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heuristic, DCLO (for depth-constrained linear optimization), is used to 
create small linear circuits given depth constraints. DCLO is repeatedly 
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linear component and the lower linear component. The depth constraints 
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We apply our techniques to cryptographic functions, obtaining new re-
sults for the S-Box of the Advanced Encryption Standard, for multi-
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1 Introduction 

Constructing optimal combinational circuits is an intractable problem under 
almost any meaningful metric (gate count, depth, energy consumption, etc.). In 
practice, no known techniques can reliably find optimal circuits for functions 
with as few as eight Boolean inputs and one Boolean output (there are 2256 such 
functions). Thus, heuristic or specialized techniques are necessary in practice. 

Reducing the number of gates is important for reducing area and power 
consumption. Reducing depth, i.e. the number of gates on a longest path, leads 
to faster circuits. However, obvious ways to reduce depth lead to an explosion 
in size. In this paper we reduce size and depth simultaneously. 

2 Combinational circuit optimization 

Many different logically complete bases are possible for circuits. Since the oper-
ations in the basis (XOR, AND) are equivalent to addition and multiplication 
modulo 2 (i.e., in GF (2)), much work on circuits for cryptographic functions 
uses this basis. For logical completeness, we use the basis (XOR,AND,XNOR), 
although most of the paper uses only (XOR,AND). This platform-independent 
basis leads to easy comparison with previous results. 

Classic results by Shannon [17] and Lupanov [10] show that almost all pred-
icates on n bits have circuit complexity about 2

n 
. The multiplicative complexity n 

of a function is the number of AND gates necessary and sufficient to compute 
the function. Analogous to the Shannon-Lupanov bound, it was shown in [12, 
3] that almost all Boolean predicates on n bits have multiplicative complexity 

n 
about 2 2 . Strictly speaking, these theorems say nothing about the class of func-
tions with polynomial circuit complexity. However, it is reasonable to expect 
that, in practice, the multiplicative complexity of these functions is significantly 
smaller than their Boolean complexity. This is one of the principles that guide 
our design strategy. 

Circuits with few AND gates will naturally have large sections which are 
purely linear, i.e., contain no AND gates. Boyar and Peralta [2] and Courtois et 
al. [7] have used this insight to construct circuits much smaller than previously 
known for a variety of applications (see [16]). Both of those papers use a two-
step process which first reduces multiplicative complexity and then optimizes 
linear components. The second of these steps involves solving a problem which 
is NP-hard and MAX-SNP hard [2], implying limits to its approximability. Early 
published heuristics for this step [15, 1, 2] do not consider depth. We do so here, 
and obtain circuits that are smaller in both size and depth for several functions 
of interest to cryptography. In particular, we improved on the results in [5, 14] 
for the S-Box of the Advanced Encryption Standard (AES). 

We note that our results should not be interpreted as trading AND gates 
for XOR gates. We typically are able to produce circuits which have fewer XOR 
gates, fewer AND gates, and smaller depth than previously published circuits 
for the same functions. 
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3 Algorithm to find small low-depth circuits 

We can consider a circuit as a directed acyclic graph where the nodes are either 
gates or inputs of fan-in zero. Nodes for gates that produce circuit outputs are 
referred to as “outputs”. The depth of a node X = A op B is 

depth(X) = 1 + max{depth(A), depth(B)}. 

where op is a binary operation (AND,XOR,XNOR). Note that this definition 
allows us to assign arbitrary depths to the input nodes, though nodes which are 
inputs to the entire circuit are always assigned depth zero. 

3.1 The Depth-Constrained Linear Optimization (DCLO) problem 

We consider a linear component of a circuit as a set of functions with fixed depths 
associated to the input variables and depth constraints associated to the out-
puts. This problem is best represented as a matrix with input depth constraints 
associated with columns and goal depth constraints associated with rows. The 
optimization problem is to find a circuit that satisfies the constraints and min-
imizes the number of gates. We call this problem DCLO (for Depth-Constrained 
Linear Optimization). For example, the matrix of Figure 1 represents the prob-
lem of computing the four functions {yi | i = 1, . . . 4} given by 

– y1 = x1 + x3 + x4 

– y2 = x2 + x3 + x4 

– y3 = x1 + x2 + x3 + x4 

– y4 = x1 + x2 + x4 

(recall that addition is modulo 2). 

⎞ ⎟⎟⎟⎟⎠ 

⎛ ⎜⎜⎜⎜⎝ 

x1 : 0 x2 : 2 x3 : 1 x4 : 0 
y1 : 2 
y2 : 3 
y3 : 4 
y4 : 3 

1 
0 
1 
1 

0 
1 
1 
1 

1 
1 
1 
0 

1 
1 
1 
1 

Fig. 1. Sample DCLO problem 

The column heading xi : di states that input xi has input depth di. The row 
heading yi : ti states that a solution must compute function yi at depth no more 
than ti. 

For example, the straight-line program 

t1 = x1 + x3 

y1 = t1 + x4 
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is not allowed because the depth of y1 is 3. A valid straight-line program is 

t1 = x1 + x4 

y1 = t1 + x3 

y3 = y1 + x2 

t2 = x3 + x4 

y2 = t2 + x2 

y4 = t1 + x2. 

3.2 The See-Saw Method 

We now describe the method to find a small circuit given an overall depth con-
straint TargetD. A node is upper linear if it is an input to the circuit or if it is a 
linear gate and all its ancestors are upper linear. A node is lower linear if it is 
either an output gate to the circuit or if it is a linear gate and all its descendants 
are lower linear. The upper linear nodes define a circuit whose inputs are the 
inputs to the original circuit. We call this circuit the upper linear component. 
The lower linear nodes define a circuit whose outputs are outputs of the original 
circuit. We call this circuit the lower linear component. This naturally decom-
poses a nonlinear circuit into the upper and lower linear components, plus a 
middle nonlinear component. The outputs of both upper linear and lower linear 
nodes are linear functions of their respective inputs. The depth of an input node 
in the upper linear circuit is defined to be 0. The depth of an input node in the 
lower linear circuit is the depth of the corresponding node in the original circuit. 

Our overall approach uses the observation that one can obtain smaller low-
depth circuits by repeatedly optimizing the upper and lower linear components 
of the circuit based on gate-depth information from previous optimizations. This 
leads to what we call the See-Saw Method. The middle nonlinear component is 
assumed to be optimized already and is not changed. The technique can be 
generalized for use with more components without much difficulty. 

We alternate restructuring the upper linear and lower linear components 
until there is no further improvement in size or depth. When one of these linear 
components is being restructured, the other is fixed. Each restructuring step is 
an instance of the DCLO problem described in the previous section. It is solved 
using a heuristic, DCLO, which we define later. 

The process starts with the upper linear component. The input depth con-
straints for the upper linear component are always set to 0, and initially the goal 
depth constraints are set to the minimum feasible. The minimum feasible goal 
depths for the upper linear component are calculated as follows: If the Hamming 
weight (number of 1s) of the row corresponding to the output is w, at least depth 
dlog2(w)e is necessary. This required depth can be achieved by placing the XOR 
gates in a balanced binary tree. Starting with these required depths allows us to 
jump-start the process and also will give us a lower bound on the depth of any 
solution that does not restructure the middle component. 
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After finding a new circuit for the upper linear component, we replace the 
subcircuit for this upper linear component with the new circuit. We thus create 
a new circuit, possibly with lower depth than the original. Now the top linear 
component, together with the nonlinear component, are fixed while we apply 
DCLO to the bottom linear component. For the lower linear component, if we 
know that some inputs are available at lower depth than others, this slack may 
help in creating an implementation with fewer gates. The input depths of the 
inputs to the lower linear component are set to the depth at which these inputs 
are calculated in the portion of the circuit which we have fixed. The goal depths 
of all outputs of the lower linear component are set to TargetD (if this depth is 
not feasible, the algorithm aborts). 

The new circuit for the lower linear component replaces the old subcircuit. 
For the upper linear component, we may now be able to allow some of its outputs 
to be computed at a larger depth than in the previous phase. This allows us to 
force the DCLO to be more strict for some outputs which are critical for the total 
depth of the circuits and allows us to be less strict for others. If, for example, 
an output, yi, of the upper linear component requires depth w1 because of its 
Hamming weight, but is not used before depth w2 > w1 in the entire circuit, 
it might be possible to create a circuit using fewer gates if output yi is allowed 
to be computed at depth w2. Starting with the second iteration of See-Saw, we 
calculate these allowed depths as follows: the height of a node v, denoted by 
height(v), is the length of the longest path from the node to an output of the 
entire circuit. If v is an output node of the upper linear component, then we set 
its goal depth to T argetD − height(v). Note that this goal depth is at least as 
large as the required depth. 

Note that, for the lower linear component, using the variable, calculated 
input depths is important to get the minimal depth, even if one is unconcerned 
about size. One might assume that if minimum depth circuits are found for the 
upper linear and lower linear components (where one can also assume that the 
circuit for the upper linear component satisfies the goal depths for each of its 
outputs), then attaching them to the middle nonlinear component would always 
give the smallest depth circuit (given the fixed middle component). However, 
this is not always true. For the AES S-Box, one of the outputs of the lower 
linear component has twelve 1s, so the minimum depth circuit computing it is 
not a complete binary tree. Some of the inputs to this circuit from the nonlinear 
component can be at higher depth than others, still allowing a depth 16 circuit. 
However, if the wrong inputs are combined first, the total depth can become 17. 

To summarize, with the See-Saw Method, we alternate between improving 
the upper and lower linear components, updating the values for the goal depths 
and the input depths after each improvement. After the first iteration, the goal 
depth has been achieved, so the goal is to reduce the number of gates. 

3.3 Paar’s Algorithm 

The heuristic DCLO used within the See-Saw Method uses ideas from a well-known 
algorithm due to Paar [15]. Paar’s technique keeps a list of the variables already 
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computed, which is initially only the inputs. Then it repeatedly determines which 
two variables, XORed together, occur in most outputs. One such pair is selected 
and XORed together. This result is added as a new variable which appears in 
all outputs where both variables previously appeared. This is repeated until 
all required outputs have been computed. Paar’s technique is implemented by 
starting with the initial matrix with input columns corresponding to the inputs 
and rows corresponding to the outputs which the circuit should calculate. The 
algorithm adds columns corresponding to the new variables which are computed. 
When a new column is added, this corresponds to adding two existing variables, 
u and v. In all rows in the matrix which currently have a one in both of the 
columns corresponding to u and v, those two 1s are changed to 0s, and a one 
is placed in the corresponding row of the new column. All other values in the 
new column are set to 0. This operation, adding a new column to the matrix, 
corresponding to a new XOR gate in the circuit, is called a Paar-like operation. 
The 1s in a row indicate which variables still need to be added together to 
produce that output. The algorithm terminates when all rows have Hamming 
weight 1. 

Cancellation occurs in a circuit when the inputs to an XOR gate are of the 
form (f + g, h + g). The XOR gate in that case computes the function f + h, 
“cancelling” the term g. In addition to being oblivious to depth, Paar’s algorithm 
incurs a significant cost in size due to the fact that it can only produce circuits 
which do not allow cancellation. 

Proposition 1. Paar-like operations are cancellation-free. 

Proof. We show by induction that the 1s in any row represent sums modulo 2 
of disjoint sets of variables. Initially, each 1 represents a single input variable, 
and they are all distinct. When a Paar-like operation occurs, 1s representing two 
disjoint sets are removed and the new column represents the union of those two 
sets. Since the two sets were disjoint, no cancellation occurs in that operation, 
and the new set is disjoint from all other sets represented by 1s in that row. ut 

It is shown in [4] that non-cancellation can increase the size of a circuit by 
a factor Ω(n/log2n). The techniques described in the following sections allow 
both depth restriction and cancellation. 

3.4 Randomized construction heuristic, RAND-GREEDY-ALG 

RAND-GREEDY-ALG, our first algorithm for finding small programs with depth 
restrictions, is a randomized version of Paar’s algorithm. It keeps track of the 
depths of the gates and only adds gates if the global depth restrictions can be 
satisfied. 

Recall that the input to the algorithm is a matrix representing the linear 
combinations (outputs) to be computed in a linear component, plus the input 
depths of each of the inputs and the goal depths of each output. For each column, 
c, let v(c) be a bit vector indicating which variables are present in the linear 

6 



combination computed by column c. Initially, each column represents a single 
input variable, and each vector has exactly one 1. When creating a new gate 
for adding columns c1, c2 in the matrix, a new column c3 is created with v(c3) 
set to the symmetric difference of v(c1) and v(c2). For the subset of the rows 
where the new gate is used, the bits in positions c1 and c2 are flipped and the 
bit in position c3 is set to 1 (for the other rows, it is set to 0). We call this 
an update operation. Note that in RAND-GREEDY-ALG, updates only occur if the 
bits in positions c1 and c2 are both 1, as in Paar’s algorithm, so no cancellation 
occurs. In DCLO, this is not the case. 

The following invariant holds for the matrix input and will hold while running 
RAND-GREEDY-ALG and DCLO: 

Row-sum invariant: For any row r, the linear combination to be computed is 
the sum of all v(i) for which position (r, i) in the matrix is 1. 

As in Paar’s algorithm, when a gate is added, RAND-GREEDY-ALG updates 
each row by changing the entries corresponding to the two inputs from 1 to 0 
and placing a 1 in the new column corresponding to that gate. There is, however, 
a feasibility requirement : An update is only applied to a row r if, after doing the 
update to row r, it would still be possible to produce the output for that row in 
its goal depth. See Subsection 3.5 for a description of how feasibility is checked. 

In order to choose two columns, c1 and c2, as inputs for the next gate, 
RAND-GREEDY-ALG determines how many of the output rows could benefit from 
having that gate, i.e., how many rows have 1’s in columns c1 and c2, both of 
which can be flipped while maintaining feasibility. For each possible next gate, 
the number of output rows which would benefit from the gate is calculated, 
giving an improvement. The inputs to the new gate are chosen at random from 
those that give the largest improvement. The algorithm is shown in Figure 2. 
The function FEASIBLE-UPDATE is shown in Figure 4. 

3.5 Computing the feasibility of a gate 

The algorithm, RAND-GREEDY-ALG, adds one gate at a time to the circuit. For each 
candidate for the next gate, RAND-GREEDY-ALG checks how many output rows can 
benefit from the candidate. We require that a row have 1s in the columns for the 
two inputs to the candidate gate in order to benefit from that gate. In addition, 
it must still be possible to calculate the row within its goal depth after using this 
gate. If both of these conditions hold, then we say the candidate is feasible for 
that output. For example, suppose two required outputs for a linear component 
are x1 ⊕ x2 ⊕ x3 ⊕ x4 with goal depth 2 and x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x7 with goal 
depth 3. A candidate gate computing ((x1 ⊕ x2) ⊕ x3) at depth two would not 
be feasible for the first output, but would be feasible for the second. 

In earlier work [5], computing a depth-16 circuit for the AES S-Box, feasibility 
of the gates was maintained by working in phases, never using gates produced 
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{ M is initially an m × n 0-1 matrix }
{ goal depth(r) is the goal depth for row r }
{ depth(c) is the depth of column c; 

for the first n columns, it is the input depth } 

RAND-GREEDY-ALG(M, m, n): 
s := n + 1 { index of the next column }
while there is some row in M with Hamming weight > 1 do 

for each pair of columns (i, j), 1 ≤ i < j < s 
let cij be the number of rows r such that FEASIBLE-UPDATE(i, j, r) holds 

c = maxi,j cij 

choose (besti,bestj) randomly among those column pairs with cij = c 
depth(s) := max(depth(besti),depth(bestj))+1 
for r = 1 to m do 

if FEASIBLE-UPDATE(besti,bestj,r) 
then M [r,besti] := 0; M [r,bestj] := 0; M [r, s] := 1 
else M [r, s] := 0 

s := s + 1 

Fig. 2. Algorithm for creating a low-depth circuit for linear components 

in the current phase within that same phase. Thus, there was an upper bound 
on the depth of the gates produced in the same phase. Here, instead of using 
phases, we check feasibility explicitly, giving more freedom as to which candidate 
gates can be chosen. 

First, we define a function FEASIBLE, which is used to check if a row is 
currently feasible. The depth of a column c is d(c); it is the input depth for the 
inputs and is 1 + max{d(c1), d(c2)} for a column created using columns c1 and 
c2. For any row r, the depths of columns with a 1 in that row form a multiset 
Depths(r). FEASIBLE is a function of Depths(r) and goal depth(r). If there is 
only one value d in Depths(r), then FEASIBLE(Depths(r), goal depth(r)) is true 
if and only if d is less than or equal to the goal depth for row r, goal depth(r). 
If there is more than one value in Depths(r), then 

FEASIBLE(Depths(r), goal depth(r)) = 

FEASIBLE((Depths(r) − {d1, d2}) ] {d2 + 1}, goal depth(r)), 
where d1 is the smallest (d2 the second smallest) value in Depths(r) (note that 
they can be equal). 

This can be accomplished by storing Depths(r) in a priority queue contain-
ing keys which are the depths corresponding to all the 1s in that row. Then, 
FEASIBLE() is calculated as follows: while there is more than one depth value 
in the priority queue, find and delete the two lowest values, say d1 and d2, and 
insert the value 1 + max(d1, d2). At the end, if the only depth value remaining 
is no larger than the goal depth for that output, the row is feasible. Otherwise, 
it is not. Pseudocode for this calculation can be found in Figure 3. 
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{ H is a min-heap ordered priority queue containing the depths of inputs 
(Depths(r) for row r). H is non-empty. }
{ gd is the goal depth (goal depth(r) for row r). } 

FEASIBLE (H, gd): 
{ Checks if the XOR of the set of input variables available 
at the depths in H can be computed within goal depth gd. 

Returns 1 if it can and 0 otherwise. }
while H has more then one entry do 
{ Choose the wires with the lowest depth for the next gate }

d1 :=DeleteMin(H) 
d2 :=DeleteMin(H) 
Insert(H,1 + max(d1, d2)) 

{ The depth of the output gate is now the only depth in H }
d :=DeleteMin(H) 
{ Determine if the new depth is feasible }
if (d ≤ gd) then 

return(1) 
return(0) 

Fig. 3. Algorithm for determining feasibility of a row 

Assuming that H is a priority queue (min-heap order) containing the current 
depths of the variables to be XORed for row r, the algorithm, FEASIBLE, correctly 
determines whether or not there exists a circuit which computes the function for 
row r in depth gd. 

Lemma 1. The algorithm, FEASIBLE, for determining feasibility returns 1 if 
and only if there exists a circuit computing the XOR of the set of variables 
available at the depths in the priority queue, H, within goal depth gd. 

Proof. Each iteration of the while loop defines a new gate produced from two 
variables at depths d1 and d2. The depth of the new gate is max{d1, d2} + 1, 
so inductively, it correctly defines a circuit with output at depth d. FEASIBLE 
only returns 1 if that depth d is at most gd and H has one element. Thus, if 
FEASIBLE returns 1, there exists a feasible circuit. 

FEASIBLE determines if repeatedly taking the two columns with lowest weight 
for the next gate results in a circuit having no more depth than the goal depth 
for that output. The algorithm is thus correct if for any linear combination 
F = xi1 ⊕xi2 ⊕· · ·⊕xik , where the xij could be original inputs to the component 
or outputs of XOR gates produced earlier, and any given depths for these k 
inputs, no circuit implementing this linear combination with the given depth 
constraints has lower depth than any circuit, C, produced in this way. 

We consider any minimum depth circuit C 0 for F . Note that we can assume 
without loss of generality that all gates in C 0 are cancellation-free, since the 
inputs where cancellation occurs can be computed (for example, by essentially 
copying the computation of the original inputs, but removing the variables the 
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inputs have in common from both subcircuits) in a cancellation-free manner 
without increasing the depth. Since a cancellation-free XOR circuit for k inputs 
has k − 1 gates, C 0 has k − 1 gates. C also has k − 1 gates, since each iteration of 
the while loop decreases the number of remaining elements in the priority queue 
by 1. Assume without loss of generality that the lowest depth of any input is 0. 

We show that for any depth d, the number of gates at depth at most d in C 
is at least as large as the number of gates at depth at most d in C 0. This clearly 
holds for all gates at depth 1. Note that in C at most one input at depth 0 is 
not an input to a gate at depth 1. More generally, at depth d0 + 1, all but at 
most one of the inputs and gates at depth at most d0, which have not yet been 
inputs to any gate, become inputs to gates at depth d0 + 1, pairwise. This is the 
maximum possible number of gates at level d0 + 1 given the gates which have 
already been produced. To see that no other circuit could do better by choosing 
different gates at this level or having chosen fewer gates at earlier levels, consider Pd 
nd the number of gates at level d in circuit C 0 and Sd = Since no i=1 ni. 
input to F and no gate in C 0 can be input to more than one gate in C 0, the 
number of gates is bounded by nd ≤ b 1 ((number of inputs at level less than d)−2 
(number of gates at level less than d))c. 

1 
Sd = nd + Sd−1 ≤ b ((number of inputs at level less than d) − Sd−1)c + Sd−1,

2

which is an increasing function of Sd−1. Inductively, C has at least as many gates 
at level at most d as C 0 . tu

If feasibility holds for all rows, there exists a circuit which evaluates all re-
quired outputs within the given depth constraints. By Lemma 1, we can say that 
feasibility holds for a row, r, if and only if FEASIBLE returns 1 for r. In a valid 
DCLO initial matrix, all goal depths are initially feasible. Feasibility is the second 
invariant in our algorithm: 

Feasibility invariant: For any row r, the goal depth remains feasible. 

We ensure this invariant by explicitly testing for feasibility before each matrix 
update. 

To calculate if an update (candidate gate) is feasible for an output corre-
sponding to row r and columns c1, c2 at depths d1, d2, we need to calculate 

FEASIBLE((Depths(r) − {d1, d2}) ] {max{d1, d2} + 1}, goal depth(r)). 

For RAND-GREEDY-ALG, we also require that the entries in columns c1 and c2 of 
row r are both 1s. 

We can now show that RAND-GREEDY-ALG runs in polynomial time. 

Theorem 1. RAND-GREEDY-ALG is correct. Let M be an m × n 0-1 matrix con-
taining H 1s. Suppose that, every row in M is feasible, according to the function 
FEASIBLE initially. The running time of RAND-GREEDY-ALG is O(tm(t2+n log n)), 
where t is the final number of columns and is at most H + n − m ≤ mn + n − m. 
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{ M is an m × (s − 1) 0-1 matrix }
{ goal depth(r) is the goal depth for row r }
{ depth(c) is the depth of column c; 

for the first n columns, it is the input depth } 

FEASIBLE-UPDATE (c1, c2, r): 
{ Checks if an XOR gate with inputs from columns c1, c2 can be used for row r. 

Returns 1 if it can and 0 otherwise. }
if M [r, c1] = M [r, c2] = 1 then 
{ Only return 1 if both c1 and c2 are necessary for row r }

H := empty priority queue 
for 1 ≤ c < s, c 6∈ {c1, c2} do 
{ Put all depths of wires which need to be XORed into priority queue H }

if M(r, c) = 1 then 
Insert(H,depth(c)) 

{ Put depth of potential new gate in H }
Insert(H,1 + max(depth(c1),depth(c2)) 
return(FEASIBLE(H, goal depth(r)) 

return(0) 

Fig. 4. Algorithm for determining feasibility of a candidate gate 

Proof. By Lemma 1, no input or gate is considered as possible inputs to a new 
gate for a particular row unless that row can still be computed within its goal 
depth with that new gate. The algorithm continues as long as any row has Ham-
ming weight greater than 1. As long as it continues, by the Feasiblity Invariant, 
there is a candidate gate which would be feasible for some row. Since the updates 
of the matrix are Paar-like operations and the depths are calculated correctly, 
the algorithm is correct. 

Within FEASIBLE, at most two Insert and DeleteMin priority queue opera-
tions are performed for each 1 in row r, since the number of elements in the 
priority queue is decreased by one each time through the while loop. The num-
ber of 1s in any row is at most the initial number of columns in the matrix, 
n. Thus, the running time of FEASIBLE is O(n log n). The for each loop in 
RAND-GREEDY-ALG takes the most time within the outer while loop. Each pair of 
the first s − 1 columns is considered, O(t2) pairs. For each pair, only constant 
work is done in a row by FEASIBLE-UPDATE unless there are 1s in that row for 
both columns. If there are 1s for both columns, FEASIBLE is called. Thus, the 
running time for each row, in one iteration of the while loop, is O(t2 + n log n). 

Since the while loop is executed once for each new gate, it is executed at 
most t times. There are m rows to process, so RAND-GREEDY-ALG runs in time 
O(tm(t2 + n log n)). Since there are at most n 1s in every row initially, each row 
will be computed using at most n−1 XORs, and all m rows will be computed with 
at most m(n − 1) XORs. There are n columns initially, so in all t ≤ H + n − m ≤ 
mn + n − m. ut 
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3.6 Improvements to RAND-GREEDY-ALG: DCLO 

In the following, we introduce three new techniques that were added to the sim-
plified algorithm, RAND-GREEDY-ALG, to give the algorithm we used to produce 
the improved circuits for several functions useful for cryptography that are men-
tioned in this paper, with straightline programs for the circuits available at [16]. 
We refer to the algorithm with these three improvements as DCLO. 

Reducing the size of the matrix — preprocessing Using the See-Saw 
Method, particularly after the first iteration, the upper linear component may 
have some outputs which can be computed at a larger depth than some others, 
without affecting the total depth of the circuit. In the case of the AES S-Box, 
and presumably in some other applications, there are cases where an output g 
can be computed as the sum of exactly two of the other outputs, and both of 
those other outputs have to be computed at a lower depth than is allowed for 
g. Thus, there is no reason for the row representing output g to be included in 
the input matrix to RAND-GREEDY-ALG. Adding one extra gate at the end of the 
computation, adding those two other outputs, will suffice. This extra gate at the 
end will typically, but not necessarily, have some cancellation. In our experiments 
with the upper linear component of the AES S-Box, there were actually 5 such 
outputs which could be automatically computed in this manner, yielding the 
the 27-gate circuit for the upper linear component. The preprocessing is never 
relevant for the lower linear component, since all outputs are given the same 
goal depths. 

Finding these triples of outputs is relatively straight-forward, checking all 
triples of rows in the matrix, checking that one of the three rows has a larger 
goal depth than the other two, and checking that the bitwise XOR of the three 
rows is 0. This preprocessing can be done each time, before RAND-GREEDY-ALG 
is run. The gates found are saved and then added to the end of the straight-line 
program for the circuit. 

Allowing more cancellation – the Generalized Paar Operation The 
simplified algorithm, RAND-GREEDY-ALG, without the preprocessing of the matrix, 
produces cancellation-free circuits since it only does Paar-like operations. Recall 
that a Paar-like operation updates a row when a new gate is created based on 
the inputs to that gate. If the inputs come from columns i and j, the row in 
question must have 1s in both columns i and j. The 1s must be changed to 0s, 
and a 1 must be placed in the new column for that gate. No other changes are 
made to the row. 

In the following example, every cancellation-free circuit is suboptimal. Con-
sider running Paar’s algorithm on the following matrix: ⎞⎛ ⎜⎜⎝ 

1 1 0 0 
1 1 1 0 
1 1 1 1 
0 1 1 1 

⎟⎟⎠ 
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Assume the first two columns are the first pair of columns chosen. The matrix 
becomes: ⎞⎛ ⎜⎜⎝ 

0 0 0 0 1 
0 0 1 0 1 
0 0 1 1 1 
0 1 1 1 0 

⎟⎟⎠ 

If the third and fifth columns are chosen next, the matrix becomes: ⎞⎛ ⎜⎜⎝ 

0 0 0 0 1 0 
0 0 0 0 0 1 
0 0 0 1 0 1 
0 1 1 1 0 0 

⎟⎟⎠ 

Now, choosing the fourth and sixth columns yields ⎞⎛ ⎜⎜⎝ 

0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
0 1 1 1 0 0 0 

⎟⎟⎠ 

At this point Paar’s algorithm would require two more additions. Instead, we 
allow a simple no-cost rewrite of the matrix: 

Complement a bit in column c and row r along with all bits in row r that are 1s 
in the vector v(c). 

Fig. 5. The flip operation 

Note that a flip uses (or omits using) the gate defined by column c in row 
r and preserves the row-sum invariant. We do a flip if the Hamming weight of 
the row decreases as a result.3 The flip operation introduces the possibility of 
cancellation. 

In our example, note that v(7) = (1, 1, 1, 1) = x1 + x2 + x3 + x4. A flip on 
row 4, column 7 yields ⎞⎛ ⎜⎜⎝ 

0 0 0 0 1 0 0 
0 0 0 0 0 1 0 
0 0 0 0 0 0 1 
1 0 0 0 0 0 1 

⎟⎟⎠ 

and only one more addition completes the circuit. The cost is only four gates, 
which is not possible without cancellation. 

We relax this requirement in our code. 
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Allowing second best pairs In order to choose a pair of columns for the up-
date, RAND-GREEDY-ALG counts for each possible pair the number of rows where 
it is feasible, computes the maximum of these counts, and chooses randomly 
among those pairs with the maximum count. Clearly, this greedy approach of 
choosing among those pairs with the maximum count is intuitively reasonable. 
However, it may be that this greedy approach sometimes gives a suboptimal solu-
tion overall. Thus, with probability 2 %, in DCLO a random choice is made among 
the column pairs with the second to largest count, rather than the maximum 
count. 

3.7 The See-Saw Method applied to the AES S-Box, an example 

The algorithm DCLO, which we applied to obtain our new, small, low-depth cir-
cuits, was RAND-GREEDY-ALG, plus the improvements of the last three subsections, 
the preprocessing, the Generalized Paar Operations, and allowing the second 
best pairs. We applied the See-Saw Method to the AES S-Box (in the forward 
direction) and obtained a circuit of size 125 and depth 16. This required very 
few iterations of DCLO. 

With each iteration, we ran RAND-GREEDY-ALG 10 000 times and chose one of 
the circuits produced with the smallest number of gates. 

In the forward direction, there are four outputs of the AES S-Box which are 
negated. These negations were ignored until the end. We started with the middle 
nonlinear component found in [5]. This had 63 gates and was used in all of our 
circuits. For the upper linear and lower linear components, we used the original 
Paar algorithm [15], with no regard for depth, always choosing the first of the 
pairs of columns where 1s occurred in the most rows. The circuit we created had 
27 gates for the upper linear component, 34 for the lower linear, for a total of 
124 gates and depth 19. 

Then we created a new upper linear component with our algorithm, setting 
the goal depths for all outputs to the minimum possible; for a row with Hamming 
weight h, this minimum is dlog2(h)e. Since all rows have weight less than 8, the 
values ranged from 1 to 3. This resulted in a component with 29 gates, increasing 
the total circuit size to 126, but decreasing the total depth to 18. Note that for a 
function, such as the AES S-Box, consisting only of an upper linear component, a 
middle nonlinear component and a lower linear component, initially creating an 
upper linear circuit with minimum goal depths, will make it possible to obtain a 
minimum depth circuit (assuming the nonlinear component is fixed) in the next 
iteration. This holds since the See-Saw Method next applies DCLO to the lower 
linear component with input depths determined by the current circuit and goal 
depths all equal to the optimal depth (given the middle nonlinear component 
being used). 

Then we ran the algorithm on the lower linear component, with goal depths 
of 16 (15 is impossible given the middle nonlinear component used; three of 
the outputs of the lower linear component could not be computed in depth 15, 
though the others could). The smallest circuit found had size 35, giving us a 
circuit with 127 gates and depth 16. One generalized Paar operation was used. 
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This lower linear component was then used to try to get a smaller upper 
linear component, but still depth 16. The goal depths were relaxed as much as 
possible and the preprocessing was used. The smallest number of gates found 
was 27, giving us our final circuit of depth 16 with only 125 gates in all. One of 
the outputs was at depth 15 and the others were all at depth 16. (In our second 
try for a lower linear component of size 35, we found one giving depth 16 for all 
outputs and chose this instead. Our final circuit has depth 16 for all outputs. 
Five preprocessing gates were used.) 

Working on the inverse AES S-Box, starting with the middle nonlinear com-
ponent found in [5] and minimum goal depths for the top linear component, we 
got a component with 29 gates. Working on the lower linear component with 
goal depths of 16, we got 35 gates, but 10 000 times was not enough and we 
changed it to 100 000 times. Introducing the slack goal depths for the upper 
linear component gave us 28 gates using 5 preprocessing gates. Thus, the total 
size is 126 gates. Note that this uses some XNOR gates in the upper linear com-
ponent, while the forward direction only uses them on outputs that need to be 
negated. For the inverse, the inputs corresponding the negated outputs from the 
forward direction need to be negated. This effect can be achieved by computing 
the desired circuit without the negations and XNORs and then changing some 
XORs to XNORs when exactly one of the inputs should have been negated. 

The depth cannot be reduced without changing the circuit for the middle 
nonlinear component. Of course, if the logical base is expanded, one could prob-
ably decrease the sizes slightly. For example, if NAND gates are used in the 
circuit for inversion in GF (24), it is not hard to reduce the number of gates by 
two without increasing the depth (see Appendix A). Since there are only 256 
possible inputs, we verified the circuits fully against the specifications in [13]. 

4 Rows with Hamming weight 2 

Previous work, also obtaining a small depth-16 circuit for the AES S-Box [5], 
was less automated, obtained a slightly worse result, and had a minor error in 
the algorithm. In this section, we explain that error. The algorithm works in 
phases: During phase i ≥ 0, no row in the current matrix has Hamming weight 
more than 2k−i and only inputs or gates already produced at depth i or less 
are considered as possible inputs to gates in phase i. Thus, the depth of gates 
in phase i is at most i + 1. At the beginning of each phase of that algorithm, 
there is a check to see if there are any rows with Hamming weight 2. If so, the 
algorithm created the final gate for any such rows at that point. At first glance, 
it seems as if this can only help the algorithm, since that gate would need to be 
produced at some point anyway. However, there are a couple of problems with 
this strategy. 

If handling a row with Hamming weight 2 only takes place at the beginning 
of a phase, there is no conflict with the definition of a phase, since the columns 
chosen must have been created in the previous phase, so their depth would be 
acceptable for the new phase. However, if such handling had been allowed in the 
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middle of a phase, one of the columns chosen could be from the current phase 
and the depth of the new gate could be one too large to be used for another row 
in the current phase. For example, suppose we have the following matrix: 

This can clearly be implemented in depth 2. However, if we choose the last two 
columns first, the matrix becomes: 

If we now choose the last row, because it has Hamming weight 2, and if we use 
that gate for the other rows, the matrix becomes: 

Now we need depth 3 to finish. 

There are also examples where choosing a row with Hamming weight 2 does 
not increase the depth, but leads to a larger number of gates: 

If one chooses the first row, because it is the first with Hamming weight 2, the 
matrix becomes: 

⎞⎛ ⎠ 
1 0 1 1 1 
0 1 1 1 1 
0 0 1 1 1 

⎝ 

⎞⎛ ⎠ 
1 0 1 0 0 1 
0 1 1 0 0 1 
0 0 1 0 0 1 

⎝ 

⎞⎛ ⎠ 
1 0 0 0 0 0 1 
0 1 0 0 0 0 1 
0 0 0 0 0 0 1 

⎝ 

⎞⎛ ⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

0 0 1 1 
0 1 1 1 
1 0 1 1 
0 1 1 0 
1 1 1 0 
1 0 0 1 
1 1 1 1 

⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎞⎛ ⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

0 0 0 0 1 
0 1 0 0 1 
1 0 0 0 1 
0 1 1 0 0 
1 1 1 0 0 
1 0 0 1 0 
1 1 0 0 1 

⎜⎜⎜⎜⎜⎜⎜⎜⎝ 
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Next one chooses the fourth row, because it is the first with Hamming weight 2, 
where both 1s have depth 0, giving: 

One needs to choose the first two columns before choosing any columns at depth 
1, so six more gates are necessary. 

If instead, we started with the other row with Hamming weight 2, which 
happens to be the one which will decrease our total Hamming weight most, our 
second matrix would become: 

Then, choosing the first and fourth columns gives: 

Now only five more gates are necessary to finish. Thus, one cannot arbitrar-
ily choose a row with Hamming weight 2 and assume that this cannot have a 
negative affect on the number of gates used. 

5 Circuits 

This work concentrated on optimizing the linear components of circuits. In [5], 
the search technique in [2], to find circuits for nonlinear components with few 
AND gates, was modified to reject candidate gates with too large depth. This 
decreased the depth of the GF (24) inversion from 9 to 4 while only increasing 
the number of gates from 16 to 17, changing 5 AND gates and 11 XOR gates to 
7 AND gates and 10 XOR gates. 

⎞⎛ ⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

0 0 0 0 1 0 
0 1 0 0 1 0 
1 0 0 0 1 0 
0 0 0 0 0 1 
1 0 0 0 0 1 
1 0 0 1 0 0 
1 1 0 0 1 0 

⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎞⎛ ⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

0 0 1 1 0 
0 0 0 1 1 
1 0 1 1 0 
0 0 0 0 1 
1 0 0 0 1 
1 0 0 1 0 
1 0 0 1 1 

⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

⎞⎛ ⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

0 0 1 1 0 0 
0 0 0 1 1 0 
0 0 1 0 0 1 
0 0 0 0 1 0 
1 0 0 0 1 0 
0 0 0 0 0 1 
0 0 0 0 1 1 

⎜⎜⎜⎜⎜⎜⎜⎜⎝ 
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The techniques presented in this paper and in [5] appear, not surprisingly, 
to lead to a trade-off between size and depth. To illustrate this trade-off, we list 
first the depths and sizes of some of the circuits for the AES S-Box which we 
obtained earlier: 

– depth 28; size 115: [2] 
– depth 27; size 113: published on [16]. 
– depth 23; size 116: inserting the new middle component into [2] 
– depth 22; size 117 
– depth 21; size 118 
– depth 20; size 122 
– depth 16; size 128: final result in [5] 

In this research we obtained the following: 

– depth 19; size 124: new middle component with Paar result for lower and 
upper linear components 

– depth 18; size 126: calculating lower linear component with minimum depths 
for all outputs 

– depth 16; size 125: final result 

We applied RAND-GREEDY-ALG to the multiplication of binary polynomials of 
degree 9, starting from the straight-line program given by Bernstein on http: 
//binary.cr.yp.to/m.html. Running RAND-GREEDY-ALG on the lower linear 
component of that circuit, we obtained the same size as Bernstein with 155 
gates, but reduced the depth from 9 to 6. Cenk and Hasan [6] report the same 
number of gates, but depth 8. Find and Peralta [8] report size 154 and depth 
9, but have a different nonlinear component. Running RAND-GREEDY-ALG on the 
lower linear component of their circuit also gave 154 gates, but depth 7. Depth 
6 was not feasible, given their nonlinear component. No Generalized Paar Op-
erations were used, and of course no preprocessing of the matrix, since all goal 
depths were 7. 

We applied RAND-GREEDY-ALG to computing the product of degree 12 poly-
nomials over GF (2). Bernstein has a circuit with depth 9 and 256 gates. Our 
techniques, starting with the straight-line program given on his homepage http: 
//binary.cr.yp.to/m.html, gave depth 8 and 255 gates, which is the same 
result obtained by Cenk and Hasan [6]. We have no reason to believe that 
RAND-GREEDY-ALG would not produce similar results for computing the prod-
ucts of binary polynomials of other degrees, but did not pursue this since it did 
not seem to reduce the number of gates. 

The tower field construction (see, for example, [11]) for a Galois Field with 
22

k 
elements lends itself well to the methods described here. We built circuits 

for multiplication and inversion in GF (2k) for k = 2, 4, 8, 16. We constructed 
GF (22k) from an optimized circuit for GF (2k). Then we optimized the new 
circuit. The results for GF (28) and GF (216) are of wide applicability in cryp-
tography. The sizes and depths obtained are as follows: 

– GF (28) multiplication: size 106 and depth 6. 
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– GF (28) inversion: size 98 and depth 18. 
– GF (216) multiplication: size 381 and depth 8. 
– GF (216) inversion: size 387 and depth 31. 

These results are much better than anything previously known. However, the 
depths of the inversion circuits seem much bigger than what is likely possible. 
This may be due to the specific inversion formulas that are natural in tower 
fields (see Appendix B). We may attempt to improve on these depths in future 
research. 

Inversion in GF (216) is the basis of the 16-bit S-Box proposed by Kelly et 
al. in [9]. The paper quotes a size of 1382 gates (1238 XOR gates and 144 AND 
gates, no depth is given). This size is derived from the work in [18, 19]. If instead 
we use the tower field representation of Appendix B, the resulting S-Box has 
446 gates (113 AND gates, 324 XOR gates, and 9 XNOR gates) and depth 35. 
This is not exactly the same S-Box as the one by Kelly et al. A quick way to 
derive the latter S-Box from the tower field S-Box is by doing a change of basis. 
Without further optimization, the resulting circuit has 537 gates. 

The circuit for inversion in GF (216) was verified using an automatically gen-
erated circuit for multiplication and then using this circuit to verify that x 
multiplied by x−1 is 0 for x = 0 and the identity element of the field for all other 
values of x. We saw it necessary to add this verification method after an anony-
mous referee determined that a previous circuit was incorrect. We are grateful 
for his/her contribution. 

The circuits described here have been posted at [16]. 

6 Conclusion 

Automated techniques for finding small, low-depth circuits for cryptographic 
functions were presented. The See-Saw Method and the algorithm, DCLO, used 
within it were successful in finding better results for the AES S-Box and other 
functions. 
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A Inversion in GF (24) 

Figure 6 demonstrates that if NAND gates are allowed in addition to AND and 
XOR gates, then there is a circuit with depth 4 and only 15 gates computing 
inversion in GF (24). This is the same depth, but two fewer gates than we used 
for this work. It also has one less gate than was used in [2], where depth 9 was 
acceptable. 

B Tower field construction up to GF (216) 

In the following, bases will be defined for each of the finite fields. Each base 
(b1, b2) will be such that b1 + b2 = 1. This identity can be verified by re-
peated squaring of the defining irreducible polynomial and adding a telescoping 
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t1 = x2 + x3 t2 = x2 × x0 t3 = x1 + t2 

t4 = x0 + x1 t5 = x3 + t2 t6 = t5 × t4 

t7 = t3 × t1 t8 = x0 NAND x3 t9 = t4 × t8 

t10 = x2 NAND x1 t11 = t1 × t10 y0 = t2 + t11 

y1 = x3 + t7 y2 = t2 + t9 y3 = x1 + t6 

Fig. 6. Inversion in GF (24) using NAND gates. Input is (x0, x1, x2, x3) and output is 
(y0, y1, y2, y3). 

sequence (verify GF (2k) before GF (22k)). For each k, the irreducible polyno-
mial for GF (22k) was found using the circuits for multiplication and addition in 

2 2GF (2k) to compute the range of x + x. Then x + x + α is irreducible for any 
2α not in the range of x + x. 

GF (22) is built from GF 2 by adjoining a root W of x2 + x + 1. 
A basis for GF (22) is (W, W 2) 

GF (24) is built from GF (22) by adjoining a root Z of x2 + x + W 2 . 
A basis for GF (24) is (Z2, Z8). 

GF (28) is built from GF (24) by adjoining a root V of x2 + x + WZ2 . 
A basis for GF (28) is (V, V 16). 

GF (216) is built from GF (28) by adjoining a root T of x2 + x + WZ2V . 
A basis for GF (216) is (T, T 256). 

B.1 Multiplication and inversion in GF (216) 

Let Θ = WZ2V . Multiplication is given by 

(aT + bT 256)(cT + dT 256) = (ac + Θ(a + b)(c + d))T +(bd + Θ(a + b)(c + d))T 256 . 

We now derive efficient equations for inversion in GF (216). The identity element 
is 1 · T + 1 · T 256 . 
From the multiplication formulas we get 

1 = ac + Θ(a + b)(c + d) 1 = bd + Θ(a + b)(c + d). 

Setting µ = Θ(a + b) and summing yields 

1 = c(a + µ) + dµ 0 = ac + bd. 

Equate the c coefficients 
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a = ca(a + µ) + daµ 0 = ac(a + µ) + bd(a + µ). 

Summing them 

a = d(b(a + µ) + aµ) ⇒ d = (b(a + µ) + aµ)−1 a 

yields 

c = bda−1 = b(b(a + µ) + aµ)−1 d = a(b(a + µ) + aµ)−1 . 

Therefore 

c = b(ba + (a + b)µ)−1 d = a(ba + (a + b)µ)−1 . 

and 

c = b(ba + (a + b)2Θ)−1 d = a(ba + (a + b)2Θ)−1 . 

The operation (a + b)2Θ is usually referred to as “square-scaling”. Both square-
scaling and inversion in the equations for c, d are operations in the lower field 
GF (28). 
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