 

Bit-Exclusion Test may be considered. The Update Test can 

be useful to test the processing of a message in multiple 

fragments. Note that domain-specifc knowledge about crypto-

graphic algorithms is required to develop a testing approach, 

and that the specifc customization and the effectiveness of the 

approach is dependent on the specifcation of that particular 

algorithm and the properties that may be used to develop the 

tests. 

IX. CONCLUSIONS 

Based on the framework of metamorphic testing, we 

have described a systematic method for developing tests for 

cryptographic hash function implementations, and applied this 

method to test all software implementations submitted to 

the NIST SHA-3 competition. The test development method 

begins with the main cryptographic properties that hash func-

tions should satisfy: (second-)preimage resistance, collision 

resistance, and function behavior. We devise test cases that 

try to violate these properties for the implementations of these 

hash functions. 

To assess the effectiveness of our tests in discovering bugs, 

we revisited the NIST SHA-3 competition. NIST determined 

that 51 submissions to the SHA-3 competition met the min-

imum submission requirements, and made them available 

on-line. In spite of the initial selection and testing by the 

submitters and by NIST, we have found bugs in 25 out of 

the 51 initial reference implementations. The percentage of 

bugs that we found is more or less consistent for the updated 

reference implementations, where we have found bugs in 16 

out of 35 updated implementations. 

One of the primary strengths of our approach is that it 

uses a practical number of test cases, yet detects complex 

faws that were either previously unknown or only discovered 

years after release. Our tests are also roughly four times faster 

than the SHA-3 Competition Test Suite on a single core, even 

though we compute a larger number of hash values. This is 

primarily due to the fact that our test cases involve relatively 

short messages as input. Furthermore, unlike some traditional 

test suites developed for verifying cryptographic functions, 

our test cases are independent of each other and thus can 

easily be run in parallel. Finally, our tests can also be applied 

in the practically-relevant scenario where the source code or 

hardware description of the implementations are not available. 
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