
1

Finding Bugs in Cryptographic Hash Function

Implementations
Nicky Mouha, Mohammad S Raunak, D. Richard Kuhn, and Raghu Kacker

Abstract—Cryptographic hash functions are security-critical
algorithms with many practical applications, notably in digital
signatures. Developing an approach to test them can be par-
ticularly diffcult, and bugs can remain unnoticed for many
years. We revisit the NIST hash function competition, which was
used to develop the SHA-3 standard, and apply a new testing
strategy to all available reference implementations. Motivated
by the cryptographic properties that a hash function should
satisfy, we develop four tests. The Bit-Contribution Test checks
if changes in the message affect the hash value, and the Bit-
Exclusion Test checks that changes beyond the last message bit
leave the hash value unchanged. We develop the Update Test
to verify that messages are processed correctly in chunks, and
then use combinatorial testing methods to reduce the test set size
by several orders of magnitude while retaining the same fault-
detection capability. Our tests detect bugs in 41 of the 86 reference
implementations submitted to the SHA-3 competition, including
the rediscovery of a bug in all submitted implementations of
the SHA-3 fnalist BLAKE. This bug remained undiscovered for
seven years, and is particularly serious because it provides a
simple strategy to modify the message without changing the hash
value returned by the implementation. We detect these bugs using
a fully-automated testing approach.

Index Terms—Cryptographic Algorithm, Cryptographic Hash
Function, Combinatorial Testing, Metamorphic Testing, SHA-3
Competition.

I. INTRODUCTION

A (cryptographic) hash function transforms a message of a

variable length into a fxed-length hash value. Among other

properties, it should be diffcult to invert the function or to

fnd two messages with the same hash value (a collision).

One of the earliest uses of hash functions was to create

small, fxed-sized, collision-resistant message digests (MDs)

that can stand in place of large variable-length messages in

digital signature schemes. Later, these functions started to be

routinely used in other applications including message au-

thentication codes, pseudorandom bit generation, and crypto-

graphic key derivation. Starting from the early 1990s, a series

of related hash functions were developed including MD4,

MD5, SHA-0, SHA-1, and the SHA-2 family. The SHA-2

family, defned in Federal Information Processing Standard

(FIPS) publication 180-4 [1], consists of four algorithms that

produce MDs of lengths 224, 256, 384, and 512 bits. Over the

years, many weaknesses [2], [3] of these functions have been

discovered and attacks have been found that violate expected

hash function security properties. Although no attack is known

N. Mouha, R. Kuhn and R. Kacker are with the National Institute of
Standards and Technology. E-mail: nicky.mouha@nist.gov

M. Raunak is with the Department of Computer Science, Loyola University
Maryland, Baltimore, MD 21210. E-mail: raunak@loyola.edu

on the SHA-2 family, these hash functions are in the same

general family, and could potentially be attacked with similar

techniques.

In 2007, the National Institute of Standards and Technology

(NIST) released a Call for Submissions [4] to develop the new

SHA-3 standard through a public competition. The intention

was to specify an unclassifed, publicly disclosed algorithm, to

be available worldwide without royalties or other intellectual

property restrictions. To allow the direct substitution of the

SHA-2 family of algorithms, the SHA-3 submissions were

required to provide the same four message digest lengths.

Chosen through a rigorous open process that spanned eight

years, SHA-3 became the frst hash function standard that

resulted from a competition organized by NIST. Out of the 64

initial submissions to the competition, 51 were selected for the

frst round, and were made publicly available. All submissions

had to provide hash values, also known as message digests,

for a NIST-provided set of messages (known as ‘test vectors’),

which we will refer to as the “SHA-3 Competition Test Suite.”

Over a period of fve years, these submitted algorithms and

implementations were analyzed in multiple rounds. Out of the

51 frst-round candidates, 14 made it to the second round, and

fve were selected for the third and fnal round. At the end of

the process, the algorithm Keccak was selected as the winner,

and subsequently became the SHA-3 standard [5].

The implementations of hash functions are vulnerable to

implementation faults, also known as bugs. Designing test

cases with high fault-fnding effectiveness for hash functions

is particularly diffcult, because these functions fall into the

category commonly known as “non-testable” programs [6],

i.e., those lacking a test oracle to check their correctness.

To alleviate the test oracle problem [7], we will develop

a systematic testing methodology, which can be considered

within the framework of metamorphic testing [8]–[11]. Meta-

morphic testing relies on identifying some relations in the

underlying algorithm that allow two test cases to work as

pseudo-oracles of each other. Given a particular test case t1 for

a program p, a metamorphic relation would allow selection of

another test case t2 such that the outputs produced by the two

tests: p(t1) and p(t2) can validate each other. All the tests that

we propose in this paper will make use of such a metamorphic

relation: either equality (the hash values must be the same) or

inequality (the hash values must be different).

Traditional test selection strategies may use source code

coverage information such as branch coverage or condition

coverage. These strategies may not be effective in discovering

certain types of bugs related to bit manipulations, which

are very common in hash functions. Randomly selected test

mailto:raunak@loyola.edu
mailto:nicky.mouha@nist.gov

2

cases, on the other hand, are likely to be weak in their fault

discovering ability, because random generation of test values

makes it highly likely that some special combinations of inputs

will be missed.

In this paper, we will only focus on hash function imple-

mentations that follow the SHA-3 Competition API. Other

algorithms and APIs are outside the scope of the research

presented here. Furthermore, this work focuses only on the

reference implementations of the SHA-3 candidates. Reference

implementations are often the basis of other implementations,

and it is reasonable to expect that the reference implemen-

tation can be used without modifcations. Bugs in reference

implementations can have a serious impact for practical appli-

cations: for example, a bug in the RSA reference implemen-

tation [12] affected several commercial and non-commercial

SSH implementations in 1999. Optimized implementations

often contain sections that are specifc to a particular compiler,

platform, or processor. As we restrict ourselves to a single

build environment in this paper, the systematic testing of

optimized implementations is out of scope, but nevertheless

a very interesting topic for future work.

Between the rounds of the SHA-3 competition, the sub-

mitters were able to update their submissions. We took all

submissions and their updates from the NIST website [13],

a total of 86 implementations, and ran our tests on them.

Through the selection of test cases that specifcally target

potential vulnerabilities in the implementations, we discovered

a large number of bugs, many of which have never been

discovered before, or remained hidden for years.

We designed four sets of test cases, two of which are

simple variations of each other, to investigate the effectiveness

of better partitioning of the message space combined with a

combinatorial approach in discovering bugs [14]. Our test that

checks whether input differences affect the hash value, found

errors in 19 out of 86 implementations. We also found 32

implementations that incorrectly handle the processing of a

message in chunks. Lastly, 17 implementations were found to

have bugs where the hash value is not uniquely determined by

the message. We should note that none of these 68 bugs were

discovered by the SHA-3 Competition Test Suite.

A. Outline

The rest of the paper is organized as follows. After dis-

cussing related work and the limitations of existing approaches

in Section II, we explain the background of hash function

standardization and implementation validation in Section III.

We introduce our new testing methods in Section IV, and apply

them to all reference implementations submitted to the SHA-3

competition in Section V. We explore some bugs in detail in

Section VI, in order to give more intuition about the bugs in

the implementations, and the diffculty in detecting them at

an early stage using traditional methods. In Section VII, we

perform a code coverage analysis of various test suites. We

discuss our results in Section VIII, and conclude the paper in

Section IX.

II. RELATED WORK AND TRADITIONAL APPROACHES

A. Related Work

Implementations of cryptographic algorithms have been

known to be a signifcant source of vulnerabilities for some

time. Anderson [15], writing on why cryptosystems fail, cites

a “senior NSA scientist” in 1993 as saying that “the vast ma-

jority of security failures occur at the level of implementation

detail.” Despite recognition of problems with many implemen-

tations, relatively little research has been done on systematic

test methods tailored to cryptographic implementations. Most

testing in the feld follows established practices for general

software testing, but cryptographic software may have several

bit operations expressed in a few lines of code, with relatively

few conditionals. As we discuss in this paper, cryptographic

algorithms typically have characteristics quite different from

other types of software, such that traditional test methods do

not apply well.

Braga and Dahab [16] note the prevalence of failures in

cryptographic software, and the lack of widely accepted meth-

ods and tools to prevent such bugs. They also note that unique

aspects of cryptographic code make ordinary static analysis

tools less effective, and mention the need for functional testing.

Nevertheless, their survey did not fnd systematic methods for

deriving such tests.

A 2014 study [17] investigated the distribution of faws in

cryptographic software implementations, fnding 269 reported

vulnerabilities, of which 223 were found in applications, 39 in

protocols, and 7 in cryptographic primitives. The same study

reviewed open problems in testing cryptographic primitives

and included an example found in a popular algorithm im-

plementation, noting that conventional verifcation and testing

methods do not address many low level operations used in

cryptographic software and do not scale adequately.

Among the approaches described in this paper, combi-

natorial testing has been applied to cryptographic functions

for detection of Trojan Horse malware [18] and for appli-

cations using cryptographic library functions [19]. Model-

based testing (MBT) has also been shown to be effective for

cryptographic components [20], including hash function usage.

However, in [20] MBT is applied at the application level (e.g.,

sequence of hash function calls), rather than for cryptographic

primitives. Metamorphic testing has been applied to various

security-related applications [21], and some work has been

done towards developing metamorphic relations for crypto-

graphic modules [22].

Very recently, Aumasson and Romailler [23] applied fuzz

testing to compare two different implementations of the same

cryptographic algorithm, and fnd several bugs in widely-used

cryptographic libraries such as OpenSSL. Their technique is

only effective when several implementations of an algorithm

are available that do not all contain the same bug. In this paper,

we look into techniques that overcome this limitation.

B. Limitations of Traditional Approaches

A large part of software testing is inherently a selection

process, where a very small subset from an often infnite

set of test cases is selected to execute the Implementation

http:samebug.In

3

Under Test (IUT). Due to our inability to perform ‘exhaustive

testing’ in most cases and also due to the fact that software

systems usually lack continuity, one can never use testing

to prove the correctness of a system. As pointed out by

Dijkstra [24], testing thus is primarily an approach to discover

bugs. Consequently, the most effective test sets are those that

are likely to discover the largest number of bugs or faults in

the implementation.

The test suite design process is driven by two overarching

questions:

1) How do we go about selecting the test cases from a

practically infnite set of possible tests?

2) How do we know when we have selected enough test

cases to feel confdent about the discovery of all, or

nearly all, bugs in the system?

Over the last fve decades, testing researchers have tried to

answer these questions by taking various approaches. Testing

approaches can generally be characterized as either 1) white

box or implementation-based testing; and 2) black box or

specifcation-based testing.

White box testing assumes access to the source code and

selects test cases based on how well they exercise different

structural elements such as statements, branches, and paths

of the IUT [25]. Selecting test cases based on structural

coverage of the source code is known as meeting a coverage

criterion. Statement coverage, branch coverage, and covering

some subsets of paths (e.g. all-def or all-use) are common

coverage criteria used for selecting test cases.

Black box testing, on the other hand, relies on the specifca-

tion of the IUT as opposed to its implementation. Test cases,

in the case of black box testing, are selected based on the

expected behavior as defned in the requirements specifcation

of the system. A stopping-rule for selecting test cases here is

guided by other criteria such as partitioning the input space

and ensuring some type of coverage of those partitions.

Test case selection for both white-box-based and black-box-

based coverage criteria often assume the presence of a test

oracle – the mechanism through which one can defnitively

conclude if an execution of the IUT has resulted in the

expected behavior or not. In other words, the test oracle

specifes when a test case has revealed a failure scenario.

Unfortunately, not all systems have well-defned or easily

implementable test oracles. Computational learning as well as

many other artifcial intelligence related algorithms, simulation

models, and cryptographic algorithms are some examples of

programs where it is diffcult to develop test oracles, because

the test oracle may need to be as complex as the IUT. This

makes it harder for designing and improving test cases for

these types of programs.

The criteria based on covering structural elements of a

program such as statements or branches are based on the

observation that test cases that do not exercise a statement or a

branch are unlikely to discover a bug in that structural element.

Hence a simple objective is to select test cases that exercise

all statements or branches. For complex programs, interactions

of branches (specifc paths) that a specifc program execution

traverses is also a good place to look for potential anomalies or

bugs. Traditional approaches thus focus on test case selection

that based on covering these structural elements.

Special scenarios arise with cryptographic algorithms. First,

these algorithm implementations are classic examples of pro-

grams without test oracles. It is usually not possible to

ascertain if the output generated by a cryptographic function is

correct or not. Second, cryptographic algorithms often include

many bit manipulations as opposed to long, winding, or

complex paths through the program, which is not necessarily

a common scenario for the vast majority of software that are

developed and tested by software engineers. Consequently,

ensuring the exercise of every statement or every branch may

result in a set of trivial test cases that are not very effective

in discovering bugs, especially the ones hiding deep inside in

the bit manipulations.

These two characteristics make it particularly diffcult to

design test cases for cryptographic algorithms. Consequently,

it also becomes diffcult to know when to stop adding test

cases to a test suite and how to measure the effectiveness of

a test suite.

III. BACKGROUND OF HASH FUNCTION

STANDARDIZATION AND VALIDATION

Before we elaborate our specifc approach and correspond-

ing results from testing cryptographic hash function algo-

rithms, a brief background discussion is necessary about how

test cases were determined at NIST for testing cryptographic

algorithms and their implementations.

US federal agencies that use cryptography to protect sen-

sitive information must follow the standards and guidelines

of the National Institute of Standards and Technology (NIST),

and must validate their implementations, referred to as crypto-

graphic modules.

To validate cryptographic modules according to

FIPS 140-1 [26], Security Requirements for Cryptographic

Modules, the Cryptographic Module Validation Program

(CMVP) was established in 1995. Since the Federal

Information Security Management Act (FISMA) of 2002, US

federal agencies no longer have a statutory provision to waive

FIPS. The Cryptographic Algorithm Validation Program

(CAVP) [27] involves the testing of the implementations

of FIPS-approved and NIST-recommended cryptographic

algorithms, and is a prerequisite for the CMVP. The

CAVP sends the inputs and possibly some intermediate

computational state from a NIST reference implementation to

the Implementation Under Test (IUT) and then compares the

obtained and precomputed results.

In 1997, NIST launched an open competition for an Ad-

vanced Encryption Standard (AES) block cipher, and made

a formal call for algorithms [28]. By 1998, ffteen AES

candidate algorithms were received. In 2000, NIST announced

that it had selected Rijndael for the AES [29].

As clarifed in the Call for Submissions of the AES com-

petition [28], submitters were required to provide a single

foppy disk with two types of test vectors: Known Answer

Tests (KATs) and Monte Carlo Tests (MCTs). Testing using

KATs and MCTs is the basis of the CAVP, and the underlying

4

ideas date back at least to 1977, when the National Bureau of

Standards (NBS), the former name of NIST, published SP 500-

20 [30] to test the encryption and decryption operations of

the Data Encryption Standard (DES). Originally, KATs were

intended to “fully exercise the non-linear substitution tables”

(S-boxes), whereas the MCTs contain “pseudorandom data to

verify that the device has not been designed just to pass the

test set.”

In the context of the AES competition, a set of KAT inputs

were provided by NIST, for which the submitters needed to

generate the corresponding outputs. Clearly, NIST could not

know at the time of submission whether these KAT inputs

would fully excercise any tables used in an implementation of

the submitted algorithm. Therefore, for algorithms that used

tables, the submitters were additionally required to provide

their own set of KATs that exercise every table entry. For the

MCTs, the choice of the pseudorandom inputs was left to the

submitters.

Inspired by SP 500-20 [30], the NIST-provided KATs for

the AES competition consist of all vectors where one input

(the plaintext or the secret key) is kept constant, and the other

input is the set of all bit strings with exactly one bit set.

The MCTs are identical to those of SP 500-20: the submitters

needed to iterate the algorithm four million times on a given

input, while providing the outputs after every multiple of ten

thousand iterations.

During the NIST SHA-3 competition, the testing method-

ology was again borrowed from the CAVP, as the KATs and

MCTs of the SHA-3 Competition Test Suite were based on

the CAVP tests for SHA-2. In addition to this, the “Extremely

Long Message Test,” not present in the CAVP for SHA-2, re-

quired the submitters to generate the hash value corresponding

to a message with a length of 1 GiB.

Of particular interest here is that the KATs provided by

NIST to test hash functions never contain more than one test

vector of any particular length. This is true for the SHA-2

standard in the CAVP, as well as for the SHA-3 Competition

Test Suite. As we will show later, this property will limit the

ability to discover implementation bugs, as some bugs can

only be revealed by testing two messages of the same length.

The iteration used in the MCTs means that a large number

of messages of the same length will be processed. But the

MCTs required for the SHA-3 competition only process inputs

of exactly 1024 bits, which will not reveal bugs that may be

present for other message lengths.

Besides this testing effort by NIST, the most notable exter-

nal testing effort of the SHA-3 candidate submissions came

from Forsythe and Held of Fortify [31]. They downloaded all

43 submission packages of the SHA-3 candidates that were

not withdrawn at the time of their analysis, and tested all

reference implementations. Their testing effort detected bugs

in only fve submissions: Blender, CRUNCH, FSB, MD6 and

Vortex. Four types of bugs were found: buffer overfows, out-

of-bound reads, memory leaks and null dereferences.

IV. EXPERIMENTATION ON TESTING SHA-3 CANDIDATES

To experiment with our test suite design and test case

selection approaches, we have considered the SHA-3 compe-

tition for cryptographic hash functions and all the candidates

submitted to it. A cryptographic hash function is designed

to take an input string m of any size, and return a fxed-

sized bitstring as output, H(m). The input string is commonly

known as the ‘message’ and the output is called the ‘message

digest’ or ‘MD’. The message digest is also called the ‘digest’,

‘hash value’, or ‘hash output’.

A. Properties of cryptographic hash functions

To design our test cases for this experiment, we need to

understand and possibly utilize the required characteristics of

a (cryptographic) hash function. Informally, a hash function is

expected to have the following main properties [32]:

1) Preimage resistance. Hash functions should be one-way

functions. That is, given a message digest y, it should

be infeasible to fnd a preimage, i.e., a message m for

which H(m) = y.

2) Second-preimage resistance. Given a message m and a

message digest H(m), it should be infeasible to fnd a
′ second message m (m =6 m ′) with the same message

digest, i.e., H(m) = H(m ′). A one-way function is both

preimage and second preimage resistant. However, it is

possible to construct functions that are second-preimage

resistant, but not preimage resistant [32, Note 9.20].

Due to this subtle difference, preimage resistance and

second-preimage resistance are considered to be separate

notions.

3) Collision resistance. It should be infeasible to fnd

two different messages that produce the same message
′ digest, i.e., fnding m 6= m for which H(m) = H(m ′).

Note that collisions necessarily exist due to the pigeon-

hole principle, however for a hash function it should

be computationally infeasible to fnd them. Collision

resistance implies second-preimage resistance, but it is

a strictly stronger notion: the attacker can now choose
′ both m and m ′ , instead of choosing only m (for a fxed

m).

4) Function behavior. There is always an implicit property

that comes with any mathematical function. This func-

tion property would require that for any message m, the

computed digest H(m) is always deterministic. If m is

not altered, it should always produce the same H(m).

We have designed three different sets of test cases for our

experiments, to detect violations of some of these properties in

a particular implementation of a hash function. Our test suites

may seem nominally large, i.e., a large number of hash values

computed while testing each IUT. However, we should note

three important factors:

1) Our test suites are comparable to the sizes of the SHA-3

Competition Test Suite that each IUT needed to provide

hash values for.

2) The test suites could fnish executing in reasonable time,

in the order of minutes or hours at most.

3) The number of test cases in our test suite is still much

smaller than any exhaustive testing even in a reasonably

restricted domain of different sized messages.

5

TABLE I
SHA-3 COMPETITION TEST SUITE SIZE (FOR EACH MESSAGE DIGEST

SIZE)†

Name of the Test # Message Digests

Short Message KAT 2048
Long Message KAT 513
Extremely Long Message KAT 1
Monte Carlo Test 100 000

Total 102 562
†Not a good indicator for runtimes as messages vary in size.

TABLE II
OUR TEST SUITE SIZES (FOR EACH MESSAGE DIGEST SIZE)†

Name of the Test # Message Digests

Bit-Contribution Test 2 100 225
Bit-Exclusion Test 131 072
Update Test 1 048 576
Combinatorial Update Test 1510

Total 3 281 383
†Not a good indicator for runtimes as messages vary in size.

In Tables I and II, we show the number of message digests

that are computed for the SHA-3 Competition Test Suite,

compared to our test suite. The numbers are given for one

message digest size, and therefore need to be multiplied by

four to fnd the total number of message digests per hash

function implementation.

Our test suite computes about 32 times more digests.

However, our tests are roughly four times faster than the

SHA-3 Competition Test Suite. The SHA-3 Competition Test

Suite is dominated by the Extremely Long Message KAT. On

the other hand our test suite’s most time-consuming part is

the Bit-Contribution Test. It computes about 2 million digests

with an average size of 1024 bits, whereas the Extremely

Long Message KAT processes one message of 1 GiB, which

corresponds to about 8 million blocks of 1024 bits.

Furthermore, our test vectors are relatively short and inde-

pendent of each other and can thus be executed in parallel,

which is not the case for the Extremely Long Message KAT

and the Monte Carlo Test of the SHA-3 Competition Test

Suite. The speed advantage in favor of our test suite compared

to the SHA-3 Competition Test Suite therefore increases when

more cores are available or when the testing is done simul-

taneously on multiple machines. In the following discussion,

we explain our test suite for one digest size. These tests are

performed for each of the four different digest sizes that are

required for a valid SHA-3 submission: 224, 256, 384 and 512
bits.

B. Bit-Contribution Test

The frst set of test cases is designed with respect to the

second-preimage resistance mentioned in Section IV-A. We

call this set of test cases Bit-Contribution Test. In this scenario,

we take a fxed message m of size n and compute the message

digest, H(m). We then systematically alter a single bit of m
and compute H(m) again. We repeat the process for every

single bit of m. As part of the test suite, we vary the size n
from 0 to 2048. No bits are set in the degenerate case of n = 0,

as this corresponds to the empty string. All these message

digests are stored in a large table to then search for possible

collisions. If no collisions are found, the Bit-Contribution Test

is passed successfully.

The idea for this test suite is based on the fact that any

good hash function should have some contribution from each

of the bits of a message m. Thus, any single bit altered in

m should be refected in the digest H(m). We have combined

this insight for test case designs with the additional expectation

that the digests of two distinct messages should not collide,

even if one message is only a single bit longer (or shorter) than

the other message. This reasoning explains why all digests are

inserted into the same large table (regardless of the length of

the message), and why the zero-length string is included as

well.

A typical hash function will split a message into blocks

of a particular size, after which processing is done on each

block. Well-known hash functions such as MD5, SHA-1 and

SHA-2 use block sizes of 512 or 1024 bits, and such block

sizes are typical for many SHA-3 candidates as well. Our test

suite thus stops at messages of 2048 bits, which is twice the

largest commonly-used block size of 1024 bits.

For messages of size 1, 2, . . ., 2048 bits, there are 2048 ×
(1 + 2048)/2 messages with exactly one bit set (one possible

message of length one bit with one bit set, two possible

messages of length two bits with one bit set, and so on). For

the same range of messages, there are 2048 messages with all

bits set to zero. We also add the empty string. This leads to

2048 × (1 + 2048)/2 + 2048 + 1 ≈ 221 different hash values

in our Bit-Contribution Test for each of the digests sizes of

the IUT.

C. Bit-Exclusion Test

One of the requirements for the SHA-3 competition was

that the candidate functions should properly handle mes-

sages whose sizes are not multiples of a byte. In other

words, not only should the functions handle messages of size

0, 8, 16, . . . 128, . . . , 512 bits etc.; they should also be able to

handle message lengths of fractional byte sizes such as 5, 43
or 509 bits.

Even though a message size is specifed to be a fxed number

of bits, i.e., not multiple of a byte, the SHA-3 Competition

API [33] requires the message to be provided in an array

of bytes. Furthermore, the C programming language does not

prevent the programmer from going past the end of the array,

which could result in an implementation that incorrectly reads

past the last bit of the message. As the API clarifes that the

data to be processed should be in the frst n bits, it is implied

that the bit outside of the specifed message size n should be

ignored. This is consistent with the function behavior property

of Section IV-A.

We therefore designed a set of test cases for various message

lengths n, and then started altering bits outside of the specifed

size; i.e., nth bit, (n+1)th bit, (n+2)th bit etc. (assuming bit

indices start at 0), and computed the hash value for each of

these messages. We then look for a case where the message

digest changes due to a bit alteration beyond n, while the

http:casesBit-ContributionTest.In

6

message m within the specifed size of n bits remains the

same.

The idea behind the above scenario is that any bit outside

the specifed size parameter should be excluded and should

not contribute towards computing the digest. Consequently,

perturbations beyond position n must not create a different

digest for a particular message. As a concrete example, let

us suppose that we provide a message of size 509. As the

message is provided as a byte array, it is necessary for the

calling application to store at least 512 bits of data. But the

parameter to the Hash() function specifes that the digest

H(m) is to be created based on the frst 509 bits. If we provide

the same message with a bit fipped in the 509th position

(assuming again that bit indices start at 0), this should not

alter the message digest H(m).
Our Bit-Exclusion Test suite computes 217 different mes-

sage digests for each digest size of the IUT. This number is

derived from multiplying the range of message sizes (2048,

namely from 0 to 2047 bits) and the number of bits outside the

message size (which is 32 bits in our test), and then doubling

this value as we always perform two hashes: one with, and

one without the specifed bit set.

D. Update Test

For our third set of test cases, we took a close look at

the SHA-3 Competition API specifcation [33] looking for

potential metamorphic relations. The API specifed that each

implementation will have to provide four different functions:

Init(), Update(), Final() and Hash(). The specif-

cation of the Update() API is important; it states:

This API uses a function called Update() to

process data using the algorithm’s compression

function. Whatever integral amount of data the

Update() routine can process through the

compression function is handled. Any remaining

data must be stored for future processing. For

example, SHA-1 has an internal structure of 512-bit

data blocks. If the Update() function is called

with 768-bits of data the frst 512-bits will be

processed through the compression function (with

appropriate updating of the chaining values) and

256-bits will be retained for future processing.

If 2048-bits of data were provided, all 2048-bits

would be processed immediately. If incremental

hashing is being performed, all calls to update will

contain data lengths that are divisible by 8, except,

possibly, the last call.

HashReturn Update (hashState
*state, const BitSequence *data,
DataLength databitlen)

Let us now look at the relevant sections of the Hash()
function API specifcation, which states:

This function shall utilize the previous three function

calls, namely Init(), Update(), and Final().

Let us suppose we invoke the Hash() function of a

candidate IUT with a message m of size n; and it produces the

message digest y. Assume that we break the message m into

multiple fractions such as m1, m2, . . ., mk where all sizes of

any mi are multiples of 8 except possibly for mk. Let us sup-

pose an invocation of Init(), followed by Update(m1),

Update(m2), . . ., Update(mk) and fnally ending with
′ the invocation of Final() produces the message digest y .

Following the API specifcation requirements, the two message
′ digests created in the above described fashion, y and y must

be the same. Note that this is actually again a manifestation

of the function behavior property of Section IV-A.

The API includes this incremental processing requirement

as it is necessary for the processing of very large messages.

Also, in the case of communication over a network, often a

message may not be available as a whole as it is transferred

through packets. A hash function implementation should not

wait for the whole message to arrive completely before starting

the computation of the hash value.

Taking the above property into account, we designed our

third set of test cases named Update Test. In this set of test

cases we divide the message m into multiple fragments and

invoke Init(), multiple Update(mi) and Final(). We

compare the two message digests produced in this fashion.

If they do not match, we have a scenario where the API

requirements specifcation has not been met by the IUT.

The frst and second fragments consist of message lengths

ranging from 0 to 2047 bits, such that the frst fragment

contains all lengths that are divisible by eight, and the second

fragment contains all message lengths in the range. Two hashes

are computed for each combination: one where the message

is processed in two fragments, and another where the same

message is processed in one fragment. Our Update Test suite

therefore computes (2048/8) × 2048 × 2 = 220 different hash

values for each digest size of the IUT.

E. Combinatorial Update Test

Our last set of test cases is a simple variation of the Update

Test described above. It was developed by utilizing insights

and methods from combinatorial testing. This approach in-

cludes two primary components: (1) design of an input model

for partitioning the inputs into equivalence classes; and (2)

use of a covering array or sequence covering array to map

combinations of values from the input model into executable

tests. A variety of methods can be used in developing the input

model, including classifcation tree methods and traditional

boundary value analysis. In this case we used the Update

Test to select test variable values. The ACTS (Automated

Combinatorial Testing for Software) tool [34] was used to

produce a two-way covering array of the input values, and then

each row of the covering array was converted to an executable

test. This made possible a roughly 700:1 reduction in test set

size, while still fnding all bugs discovered in the exhaustive

testing discussed in Section IV-D.

Combinatorial testing’s ability to reduce the test set size

is based on the discovery that software faults “in the wild”

involve only a few factors [14]. That is, most faults are trig-

gered by one or two factors interacting with each other, with

progressively fewer faults getting discovered by three or more

interacting factors. This empirical observation is sometimes

7

TABLE III
INPUT MODEL FOR COVERING ARRAY TO DIVIDE THE MESSAGE INTO

MULTIPLE FRAGMENTS

Fragments Input values to be chosen for that fragment (in bits)

Fragment 1 0, 8, 16, 24, 32, 30, 48, 56, 64
Fragment 2 0, 8, 16, 24, 32, 30, 48, 56, 64
Fragment 3 0, 8, 16, 32, 64, 128, 256, 512, 1024, 2048
Fragment 4 0, 1, . . ., 65, 127, 128, 129, 255, 256, 257, 511, 512, 513

referred to as the interaction rule. So far no faults have been

observed that involve more than six factors. Consequently,

testing t-way combinations of variable values, for small t, can

produce test sets that are as effective as exhaustive testing, but

orders of magnitude smaller [35], [36].

To accomplish the judicious covering of the different mes-

sage fragments, we designed the input model shown in Ta-

ble III. In combinatorial testing parlance, the input model is a

92101751 confguration (two variables of 9 values each, one

variable of 10 values, and one variable of 75 values). From

this model, we used the ACTS tool to generate a two-way

covering array, which includes all two-way combinations of

these values, containing 755 rows. Each row of the covering

array is converted into a test, as described below.

Let us consider a typical row in the two-way covering array

created out of the input model shown in Table III (with input

sizes given in bits): 64, 48, 512, 257. When we use this combi-

nation as a test case, we will compute Hash(m) on a message

of size 881 bits. Then we will break that same message in four

parts and invoke Init(), Update(m64), Update(m48),

Update(m512), Update(m257), and Final(). Once we

have the two message digests computed, we will compare them

for equality.

As mentioned above, this test suite is designed to detect the

exact same types of failures as the test suite in Section IV-D;

except with a tiny fraction of the number of test cases. Our

test suite, in this case, computed 2 × 755 = 1510 message

digests for each digest size of the IUT. In our experiments,

we found that these 1510 digests detected the same faults as

the Update Test of Section IV-D containing 1 048 576 digests.

V. RESULTS

Our four test suites discovered a number of failures for

some of the test cases. We will list all IUTs that failed at

least one test case in our test suites. Recall that there were

64 candidates that were submitted to the competition. After

initial requirements check in the submission package, 51 of the

submissions were selected for the frst round. With multiple

years of scrutiny, analyses, and feedback, 14 were chosen for

the second round, out of which fve became fnalists.

Through each of the rounds, the submitters were allowed to

submit minor updates to their implementations. We considered

all the 51+14+5=70 versions of the submissions. Additionally,

some intermediate updates were submitted to the SHA-3

competition, for example to provide an updated specifcation

document or to fx a bug in the implementation. There were 16

such updates with changes in the source code of the reference

implementation, which brings our total number of IUTs to 86.

Whenever possible, the compilation was performed on Win-

dows 7 using GCC version 5.4.0 under Cygwin. Compilation

failed for the candidate ARIRANG because the reference

implementation was incompatible with the SHA-3 Competi-

tion API; however this problem was fxed in an intermediate

update. For all other submissions, we succeeded at compiling

the reference implementations in our build environment. We

consider a candidate implementation to have failed if one of

our tests detects an inconsistency, if compilation fails due to

an incompatibility with the API, or if the program crashes

(e.g., due to a memory leak).

Our results are shown in Tables IV and V. Out of the 86

different candidate reference implementations, 19 failed the

Bit-Contribution Test, 17 failed the Bit-Exclusion Test, and

32 failed the Update Test. The Combinatorial Update Test

discovered the same bugs as the Update Test, and is therefore

not shown in the table. In Section VI, we will delve deeper

into the nature of some of these bugs and why our approach

was effective in revealing them.

VI. SOME BUG DETAILS

In this section we describe a few of the bugs found in some

detail, in order to show why they escaped detection for many

years. We focus mostly on bugs in the SHA-3 fnalists, but also

consider some implementations of prominent frst-round and

second-round submissions, in particular when they contained

serious bugs that nevertheless remained undiscovered for a

long time.

A. BLAKE

The hash function BLAKE [37] was submitted to the SHA-3

competition by Aumasson et al., and was eventually selected

as one of the fve fnalists. As mentioned earlier, there is an

implementation bug that is still present today in the source

code of all BLAKE implementations on the offcial SHA-3

competition website [13], the frst of which appeared in

2008. In 2015, the reference implementation on the BLAKE

website [38] was updated with a rather cryptic statement

saying that the update “fxed a bug that gave incorrect hashes

in specifc use cases.”

In a talk at TROOPERS 2016, Aumasson [39] confrmed

that the bug remained unnoticed for seven years, after which

it was “found by a careful user.” However, no information

is provided on how the bug was found, and there is no

information on the scenarios under which the bug could

present itself, nor about the potential impact of the bug on

real-world applications.

In his talk, Aumasson explained that “test vectors are less

useful” for detecting faults when the specifcation is not fol-

lowed. The SHA-3 Competition Test Suite has been ineffective

in discovering this bug in BLAKE: it is present in all submitted

implementations, and therefore all implementations (reference

and optimized) produce the same results for those test vectors.

We not only independently rediscovered this bug, but we

also show that it can easily be found using our testing approach

using only a small set of test vectors. In particular, the Update

Test detects an inconsistency between processing the message

8

TABLE IV
‡OUR TEST RESULTS FOR ALL SHA-3 COMPETITION REFERENCE IMPLEMENTATIONS

Name of the Submission
Bit-Contribution

Test
Bit-Exclusion

Test
Update

Test
Summary

Abacus passed failed passed failed

ARIRANG failed failed failed failed

ARIRANG Update passed passed passed passed
AURORA passed passed passed passed
BLAKE failed passed failed failed

BLAKE Round 2 passed passed failed failed

BLAKE Final Round passed passed failed failed

Blender failed passed failed failed

Blue Midnight Wish passed passed failed failed

Blue Midnight Wish Round 2 passed passed failed failed

BOOLE passed passed passed passed
Cheetah failed passed failed failed

CHI passed passed passed passed
CHI Update passed passed passed passed
CRUNCH failed failed failed failed

CRUNCH Update passed passed failed failed

CubeHash passed passed passed passed
CubeHash Round 2 passed passed passed passed
DCH passed passed passed passed
Dynamic SHA passed failed passed failed

Dynamic SHA2 passed failed passed failed

ECHO passed passed passed passed
ECHO Round 2 passed passed passed passed
ECOH passed passed failed failed

EDON-R passed passed failed failed
EDON-R Update passed passed failed failed

EnRUPT passed passed failed failed

ESSENCE passed passed passed passed
FSB passed passed passed passed
Fugue failed failed passed failed

Fugue Round 2 failed failed passed failed

Fugue Round 2 Update passed failed passed failed

Grøstl passed passed passed passed
Grøstl Round 2 passed passed passed passed
Grøstl Final Round passed passed passed passed
Hamsi failed passed failed failed

Hamsi Update failed passed failed failed

Hamsi Round 2 passed passed failed failed

JH failed failed failed failed

JH Update passed failed failed failed

JH Round 2 passed failed failed failed

JH Final Round passed failed passed failed

Keccak passed passed passed passed
Keccak Round 2 passed passed passed passed
Keccak Final Round passed passed passed passed
Khichidi-1 failed passed passed failed

LANE failed passed failed failed

Lesamnta passed passed passed passed
Luffa passed passed passed passed
Luffa Round 2 passed passed passed passed
LUX passed passed failed failed

MCSSHA3 passed passed passed passed
MD6 passed passed passed passed
MD6 Update passed passed passed passed
MeshHash passed passed passed passed
NaSHA failed failed failed failed

NaSHA Update failed failed failed failed

SANDstorm passed passed passed passed
SANDstorm Update passed passed passed passed
Sarmal passed passed passed passed
Sgàil passed passed passed passed
Shabal passed passed passed passed
Shabal Round 2 passed passed passed passed
SHAMATA passed passed failed failed

SHAvite-3 passed passed failed failed

SHAvite-3 Update passed passed failed failed

SHAvite-3 Round 2 passed passed passed passed
SHAvite-3 Round 2 Update passed passed passed passed
SIMD passed passed passed passed

‡ The results of the Combinatorial Update Test are identical to those of the Update Test.

9

TABLE V
‡CONTINUATION OF TABLE IV: OUR TEST RESULTS FOR ALL SHA-3 COMPETITION REFERENCE IMPLEMENTATIONS

Name of the Submission
Bit-Contribution

Test
Bit-Exclusion

Test
Update

Test
Summary

SIMD Update passed passed passed passed
SIMD Round 2 passed passed passed passed
Skein passed passed passed passed
Skein Update passed passed passed passed
Skein Round 2 passed passed passed passed
Skein Final Round passed passed passed passed
Spectral Hash failed passed failed failed

Spectral Hash Update failed passed failed failed

Stream Hash failed failed passed failed

SWIFFTX passed passed passed passed
Tangle passed passed passed passed
TIB3 passed passed passed passed
Twister failed passed failed failed

Vortex failed failed failed failed

Vortex Update passed failed failed failed

WaMM passed passed passed passed
Waterfall passed passed passed passed

Total Failed 19 17 32 41

‡ The results of the Combinatorial Update Test are identical to those of the Update Test.

at once using Hash(), and processing it in variable-sized

blocks using Init(), several calls to Update(), and then

Final() to produce the message digest.

This BLAKE bug affects all output sizes of the hash

function. The Update32() function of the reference and

optimized implementations contains the following incorrect

statement:

if(left && (((databitlen >> 3) & 0x3F)
>= fill)) {

The BLAKE design team proposes to fx the bug by

omitting the & 0x3F, thereby correcting the statement as

follows:

if(left && (((databitlen >> 3))
>= fill)) {

The 224-bit and 256-bit output sizes of BLAKE use the

Update32() function to process the message in blocks of

64 bytes. As there are 23 = 8 bits in one byte, the shift

operation (databitlen >> 3) represents the number of

complete bytes of the message data that is to be processed by

the Update32() function. Followed by & 0x3F, we have

the number of complete bytes modulo the block size of 64

bytes.

In Update64(), which is used to provide the 384-bit and

512-bit output sizes of BLAKE, the message is processed in

blocks of 128 bytes. Here, we fnd the exact same bug in

the reference and optimized implementations, except that the

corresponding statement contains 0x7F instead of 0x3F.

It seems unlikely that the & 0x3F and & 0x7F in BLAKE

would raise suspicion during a careful line-by-line inspection

of the source code. In fact, we could even say that the bug

is not in these particular lines of code. Rather, the bug is due

to the interaction with other parts of the code, which create a

specifc corner case that is not handled correctly.

To see this, let us describe an example input scenario where

the bug manifests itself. First, assume that Update() is

called on one byte. For a 224-bit or 256-bit output value, the

call to Update() is passed on to Update32(). As one

byte is clearly less than one complete block of 64 bytes, it

will be necessary to store this byte in a buffer. Then, assume

that Update32() is called again, this time on a full block

of 64 bytes.

The variable left in the BLAKE implementation keeps

track of the number of bytes in this buffer, which in our case

is one. The “unused” bytes in the buffer are stored in fill,

which is set to 64 - left, or 63 in our example. Given

that 64 & 0x3F equals zero, which is smaller than 63, the

if-clause is not executed.

Right after the if-clause, there is a while(databitlen
>= 512) that will evaluate to true, as we process a block

of 64 bytes, which is 512 bits. In this specifc case, a 64-

byte block is processed that contains the 64-byte input for

the current call of Update32(), without taking the byte in

the buffer into account. In fact, the byte in the buffer will

be “forgotten,” as the variable state->datalen that keeps

track of the number of bytes in the buffer is set to 0 at the

end of Update32().

This creates an inconsistency with a single call to

Update32() with a corresponding 65-byte message, and

therefore results in an incorrect implementation. But the

problem is actually worse, as we can now trivially create a

second preimage: given one message and its corresponding

hash value, it is easy to produce another message (processed

using a specifc sequence of Update() calls) that results in

the same hash value.

To see this, recall from our example that the frst call to

Update32() using a one-byte message has no effect when

it is followed by a second call to Update32() on a 64-byte

block. Therefore, we can omit this frst call Update32()
without affecting the internal state of the hash function. When

the hash value is calculated using Final(), it will be the

same, regardless of whether the one-byte call to Update32()
was performed.

10

B. LANE

The hash function LANE was designed by Indesteege [40].

It was selected for the frst round of the SHA-3 competition,

but did not advance to the second round. We independently

rediscovered a bug in all implementations of LANE (refer-

ence and optimized) that are available on the offcial SHA-3

competition website [13].

In 2009, Cornel Reuber informed the LANE designer of

this particular bug [41]. Afterwards, the implementation on

the LANE website [42] was updated, without mentioning the

bug on the LANE website, the updated source code, or the

supporting documentation. No public announcement was made

either, and the LANE implementation on the SHA-3 website

currently still contains this bug. For this reason, we expect that

no more than a handful of people are currently aware that the

implementation on the offcial SHA-3 website contains this

particular bug.

This bug in the LANE implementation is extremely dam-

aging, because it will ensure that the same hash value will be

returned for all messages of a particular length, regardless of

the content of the message. This makes it trivial to construct

second preimages for the implementation of the hash function:

for the problematic message lengths, any message of a partic-

ular length can be replaced by another message of the same

length, without affecting the hash value.

We easily rediscovered the bug using the Bit-Contribution

Test, which fips the input bits of a message and checks if

the output hash value is altered. We note that for LANE, all

hash outputs are distinct in the SHA-3 Competition Test Suite.

This is because the those KAT test vectors only contain one

message of any particular length. The MCT contain several

hash values for 1024-bit messages, however the bug that we

will describe is not present for this message length.

For now, let us consider LANE with 224-bit and 256-bit

hash output sizes. A similar bug will appear for the 384-bit

and 512-bit hash outputs, as we will briefy describe later.

The message in LANE is processed in blocks of BLOCKSIZE
bytes. For 224-bit and 256-bit outputs, BLOCKSIZE equals

64. The bug that we will now describe, appears for messages

whose length (in bits) is 505 to 511 modulo 512. Later, we

will revisit the 384-bit and 512-bit output sizes, and describe

a bug for messages of length (in bits) 1017 to 1023 modulo

1024.

The bug appears in the following line:

const DataLength n =(((state->databitcount
- 1) >> 3) + 1) & 0x3f;

In the updated implementation on the LANE website, the

bug is fxed as follows:

const DataLength n =(((state->databitcount
& 0x1ff) - 1) >> 3) + 1;

As messages are processed in blocks of BLOCKSIZE bytes,

the hash function implementation maintains a buffer to store

incomplete blocks that still need to be processed. The variable

n is intended to compute the number of bytes in this buffer.

When state->databitcount is 505 to 511 modulo

512, there are BLOCKSIZE bytes in the buffer. The incorrect

implementation, however, returns 0 instead of BLOCKSIZE.

For all other values of state->databitcount, the old

and the updated implementation give the same value for n.

Now, let us see what happens in the padding routine, which

zeroes out the last BLOCKSIZE-n bytes of the buffer:

memset(state->buffer + n, 0, BLOCKSIZE-n);

For the problematic message lengths, this padding routine

should not overwrite any data in the buffer. However, the

incorrect implementation zeroes out the entire buffer. As a

result of this, the hash value will be independent of the content

of the message for these particular message lengths.

When a 384-bit or 512-bit hash output is requested, the

problematic code is also present, however with & 0x7f
instead of & 0x3f. For these hash output sizes, every message

of length 1017 to 1023 modulo 1024 will return the same hash

value.

We note that fxing this particular bug is not suffcient

to guarantee that the implementation is correct. In fact, our

Update Test found that the latest reference implementation of

LANE contains another bug, which is currently still present

on the SHA-3 competition website as well as on the designer’s

website.

C. Fugue

Fugue [43] was designed by Halevi, Hall and Jutla of IBM

T.J. Watson Research Center. It was submitted to the SHA-3

competition, where it became one of the fourteen candidates

that advanced to the second round in July 2009.

In October 2009, Jutla made an announcement to the offcial

SHA-3 competition mailing list, where he pointed out that

Stefan Tillich discovered a bug in the Fugue implementation.

In particular, for all messages for which the length (in bits) is

not divisible by eight, the implementation erroneously zeroes

out the last incomplete byte. Jutla clarifes that the bug is

present in all implementations.

This bug makes it trivial to generate second preimages

for all Fugue implementations. In particular, if two messages

contain a difference in the last incomplete byte, the difference

will be zeroed out, and the hash output will be identical.

We rediscovered this bug using the Bit-Contribution Test,

which detects whether a difference in the last incomplete byte

affects the hash output. The KATs that were submitted by the

Fugue team to NIST were wrong, but they do not contain any

collisions. This is perhaps not so surprising, as the SHA-3

Competition KATs do not contain more than one message of

a particular length.

The bug is present in the following line in

SHA3api_ref.c:

memset((uint8*)state->Partial
+ ((state->TotalBits&31)/8),0,need/8);

When the number of bits in a message is not a multiple

of eight, the number of bytes should be rounded up, instead

of rounded down. This bug is corrected in the updated Fugue

implementation as follows:

memset((uint8*)state->Partial

11

+ (((state->TotalBits&31)+7)/8),0,need/8);

Note that our Bit-Exclusion Test discovered another bug in

the latest Fugue implementation, which will not be discussed

in this paper.

D. Hamsi

Hamsi [44] is a hash function designed by Kuc¨ ¸ ük that

advanced to the second round of the SHA-3 competition.

All Hamsi implementations that were submitted to the frst

round of the SHA-3 competition contained a very serious bug

for the 384-bit and 512-bit hash outputs, due to the fact that

only half of the message bits were processed. Using the Update

Test, this bug can easily be discovered. Note that this particular

Hamsi bug was already pointed out by Mouha [45], however

he performed no systematic analysis of unused message bits

for the SHA-3 candidate implementations. Subsequently, the

designer fxed this bug in the second-round implementation.

There are still bugs present in the latest second-round

reference implementation on the SHA-3 competition website.

To the best of our knowledge, this paper is the frst to explain

these bugs. The bugs are related to the implementation of

Update(), and were caught using the Update Test.

In Hamsi, messages are processed in blocks of

s_blocksize bits, which is 32 or 64 depending on size

of the hash output. Incomplete blocks are stored in a buffer,

and the Hamsi implementation uses state->leftbits
to keep track of the number of bits in this buffer between

subsequent calls to Update(). The bits2hash variable

is initially the number of bits to be processed by the call to

Update(), but this value is decreased when message bits

are processed.

We found that there are at least four different bugs in the

second-round implementation of Update(), that all need to

be fxed in order to pass the Update Test:

• The state->leftbits = bits2hash statement at

the end of the function is incorrect. For a zero-byte call to

Update(), bits2hash would then be set to zero. But in

that case, any data that might be in the buffer is discarded.

The correct statement should be state->leftbits
+= bits2hash.

• A state->leftbits += bits2hash occurs ear-

lier in the code of Update(), but the bits2hash
value is not set to zero. This leads to an inconsistency: in

this code, the bits2hash bits have already been pro-

cessed (by moving them to the buffer), so bits2hash
should be set to zero.

• After processing a full block of data, there is a specifc

case in which internal counter state->counter is not

updated. This leads to an incorrect calculation of the

length of the message (which is used in the padding),

and therefore an incorrect hash output.

• When data is copied to the buffer, the size of

a block is expressed in bits instead of bytes.

Therefore, s_blocksize should be replaced by

s_blocksize/8. This causes a write to an array index

that is out of bounds. This bug could have been detected

by memory error detection tools (such as those used in

the Fortify Report [31]). However, the offending code

is not accessed by the SHA-3 Competition Test Suite, in

which case it would not be detected by dynamic program

analysis tools.

E. JH

The hash function JH [46] was designed by Hongjun Wu,

and was selected as one of the fve fnalists of the SHA-3

competition. We have found the presence of a bug in all

submitted versions of JH to the competition.

For messages that are not a multiple of eight bits, all

JH implementations read bits outside of the bounds of the

message. We detected this bug using the Bit-Exclusion Test,

which fips input bits that are beyond the boundary of the

message, and detects if the corresponding hash value has

changed.

For all JH implementations (reference and optimized) sub-

mitted to each round of the competition, the padding does not

follow the JH specifcation. According to the specifcation, the

bit ‘1’ should be appended to the end of the message, followed

by a specifc number of zero bits. In the implementation of

Final(), the bit ‘1’ is added, but no zero bits are added in

case of a message that is not a multiple of eight bits. Instead,

the implementation will use the input bits beyond the boundary

of the message for the remainder of this byte.

For the fnal-round submission of JH, a source code com-

ment was added inside the Update() function, which indi-

cates that the author is aware of this issue. More specifcally,

it states: “assume that – if part of the last byte is not part of

the message, then that part consists of 0 bits.” This assumption

violates the SHA-3 Competition API specifcation, which does

not assume that bits outside of the message are set to zero.

No mention of this unexpected behavior is made in the

change-log or the supporting documentation. Still, this behav-

ior should clearly be considered to be a bug: input bits that

are not part of the message have an effect on the fnal hash

value, which means that the implementation is not consistent

with the SHA-3 Competition API specifcation.

Interestingly, we found another bug in all frst-round and

second-round implementations of JH, that was only fxed in

the fnal-round implementation. Before the fnal round, the

implementation only supported calls to Update() that are

multiples of 512 bits, except for the last call to Update().

The functionality to handle other combinations of calls to

Update() was not implemented.

In the SHA-3 Competition KATs, only one call to

Update() is performed. The MCTs perform many calls to

Update(), but each call consists of a message of 1024

bits. For this reason, the bug was not revealed in the SHA-3

Competition Test Suite, although our Update Test detects it

easily. Note that it is unlikely to detect this bug using test

cases that are based only on code coverage criteria. Coverage

analysis helps to detect source code that is unreachable with

certain test vectors, but it cannot be used to detect missing

code.

12

VII. CODE COVERAGE ANALYSIS

To the best of our knowledge, there have not been any

efforts to analyze the SHA-3 candidate implementations using

code coverage analysis. The goal of code coverage analysis

is to fnd areas of a program that are not exercised by

the test vectors, and the creation of additional test cases

to increase coverage, and thus to strengthen the test suite.

Code coverage analysis is essential in verifcation of most

safety or security-critical software, but may not be effective

for some aspects of cryptographic algorithms. As noted by

Langley [47]: “cryptographic functions result in abnormally

straight line code, it’s common for a typical input to exercise

every instruction.”

Nevertheless, we have identifed an area where the code

coverage is meaningful and could be improved compared to

the SHA-3 Competition Test Suite, at least for some SHA-3

candidate implementations. The SHA-3 Competition testing

approach does not always access all instructions, in particular

when the API is used to process a message “on-the-fy” in

several chunks, instead of providing the entire message at

once.

Using GCC in combination with its gcov tool, we computed

the statement coverage and branch coverage of the SHA-3

Competition Test Suite for the SHA-3 fnalists, and compared

them to the coverage of our Update Test.

As shown in Table VI, for Grøstl, JH and Skein, the

coverage of our Update Test is slightly higher than that of

the SHA-3 Competition Test Suite. This is because our test

reaches an additional corner case related to the processing of

a message in chunks using multiple calls to Update(). For

Keccak, the branch and statement coverage is the same for

both test suites. Interestingly, for BLAKE, our tests cover one

statement less, related to the handling of an overfow in a

32-bit addition. This line is only executed when a very large

message is processed, which does not happen in our test suite.

NIST encouraged submissions that provide additional func-

tionalities, e.g., having not only a message input, but also an

additional salt or key input. The C functions that implement

such features are not part of the API, and are therefore not

reached by the SHA-3 Competition Test Suite. Furthermore,

some submissions support additional digest sizes (besides the

four required ones), or messages that are longer than 264 − 1
bits. To fnish our tests in a reasonable time, we turned on

compiler optimizations (using the command-line fag -O3),

which resulted in unreachable statements when functions are

inlined. These are the main reasons why some source code

fles in Table VI have a relatively low coverage. Nevertheless,

we found that SHA-3 candidates typically achieve complete

code coverage of all API-required functionality, as expected

for cryptographic functions.

VIII. DISCUSSION

We have gained some important insights from our test suite

design, experiment results, and from the detailed investigations

of some of the bugs in the implementations. Ensuring the

correctness of cryptographic algorithm implementations is of

crucial importance to the security of information systems. To

accomplish this goal for NIST-recommended cryptographic

algorithms, the NIST Cryptographic Algorithm Validation Pro-

gram (CAVP) has been established [27]. Our objective was to

determine if we can improve those tests by applying different

methods, while ensuring that the new tests would be practical

in terms of test development and execution resources. We

found that we could produce signifcant improvements without

requiring a prohibitive amount of time for test development,

and the resulting test set size is practical for real-world use.

Note that metamorphic testing has been shown to detect bugs,

even in well-tested and mature software systems, because it is

based on a “diverse” perspective that is not previously used

by other testing techniques [48].

Another important goal of this effort was to provide a

systematic approach to test cryptographic algorithm imple-

mentations, i.e., scientifc test and analysis techniques, which

can be defned as “effcient, rigorous test strategies that will

yield defensible results [49].” In practice, this can be achieved

through approaches such as statistical testing and design of ex-

periments methods. Cryptographic software, particularly hash

algorithms, tends to consist of many bit manipulations. As

discussed earlier, measurable test criteria such as statement or

branch coverage do not provide much assurance for the type of

software we tested, as typical cryptographic implementations

have full branch coverage of the functionality that is required

by the API. Furthermore, due to the lack of a test oracle, the

KATs and MCTs in the SHA-3 Competition Test Suite failed

to detect the bugs that are pointed out in this paper.

Despite the comprehensive SHA-3 Competition Test Suite,

it did not include certain input combinations that are necessary

to reveal bugs using our testing methodology. In particular,

the SHA-3 Competition Test Suite either only performs one

call to Hash() to process an entire message in the KATs, or

processes a message in several calls to Update(), each with

1024 bits of data, in the MCTs. In our Update Test, we cover

a wide range of scenarios where a message is processed in

chunks, combined with the metamorphic testing approach to

check for consistency. Unlike the SHA-3 Competition KATs,

we also test more than one message of a particular length,

which allows additional bugs to be found.

In our Bit-Contribution Test, we consider all messages of a

particular size that have exactly one bit set (as in SP 500-20

for DES, see Section III), but additionally we also include the

all-zero vector. When the all-zero vector is present, it becomes

possible to compare the hash values of two messages that differ

in one bit, and confrm that the corresponding hash value is

changed.

We also introduce differences in the message buffer beyond

the bits that are reserved for the message in the Bit-Exclusion

Test, in order to check that the corresponding hash values are

not changed. The use of memory error detection tools can

detect out-of-bound byte reads, but they require access to the

source code which may not be available. Furthermore, the Bit-

Exclusion Test also checks if the hash value is altered through

out-of-bound bit reads inside the last byte, an API-specifc

issue that cannot be revealed by memory error detection tools.

The strategy of the SHA-3 Competition Test Suite was bor-

rowed from the CAVP for SHA-2. As explained in Section III,

13

TABLE VI
§STATEMENT AND BRANCH COVERAGE OF THE SHA-3 COMPETITION TEST SUITE, COMPARED TO OUR UPDATE TEST SUITE

Name of the SHA-3 Finalist
Statement Coverage

Number of SHA-3 Test Update Test
Statements Coverage Coverage

Branch Coverage
Number of SHA-3 Test Update Test
Branches Coverage Coverage

BLAKE
⊢ blake_ref.c 348 96.26% 95.98% 116 92.24% 91.38%

Grøstl
⊢ Groestl-ref.c 152 94.08% 96.05% 157 89.17% 91.72%

JH
⊢ jh_ref.h 144 93.75% 100.00% 81 87.65% 97.53%

Keccak
⊢ KeccakF-1600-reference.c 127 72.44% 72.44% 60 73.33% 73.33%
⊢ KeccakNISTInterface.c 30 93.33% 93.33% 18 66.67% 66.67%
⊢ KeccakSponge.c 106 82.08% 82.08% 78 66.67% 66.67%

Skein
⊢ SHA3api_ref.c 38 68.42% 68.42% 18 38.89% 47.06%
⊢ skein.c 270 20.74% 22.22% 102 19.61% 20.59%
⊢ skein_block.c 183 30.60% 30.60% 42 33.33% 33.33%

§ Several implementations have functions that are not part of the API, and are therefore not reached by the test suites.

this test suite was designed to ensure structural coverage of

any table that may be used in the implementation by exercising

every table entry. We note that such structural coverage would

still be ineffective for this type of programs due to the non-

existence of a test oracle. Simply observing a message digest

or hash value produced by a test vector does not provide any

information about its correctness.

Our intention is not to criticize the existing approaches

to testing cryptographic functions, but to point out their

shortcomings and suggest several areas of improvement. Our

approach provides insights into how to design highly effec-

tive test suites for testing cryptographic algorithms, and to

signifcantly reduce the number of required test cases without

sacrifcing their fault-fnding effectiveness.

An interesting topic for future work is to extend our testing

approach to other cryptographic algorithms. In general, when

certain input bits must have a high probability to affect

certain output bits, the Bit-Contribution Test may be used.

When certain input bits should not affect the output, the

Bit-Exclusion Test may be considered. The Update Test can

be useful to test the processing of a message in multiple

fragments. Note that domain-specifc knowledge about crypto-

graphic algorithms is required to develop a testing approach,

and that the specifc customization and the effectiveness of the

approach is dependent on the specifcation of that particular

algorithm and the properties that may be used to develop the

tests.

IX. CONCLUSIONS

Based on the framework of metamorphic testing, we

have described a systematic method for developing tests for

cryptographic hash function implementations, and applied this

method to test all software implementations submitted to

the NIST SHA-3 competition. The test development method

begins with the main cryptographic properties that hash func-

tions should satisfy: (second-)preimage resistance, collision

resistance, and function behavior. We devise test cases that

try to violate these properties for the implementations of these

hash functions.

To assess the effectiveness of our tests in discovering bugs,

we revisited the NIST SHA-3 competition. NIST determined

that 51 submissions to the SHA-3 competition met the min-

imum submission requirements, and made them available

on-line. In spite of the initial selection and testing by the

submitters and by NIST, we have found bugs in 25 out of

the 51 initial reference implementations. The percentage of

bugs that we found is more or less consistent for the updated

reference implementations, where we have found bugs in 16

out of 35 updated implementations.

One of the primary strengths of our approach is that it

uses a practical number of test cases, yet detects complex

faws that were either previously unknown or only discovered

years after release. Our tests are also roughly four times faster

than the SHA-3 Competition Test Suite on a single core, even

though we compute a larger number of hash values. This is

primarily due to the fact that our test cases involve relatively

short messages as input. Furthermore, unlike some traditional

test suites developed for verifying cryptographic functions,

our test cases are independent of each other and thus can

easily be run in parallel. Finally, our tests can also be applied

in the practically-relevant scenario where the source code or

hardware description of the implementations are not available.

ACKNOWLEDGMENT

The authors would like to thank Lily Chen, Ça ˘ ¸ Cgdas ¸ alık,

Meltem Sönmez Turan, Apostol Vassilev, and their NIST col-

leagues for their useful comments and suggestions. This work

was partially supported by NIST ITL grant 70NANB17H035.

Products may be identifed in this document, but identifcation

does not imply recommendation or endorsement by NIST, nor

that the products identifed are necessarily the best available

for the purpose. Responsible disclosure: to the best of our

knowledge, none of the SHA-3 candidate algorithms are used

in commercial products, except for Keccak, which became the

SHA-3 standard. However, we did not identify bugs in the

reference implementations of Keccak.

14

REFERENCES

[1] National Institute of Standards and Technology, “Secure Hash Standard
(SHS),” NIST Federal Information Processing Standards Publication
180-4, p. 36, August 2015, http://dx.doi.org/10.6028/NIST.FIPS.180-4.

[2] X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions,” in
EUROCRYPT 2005, ser. Lecture Notes in Computer Science, vol. 3494.
Springer, 2005, pp. 19–35.

[3] X. Wang, Y. L. Yin, and H. Yu, “Finding Collisions in the Full SHA-1,”
in CRYPTO 2005, ser. Lecture Notes in Computer Science, vol. 3621.
Springer, 2005, pp. 17–36.

[4] National Institute of Standards and Technology, “Announcing Request
for Candidate Algorithm Nominations for a New Cryptographic Hash
Algorithm (SHA-3) Family,” 72 Fed. Reg., pp. 62 212–62 220, Novem-
ber 2007, https://www.federalregister.gov/d/E7-21581.

[5] ——, “SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions,” NIST Federal Information Processing Standards Pub-
lication 202, p. 37, August 2015, https://doi.org/10.6028/NIST.FIPS.202.

[6] E. J. Weyuker, “On Testing Non-Testable Programs,” Comput. J., vol. 25,
no. 4, pp. 465–470, 1982.

[7] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
Oracle Problem in Software Testing: A Survey,” IEEE Trans. Softw.

Eng., vol. 41, no. 5, pp. 507–525, May 2015.

[8] Z. Q. Zhou, D. H. Huang, T. H. Tse, Z. Yang, H. Huang, and T. Y.
Chen, “Metamorphic Testing and its Applications,” in Proc. of the 8th

International Symposium on Future Software Technology (ISFST 2004),
2004.

[9] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based testing without the
need of oracles,” Information and Software Technology, vol. 45, no. 1,
pp. 1–9, 2003.

[10] S. Segura, G. Fraser, A. Sanchez, and A. Ruiz-Cortés, “A Survey on
Metamorphic Testing,” IEEE Trans. Softw. Eng., vol. 42, no. 9, pp. 805–
824, Sept. 2016.

[11] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse, and Z. Q.
Zhou, “Metamorphic testing: A review of challenges and opportunities,”
ACM Computing Surveys, vol. 51, no. 1, pp. 4:1–4:27, 2018.

[12] CERT/CC, “CA-1999-15: Buffer Overfows in SSH daemon
and RSAREF2 Library,” http://www.cert.org/historical/advisories/
CA-1999-15.cfm, December 1999.

[13] National Institute of Standards and Technology, “NIST Computer
Security Division - The SHA-3 Cryptographic Hash Algorithm
Competition, November 2007 - October 2012,” February 2017.
[Online]. Available: http://csrc.nist.gov/groups/ST/hash/sha-3/

[14] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, “Software Fault Interac-
tions and Implications for Software Testing,” IEEE Trans. Softw. Eng.,
vol. 30, no. 6, pp. 418–421, 2004.

[15] R. Anderson, “Why Cryptosystems Fail,” in Proceedings of the 1st ACM

Conference on Computer and Communications Security. ACM, 1993,
pp. 215–227.

[16] A. Braga and R. Dahab, “A Survey on Tools and Techniques for
the Programming and Verifcation of Secure Cryptographic Software,”
Proceedings of XV SBSeg, pp. 30–43, 2015.

[17] D. Lazar, H. Chen, X. Wang, and N. Zeldovich, “Why does crypto-
graphic software fail? A case study and open problems,” in Proceedings

of 5th Asia-Pacifc Workshop on Systems. ACM, 2014, p. 7.

[18] P. Kitsos, D. E. Simos, J. Torres-Jimenez, and A. G. Voyiatzis, “Exciting
FPGA cryptographic Trojans using Combinatorial Testing,” in Software

Reliability Engineering (ISSRE), 2015 IEEE 26th International Sympo-

sium on. IEEE, 2015, pp. 69–76.

[19] D. E. Simos, R. Kuhn, A. G. Voyiatzis, and R. Kacker, “Combinatorial
Methods in Security Testing,” IEEE Computer, vol. 49, no. 10, pp. 80–
83, 2016.

[20] J. Botella, F. Bouquet, J.-F. Capuron, F. Lebeau, B. Legeard, and
F. Schadle, “Model-Based Testing of Cryptographic Components –
Lessons Learned from Experience,” in Software Testing, Verifcation and

Validation (ICST), 2013 IEEE Sixth International Conference on. IEEE,
2013, pp. 192–201.

[21] T. Y. Chen, F.-C. Kuo, W. Ma, W. Susilo, D. Towey, J. Voas, and Z. Q.
Zhou, “Metamorphic Testing for Cybersecurity,” Computer, vol. 49,
no. 6, pp. 48–55, 2016.

[22] C.-a. Sun, Z. Wang, and G. Wang, “A property-based testing framework
for encryption programs,” Frontiers of Computer Science, vol. 8, no. 3,
pp. 478–489, 2014.

[23] J.-P. Aumasson and Y. Romailler, “Automated Testing of Crypto Soft-
ware Using Differential Fuzzing,” in Black Hat USA 2017, July 2017.

[24] E. W. Dijkstra, “Chapter I: Notes on Structured Programming,” in
Structured Programming, O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare,
Eds. London, UK, UK: Academic Press Ltd., 1972, pp. 1–82.

[25] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage
and adequacy,” ACM Computing Surveys, vol. 29, no. 4, pp. 366–427,
1997.

[26] National Institute of Standards and Technology, “Security Requirements
for Cryptographic Modules,” NIST Federal Information Processing
Standards Publication 140-1, p. 56, January 1994, http://csrc.nist.gov/
publications/fps/fps140-1/fps1401.pdf.

[27] ——, “NIST - Cryptographic Algorithm Validation Program (CAVP),”
June 2017. [Online]. Available: http://csrc.nist.gov/groups/STM/cavp

[28] ——, “Announcing Request for Candidate Algorithm Nominations for
the Advanced Encryption Standard,” 62 Fed. Reg., pp. 48 051–48 058,
September 1997, https://www.federalregister.gov/d/97-24214.

[29] ——, “Announcing the ADVANCED ENCRYPTION STANDARD
(AES),” NIST Federal Information Processing Standards Publication
197, p. 51, November 2001, https://doi.org/10.6028/NIST.FIPS.197.

[30] National Bureau of Standards, “Validating the Correctness of Hardware
Implementations of the NBS Data Encryption Standard,” NBS Spe-
cial Publication 500-20, p. 52, November 1977, http://nvlpubs.nist.gov/
nistpubs/Legacy/SP/nbsspecialpublication500-20e1977.pdf.

[31] J. Forsythe and D. Held, “NIST SHA-3 Competition Security
Audit Results,” Fortify Software Blog, 2009, archived at:
http://web.archive.org/web/20120222155656if /http://blog.fortify.
com/repo/Fortify-SHA-3-Report.pdf.

[32] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of

Applied Cryptography. CRC Press, 1997.
[33] National Institute of Standards and Technology, “ANSI C Cryptographic

API Profle for SHA-3 Candidate Algorithm Submissions,”
February 2008. [Online]. Available: http://csrc.nist.gov/groups/ST/
hash/documents/SHA3-C-API.pdf

[34] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, “IPOG/IPOG-
D: effcient test generation for multi-way combinatorial testing,” Soft-

ware Testing, Verifcation and Reliability, vol. 18, no. 3, pp. 125–148,
2008.

[35] D. R. Kuhn, R. N. Kacker, and Y. Lei, Introduction to Combinatorial

Testing. CRC press, 2013.
[36] C. Montanez, D. R. Kuhn, M. Brady, R. M. Rivello, J. Reyes, and M. K.

Powers, “Evaluation of Fault Detection Effectiveness for Combinatorial
and Exhaustive Selection of Discretized Test Inputs,” Software Quality

Professional Magazine, vol. 14, no. 3, 2012.
[37] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, “SHA-3

proposal BLAKE,” Submission to the NIST SHA-3 Competition (Round
3), 2010, http://131002.net/blake/blake.pdf.

[38] J.-P. Aumasson, “SHA-3 proposal BLAKE,” September 2015. [Online].
Available: https://131002.net/blake/

[39] ——, “Crypto Code: The 9 circles of testing,” TROOPERS
2016, March 2016. [Online]. Available: https://131002.net/data/talks/
cryptocode troopers16.pdf

[40] S. Indesteege, “The LANE hash function,” Submission to the NIST
SHA-3 Competition (Round 1), 2008, http://www.cosic.esat.kuleuven.
be/publications/article-1181.pdf.

[41] ——, Personal Communication, July 2009.
[42] ——, “The LANE hash function,” July 2009. [Online]. Available:

https://www.cosic.esat.kuleuven.be/lane/
[43] S. Halevi, W. E. Hall, and C. S. Jutla, “The Hash Function Fugue,”

Submission to the NIST SHA-3 Competition (Round 2), 2009, archived
at: http://www.webcitation.org/5nRO4qvXN.
¨ [44] O. Küç ük, “The Hash Function Hamsi,” Submission to the NIST
SHA-3 Competition (Round 2), 2009, http://www.cosic.esat.kuleuven.
be/publications/article-1203.pdf.

[45] N. Mouha, “Automated Techniques for Hash Function and Block Cipher
Cryptanalysis,” Ph.D. dissertation, Katholieke Universiteit Leuven, 2012.

[46] H. Wu, “The Hash Function JH,” Submission to the NIST SHA-
3 Competition (Round 3), 2011, http://www3.ntu.edu.sg/home/wuhj/
research/jh/jh round3.pdf.

[47] A. Langley, “Checking that functions are constant time with Valgrind,”
April 2010. [Online]. Available: https://www.imperialviolet.org/2010/
04/01/ctgrind.html

[48] T. Y. Chen, F.-C. Kuo, D. Towey, and Z. Q. Zhou, “A Revisit of
Three Studies Related to Random Testing,” Science China Information

Sciences, vol. 58, no. 5, pp. 1–9, May 2015.
[49] Air Force Institute of Technology, “Scientifc Test and Analysis

Techniques Defnition,” 2017. [Online]. Available: https://www.aft.edu/
STAT/page.cfm?page=358

http:https://www.afit.edu
https://www.imperialviolet.org/2010
http://www3.ntu.edu.sg/home/wuhj
http://www.cosic.esat.kuleuven
http://www.webcitation.org/5nRO4qvXN
https://www.cosic.esat.kuleuven.be/lane
http://www.cosic.esat.kuleuven
https://131002.net/data/talks
https://131002.net/blake
http://131002.net/blake/blake.pdf
http://csrc.nist.gov/groups/ST
http://blog.fortify
http://web.archive.org/web/20120222155656if
http:http://nvlpubs.nist.gov
https://doi.org/10.6028/NIST.FIPS.197
https://www.federalregister.gov/d/97-24214
http://csrc.nist.gov/groups/STM/cavp
http:http://csrc.nist.gov
http://csrc.nist.gov/groups/ST/hash/sha-3
http://www.cert.org/historical/advisories
https://www.federalregister.gov/d/E7-21581
http:2]X.WangandH.Yu
http://dx.doi.org/10.6028/NIST.FIPS.180-4

