Atom probe tomography analysis of the reference zircon gj-1: An interlaboratory study

⁎ Corresponding author at: School of Aerospace, Mechanical, Mechatronic Engineering, University of Sydney, NSW 2006, Australia.
E-mail address: alex.lafontaine@sydney.edu.au (A. La Fontaine).

ARTICLE INFO

Editor: K. Mezger
Keywords:
Interlaboratory
Round robin
Atom probe tomography
Reference zircon GJ-1
Nanoscale composition
Analysis parameters

ABSTRACT

In recent years, atom probe tomography (APT) has been increasingly used to study minerals, and in particular the mineral zircon. Zircon (ZrSiO4) is ideally suited for geochronology by utilizing the U-Th-Pb isotope systems, and trace element compositions are also widely used to constrain petrogenetic processes. However, while standard geoanalytical techniques provide information at micrometer scale lengths, the unique combination of chemical/isotopic sensitivity and spatial resolution of APT allows compositional and textural measurements at the nanoscale. This interlaboratory study aims to define the reproducibility of APT data across research facilities and assess the role of different aspects of the atom probe workflow on reproducibility. This is essential to allow correct evaluation of APT results and full utilization of this emerging technique within the geoscience community. In this study, nine samples from the same homogeneous, GJ-1/87 zircon reference grain were sent to nine APT institutes in Germany, the UK, USA, Canada and Australia. After preparing the sample out of a selected slab, each institute conducted three different rounds of APT analyses: using (i) unconstrained analysis parameters, (ii) pre-defined analysis parameters, and (iii) interpreting and quantifying a provided dataset. Data such as the measured elemental composition, acquisition parameters, or mass spectrum peak identifications, were recorded and analyzed. We observe a significant variation in the measured composition across this interlaboratory study as well as the number of trace elements identified. These differences are thought to directly result from the user’s choice of atom probe data analysis parameters. The type of instrument does not seem to be a critical factor. Consequently, comparison of absolute trace element concentrations on zircon using APT between laboratories is only valid if the same workflow has been ensured.

https://doi.org/10.1016/j.chemgeo.2018.07.031
Received 20 October 2017; Received in revised form 27 June 2018; Accepted 26 July 2018
0009-2541/ © 2018 Elsevier B.V. All rights reserved.

Please cite this article as: Exertier, F., Chemical Geology (2018), https://doi.org/10.1016/j.chemgeo.2018.07.031
1. Introduction

The accessory mineral zircon (ZrSiO₄) is commonly used in geoscience as a geochronometer utilising the U-Th-Pb isotope systems and also as a trace element monitor of geological systems. This is essentially due to its ability to specifically incorporate particular trace elements such as U and Th, but exclude Pb during crystallization as well as the robustness of its lattice structure, composed of isolated SiO₄ tetrahedra, which leads to refractory properties and resistance to weathering (MacDonald, 2013; Möller et al., 2002). The extremely slow diffusivity of solutes, even at high temperature, contributes to zircon's use as a “recording system” (Cherniak et al., 1997; Cherniak and Watson, 2003; Hoskin and Schaltegger, 2003).

Secondary ionization and laser ablation inductively coupled mass spectrometry (SIMS and LA-ICPMS, respectively) are commonly used to measure the trace element composition in zircons. These established geochronology techniques have the advantage of an excellent chemical detection limit, but has a spatial resolution limited to \(\approx 10 \mu \text{m} \) (depth resolution can be lower) (Radionova et al., 2015; Schaltegger et al., 2015). In the last decade, studies using advanced electron microscopy, cathodoluminescence and secondary ion mass spectrometry showed that trace elements can be heterogeneously distributed within zircons at the micrometer and sub-micrometer scale in domains affected by crystal-plastic deformation (Kovaleva et al., 2015; Kusiak et al., 2013a; Moser et al., 2009; Piazolo et al., 2012; Reddy et al., 2009; Reddy et al., 2007; Reddy et al., 2006; Timms et al., 2006). Magmatic oscillatory zonation has also been noted (Melnik and Bindeman, 2018). Trace element mobility is also observed in old zircons with high U content due to radiation damage (Harley and Black, 2004). In order to better understand the processes responsible for such heterogeneities and trace element mobility, the geoscience community requires techniques that combine sub-micrometer spatial resolution with high chemical sensitivity and low detection limits. For example, high-resolution ion microprobe (nano-SIMS) can reach a lateral resolution of \(\approx 50 \) nm while maintaining a low chemical detection limit, usually below 1 \(\mu \text{g/g} \) (Kilburn and Wacey, 2015; Kusiak et al., 2013b; Petrelli et al., 2016). In parallel, atom probe tomography (APT) has recently emerged as a technique providing three-dimensional, subnanometer-scale analysis of minerals with a unique combination of chemical/isotopic sensitivity and near-atomic resolution (Gault et al., 2012; Larson et al., 2013). The high electric field intrinsic to APT results in near-perfect ionization, providing high sensitivity and uniformity across all elemental and isotopic species simultaneously during analysis. Detection limits for APT are around 10 ppma, and generally depend on the element and the overall composition of the specimen. In recent years, APT has been increasingly applied to the study of trace element distribution in zircons (La Fontaine et al., 2017; Peterman et al., 2016; Piazolo et al., 2016; Reddy et al., 2016; Valley et al., 2014).

APT relies on the effect of an intense electric field generated at the tip of a 50–100 nm diameter needle-shaped specimen biased to a high voltage, in the range of 3 kV to 11 kV. As this electrostatic field reaches a critical value in the range of 10^{10} \text{V m}^{-1} to 10^{11} \text{V m}^{-1}, the surface atoms are progressively ionized and desorbed from the surface in a process known as field evaporation. Upon laser-assisted field evaporation, the ions are accelerated away from the specimen and projected onto a position-sensitive detector, with a magnification that routinely reaches 10^8 \times. Field evaporation is a thermally-assisted process, critically dependent on the amplitude of the electric field. Time-control of the field evaporation process is gained by superimposing laser pulses to the DC voltage, allowing for time-of-flight mass spectrometry with sub-nanometer spatial resolution. Elemental composition may be calculated by identifying the elemental species associated with individual peaks and measuring and comparing the peak size. Modern atom probe microscopes utilize two main types of flight paths. In one case, a reflectron lens acts as an electrostatic mirror that modifies the flight path of ions having different kinetic energies to improve the mass resolution, while maintaining the field-of-view, but slightly decreasing the overall detection efficiency. Alternatively, a straight flight path enables a higher detection efficiency with a poorer mass resolving power (Clifton et al., 2008; Panayi, 2007).

After some early attempts (Kuhlman et al., 2001; Miller and Russell, 1992), improvements in APT instrumentation and specimen preparation methods have supported a rising interest by the geoscience community in recent years (e.g. Heck et al., 2014; La Fontaine et al., 2017; Peterman et al., 2016; Piazolo et al., 2016; Reddy et al., 2016). Hence, it is timely for the APT community to evaluate the reproducibility of the technique on well-characterized, geological reference materials. It has been widely reported that the composition measured by APT is dependent on the analysis conditions, namely the base temperature, the pulsing mode (high-voltage vs. laser), the laser pulse energy, the amplitude of the DC field, detection rate, the type of instrument and detector used (Blum et al., 2016; Costa et al., 2012; Gault et al., 2016; Hashizume et al., 1986; Mancini et al., 2014; Miller and Smith, 1981; Müller et al., 2011; Santhanagopalan et al., 2015; Saxey et al., 2018; Saxey, 2011; Tang et al., 2010; Yao et al., 2011).

In order to monitor experimental biases and long-term reproducibility, the geoscience community relies on well-characterized and homogenous reference zircons that have enabled routine compositional analysis using LA-ICPMS and other microanalytical methods (Belousova et al., 2010). One such reference zircon (GJ-1) was developed by the ARC National Key Centre for Geochemical Evolution and Metallogeny of Continents (GEMOC) and the ARC Centre of Excellence for Core to Crust Fluid Systems (CoE/CCFS) at Macquarie University in Australia. In recent years, it has been widely distributed and used as a chemical reference material for zircon U-Pb geochronology and Hf-isotope analysis (Piazolo et al., 2017).

Here, we report on an interlaboratory APT experiment making use of one grain of this reference zircon GJ-1. To date, few round-robin experiments in APT have been reported in the open literature (Melmed et al., 1979; Nakamura, 1986), but the community is increasingly using this approach to assess analysis methods and techniques. For example, testing the reliability of clustering analysis methods on the same simulated and experimental data sets (Marquis et al., 2016), or the influence of the user on the definition of ranges to translate a mass spectrum into an elemental composition (Hudson et al., 2011; Reinhardt et al., 2017). Our effort, coordinated at the University of Sydney, is the first of its kind on a geological material and has utilised nine state-of-the-art instruments spread across Germany, the UK, Canada, USA and Australia. Fragments from the same zircon GJ-1 grain (grain # 87) were sent to different laboratories for further sample preparation and analysis. The interlaboratory experiment consisted of 3 different rounds of analysis: (i) unconstrained acquisition parameters and data processing; (ii) pre-defined acquisition parameters, and (iii) data processing solely, on a constrained dataset. Here we present the results from this interlaboratory experiment, namely, recording the acquisition parameters, the quality of the mass spectra, the identification of peaks in the mass spectra, and the subsequent measurement of the composition for the primary and trace elements. From our analysis, we derive the critical parameters and lay out what could become best practice in the field. Please note that every single dataset has been made available to the entire scientific community for further processing and data mining in a publicly available repository (see https://apdata.amrfs.org.au/).

2. Experimental procedure

2.1. Interlaboratory experiments

This interlaboratory study was set up as a collaboration between nine APT laboratories in five different countries equipped with four different models of commercial Local Electrode Atom Probes (CAMECA LEAP®), all equipped with UV (\(\lambda = 355 \) nm) laser systems as...
summarized in Table 1. The single grain of reference zircon was obtained from GEMOC/CCFS at Macquarie University in Australia.

Eleven fragments were sectioned from zircon GJ-1/87 to a size of a few mm² each. Those samples were distributed to the participants at the Atom Probe Tomography and Microscopy conference in 2016 (APT&M 2016, Gyeongju, South Korea), without providing any information on the sample, except that it was a reference zircon. All participants received a document that defined the protocol of the interlaboratory study. The participants were asked to share the results listed in Table 2.

2.2. The reference zircon GJ-1/87

The reference zircon used in this study is GJ-1/87 (grain 87): a centimeter size gem quality zircon obtained from GEMOC/CCFS at Macquarie University in Australia, which is thought to originate from African pegmatites with a crystallization age of 608.5 ± 0.4 Ma (Jackson et al., 2004; Piazolo et al., 2017). This well-characterized zircon is exceptionally homogeneous from atomic to millimeter scale, as shown in a recent study utilising APT, LA-ICPMS, transmission Kikuchi diffraction (TKD) and electron backscattered diffraction (EBSD) (Piazolo et al., 2017). Prior to cutting the samples from the single-crystal GJ-1/87, its homogeneity was evaluated by using EBSD (2a). For EBSD, the zircon grain was mechanically polished and then finished with a colloidal silica-water solution. The sample was then carbon coated. EBSD was performed on a Zeiss EVO electron microscope (SEM) coupled with an HKL NordlysNano high sensitivity EBSD detector and a tungsten source operated at 20 kV. AzTec software (Oxford Instruments) was used to index the EBSD patterns, and the results confirmed that GJ-1/87 is a single grain with no noticeable crystal plastic deformation. The sample was then sectioned using a diamond saw into eleven pieces with a section of approximately 1 mm² and one piece was given to each participant laboratory. The samples were assigned the following naming convention: Number-Letter-Roman numeral, where:

1 The identification of commercial products is to specify the experimental conditions and does not imply any NIST endorsement, recommendation, or imply that they are necessarily the best for the purpose.
the following steps of the data processing, namely the mass spectrum peak identification, ranging and background estimation and correction. The identification of the peaks in the mass spectrum is done manually by the user, who specifies a range of mass-to-charge-state ratios to which a specific type of atomic or molecular ion is associated. This step is colloquially known as peak ranging. These mass ranges are one of the key user inputs to the commercial software package. Peaks ranging and their intensity enable the calculation of the absolute concentrations for each identified element.

The elements identified by the participants from peak ranging are summarized in Fig. 3. Four elements were identified by all participants for the three rounds: O, Zr, Si and Hf. The majority of participants also identified Y for all rounds. Two groups further identified Th, Er and U and one participant identified more than seven trace elements. The detection limit of APT is influenced by the position and number of peaks associated with a single element in the mass spectrum, which may include peaks arising from multiple isotopes, molecular ion complexes, and different charge states. In addition, the background level varies across the mass spectral range. In ideal situations, the detection limit of APT may be below 10 ppma for some elements (Al for example) and as high as hundreds of ppma for others (U for example). The quantification limit of APT depends indeed on the position of the peak in the mass spectrum and its associated background or noise level. The detection limit is also function of the number of ions collected, and whether the element is homogenously distributed within the material (Gault et al., 2012). The detection of trace elements also depends on the size of the dataset. The peaks for some trace elements, such as Th or Er, can be very challenging to quantify with high confidence because they are often similar in magnitude to the local background noise. Isobaric interference and non-detection of all minor isotopes (i.e. a complete

Table 3
Summary of LA-ICPMS trace element concentrations (μg/g) for the GJ-1/87 zircon standard (full data in Table S1).

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Al</th>
<th>P</th>
<th>Ti</th>
<th>Cu</th>
<th>Ga</th>
<th>Ge</th>
<th>As</th>
<th>Rb</th>
<th>Y</th>
<th>Nb</th>
<th>Hf</th>
<th>Ta</th>
<th>Pb</th>
<th>Th</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>5.38</td>
<td>30.5</td>
<td>4.51</td>
<td>0.10</td>
<td>0.45</td>
<td>0.18</td>
<td>0.21</td>
<td>0.06</td>
<td>197</td>
<td>2.01</td>
<td>5535</td>
<td>0.48</td>
<td>76.9</td>
<td>14.1</td>
<td>222</td>
</tr>
<tr>
<td>1σ</td>
<td>0.21</td>
<td>3.0</td>
<td>0.23</td>
<td>0.01</td>
<td>0.02</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>6.7</td>
<td>0.07</td>
<td>186</td>
<td>0.02</td>
<td>3.3</td>
<td>0.5</td>
<td>8.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis</th>
<th>La</th>
<th>Ce</th>
<th>Pr</th>
<th>Nd</th>
<th>Sm</th>
<th>Eu</th>
<th>Gd</th>
<th>Tb</th>
<th>Dy</th>
<th>Ho</th>
<th>Er</th>
<th>Tm</th>
<th>Yb</th>
<th>Lu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>0.002</td>
<td>15.2</td>
<td>0.03</td>
<td>0.71</td>
<td>1.51</td>
<td>0.89</td>
<td>5.53</td>
<td>1.59</td>
<td>17.3</td>
<td>5.55</td>
<td>23.7</td>
<td>5.46</td>
<td>58.3</td>
<td>8.98</td>
</tr>
<tr>
<td>1σ</td>
<td>0.001</td>
<td>0.64</td>
<td>0.002</td>
<td>0.03</td>
<td>0.06</td>
<td>0.03</td>
<td>0.23</td>
<td>0.05</td>
<td>0.6</td>
<td>0.18</td>
<td>0.83</td>
<td>0.18</td>
<td>2.1</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Fig. 1. Multi-scale analysis of reference zircon GJ-1/87, confirming absence of structural disturbances and macro-to-nano homogeneity. (a) EBSD analysis of GJ-1/87 (b) Cathodoluminescence and secondary electron images of sample 4R-I, EBSD and X-ray Energy Dispersive Spectrometry analysis (Arvizu et al., 2011); (c) TKD analysis and atom maps of APT specimen needles from sample 4S-II.

Fig. 2. Mass spectrum histogram from zircon GJ-1/87 obtained from the sum of all mass spectra collected in the unconstrained round. Different background correction models (Global TOF-based, local-mass based and local range-assisted) are highlighted in red. The y axis indicates the ion counts per histogram bin. In the inset this is normalized against the highest peak (O+). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Summary of LA-ICPMS trace element concentrations (μg/g) for the GJ-1/87 zircon standard (full data in Table S1).
isotopic signature for an element) further complicates confident identification of trace elements. It currently falls to the user to decide whether or not to identify or exclude a given peak with a low signal-to-background ratio. This user choice appeared to be the main factor determining the number of elements identified. There was also no apparent trend between the type of instrument used and the number of peaks identified (Fig. 3). This is perhaps surprising as the reflectron-based detector tends to have a superior mass resolving power that could enhance detection of trace elements.

The identification of the main elements (O, Zr and Si) and the two main trace elements (Hf and Y; 5535 and 197 µg/g based on LA-ICPMS data) by most of the participants is consistent with previous APT studies of homogeneous zircons in the absence of clustering (La Fontaine et al., 2017; Peterman et al., 2016; Piazolo et al., 2016; Reddy et al., 2016). Hf composition is quite consistent with LA-ICPMS results at around ≈ 1000 ppma (≈ 5000 µg/g).

Fig. 4 also shows that the dispersion among the individual measurements decreases between the unconstrained and constrained rounds for O and Si. It shows that the different analysis parameters lead, as expected, to a substantial variation in the resulting composition. The harmonization of the ranging and background correction model decreases the deviation in the measured composition even further, as shown in Fig. 4. The data points corresponding to the ranging round confirm the importance of user choices during peak ranging, and the associated background correction models, by showing a greater variation in the measured composition compared to the constrained round using the same range.

3.2. Spectral correction

Once the majority of peaks have been identified and ranged, the background contribution needs to be subtracted in order to obtain an accurate composition. There are three background correction models available in IVAS: (i) global TOF-based which is a background estimate based on the TOF spectrum of the entire dataset that is calculated before reconstruction; (ii) local mass-based correction, which is similar to the global TOF-based estimate but is calculated separately for each mass spectrum created; and (iii) local ranged-assisted background correction, which is calculated for each ranged peak based on the number of counts on either side of the user-defined peak range (Cameca, 2013). The three models are schematically represented in the mass spectrum presented in Fig. 1.

The background correction methods employed by the groups are summarized in supplementary Table S2. Seven out of nine participants used the local ranged-assisted background correction. One participant used a local ranged-assisted background removal method developed in-house, one used the local mass-based correction. The choice of background correction model can be made after the reconstruction. For complex mass spectra such as those from zircon, the background level varies greatly across the TOF range with the contribution of several, overlapping peak tails. Hence, a more localized evaluation of the background for each peak yields more accurate results. Here, most participants chose the local ranged-assisted background correction, hinting towards a possibility to standardize the background correction model.

3.3. Acquisition and reconstruction parameters

Fig. 5 summarizes the principal acquisition parameters used by participants in the unconstrained round. Nearly 20% of the atom probe data sets were collected with a laser energy of 100 pJ and about 70% with a laser energy of 400 pJ and below. The majority of participants used a voltage-controlled average ion detection rate of 1 ion or less per 100 laser pulses, and a specimen base temperature between 45 K and 55 K. The laser pulse frequency varied from 125 kHz to 250 kHz. However, it is irrelevant to compare straight flight path and reflectron-fitted systems in terms of pulse frequency. Often the laser pulse frequency for reflectron-fitted systems is lowered in order to include species with longer times-of-flight (i.e. higher mass-to-charge state ratios).

There is no evident correlation between the acquisition parameters

Fig. 3. Elements identified in the study for each stage of analysis. Typical FIB and UHV system impurities (e.g. C, H and Ga) are excluded.

Fig. 4. The concentrations of O, Zr, Si and Hf measured for all three rounds. The full compositions for this study are shown in supplementary Tables S3 and S4. The average O content for all rounds (≈ 65 at.%.) is below its expected nominal composition and its maximum standard deviation for any single round is ≈ 3 at.%, which corresponds to that of the unconstrained round.

The Zr content is consistently overestimated with an average of ≈ 18 at.%, while the Si content is closer to its nominal value with an average of ≈ 16 at.% (see Fig. 4). These results are consistent with previous APT studies of zircons, which reported both a deficit of O and a variation in Zr and Si content (La Fontaine et al., 2017; Peterman et al., 2016; Piazolo et al., 2016; Reddy et al., 2016). Hf composition is quite consistent with LA-ICPMS results at around ≈ 1000 ppma (≈ 5000 µg/g).
used and the LEAP models (Fig. 5). The laser pulse energy is the parameter that varied the most between participants. It is well known that APT data quality is heavily influenced by the laser pulse energy (Santhanagopalan et al., 2015). The choice of laser pulse energy is often guided by the mass spectrum quality, which is usually measured by its background level, thermal tails behind peaks, and mass resolving power. The data obtained in a typical APT experiment must be reconstructed in order to visualize the 3D volume. Using the simple flight path geometry and the assumption that the specimen is a hemi-spherical cap on a truncated cone, the ion impact detector coordinates can be used to determine the lateral position of the atoms at the surface of the specimen, and the sequence of evaporation is used to deduce the depth of the atoms within the specimen. The most common APT reconstruction algorithm is based on the work from Bas et al. (1995), Gault et al. (2011) and Geiser et al. (2009). The reconstruction is generally completed with CAMECA’s commercial software package IVAS through semi-automated steps where the user can choose to use default parameters or calculate their own reconstruction parameters.

Optimization of the reconstruction accuracy is widely considered to be a crucial aspect of the APT data processing, as it directly affects the spatial accuracy with which the 3D representation of the field-evaporated volume reflects the true specimen microstructure. In the case we investigate here, where the material is expected to be homogeneous, and we are mainly concerned with composition, the reconstruction step is less critical.

Table S2 shows that the majority of participants calculated their own image compression factor (ICF) and k-factor or used the combination of calculated field evaporation value and atomic volume for Zr. A few participants used the default parameters provided in IVAS™ and a single participant used the so-called “tip profile” reconstruction method (Larson et al., 2013).

The reconstruction method principally influences the spatial accuracy of the 3D reconstructed volume and has no impact on the time of flight and the composition measured. The zircon GJ-1/87 sample is...
perfectly homogenous and as such does not contain any small features that could be used to calibrate the reconstruction, and the nature of zircon field evaporation also does not allow for calibration using crystallographic information. As a result, in this study the spatial accuracy of the 3D volume was not tested.

3.4. Mass spectra and the resulting measured composition

Two close-ups of the mass spectra between 5 Da to 26 Da and 40 Da to 65 Da collected in both the constrained and the unconstrained rounds are shown in Fig. 6(a) and (b) respectively.

There are noticeable differences in the background levels and the extent of thermal tails behind major peaks. These features are influenced by experimental parameters such as the shape of the specimen, the specimen base temperature, the amplitude of the electrostatic field, the laser pulse energy and the instrument vacuum quality. Not all of these factors are easily controllable or reproducible, especially the parameters that are related to the specimen’s shape.

A more quantitative way to compare mass spectra from different origins is to look at the signal-to-background ratio for a selected peak versus charge-state-ratio (which gives an indication of the field intensity) or background level around the H peak (informing on the vacuum state of the instrument). Here the signal-to-background ratios were measured for the Y3+ peak, which corresponds to one of the major trace elements within the zircon under investigation. The Y3+ peak was reported by most of the participants at a level of ≈70 ppma (≈200 μg/g) on average (similar to the 197 μg/g identified by LAICPMS). As shown in the inset in Fig. 7(b), the peak position in the mass spectrum, at 29.66 Da, is clear of major thermal tails or isobaric overlaps. It is plotted against the charge-state-ratio of ZrO (ZrO3+ / (ZrO3+ + ZrO2+)) in order to reflect the field intensity (Fig. 7(a)). The charge-state-ratio of a peak has previously been shown to qualitatively reflect the intensity of the field (Kingham, 1983; Schreiber et al., 2014), where a higher charge-state-ratio corresponds to higher field. The ZrO species was chosen for its abundance and the absence of isobaric interference at the position of its two molecular ions, ZrO3+ and ZrO2+.

The signal-to-background ratios are slightly higher for the reflectron-fitted systems, which also display less dispersion than the data from the straight flight path instruments (Fig. 7(a) and (b)). The reflectron-fitted instruments (blue in Fig. 6) benefit in this metric from both a longer flight path and energy filtering of the reflectron lens that both enhances the signal and reduces the native background. The electric field is also more intense in the case of reflectron-fitted systems. This can be explained by a lower detection efficiency as well as a smaller field of view for these systems. In order to sustain an equivalent detection rate, experiments performed with reflectron-fitted systems will require a higher evaporation field compared to a straight flight path system. During an atom probe experiment, the field can be lowered by using a higher laser pulse energy or lower detection rate. The level of background is also slightly higher with a more intense field, but this seems to have a limited impact on the signal-to-background ratios (Fig. 7(b) and (c)). While the instrument model (4000 vs 5000) does not appear to play a role in the mass spectrum quality, there is some improvement in signal-to-background ratios with reflectron-fitted systems.

A notable ‘non-outcome’ of this study is the failure at all stages to detect Pb (nominally 11 ppma in bulk sample) let alone measure its isotopic composition. This points to a problem with either instrument detection limits or to micro to nano-scale variations in Pb zoning in the reference material. A similar scenario was also observed in different reference zircon and the monoclinic ZrO2 mineral, baddeleyite, wherein bulk compositions measured by ICPMS were up to an order of magnitude higher than was measured by APT (Reinhard et al., 2017). Further work on reference materials known to be homogeneous as APT length scales is merited to discriminate among scenarios. At present APT of high Pb (and parent U) zircon (i.e. several hundreds of μg/g) is
to-background ratios for the selected Y peak examined in this paper. Values of the laser pulse energy or parameters that relate to the specimen geometry are too difficult to control or to be reproduced, and only parameters from the analysis itself should be considered. The background has a strong influence, and better ways to quantify this may be needed. Finally, the charge state ratios seem an interesting parameter to use for APT data comparison as it can be monitored during the course of the analysis and is only dependent on the physics of the field evaporation.

Acknowledgements

DKS, KK and JW acknowledge support from the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division for financial support of this work. A portion of this research was performed using EMSL, a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research at the Pacific Northwest National Laboratory (PNNL). PNNL is a multiprogram national laboratory operated by Battelle for the U.S. DOE.

The Australian Resource Characterisation Facility (ARCF), under the auspices of the National Resource Sciences Precinct (NRSP) – a collaboration between CSIRO, Curtin University and The University of Western Australia – is supported by the Science and Industry Endowment Fund (SIEF R13-01). ALF and JC acknowledge the facilities and the scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Australian Centre for Microscopy & Microanalysis at the University of Sydney.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.chemgeo.2018.07.031.

References

Camoca, 2013. IVAS™ 3.6.6 User Guide.

