
A Layered Graphical Model for Mission Attack
Impact Analysis

Changwei Liu
Department of Computer Science

George Mason University
Fairfax VA 22030 USA

cliu6@gmu.edu

Anoop Singhal
National Institute of Standards and Technology

100 Bureau Drive, Gaithersburg MD 20899 USA
anoop.singhal@nist.gov

Duminda Wijesekera
Department of Computer Science

George Mason University
Fairfax VA 22030 USA

dwijesek@gmu.edu

Abstract—In this paper, we describe a layered graphical
model to analyze the mission impacts of attacks for forensic
investigation. Our model has three layers: the upper layer
models operational tasks and their dependencies; the middle layer
reconstructs attack scenarios by using a forensic tool to find the
causality between items of evidence; the lower level reconstructs
potentially missing attack steps due to missing evidence from the
middle layer. Based on the graphs produced from the three layers,
our model computes mission impacts by using NIST National
Vulnerability Database(NVD) scores or forensic investigators’
estimates. The case study shows our layered graphical model can
be used for both forensic analysis and hardening an enterprise
infrastructure.

I. INTRODUCTION

In this paper, the mission for an enterprise is a set of
business processes that provide a set of services. For example,
the mission of a travel management system is to provide a set
of business processes to support airline and hotel reservation.
Organizational missions enabled by networked infrastructure
can be impacted by cyber-attacks. Quantifying the impacts of
cyber-attacks is of importance to mission planners. Mission
impact evaluation approaches and tools provide a way to
estimate the impacts of cyber-attacks on missions [1], of
which NIST NVD Common Vulnerability Scoring System
(CVSS) [2] provides impact estimates of exploitable vulnera-
bilities on IT systems. Researchers have expanded NIST NVD
CVSS to multi-step attacks to predict the impacts of such
attacks on missions by considering all possible vulnerabilities
that construct all possible attack paths [1], [3], [4]. However,
evaluating all paths is infeasible for forensic analysis to
assess damages due to combinatorial explosion caused from
considering all paths and vulnerabilities.

Because artifacts obtained from forensic investigations car-
ried out after cyber-attacks provide information that can be
used to analyze the attacks, we propose to create a layered
graphical model that uses such information to quantify the at-
tacks’ impacts on missions. As far as we know, there is no such
an integrated forensic analysis framework that quantifies the
mission impacts of multi-step attacks in a complex enterprise
infrastructure including cloud-based services.

The rest of the paper is organized as follows. Section II
presents the three-layered graphical model. Section III uses
a case study to show how the model computes mission

impacts of attacks. Section IV discusses the related work, and
Section V concludes this paper.

II. OUR THREE-LAYERED GRAPHICAL MODEL

Figure 1 shows our model with three layers. The lower
layers reconstruct attack paths so that the attacks can be
mapped to tasks and missions in the upper layer for mission
impact computation.

A. The Upper Layer

The upper layer models tasks and missions as business
processes. We model business processes using a Business
Process Diagram (BPD). Our BPDs are specified using the
Business Process Modeling Notation (BPMN). BPMN models
composite tasks by composing so-called atomic tasks using
constructors hierarchically. The current version of BPMN (v
2.0) uses about 100 graphical elements, covering the descrip-
tion of many categories of tasks, events, errors, areas of
responsibility, and general annotations [5]. A study of real-
world BPMN usage found that the most used subset, labeled
as the core subset of BPMN, consists of only eight elements
including tasks, start/end events, exclusive decision gateways,
parallel gateways, sequence flows, message flows and pools,
which are the base of the definition of a BPD [6]. In this paper,
we use BPDs constructed from those elements, formalized in
Definition 1 (Originally defined in [6]).

Definition 1 (Business Process Diagram-BPD): In BPMN
notation, a BPD is a graph BPD=(N, F, P, pool, L, lab), where:

1) N ⊆ T ∪ E ∪ G, in which tasks T are the basic
actions performed as part of a business process, events
E ⊆ ES ∪ EE consist of two disjoint sets ES and
EE representing start and end events, gateways G ⊆
GM ∪GF ∪GD are the disjoint sets GM , GF and GD

representing parallel merge, parallel fork and exclusive
decision gateways.

2) F ⊆ S ∪ M is a set of flow relations, in which sequence
flows S ⊆ N ×N relate nodes including tasks, events,
exclusive decision and parallel gateways to each other,
message passing M ⊆ T × GM is a relation between
task nodes and parallel merge gateways, employed to
pass messages between separate processes.

3) P ⊂ P (N) is a set of disjoint pools.

Fig. 1. The three-layered graph model for mission impact evaluation

4) Pool: N → P maps nodes to a pool p ∈ P . A pool
is a basic BPMN element that sets the boundaries of a
business process, which contains at most one business
process.

5) L is a set of labels.
6) Lab: F → L is a labelling function that assigns labels

to flows.

B. The Middle Layer
The middle layer creates attack scenarios using evidence

available from system logs, intrusion detection system (IDS)
alerts. Our objective is to map these attack scenarios to
missions modeled as BPDs. Because we only consider attack
scenarios substantiated using available evidence, the created
attack paths do not include all possible attack paths and
vulnerabilities that are infeasible for forensic analysis. How-
ever, sometimes, we may not be able to find all evidence to
reconstruct all attack scenarios in this layer, which will be
addressed in the lower layer.

We reconstruct attack scenarios by using a forensic analysis
tool created in our previous work [7]. This tool uses rules
to create directed graphs of available evidence and correlate
them together as witnesses of attacks. Because rules are used
to create these graphs, they are called logical evidence graphs
(LEGs) formalized in Definition 2 (originally defined in [7]).

Definition 2 (Logical Evidence Graph-LEG): A
LEG=(Nr, Nf , Nc, E, L, G) is said to be a logical evidence
graph (LEG), where Nf , Nr and Nc are three sets of disjoint
nodes in the graph (they are called fact, rule, and consequence
fact nodes respectively), E ⊆ ((Nf ∪Nc)×Nr)∪(Nr×Nc), L
is the mapping from a node to its labels, and G ⊆ Nc are the

observed attack events. Every rule node has a consequence fact
node as its single child and one or more fact or consequence
fact nodes from prior attack steps as its parents. The labels
of nodes consist of instantiations of rules or sets of predicates
specified as follows:

1) A node in Nf is an instantiation of predicates that
codify system states including access privileges, network
topology consisting of interconnectivity information, or
known vulnerabilities associated with host computers in
the system. We use the following predicates:

a) “hasAccount(principal, host, account)”,
“canAccessFile(host, user, access, path)”
and etc. to model access privileges.

b) “attackerLocated(host)” and “hacl(src, dst,
prot, port)” to model network topology, namely,

the attacker’s location and network reachability
information.

c) “vulExists(host, vulID, program)” and “vul-
Property(vulID, range, consequence)” to model
vulnerabilities exhibited by nodes.

2) A node in Nc represents a predicate that codifies the
post attack state as the consequence of an attack step.
We use predicates “execCode(host, user)” and “netAc-
cess(machine, protocol, port)” to model the attacker’s
capability after an attack step. Valid instantiations of
these predicates after an attack will update valid instan-
tiations of the predicates listed in (1).

3) A node in Nr consists of a single rule in the form
p ← p1 ∧ p2, · · ·,∧pn. p as the child node of Nr is
an instantiation of predicates from Nc. All pi for i ∈

{1 . . . n} as the parent nodes of Nr are the collection of
all predicate instantiations of Nf from the current step
and Nc from the prior attack step.

C. The Lower Layer

This layer uses instances of interactions between services
and the execution environment to obtain evidence unavailable
from systems logs and IDS alerts. We obtain such interaction
instances from systems call logs. This usage is based on our
postulate of missing evidence due to the attackers’ using anti-
forensic techniques, limitation of forensic tools, or zero-day
attacks. Because there are many system calls, we use those
used in [8], listed in the right-hand column of Table 1. Our
abstraction of them appear in the left-hand column of Table 1.
A process making system calls creates dependencies between
itself and other processes, files, or sockets for network con-
nection. We model these dependencies as graphs that we call
object dependency graphs (ODGs), formalized in Definition 3.

Definition 3 (Object Dependency Graph-ODG): The re-
flexive transitive closure of “→ ” defined in Table 1 is an ob-
ject dependency graph. We use the notation ODG=(VO, VE , E)
to represent an object dependency graph, where VO is the set
of vertexes that are composed of objects including Processes P,
Files F or Sockets S; VE is the set of textual event descriptions
listed in the middle column; and E is the set of dependency
edges listed in the left-hand column of Table 1.

D. The Mapping between the Three Layers

The left-hand and right-hand columns in Figure 1 show the
system resource mapping and graph mapping of our model.
We use the resource mapping obtained from the infrastructure
configuration and software deployment to map graphs. To
do so, we add the attacked services as attributes to the
corresponding nodes(vertexes) in LEGs and ODGs, so that
the mapping can match between node attributes of source
and destination graphs. These nodes are either processes,
infrastructure services or tasks that are the entities shown in
the left-column of Figure 1. A LEG is easily mapped to a BPD
by matching the attacked services to the corresponding tasks.
We use depth first search (DFS) method to map an ODG to a
LEG, which is explained in Algorithm 1.

In Algorithm 1, the first for loop colors all object nodes in an
ODG white, marking them as having not been checked. The
second for loop repeatedly calls Find(VO, LEG) function,
where, for a given white node VO, the algorithm attempts to
find the matching Node Nc1 by checking if the attacked service
in the LEG is equal to the attacked service in the ODG(the
pseudo code in Find(VO, LEG) function is Nc.service ==
VO.service). If such a post attack status node Nc1 is found,
the algorithm checks if the attack step between Node VO and
its parent node parent(VO) in the ODG has a mapping attack
step between Node Nc1 and its parent node(s) parent(Nc1)
in the LEG. If there is no such a mapping attack step, the
attack step is added to the LEG. If there is no any matching
post attack status Node Nc1 for node VO, one is added to the

Input: An ODG=(V, VE , E) and a
LEG=(Nr, Nf , Nc, E, L,G).

Output: A LEG integrated with attack paths from the
ODG.

//Color all nodes in ODG WHITE
for each node VO in ODG do

color[VO] ← WHITE
end
//Go through each object in ODG
for each node VO in ODG do

if VO == WHITE then
//Initialize all nodes in LEG white
for each node Nc in LEG do

color[Nc] ← WHITE
end
//Search for the corresponding Nc1 in LEG
Nc1 = Find(VO, LEG)
//If there is such a matching Nc1

if Nc1 6= ∅ then
color(VO)← BLACK
//See if the object’s parent matches
//corresponding Nc1’ s parent
Nc2=Find(parent(VO), LEG)
//If not matching parents,
//add the missing attack step from ODG to
LEG

if Nc2 6= parent(NC1) then
LEG ← Flow(Nc1, VE)
LEG ← Flow(VE , Nc2)

end
end
else

//If there is no such a matching Nc1 in LEG
//Add the new object to LEG
LEG ← VO

color [VO]=GRAY
end
VO =child(VO)

end
end
Function Find(VO, LEG)

//Go through each Nc in LEG
for each post attack status Nc from LEG do

//Check if there is any matching Nc for VO

if Nc.service == VO.service AND
color[Nc] == white then

color[Nc] ← BLACK
return Nc

end
else

color[Nc] ← GRAY
Nc ← the child post attack status node of Nc

end
end
return ∅

Algorithm 1: Mapping an ODG to a LEG

TABLE I
DEPENDENCIES ARISING OUT OF SYSTEMS CALLS

Dependency Event Description Unix System Calls

process→ file Process modifies file write, pwrite64, rename, mkdir, linkat, link, symlinkat, etc

file→ process Process reads file stat64, lstat6e, fsat64, open, read, pread64, execve, etc.

process↔ file Process uses/modifies file open, rename, mount, mmap2, mprotect etc.

process1→ process2 Process1 creates/terminates Process2 vfork, fork, kill, etc.

process→ socket process writes socket write, pwrite64, etc.

socket→ process process checks/reads socket fstat64, read, pread64, etc.

process↔ socket Process reads/writes/checks socket mount, connect, accept, bind, sendto, send, sendmsg, etc.

socket ↔ socket process reads/writes socket connect, accept, sendto, sendmsg, recvfrom, recvmsg

LEG and the search continues until all nodes in the ODG are
checked(colored).

E. Mission Impact Computation

We propose to use the interval [0,1] to quantify a mission
impact of an attack, computed by using the following steps.

• Compute the impact scores of attacks in a LEG
In a LEG, we use P(a) to represent the impact of attacks
on a service deployed on a host computer. NIST NVD
CVSS published reported vulnerabilities with assigned
impact scores, which we propose to use for each P(a)
if an attack a can be found in NIST NVD. If the attack a
cannot be found in NIST NVD, we suggest using expert
knowledge to assign an impact score to P(a). We use our
previous work [9] to compute a cumulative impact score
of an attack as follows.

P (a) = P (a1) ∪ P (a2) (1)

In Equation 1, a1 and a2 are two attacks on the same
service. P (a1)∪P (a2) = P (a1)+P (a2)−P (a1)×P (a2).

• Assign weight to tasks/missions
A value between [0,1] is proposed as the weight of
mission impacts, indicating the importance of the cor-
responding tasks/missions.

• Map LEGs to BPDs
We map LEGs integrated with missing attack steps to
BPDs so that the mission impact of attacks I(B) on a
business process B is computed using Equation 2.

I(B) = weight× P (B) (2)

In Equation 2, P(B) is the impact of attacks on a business
process B in a BPD. It is computed by using Equa-
tion 3 and Equation 4 respectively, since the mapping
from attacks(represented by a, a1, a2) in a LEG to a
business process(represented by B) in a BPD has two
relationships including one-to-one(Equation 3) or many-
to-one(Equation 4).

P (B) = P (a) (3)

P (B) = P (a1) ∪ P (a2) (4)

• Compute the cumulative mission impact
Mission impact of attacks on each business process(task)
can be computed using Equation 2, Equation 3 and
Equation 4. However, in some cases, the cumulative mis-
sion impact for the final mission is required to estimate
the overall damage, which is computed using the Max
function. We use M to represent the cumulative mis-
sion impact. Correspondingly, in the flow relationships
including sequence and message passing as defined in
Definition 1, M is computed as follows.

– If the tasks B1, B2, . . . , Bn composing of the final
mission B have a sequence relationship.

M(B) = Max(I(B1), I(B2), . . . , I(Bn)) (5)

– If, in the tasks B1, B2, . . . , Bn composing of the
final mission B, there are tasks, say B2, B3, which
have exclusive decision relationship with the prede-
cessor task B1 and the successor tasks B4, . . . , Bn.

M(B) = Max(I(B1), I(B2), I(B4), . . . , I(Bn))

or

M(B) = Max(I(B1), I(B3), I(B4), . . . , I(Bn))
(6)

– If, in the tasks B1, B2, . . . , Bn composing of the
final mission B, there is message passing relationship
between a task B′ from another pool to tasks in this
pool.

M(B) = Max(I(B1), I(B2), . . . , I(Bn), I(B′))
(7)

III. THE CASE STUDY

This section describes our case used to determine the utility
of our model. Figure 2 shows our experimental network
configured to manage the customers’ medical records and their
health insurance policy files. Customers’ medical records are
stored in a MySQL database server deployed in a private cloud.

Fig. 2. The network example and corresponding attacks

Customers can query the medical records and the policy files
using a web application on a webserver, using valid (username,
password) pairs as an access control mechanism. We built the
cloud on OpenStack, a free and open source cloud system.

We assume that an attacker’s objective is to steal customers’
medical records or prevent service availability. The attacker
can probe deployed web and cloud services looking to find
vulnerabilities that can be exploited to satisfy his/her objec-
tive. Our case study used two such vulnerabilities. The first
vulnerability was the web application not sanitizing user input,
named CVE-89 that created a SQL injection attack to access
customers’ medical records. We played the attacker role that
created the SQL injection query select * from profile where
name=’Alice’ and (password=’alice’ or ’1’ = ’1’), where
profile was the database name, and ’1’=’1’ was the payload
that made the query bypass the password check. The second
vulnerability is named CVE-2015-3241 that allows authenti-
cated users to prevent service availability by first resizing and
then deleting virtual machine instances of OpenStack Compute
(Nova) versions 2015.1 through 2015.1.1, 2014.2.3 and earlier.
We, playing the attacker role, exploited this vulnerability as
a privileged IaaS user by repeatedly resizing and deleting
VM2 that co-resided in the same physical machine as the
database server residing on VM1, which bypassed user quota
enforcement to deplete available disk space. The three kind of
graphs, including a BPD, a LEG and an ODG, generated by
using our experimental example are as follows.

A. The Business Process Diagram

Figure 3 is the constructed BPD. In this BPD, there is
only one pool that has start, end events and two missions
return customer records and return files. The two missions
are fulfilled by tasks visit web application, request customer
records, request files, verify username and password, query
SQL database, query a file, data available and file available
that are represented by boxes. Figure 3 shows parallel fork and
exclusive or gateways represented by diamonds. The exclusion
or gateways have yes and no choices.

B. The Logical Evidence Graph

Table II shows evidence of the SQL injection attack includ-
ing Snort(the IDS we deployed in the experimental network)
alerts and database server access logs. Using timestamps,

corresponding alert content and MySQL general query logs,
we asserted that the attacker used a typical SQL injection
with payload ’1’=’1’. Our IDS failed in capturing the DoS
attack launched by exploiting the vulnerability CVE-2015-
3241 in OpenStack Nova services. Because OpenStack API
logs provide users’ operations of running instances, we used
them to conclude that the user admin (the attacker in our
experiment) was trying to resize and delete the instance VM2
that co-resided in the same physical machine as the database
server (VM1).

We converted the system configuration and the evidence
to Prolog predicates as shown in Figure 4 and Figure 5 as
input files to our LEG reconstruction tool. During the system
runtime, the input files instantiated the rules representing the
generic attack techniques in this tool to correlate constant
predicates representing different items of evidence or system
configuration, forming the LEGs as shown in Figure 6 and
Figure 7 respectively (the notation can be found in Table III
and Table IV). The two LEGs could not be grouped together,
because the attacker’s locations were different. Consider an
attack step (Nodes 3, 7, 8 → 2 → 1 in Figure 7) as an
example. Facts of LEGs are shown in boxes (Nodes 7, 8),
representing network configurations and vulnerabilities as the
evidence prior to the attack step. The consequence fact node
is shown in a diamond (Node 1), representing the evidence
of the post attack status that is derived by applying a rule to
the parent facts (Nodes 7, 8) and the parent consequence facts
(Node 3 obtained from a prior attack step as the attacker’s
stepping-stone to the current attack step). The rule node is
shown in an ellipse representing the attack and connects pre-
attack system status (Nodes 3, 7, 8) and the post attack status
(Node 1).

C. The Object Dependency Graph

To show how to use system call sequences to construct
an ODG, we simulated an attack without triggering IDS
alerts in our experimental network. We assume the attacker
used a social engineering attack to obtain a legitimate user’s
(username, password) pair to log into the file server using ssh.
In our experiment, the legitimate user’s name is gmu. The
corresponding server log showed that the attacker stole the
user gmu’s credentials. We used the right column in Table 1 to
filter system calls and used dependency rules listed in the left
column of Table 1 to construct an ODG as shown in Figure 8,
showing the attacker modified the policy file in the file server.
In this figure, the two objects attacker and file in fileserver are
represented by boxes, and the rule modify is represented by an
ellipse. Figure 8 was mapped the LEG in Figure 6, showing the
attacker from the Internet could attack the file server by using
stolen credentials and attack the database server by using a
SQL injection attack (figure omitted due to space limitations).

D. Mission Impact Computation in Our Case Study

The impact score of each attack step in Figure 6, 7 and 8 is
shown in Table V, where two impact scores of CWE-89 and
CVE-2015-3241 are obtained from NIST NVD CVSS. The

Fig. 3. The BPD of customers’ retrieving their medical records and policy files

TABLE II
THE SNORT ALERT AND DATABASE SERVER LOG OF SQL INJECTION ATTACK

Time Stamp Machine IP Address/Port Snort Alert and Database Server Access Log

Attacker 129.174.124.122

06/13-14:37:27 web server 129.174.124.184 SQL injection attack(CWE-89)

13/Jun/2017:14:37:34 Database server 129.174.124.35 Access from 129.174.124.184

TABLE III
THE NOTATION OF ALL NODES IN FIGURE 6

No. Notation of all nodes

1 execCode(database,)

2 RULE 2 (remote exploit of a server program)

3 netAccess(database,tcp,3306)

4 RULE 5 (multi-hop access)

5 hacl(webServer,database,tcp,3306)

6 execCode(webServer,apache)

7 RULE 2 (remote exploit of a server program)

8 netAccess(webServer,tcp,80)

9 RULE 6 (direct network access)

10 hacl(internet,webServer,tcp,80)

11 attackerLocated(internet)

12 networkServiceInfo(webServer,httpd,tcp,80,apache)

13
vulExists(webServer,’directAccess’,httpd,

remoteExploit,privEscalation)

14 networkServiceInfo(database,httpd,tcp,3306,)

15
vulExists(database,’CWE-89’,httpd,

remoteExploit, privEscalation)

/* the initial attack location and final attack status*/
attackerLocated(internet).
attackGoal(execCode(database,user)).

/* the network access configuration*/
hacl(internet, webServer, tcp, 80).
hacl(webServer, database, tcp, 3306).

/* configuration information of webServer */
vulExists(webServer, ’directAccess’, httpd).
vulProperty(’directAccess’, remoteExploit, privEscalation).
networkServiceInfo(webServer , httpd, tcp , 80 , apache).

/* the vulnerability of the web application */
vulExists(database, ’CWE-89’, httpd).
vulProperty(’CWE-89’, remoteExploit, privEscalation).
networkServiceInfo(database , httpd, tcp , 3306, user).

Fig. 4. Prolog predicates for SQL injection

impact scores in NIST NVD CVSS are based on a [0, 10]
scale, which we converted to a [0,1] interval scale. Because
our example does not have services attackable using multiple
methods, equation (1) is not used in our LEGs.

We mapped all attacks shown in Figures 6, 7 and 8 to the

/* the initial attack status of being an iaas user and the final
attack status*/
attackerLocated(iaas).
attackGoal(execCode(nova,admin)).

/*the cloud configuration, the “ ” represents any protocol and
port*/
hacl(iaas,nova, ,).

/* the vulnerability in nova */
vulExists(nova, ’CVE-2015-3241’, ’REST’).
vulProperty(’CVE-2015-3241’,remoteExploit, privEscalation).
networkServiceInfo(nova , ’REST’, http, , admin).

Fig. 5. Prolog predicates for DoS attack

Fig. 6. The LEG of SQL injection attack toward the database

TABLE IV
THE NOTATION OF ALL NODES IN FIGURE 7

No. Notation of all nodes

1 execCode(nova,admin)

2 RULE 2 (remote exploit of a server program)

3 netAccess(nova,http,)

4 RULE 6 (direct network access)

5 hacl(cloud,nova,http,)

6 attackerLocated(cloud)

7 networkServiceInfo(nova,’REST’,http, ,admin)

8
vulExists(nova,’CVE-2015-3241’, ’REST’,

remoteExploit,privEscalation)

Fig. 7. The LEG of DoS attack toward the database server

Fig. 8. The attackers using social engineering attack to modify a file in the
fileserver

BPD in Figure 3, and calculated the mission impact of the
three attacks as shown in Table VI, where different weights
were given respectively. Based on Table VI and the BPD in
Figure 3, the cumulative mission impacts were also calculated
and listed in Table VII. Table VI shows that SQL attack on
the task of verifying username and password in the database
server is considered to have a higher mission impact than the
DoS attack toward the database server(on the task of data
available) and using social engineering to modify policy files
in the file server(on the task of verify username and password
in the file server). Table VII shows that the mission impact of
attacks on the customers’ medical records is higher than the
attack on the policy files.

IV. RELATED WORK

Modern-day attackers tend to use multi-step, multi-stage
attacks to impact important services protected using complex
mechanism. Researchers have proposed and designed models
to estimate the mission impacts of such attacks. Sun et
al. proposed using a multi-layered impact evaluation model
to estimate the mission impacts [10]. In this multi-layered
model consisting of four layers, a lower vulnerability layer
is mapped to an asset layer, and then to a service layer, which
finally maps to the mission layer, where the mission impacts
are calculated by using vulnerabilities’ CVSS scores and
the relationships between missions to the lower level assets,
services and vulnerabilities. Another group of researchers, Sun
et al., combined mission dependency graphs with attack graphs
generated by an attack graph generation tool MulVAL [11] to
estimate the attack mission impacts in the clouds [4]. Noel
at el. designed a cyber-mission impact assessment framework
by leveraging BPMN and their attack graph generation tool

TABLE V
THE CVSS IMPACT SCORES

Symbol Representation Attack Step Attack Attack Impact

N1 Figure 6: (3,14,15)→ 2 → 1 CWE-89 0.9 (from NIST NVD)

N1′ Figure 7: (3,7,8)→ 2→1 CVE-2015-3241 0.69 (from NIST NVD)

Ns Figure 8: 1→ 2→ 3 Social Engineering 0.5 (expert knowledge)

TABLE VI
THE MISSION IMPACT SCORES

Symbol Representation Server Task Weight Mission Impact

A Database Server Verify Username and Password 1 I(A) = 1× P (N1) = 1× 0.9 = 0.9

B Database Server Data Available 0.9 I(B) = 0.9× P (N1′) = 0.9× 0.69 = 0.621

C File Server Verify Username and Password 1 I(C) = 1× P (Ns) = 1× 0.5 = 0.5

TABLE VII
THE CUMULATIVE MISSION IMPACT

Symbol Representation Server Mission Cumulative Mission Impact

D Database Server Return Customer Records M(D)=Max(I(A),I(B))=Max(0.9,0.621)=0.9

E File Server Return Files M(E)=Max(I(C)) =Max(0.5)= 0.5

named Topological Vulnerability Analysis (TVA) [12] that
combines an exploit knowledge base and a remote network
scanner, analyzing all potential attack paths leading to attack
goals to evaluate potential mission impacts [3], [4]. However,
these approaches use vulnerabilities collected from the bug-
report community such as NIST NVD to assess the impacts
of attacks. These do not scale to large infrastructures or zero-
day attacks.

Forensics researchers have proposed using reasoning on
collected evidence from attacked infrastructures using evi-
dence correlation rules to reconstruct the attack scenarios. The
objective of this work has been to reconstruct criminal or
unauthorized actions shown to be disruptive to missions [7],
[13]. To reconstruct attack scenarios that have legal stand-
ing, we integrated a Prolog logic tool, MulVAL, with two
databases, including a vulnerability database and an anti-
forensic database, to ascertain the admissibility of evidence
and explain missing evidence due to attackers’ using anti-
forensics [8]. We also expanded their work by using system
calls to reconstruct the missing attack steps due to missing
evidence in the higher application levels, and using Bayesian
Network to estimate the experts’ belief on the reconstructed
attack scenarios [14]. However, no researchers have pro-
posed any method to estimate the mission impacts of attacks
launched toward an enterprise’s infrastructure, which leaves a
gap between the mission impact analysis and forensic analysis.

V. CONCLUSION

In this preliminary work we proposed a three-layered
graphical model to quantify mission impacts of cyber-
attacks computable using forensic techniques. We did so
by reconstructing attacks based on available evidence from

attack logs and system call sequences when logs did not have
requisite evidence for attack steps. We used attack impact
scores published in the NIST NVD CVSS and expert opinions
when such numbers are unavailable. We then mapped the
attacks to higher-level business processes and considered
their importance weight for business processes to compute
the impacts of cyber-attacks on missions.

DISCLAIMER
This paper is not subject to copyright in the United States.

Commercial products are identified in order to adequately
specify certain procedures. In no case does such an identifica-
tion imply a recommendation or endorsement by the National
Institute of Standards and Technology, nor does it imply that
the identified products are necessarily the best available for
the purpose.

REFERENCES

[1] S. Musman and A. Temin, A cyber mission impact assessment tool,
In Technologies for Homeland Security (HST), 2015 IEEE International
Symposium on 2015 Apr 14 (pp. 1-7).

[2] NIST National Vulnerability Database Common Vulnerability Scoring
System, available at https://nvd.nist.gov/vuln-metrics/cvss.

[3] S. Noel, J. Ludwig, P. Jain, D. Johnson, R. K. Thomas, J. McFarland, B.
King, S. Webster and B. Tello, Analyzing mission impacts of cyber ac-
tions (AMICA), In NATO IST-128 Workshop on Cyber Attack Detection,
Forensics and Attribution for Assessment of Mission Impact, Istanbul,
Turkey, 2015.

[4] X. Sun, A. Singhal, P. Liu, Towards Actionable Mission Impact Assess-
ment in the Context of Cloud Computing, In Livraga G., Zhu S. (eds)
Data and Applications Security and Privacy XXXI. DBSec 2017. Lecture
Notes in Computer Science, vol 10359.

[5] Online Resource for Markup Language Technologies, retrieved from
http://xml.coverpages.org/bpm.html#bpmi.

[6] L. Herbert, Specification, Verification and Optimization of Business Pro-
cesses, A Unified Framework, Technical University of Denmark (2014).

[7] C. Liu, A. Singhal and D. Wijesekara, A logic-based network forensic
model for evidence analysis, in Advances in Digital Forensics XI, G.
Peterson and S. Shenoi (Eds.), Springer, Heidelberg, Germany, pp. 129-
145, 2015.

[8] X. Sun, J. Dai, A. Singhal, P. Liu and J. Yen, Towards Probabilistic
Identification of Zero-day Attack Paths, Accepted for IEEE Conference on
Communication and Network Security, Philadelphia, October 17th 19th,
2016.

[9] C. Liu, A. Singhal and D. Wijesekera, Mapping evidence graphs to
attack graphs, In Information Forensics and Security (WIFS), 2012 IEEE
International Workshop on (pp. 121-126). IEEE.

[10] Y. Sun, T. Y. Wu, X. Liu, X. and M.S. Obaidat, Multilayered Impact
Evaluation Model for Attacking Missions, IEEE Systems Journal, 10(4),
pp.1304-1315, 2016.

[11] X. Ou, S. Govindavajhala, S. and A. W. Appel, MulVAL: A Logic-based
Network Security Analyzer, In USENIX Security Symposium (pp. 8-8),
July 2005.

[12] S. Jajodia and S. Noel, Topological vulnerability analysis, In Cyber
situational awareness, pp. 139-154. Springer US, 2010.

[13] W. Wang, E.D. Thomas, A graph based approach toward network foren-
sics analysis, ACM Transactions on Information and Systems Security 12
(1) 2008.

[14] C. Liu, A. Singhal and D. Wijesekera, A Probabilistic Network Forensic
Model for Evidence Analysis, IFIP International Conference on Digital
Forensics. Springer International Publishing, 2016.

