
Managed Blockchain Based Cryptocurrencies with 
Consensus Enforced Rules and Transparency 

Peter Mell 
National Institute of Standards and Technology 

Gaithersburg, Maryland 20899 
Email: peter.mell@nist.gov 

Abstract—Blockchain based cryptocurrencies are usually un-
managed, distributed, consensus-based systems in which no single 
entity has control. Managed cryptocurrencies can be imple-
mented using private blockchains but are fundamentally different 
as the owners have complete control to do arbitrary activity 
without transparency (since they control the mining). In this work 
we explore a hybrid approach where a managed cryptocurrency 
is maintained through distributed consensus based methods. 
The currency administrator can perform ongoing management 
functions while the consensus methods enforce the rules of the 
cryptocurrency and provide transparency for all management 
actions. This enables the introduction of money management 
features common in fat currencies but where the managing entity 
cannot perform arbitrary actions and transparency is enforced. 
We thus eliminate the need for users to trust the currency 
administrator but also to enable the administrator to manage the 
cryptocurrency. We demonstrate how to implement our approach 
through modest modifcations to the implicit Bitcoin specifcation, 
however, our approach can be applied to most any blockchain 
based cryptocurrency using a variety of consensus methods. 

Index Terms—cryptocurrency, blockchain, managed, trust 

I. INTRODUCTION 

Blockchain based cryptocurrencies are usually unmanaged, 
distributed, consensus-based systems in which no single entity 
has control [1]. They use open consensus based approaches 
that allow anyone to participate in maintaining the blockchain, 
even retaining their anonymity. Such systems remove the need 
for a third party in fnancial transactions and eliminate the 
double spending problem (where the same digital cash is 
spent multiple times) [2]. This lack of a need for a trusted 
third party is supposed to result in reduced transaction fees 
over non-cryptocurrency based systems (e.g., credit cards), 
enabling effcient micropayments [3]. Recently however, lim-
itations with some cryptocurrencies on transaction throughput 
has caused transaction fees to be high. Lastly, such systems 
generally provide a level of anonymity where individuals are 
not linked to accounts and where it is trivial for an individual 
to produce and use new accounts. Examples of such systems 
include Bitcoin [4], Ethereum [5], Bitcoin Cash [6], Litecoin 
[7], Cardano [8], NEM [9], Dash [10]1. 

In this work, we consider how to bring many of the 
advantages of such open consensus based cryptocurrencies to 

1Any mention of commercial products is for information only; it does not 
imply recommendation or endorsement. The blockchain based cryptocurren-
cies listed are the ones with the largest market capitalization in descending 
order as of 2017-12-29 according to [11]. 

the area of managed cryptocurrencies2. We refer to a currency 
as ‘managed’ if there exists an owner that can exert control 
over the currency. Managed currencies include electronic rep-
resentations of fat currencies as well as virtual world and in-
game currencies. In the cryptocurrency realm, they are often 
referred to as ‘permissioned blockchains’ (examples include 
Multichain [12] and Ripple). With managed currencies, the 
identity of individuals is often, but not necessarily, linked to 
the accounts (e.g., as when someone opens a bank checking 
account). Furthermore, the managing entity usually reserves 
the right to control the money supply (i.e., they can print 
money). And law enforcement related functions may include 
freezing or confscating assets. Managed cryptocurrencies can 
be implemented with private blockchains using tools such 
as Multichain. However, in such implementations the owners 
have complete control to perform arbitrary activity without 
transparency. This is because the owners authorize (and thus 
control) the servers maintaining the blockchain. 

In our research we explore a hybrid approach where we 
merge strengths of open consensus based cryptocurrencies 
with features often found in managed currencies. In doing 
so we design not a particular cryptocurrency, but instead a 
fexible architecture that allows for different implementations. 
From the open consensus approach we leverage the ability of 
the mining community to enforce the rules of the currency 
and to enforce transparency, where all transactions are pub-
licly viewable. In this way the managing entity of the cryp-
tocurrency cannot perform arbitrary actions, but only those 
explicitly allowed in the cryptocurrency design and all such 
management actions are publicly recorded in the blockchain. 
From the managed currencies, we leverage concepts such as 
the ability of the currency administrator to create funds, tie 
user identity to accounts, freeze/confscate funds (e.g., due to 
illegal activity), and set the block awards for miners. This last 
feature indirectly enables the currency administrator to control 
the electricity consumption of the consensus mechanism (since 
fewer miners will participate if the rewards are lower). Energy 
consumption has often been cited as a major problem with 
consensus ’proof-of-work’ systems; in 2014 Bitcoin mining 
consumed as much electricity as Ireland [13]. 

Since our approach is an architecture, the creator of any 

2Note that managed cryptocurrencies also use consensus methods but they 
are not open to public participation. 

http:cryptocurrencies2.We
http:cryptocurrency.We
http:mining).In
mailto:peter.mell@nist.gov


particular managed cryptocurrency instance can choose which 
features to include or exclude. Our architecture is fexible such 
that it can be used to implement open consensus environments 
like Bitcoin as well as closed controlled environments achiev-
able with systems like Multichain. However, our approach is 
not intended for that purpose. Our area of interest is where the 
architecture is used to create hybrid approaches that combine 
the strengths (and weaknesses) of both. Note that we are not 
advocating any particular approach in this work and our goal 
is not to propose the creation of any specifc cryptocurrency. 
Rather, we explore here the technological foundations that can 
enable the merging of the managed cryptocurrency idea with 
an open consensus based architecture and explore the resultant 
strengths and weaknesses. 

To enable management of the currency, we propose us-
ing a genesis transaction. All blockchains have a genesis 
block which is the frst block, but this genesis transaction 
is a frst transaction from which all subsequent transactions 
are authorized. The genesis transaction authorizes a special 
root account that has the currency manager role and that 
will be controlled by the currency administrator (the entity 
issuing the cryptocurrency). Our tagging of accounts with 
roles is key to our architecture. Accounts with the currency 
manager role can confgure the currency to have different 
properties through defning policy (e.g., adjusting the roles 
implemented and mining rewards). Also, these accounts can 
issue transactions to create other accounts with different roles, 
in a hierarchical fashion with accounts closer to the root 
being more authoritative. The possible roles include currency 
manager, central banker, law enforcement, user, and account 
manager. The central bankers can create and delete funds. Law 
enforcement can freeze account and confscate funds (e.g., for 
fraudulently gained funds being sent to terrorist organizations 
[14])3. Users can perform monetary transactions without the 
need for a trusted third party. And account managers can create 
user accounts (and may be required to link them to physical 
identities). 

We demonstrate how to implement our approach through 
modest modifcations to the implicit Bitcoin specifcation. We 
chose Bitcoin because it is was the frst blockchain based 
cryptocurrency and is the most used. However, our approach 
can be applied to most any blockchain based cryptocurrency 
(including smart contract approaches such as Ethereum). We 
modify Bitcoin as little as possible to facilitate implementation 
of our specifcation; all of our features were implemented 
through small changes to the Bitcoin transaction format. 
Currency managers can issue policy in such a way that 
the changes are reversible or permanent. Permanent changes 
restrict the currency manager’s future actions (since they 
cannot be undone). Such changes are important as they can 
provide users confdence in the system through knowledge 
that the currency administrator will abide by a set of self-
established rules. Added to this, the architecture requires that 

3Note that in most consensus based cryptocurrencies, restoration of funds 
is impossible without forking the currency. 

all management actions be transparent to the users. 
Key to this approach are our solutions for maintaining a 

balace of power. The consensus based methods must ensure 
that the currency administrator (who owns the root currency 
manager node) abides by the stated rules of the cryptocur-
rency and enforces transparency of all management actions. 
However, the participants in the consensus methods should not 
be able to take control away from the currency administrator 
nor exclude any management transactions from entering the 
blockchain. 

In summary, open consensus based unmanaged cryptocur-
rencies provide signifcant new benefts over previous elec-
tronic cash efforts. They eliminate the need for trusted third 
parties by eliminating the double spending problem, remove 
the need for a dedicated and centralized infrastructure, and 
allow for the possibility of very low transaction fees thus en-
abling inexpensive micro-transactions 4. However, this model 
is unsuitable for managed cryptocurrencies because it is 
completely controlled by whomever joins the cryptocurrency 
network to maintain the blockchain (an open and anonymous 
group). Previous efforts to support managed cryptocurrencies 
have used permission-based blockchains where the administra-
tors can control all access to the blockchain, ability of users 
to issue transactions, and ability of miners to maintain the 
blockchain. This is a powerful and effcient paradigm for many 
use cases. However, the user base must have complete trust in 
the currency administrator. In our work, we are attempting to 
eliminate the need for users to trust the currency administrator 
but also to enable the administrator to manage the cryptocur-
rency. At the same time, we are attempting to incorporate the 
many benefts achieved by unmanaged cryptocurrencies while 
mitigating the weaknesses (especially in the area of power 
consumption in maintaining the blockchain). 

The main deliverable this paper is a novel architecture 
for maintaining a managed cryptocurrency through distributed 
consensus based approaches (eliminating the need for users 
to trust the currency administrator), as well as an evaluation 
of the resultant benefts and weaknesses. It also provides 
technical bit-level details on how to modify the Bitcoin spec-
ifcation in order to implement the approach. In future work, 
we will provide such an implementation and perform empirical 
studies. We expect the necessary code changes to be relatively 
straightforward given our modest changes to the specifcation, 
but this cannot be claimed until a prototype implementation 
has been developed. 

II. RELATED WORK 

To our knowledge, this is the only work combining the idea 
of a managed cryptocurrency with the open consensus model 
used by unmanaged currencies. The work most similar to ours 
is Multichain. It provides a platform for creating and deploying 
‘private’ blockchains within or between organizations. It is 
designed to provide the following features [12]: 

4Bitcoin has high transaction fees due to limits on transaction throughput, 
but this is a technical problem not necessarily present in other cryptocurren-
cies. 

http:specification.We


1) ‘to ensure that the blockchain’s activity is only visible 
to chosen participants’ 

2) ‘to introduce controls over which transactions are per-
mitted’ 

3) ‘to enable mining to take place securely without proof 
of work and its associated costs’ 

Instances of Multichain have an administrator or group of 
administrators that defne the ongoing policy of the system. 
They have complete control in defning who can view the 
blockchain, who can put transactions on the blockchain, and 
who can maintain the blockchain (those mining new blocks). 
This last feature enables them to maintain the blockchain at 
very little cost since the computationally expensive proof-of-
work consensus methods of Bitcoin can be dispensed with. 
This is replaced with a fexible round robin approach where 
the miners mostly take turns publishing the new blocks and 
generally do not receive any reward for doing so (since the 
work is trivial). 

While a powerful approach for organization-run 
blockchains, Multichain cannot be used to satisfy our 
stated objectives since the administrators have complete 
control. There is no mechanism to implement a balance of 
power where the administrators can manage the currency 
in an ongoing fashion but where the maintainers of the 
blockchain can ensure that the administrators follow the 
stated rules of the cryptocurrency. 

Country specifc managed cryptocurrencies exist or are 
in the process of being deployed, not all of them being 
blockchain based, and the degree to which they are ‘managed’ 
varies greatly. Dubai has launched its own cryptocurrency 
called emCash [15]. Singapore has announced experimentation 
with one [16] and Estonia has announced thier ‘estcoin’ 
[17]. The company Monetas [18] offers a product to enable 
countries to issue their own digital currencies; it is being 
actively used by several countries. Senegal is piloting a digital 
currency called eCFA using the Monetas platform that, if 
successful, will be used by Cote d’Ivoire, Benin, Burkina 
Faso, Mali, Niger, Togo and Lusophone Guinea Bissau [19]. 
Tunisia has done the same using the Monetas platform [20]. 
The Russian Central Bank has publicly pushed for a national 
cryptocurrency [21]. Venezuela has announced that it will 
launch an oil-backed cryptocurrency [22]. And lastly, the 
Bank for International Settlements released a report noting 
that countries may need to replace cash with national cryp-
tocurrencies [16]. 

In the area of unmanaged cryptocurrencies, there exist hun-
dreds of them. Bitcoin was the frst to use blockchains and was 
introduced in 2008 [4]. There exist many forks and variants of 
Bitcoin, mostly optimizing certain features but often introduc-
ing novel and revolutionary architectural changes. We review 
here the blockchain based cryptocurrencies with the largest 
market capitalization, as of 2017-12-29. Ethereum was the 
frst production product to enable executable programs (called 
smart contracts) to be put on a cryptocurrency blockchain [5]. 
Ripple [23] provides a solution for banks to send payments 
globally. Bitcoin Cash [6] is a fork of Bitcoin with a much 

larger block size limit. This enables many more transactions 
per block thereby increasing throughput and driving down 
transaction fees. Litecoin [7] is almost identical to Bitcoin but 
with several differences: smaller block publication time, larger 
maximum number of coins, and a change in hashing algorithm. 
Cardano [8] is based on [24] describing a ‘provably secure 
proof-of-stake blockchain protocol’. NEM [9] incorporates 
a reputation system, proof-of-importance, and multisignature 
accounts. Dash [10] is ‘privacy-centric’ with a two-tiered 
administration network and an ability for users to instantly 
send coin. 

III. MANAGED CRYPTOCURRENCY ARCHITECTURE 

All blockchains contain a ‘genesis block’. This is the frst 
block on the blockchain and it has no pointer to a previous 
block (being the frst one). All users of the blockchain must 
agree on this frst block for a consistent view of the blockchain 
to exist. We propose the addition of a ‘genesis transaction’5. 
This is the frst transaction in the blockchain and it defnes 
an account that has the currency manager role (and is owned 
by the currency administrator). In our system, only accounts 
with roles can issue transactions and only accounts with the 
currency manager role can create other accounts with roles 
(with one important exception, discussed later). Thus, the 
genesis transaction is the transaction that enables all other 
transactions. 

The initial account is the root of a hierarchical tree of nodes, 
where each node represents an account labeled with a set of 
roles6. The root node not only has the currency manager (M) 
role7, but it has all other available roles: central banker (C), 
law enforcement (L), user (U), and account manager (A). We 
label the roles of an account by concatenating all applicable 
labels. Thus, the root node has the role set ‘MCLUA’. 

When a node with the M role creates a new account (more 
precisely, it labels some unlabeled account created by some 
user), it bestows on that account a, not necessarily proper, 
subset of its roles. Thus, the cardinality of the set labels for 
nodes monotonically decreases as one traverses higher in the 
hierarchy tree. One exception to this monotonicity rule is that 
nodes with the M label may also modify the role sets of nodes 
higher in the tree (provided they are on the path from the target 
node to the root), restricted again to the set of roles possessed. 

Nodes with the A role may also create and delete accounts, 
but such created accounts may only have the U role. The 
currency administrator then can delegate user account man-
agement to third party organizations by giving them the A 
role. 

The different roles provide different accounts different ca-
pabilities: 

5This is related to the ”asset genesis” metadata transaction idea [12] but is 
more powerful as it controls all transactions on the blockchain. 

6We use the terms node and account interchangeably depending upon the 
desired perspective (node in a tree versus account owned by a user) 

7The M role is distinct from the currency administrator. Many accounts 
may have the M role but there exists a single entity which is the currency 
administrator. 

http:changes.We


• The U role enables an account to receive and spend coins. 
An account for which the U role has been removed has 
its funds frozen. 

• The A role enables an node to create accounts with the 
U role (and only the U role). It may also remove the U 
label for its descendants. 

• The C role enables the creation of new coins (apart from 
the block mining rewards). 

• The L role enables an account to forcibly move funds 
between accounts, to remove the U label, and to restore 
a previously removed U label. However, these actions can 
only be performed against nodes with the same or greater 
distance from the root. 

The currency administrator, who will own the root M 
labelled node, may require that A nodes verify users’ identities 
prior to providing an account. In this case, the architecture 
enables a system where the ‘know your customer’ (KYC) 
laws might be satisfed. Individual transacting parties would 
not know each other’s identities but some account authorizing 
entity would have a record for each account with the U role. 
Fulflling KYC laws is a general problem for cryptocurrencies 
[25]. 

Figure 1 shows an example account hierarchy where we 
label nodes with their roles (e.g., a MUA node has the M, 
U, and A roles). The initial node created by the genesis 
transaction is at the bottom. Each node is labeled with its set 
of roles. Each UA node represents an organization authorized 
to manage user accounts. The MUA nodes authorize the UA 
nodes and can undo any undesired action taken by the UA 
nodes, since they are on the path from all UA nodes to the root. 
This action could be taken if there is negligence on the part of 
a UA node in creating U nodes or if a UA node’s credentials 
are stolen. Note that there are two MUA nodes, one on top of 
the other. The topmost node will be used to create and delete 
UA nodes, the bottom one will be used to fx the system in 
the event that the topmost node’s credentials are stolen. This is 
also the reason why there are two MCLUA nodes, one on top 
of the other. The root node ideally is never used again after 
creating the MCLUA node above it. This helps prevent the 
root node’s credentials from being stolen. In general, actions 
should be performed by nodes higher up in the tree that have 
the least privilege possible since the use of a node puts it 
in a more vulnerable position. The credentials of nodes not 
used can be secured simply by converting them to physical 
form and locking them in a safe (which we recommend doing 
with the initial node’s credentials). This hierarchical node and 
role structure then enables the currency administrator to create 
a defense in depth security model. Accounts lower in the 
hierarchy have greater power and their credentials should be 
locked securely and rarely used. 

A last capability not yet discussed is that accounts with M 
roles can issue policy that alters the cryptocurrency specif-
cation. In the event of policy conficts between different M 
nodes, the nodes closer to the root are more authoritative. For 
M nodes the same distance from the root, those labeled with 
the M role in earlier blocks are more authoritative. In the event 

Fig. 1. Example Managed Cryptocurrency Hierarchy. 

of a tie, the node labeled with the M role frst within the same 
block wins. 

The policy deployed by the M nodes defne the cryptocur-
rency. It is this policy that makes our approach an architecture. 
The policy can be set such that the cryptocurrency acts in 
an entirely unmanaged mode like the many popular open 
consensus cryptocurrencies in use today. The policy can also 
be set to allow the currency administrator full control as 
with the administrators in Multichain. More interesting to 
our research though is when the policy combines both open 
consensus and managed currency features. The policy enables 
each of the roles to be enabled or disabled and grants/limits 
the power of each role. Policy also can affect the mining 
community. A policy transaction can set a particular block 
reward or defne a minimum transaction fee. Controlling these 
will affect the size of the mining community. For a proof-of-
work based consensus mechanism such as Bitcoin, this will 
then indirectly control the amount of electricity used to man-
age the cryptocurrency (trading off power consumed against 
robustness of the mining pool against attack). This approach 
can enable an energy effcient proof-of-work consensus system 
where the currency administrator balances overall mining 
power desired vs. energy consumed. The exact capabilities 
available with policy are covered in section V-C. 

IV. BITCOIN SPECIFICATION OVERVIEW 

There does not exist an offcial Bitcoin specifcation. The 
original Bitcoin paper [4] contained the primary architectural 
details but the specifcation is defned by the applications that 
maintain it on the network. That said, there exists a Bitcoin 
reference client ’bitcoind’ and related protocol documentation 
[26]. From this was created a useful developers reference [27]. 
An in depth research analysis of Bitcoin is available in [28]. 

In this section we briefy review the features of the Bitcoin 
specifcation that will be of use for our modifed specifcation. 
Figure 2 shows the layout of a Bitcoin transaction (copied 
from [27], see this for details). The vin[] sections describe 
the inputs to a Bitcoin transaction (the particular coins to be 
spent). The hash and n values specify particular coins from 
the output of some other Bitcoin transaction. The scriptSig is 
a script to provide cryptographic evidence that the owner of 
the coins approves of the coins being spent. It is a response 

http:authoritative.In


Fig. 2. Bitcoin Transaction Format for Sending Bitcoin (BTC), copied from [27]. 

script that meets the conditions of the challenge script in the 
transaction containing the coins that are to be spent (see the 
vout[] scriptPubKey feld below). These conditions are usually 
met by proving ownership of the private key associated with 
the coins. 

The vout[] sections describe the outputs to a Bitcoin trans-
action (groupings of coins along with who owns each group). 
Ownership is specifed within each scriptPubkey which is a 
script defning how the coins can be spent (usually specifying 
a public key). To satisfy the scripPubkey challenge script and 
spend the coins at some future time, the owner will need to 
generate a scriptSig response script in some vin[] feld for 
some transaction in which they prove ownership of the private 
key associated with the specifed public key. This is the Pay-
to-Pubkey (P2PK) Bitcoin transaction type for moving coins 
between accounts (see section 4.3.1 of [27] for a detailed 
explanation). 

Figure 3 shows how a vin[] feld in a new transaction 
can reference a specifc vout[] feld in a previous transaction 
(copied from [27], see this for details). The vin[] hash value 
specifes the transaction and the n value specifes the specifc 
vout[] feld. The scriptSig in the vin[] of the new transaction 
then satisfes the scriptPubkey from the vout[] feld specifed 
from a previous transaction so that the coins can be spent (i.e., 
proving that the owner of the coins wants them spent). 

V. TECHNICAL DESIGN USING BITCOIN SPECIFICATION 
MODIFICATIONS 

This section provides the technical specifcation for our 
managed cryptocurrency architecture described in section III. 
Our approach is to implement our architecture using only 
modest changes to the Bitcoin specifcation, changing the 
regular Bitcoin transaction format. Section IV provided the 

necessary background on the Bitcoin specifcation. Interested 
readers should also consult the de facto Bitcoin specifcations 
[26] and [27] to better understand these changes in the context 
of the larger blockchain system. 

To implement our architecture’s functionality, we repurpose 
the regular Bitcoin transaction. The format remains the same 
as the Bitcoin transaction shown previously in fgure 2 with a 
few exceptions. Our primary change is to leverage and revamp 
the vout[] nValue feld in order to implement account roles 
and cryptocurrency policy. Another major change is to require 
in a transaction the inclusion of vin[] felds that provide the 
necessary roles for a transaction to be valid. 

Our frst modifcation was to change the transaction format 
version, nVersion, to 19448. Transaction format version 1 is 
used by the regular Bitcoin transactions and is disallowed by 
our architecture. 

The vin[] feld operates similarly as before. In Bitcoin, a 
vin[] feld specifes a set of coins from a particular transaction 
already posted on the blockchain. The vin[] feld then provides 
the evidence that the owner of those coins wants to spend them 
by providing a vin[] scriptSig feld that satisfes the vout[] 
scriptPubkey feld of the coins to be spent. In our design, the 
vin[] feld works the same way for coin transfers. 

However, the vin[] feld can also be used to bring roles 
into a transaction to authorize activities that require roles 
(which is most any activity in our architecture, depending upon 
the specifc policy enacted). Functionally, it is like we are 
‘spending’ a role to use it to authorize some action given the 
usual use of a vin[] feld (but roles can be ‘spent’ an infnite 
number of times and are not transferred like coin). A vin[] feld 

8This is the year big band leader Glenn Miller died while fying to France 
to encourage allied troops. 

http:publickey).To


Fig. 3. Bitcoin vin[] Reference to a Previous Transaction (copied from [27]). 

Fig. 4. 64 bit nValue Field Format for the Coin Transfer Mode 

can specify a former transaction where an account was given 
a role. The vin[] scriptSig feld then provides evidence that the 
owner of that account wants to use their role in this transaction 
(the scriptSig feld must satisfy the scriptPubkey feld of the 
transaction where the account was given the role). Thus, each 
vin[] feld can bring a particular role from a particular account 
into a transaction in order to meet the role requirements for 
that transaction. 

The vout[] feld was also reinterpreted. The nValue feld 
now specifes the mode in which its encompassing vout[] 
feld will operate. There are three modes: coin transfer mode, 
role change mode, and policy change mode. Coin transfer 
mode moves coin between accounts similarly to a normal 
Bitcoin transaction. However, we restrict the transaction types 
that can be used in order to ensure that coins are linked to 
accounts. Role change mode enables accounts with the M, 
A, and L roles to modify the role labels of other accounts. 
Policy change mode enables accounts with the M role to enact 
and/or modify cryptocurrency policy (to essentially defne the 
ongoing rules for the cryptocurrency). If the frst bit of an 
nValue feld is a 0, the encompassing vout[] feld is in coin 
transfer mode. If the frst two bits of an nValue feld are ‘10’, 
the encompassing vout[] feld is in role change mode. And a 
nValue feld beginning with ‘11’ specifes policy change mode. 

feld to only use the Pay-to-Pubkey (P2PK) transaction type. 
P2PK associates coins with a specifc public key (an account 
in our architecture). If set up to do so, this enables cryptocur-
rencies implemented from our architecture to link accounts to 
account owners. This linkage can take place when an account 
with the A role grants the U role to another account (thereby 
authorizing it for coin transfers). In this case, the authorizing 
entity checks the user’s identity using out-of-band traditional 
methods (e.g., passports, drivers licenses, and identity cards). 

A. Coin Transfer Mode 

If an nValue feld has its frst bit set to 0, the encompassing 
vout[] feld is in coin transfer mode and is used to move 
coin between accounts. Since the frst bit was used to specify 
this, the remaining 63 bits specify the amount of coin to be 
transferred (in Bitcoin all 64 bits are used). Figure 4 shows 
the changes to the nValue feld for the transfer of coin (those 
nValue felds beginning with 0). Note that for all fgures 
showing the revised nValue format (including this one), solid 
lines originate from bits that defne the action to be taken while 
dotted lines originate from parameter values. 

Anytime a transaction has one or more vout[] felds in coin 
transfer mode, the original accounts owning the coins and the 
destination accounts for the coins must all have the U role. 

Also within the vout[] feld, we restrict the scriptPubkey This is accomplished by including in the transaction vin[] 



felds that bring in the U roles for the accounts either sending 
or receiving coin. 

Lastly, coinbase transactions (the frst transaction of each 
block where the miner sends itself the reward coins) are 
handled the same as with Bitcoin. However, the vout[] nValue 
feld will start with a 0 bit, putting it in coin transfer mode. 
Also, the miner must include a vin[] feld after the normal 
coinbase transaction vin[] feld in which the miner provides 
the U role for the account to which the coins are destined. 

B. Role Change Mode 

If an nValue feld has its frst two bits set to ‘10’, then the 
encompassing vout[] feld is used to change the roles for a 
set of accounts. The third bit represents whether or not the 
vout[] feld is removing or adding roles. 0 indicates that roles 
are being removed and a 1 represents that they are being 
added. The subsequent bits are fags referring to the different 
roles. Bits 4, 5, 6, 7, and 8 map to roles M, C, L, U, and A 
respectively. The remaining 56 bits are undefned. This may be 
wasteful of space but role change transactions will be relatively 
rare and we are trying to change the Bitcoin specifcation as 
little as possible. Figure 5 shows these changes to the nValue 
feld. 

The vout[] scriptPubkeyLen and scriptPubkey felds specify 
the public key for the account that has these roles. The roles 
granted by the transaction can then be used in future transac-
tions by the future transaction providing a vin[] scriptSig feld 
that satisfes the vout[] feld of the transaction granting the 
roles. Essentially, an owner of an account uses their private 
key in some future transaction to prove ownership of a public 
key documented in a past transaction where the roles were 
granted. Note that cryptocurrency participants, specifcally the 
miners, will have to make sure that the roles being accessed 
by a transaction haven’t been previously removed from the 
relevant accounts (roles can be removed by accounts with the 
M, L, or A roles). This check is similar to miners in Bitcoin 
checking to make sure that particular coins haven’t already 
been spent. 

Every transaction requires one or more roles in order to be 
valid. Each role has different rules that must be satisfed for 
the applicable transaction to be valid: 

1) M Role Processing: Any addition or removal of roles 
requires the M role to be provided in one or more of the vin[] 
datastructures (with two exceptions, see the A and L roles). 
Each role change vout[] datastructure must be ‘covered’ by 
a vin[] scriptSig feld where the address specifed is located 
between the root and the node affected in the node hierarchy. 
Also, the ‘covering’ address (referenced by the vin[] scriptSig 
feld) must have the role that is to be added or removed in the 
‘covered’ vout[] datastructure. 

2) C Role Processing: The inclusion of a vin[] datastructure 
that has a scriptSig feld that satisfes an account having the 
C role means that the transaction may create coins. There 
is no need then for other vin[] datastructures. The vout[] 
datastructures provide coins to the designated addresses. 

3) L Role Processing: The inclusion of a vin[] datastructure 
that has a scriptSig feld that satisfes an account having the 
L role means that the other vin[] felds do NOT need the 
scriptSigLen or scriptSig felds (for bringing coin into the 
transaction). Coins may be transferred without the permission 
of the owners with the inclusion of the L role in the transac-
tion. Also, having the inclusion of the L role enables vout[] 
datastructures that remove the U role from other accounts. 
Also, the U role may be added back to accounts for which it 
was previously revoked. However, these abilities only apply 
to nodes in the hierarchy that are at a greater distance from 
the root than the vin[] specifed node with the L role (this 
is to enable the currency administrator to limit this power by 
creating L role accounts at differing distances from the root). 

4) U Role Processing: Any movement of funds requires 
the U role for the original owner of the coins (specifed in 
the vin[] felds). The recipients of any coins (specifed in the 
vout[] feld) must also have the U role. 

5) A Role Processing: The inclusion of a vin[] datastructure 
that has a scriptSig feld that satisfes an account having the A 
role means that the vout[] felds may add role U to accounts. 
Doing so adds them as descendants in the hierarchical account 
tree. Accounts with the A role may likewise remove the U 
role from any descendant. If an A node removes one of its 
descendants U roles, another A node may add the U role to 
that node. In this case, the affected node becomes a descendant 
of the A node adding the U role. Note that if a node with the 
L role removes the U role from a node, it is put on a special 
list of frozen nodes and only another node with the L role 
may remove the affected node from the list. 

C. Policy Change Mode 

If an nValue feld has its frst two bits set to ‘11’, then the 
encompassing vout[] feld is in policy change mode, used to 
create or modify cryptocurrency policy. Note that a vout[] feld 
in policy change mode is only allowed in a transaction if at 
least one of the vin[] felds provides the M role (since only 
currency managers can modify policy). 

The third bit of the nValue feld defnes the permanence 
of the policy (0 is not permanent and 1 is permanent). If an 
account issues permanent policy, it may not change it in the 
future. However, M accounts with greater priority, as described 
in section III, can still trump the issued policy. If the initial 
root node issues permanent policy, it cannot be changed for the 
life of the cryptocurrency. This enables the issuance of a static 
instance of our cryptcurrency architecture. Some features may 
be made permanent while others are left open for change. It 
may not be immediately clear why an issuer of a currency 
would make anything permanent, because it reduces their 
fexibility. However, by making certain features permanent it 
provides guarantees to the users. The currency administrator 
is then constrained to operate within the published rules of 
the cryptocurrency even though they still manage it. This idea 
of permanence is important in order to limit the currency 
administrator from having absolute rule (which is the case 



Fig. 5. 64 bit nValue Field Format for the Role Change Mode 

Fig. 6. 64 bit nValue Field Format for the Policy Change Mode 

in many of the private blockchain managed cryptocurrencies, 
such as with Multichain [12]). 

After the frst three bits of an nValue feld are set (to 110 for 
not permanent or 111 for permanent), the remaining 61 bits 
specify the policy setting to be made. There is just one policy 
change made per nValue feld, and just one nValue feld per 
vout[] datastructure. However, a single transaction may have 
many vout[] datastructures. 

The next 27 bits specify an integer representing the policy 
change type while the last 32 bits are used to hold the policy 
change parameter. The structure of the nValue feld in the 
policy change mode is shown in fgure 6. 

For the policy change mode, there are currently 14 policy 
change types with associated parameters, shown in table I. For 
the binary parameters, 0 means disable and 1 means enable. 
Binary parameters default to 1 (these policies are enabled by 
default when the cryptocurrency is initiated). 

Policy change types 0 to 5 enable or disable the various roles 
in available in the architecture (discussed in section III). Type 
5 enables or disables the L role from moving coins (disabling 
would limit the L role to freezing accounts). Type 6 sets a 
limit for how much coin the set of C roles may create within 
any particular block. Type 7 sets the block reward mode (0 
is the automated approach used by the base cryptocurrency 
system, Bitcoin in our case, while 1 enables a mode where a 
currency manager explicitly sets rewards). Type 8 and 9 are 
for the manual mode and enable setting the block reward and 
setting a minimum block reward. The purpose of the type 9 is 
to allow a currency manager to permanently set a minimum 
while still having the fexibility to adjust the current reward 
with type 8. Types 10 and 11 are for the self-adjusting mode 
and enable setting the decay rate for block rewards as well as 
setting a maximum decay rate. Again, the latter is intended to 

be used in a mode where it is set permanently. Type 12 sets 
a transaction fee minimum. 

Types 13-15 are important for setting security policy (dis-
cussed in detail in section VI). Type 13 sets how often 
management transactions must appear in a consecutive se-
quence of blocks (0 disables this feature). For example, a 
setting of 5 indicates that a certain number of management 
transactions must appear within every subsequent grouping 
of 5 blocks. Type 14 specifes the minimum on how many 
management transactions must appear in that grouping of 
blocks. A management transaction is one that requires the M 
role to be present in one of the vin[] felds (see section V-B1). 
If the currency administrator doesn’t have enough management 
transactions that they wish to put on the blockchain to meet the 
minimum, then they may issue one or more no operation (no-
op) policy change mode transactions of type 15 using one of 
their M nodes. These do nothing but meet the requirement. 
A last nuance of this mechanism is that at least one of 
the management transactions must be a policy change mode 
transaction. This is to ensure that the currency administrator 
can always change policy (as the miners might just include 
non-policy management transactions to meet the minimum 
requirement). 

VI. SECURITY MODELS 

A key aspect of our architecture is to ensure that a balance of 
power is maintained. Users of the system, including currency 
managers, should be able to issue any valid transaction onto 
the blockchain (pursuant to the current policy settings). Miners 
should be able to enforce policy restrictions and provide 
transparency for all transactions added to the blockchain. 

There are two security models that can be used to enforce 
this balance of power. Each model slightly favors one party, 



TABLE I 
CRYPTOCURRENCY POLICY SETTINGS 

Policy Change Type Description Parameter 
0 Enable or disable the M role globally 0 or 1 
1 Enable or disable the C role globally 0 or 1 
2 Enable or disable the L role globally 0 or 1 
3 Enable or disable the U role globally 0 or 1 
4 Enable or disable the A role globally 0 or 1 
5 Enable or disable the L roles from moving coins 0 or 1 
6 C role coin creation limit per block (0 means no limit) Integer 
7 Set block reward mode (0 means manual, 1 means self-adjusting) 0 or 1 
8 For manual mode, set block reward Integer 
9 For manual mode, set minimum block reward Integer 
10 For self-adjusting, set geometric decay rate Float between 0 and 1 
11 For self-adjusting, set maximum decay rate Float between 0 and 1 
12 Set transaction fee minimum (0 means no minimum) Integer 
13 Periodicity of management transaction inclusion in blocks Integer 
14 Minimum number of management transactions per period Integer 
15 No operation (used to prove the currency administrator is active) 0 

currency managers or miners, although both achieve a reason-
able balance (dependent upon the use case). 

A. Independent Mining Model 

In the independent mining model, the currency administrator 
permanently disables the requirement to include management 
transactions periodically (thus the blockchain is not dependent 
on receiving management transactions). This can be done by 
having the initial node permanently set the policy change 
type 13 to 0. In this mode the currency administrator cannot 
take over maintenance of the blockchain (since mining is 
unrestricted as with Bitcoin). However, if at least 51 % of 
the miners collude to ‘revolt’ against the currency managers, 
they can prevent future management transactions from entering 
the blockchain (as well as issuing the well known set of 
51 % attacks present with most blockchains [29]). The way 
this attack works is that the miners controlling 51 % of the 
computational power simply work on a chain with only their 
own blocks, excluding the blocks produced by others. Over 
time, their chain will be longer since they own the majority of 
the computational power and the other miners will follow their 
chain (fruitlessly trying to append blocks in a competition they 
will never win) 

B. Dependent Mining Model 

Even though the 51 % attack possibility exists in Bitcoin 
and most other cryptocurrencies, the risk may be too great for 
some issuers of cryptocurrency; in such a case, the currency 
administrator can use our dependent mining model. In this 
case the blockchain is dependent on receiving management 
transactions. With this approach, the currency administrator 
using an M node sets policy change types 13 and 14. This 
forces the miners to include a certain number of management 
transaction per a certain number of blocks. We advise setting 
this liberally (type 13 large and type 14 small) since the 
expectation is that 51 % of the miners will not revolt. If a 
revolt occurs and miner only include the minimum necessary, 

then these policy values can be changed to force the miners 
to allow for more management transactions. 

If the miners completely revolt and violate policy, the 
‘compliant’ miners will reject their blocks. This would fork 
the blockchain into a compliant chain and a non-compliant 
chain. This is the same thing that would happen with any 
cryptocurrency if a group of miners begin producing blocks 
that do not satisfy the specifcation requirements. 

An important aspect of this second model is that it gives 
more power to the currency administrator than the frst model. 
This can be seen as a positive feature or a weakness depending 
upon the use case and perspective. With the second model, the 
currency managers accounts can refuse to submit management 
transactions, which will eventually cause block creation to halt 
(issuing management transactions would immediately restart 
production). This may not be considered a signifcant threat 
as the currency administrator initiated the blockchain and 
inherently will want it to continue operating (this argument 
is somewhat analogous to the one explaining why Bitcoin in 
practice is resistant to a 51 % attack even though theoretically 
it is vulnerable [29]: the miners have a huge stake in the system 
and won’t want it to fail). This could even be considered a 
feature as owners of a blockchain could eventually deprecate 
it and move the data to a new blockchain with enhanced 
technical capabilities. Note that using such an option would be 
extremely visible and necessarily be rare as it would require 
all of the users’ cryptocurrency software to be updated and 
reconfgured. 

C. Node Software Security 

We should note that in all cryptocurrency systems, the 
authors of the software used by the participating nodes (espe-
cially the mining nodes) have signifcant power. Our architec-
ture is no exception. However, here there is also a balance of 
power. The currency administrator will likely be a maintainer 
of the software used by nodes to maintain the blockchain. 
Hypothetically, they could use this to violate established 
permanent policy and/or take control of the blockchain from 

http:blocks.We


the miners through the creation and publication of ‘malicious’ 
software. However, this can only occur if the majority of 
miners adopt the malicious software. Even if this did happen 
(e.g., through miners blindly adopting an update), the miners 
could simply roll back to a previous non-malicious version to 
restore the proper function of the architecture. 

If miners author the node software, they publish ‘malicious’ 
software, and the majority of miners adopt it, the miners 
could revolt against the currency administrator. However, this 
is identical to a 51 % attack as described above. The result 
would be a forking of the blockchain, creating compliant and 
non-compliant chains. The compliant chain would continue 
to implement our architecture with a reduce set of compliant 
miners. 

VII. CONCLUSION 

We provide a novel cryptocurrency architecture which is 
a hybrid approach where a managed cryptocurrency is main-
tained through distributed open consensus based methods. Key 
to this architecture is the idea of a genesis transaction upon 
which all other transactions are based and which enables the 
establishment of a hierarchy of accounts with differing roles. 
It is these roles that enabled us to introduce features from 
fat currencies into a cryptocurrency: law enforcement, central 
banking, and account management. Another novel feature is 
that the architecture allows the cryptocurrency policy to be 
maintained dynamically by the currency administrator, but 
certain policy settings can be made permanent in order to 
facilitate confdence in the stability of the system. This is 
especially important for the relationship between the currency 
administrator and an independent community of miners. The 
currency administrator can control block rewards, which indi-
rectly enables the currency administrator to adjust the power 
consumption of blockchain maintenance. However, the cur-
rency administrator can enact permanent policy to guarantee 
the miners a certain level of reward. This is important not only 
to the miners but it prevents the currency administrator from 
lowering the block reward to nothing and then taking over the 
mining (and thus completely controlling the blockchain as with 
many permissioned blockchain systems). Our policy system 
thus enables a cryptocurrency to be set up that has a balance 
of power where the currency administrator can perform man-
agement functions but where a group of independent miners 
enforce policy and provide transparency through recording 
all administrative activity on the blockchain. However, the 
possibility still exists that the currency administrator or miners 
could violate policy and attempt to take control of the system. 
To mitigate this, we provide two security policies that can 
enforce the balance of power (each with a small bias one 
direction or the other). Lastly, we showed that our architecture 
can be implemented through modest changes to the Bitcoin 
specifcation. We note though that our approach is not tied 
to Bitcoin and can be implement on differing cryptocurrency 
platforms. 

REFERENCES 

[1] A. Baliga, “Understanding blockchain consensus models,” Tech. rep., 
Persistent Systems Ltd, Tech. Rep., 2017. 

[2] M. Swan, Blockchain: Blueprint for a new economy. ”O’Reilly Media, 
Inc.”, 2015. 

[3] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bit-
coin and Cryptocurrency Technologies: A Comprehensive Introduction. 
Princeton University Press, 2016. 

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008. 
[5] G. Wood, “Ethereum: A secure decentralised generalised transaction 

ledger,” Ethereum Project Yellow Paper, vol. 151, 2014. 
[6] “Bitcoincash,” accessed: 2017-12-29. [Online]. Available: 

https://www.bitcoincash.org/ 
[7] “Litecoin,” accessed: 2017-06-16. [Online]. Available: 

https://litecoin.org/ 
[8] “Why we are building cardano,” accessed: 2017-12-29. [Online]. 

Available: https://whycardano.com/ 
[9] “Nem the smart asset blockchain,” accessed: 2017-12-29. [Online]. 

Available: https://nem.io/ 
[10] E. Duffeld and D. Diaz, “Dash: A privacy-centric crypto-currency,” 

2014. 
[11] “Cryptocurrency market capitalizations,” accessed: 2017-12-29. 

[Online]. Available: https://coinmarketcap.com/ 
[12] G. Greenspan, “Multichain private blockchainwhite paper,” 2015. 
[13] K. J. O’Dwyer and D. Malone, “Bitcoin mining and its energy footprint,” 

2014. 
[14] T. Lee, “Feds charge new york woman with sending 

bitcoins to support isis,” Dec. 2017. [Online]. Avail-
able: https://arstechnica.com/tech-policy/2017/12/feds-charge-new-york-
woman-with-sending-bitcoins-to-support-isis/ 

[15] J. Buck, “Dubai will issue frst ever state cryptocurrency,” Oct. 
2017. [Online]. Available: https://cointelegraph.com/news/dubai-will-
issue-frst-ever-state-cryptocurrency 

[16] E. Cheng, “Fedcoin? central banks may need ’digital alternative 
to cash,’ global fnancial watchdog says,” Sep. 2017. [Online]. 
Available: https://www.cnbc.com/2017/09/18/central-banks-may-need-a-
digital-alternative-to-cash-bis-says.html 

[17] K. Korjus, “Were planning to launch estcoinŁ Łand 
thats only thestart,” Dec. 2017. [Online]. Avail-
able: https://medium.com/e-residency-blog/were-planning-to-launch-
estcoin-and-that-s-only-the-start-310aba7f3790 

[18] “Monetas,” accessed: 2017-12-29. [Online]. Available: 
https://monetas.net/ 

[19] L. Chutel, “West africa now has its own digital currency,” Dec. 2016. 
[Online]. Available: https://qz.com/872876/fntech-senegal-is-launched-
the-ecfa-digital-currency 

[20] E. Smart, “Could a national cryptocurrency like fedcoin save the estab-
lishment from economic self-destruction?” Digital Currency Executive, 
Feb. 2016. 

[21] K. Helms, “Russia’s central bank pushes for national cryptocurrency,” 
Oct. 2017. [Online]. Available: https://news.bitcoin.com/russias-central-
bank-pushes-for-national-cryptocurrency 

[22] D. B. Alexandra Ulmer, “Enter the ’petro’: Venezuela to launch oil-
backed cryptocurrency,” Reuters, Dec. 2017. 

[23] “Ripple solutions guide,” accessed: 2017-12-29. [Online]. Available: 
https://ripple.com/fles/ripple solutions guide.pdf 

[24] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A 
provably secure proof-of-stake blockchain protocol,” in Annual Interna-
tional Cryptology Conference. Springer, 2017, pp. 357–388. 

[25] M. Staples, S. Chen, S. Falamaki, A. Ponomarev, P. Rimba, A. Tran, 
I. Weber, X. Xu, and J. Zhu, “Risks and opportunities for systems using 
blockchain and smart contracts. data61,” 2017. 

[26] “bitcoinwiki protocol documentation,” accessed: 2017-12-29. [Online]. 
Available: https://en.bitcoin.it/wiki/Protocol documentation 

[27] Okupski, “Bitcoin developer reference,” 2014. [Online]. Available: 
http://enetium.com/resources/Bitcoin.pdf 

[28] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. 
Felten, “Sok: Research perspectives and challenges for bitcoin and 
cryptocurrencies,” in Security and Privacy (SP), 2015 IEEE Symposium 
on. IEEE, 2015, pp. 104–121. 

[29] J. Yli-Huumo, D. Ko, S. Choi, S. Park, and K. Smolander, “Where is 
current research on blockchain technology? a systematic review,” PloS 
one, vol. 11, no. 10, p. e0163477, 2016. 

http://enetium.com/resources/Bitcoin.pdf
https://en.bitcoin.it/wiki/Protocol
https://ripple.com/files/ripple
https://news.bitcoin.com/russias-central
https://qz.com/872876/fintech-senegal-is-launched
http:https://monetas.net
https://medium.com/e-residency-blog/were-planning-to-launch
https://www.cnbc.com/2017/09/18/central-banks-may-need-a
https://cointelegraph.com/news/dubai-will
https://arstechnica.com/tech-policy/2017/12/feds-charge-new-york
http:https://coinmarketcap.com
http:https://nem.io
http:https://whycardano.com

