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Abstract. The Hidden Field Equations with vinegar and minus modi-
fiers (HFEv-) signature scheme is one of the most studied multivariate 
schemes and one of the major candidates for the upcoming standardiza-
tion of post-quantum digital signature schemes. In this paper, we pro-
pose three new attack strategies against HFEv-, each of them using the 
idea of projection. Especially our third attack is very effective and is, 
for some parameter sets, the most efficient known attack against HFEv-. 
Furthermore, our attack requires much less memory than direct and rank 
attacks. By our work, we therefore give new insights in the security of 
the HFEv- signature scheme and restrictions for the parameter choice of 
a possible future standardized HFEv- instance. 
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1 Introduction 

Multivariate cryptography is one of the main candidates for establishing cryp-
tosystems which resist attacks with quantum computers (so called post-quantum 
cryptosystems). Especially in the area of digital signatures, there exists a large 
number of practical multivariate schemes such as Unbalanced Oil and Vinegar 
(UOV) [1] and Rainbow [2]. 

Another well known multivariate signature scheme is the HFEv- signature 
scheme, which was first proposed by Patarin, Courtois and Goubin in [3]. Most 
notably about this scheme are its very short signatures, which are currently the 
shortest signatures of all existing schemes (both classical and post-quantum). 

In this paper we propose three new attacks against the HFEv- signature 
scheme, each of them using the idea of projection. This means that each of our 
attacks reduces the number of variables in the system by guessing, either before 
or after the attack itself. 
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The most interesting results hereby are provided by a distinguishing based 
attack, which is related to the hybrid approach of the direct attack [4]. The 
goal of our attack is to remove the vinegar modifier. This allows the attacker to 
follow up with any key recovery or signature forgery attack applicable to an HFE-
instance with the same degree bound and the same number of removed equations 
as the original HFEv- instance. The attack is very effective and outperforms, 
for selected parameter sets, all other attacks against HFEv-. Furthermore, the 
memory requirements of our attack are far less than those of direct and MinRank 
attacks. 

The rest of the paper is organized as follows. In Section 2, we give a short 
overview of multivariate cryptography and introduce the HFEv- cryptosystem, 
while Section 3 reviews the previous cryptanalysis of this scheme. Section 4 
describes our first two attacks, which combine the MinRank attack with the 
idea of projection. In Section 5, we present then our distinguishing based attack, 
whose complexity is analyzed in Section 6. Finally, Section 7 discusses ideas for 
future work. 

2 Hidden Field Equations 

2.1 Multivariate cryptography 

The basic objects of multivariate cryptography are systems of multivariate quad-
ratic polynomials over a finite field F. The security of multivariate schemes is 
based on the MQ Problem of solving such a system. The MQ Problem is proven 
to be NP-Hard even for quadratic polynomials over the field GF(2) [5] and 
believed to be hard on average (both for classical and quantum computers). 

To build a multivariate public key cryptosystem (MPKC), one starts with 
an easily invertible quadratic map F : Fn → Fm (central map). To hide the 
structure of F in the public key, we compose it with two invertible affine (or 
linear) maps T : Fm → Fm and U : Fn → Fn. The public key of the scheme is 
therefore given by P = T ◦ F ◦ U : Fn → Fm. The relation between the easily 
invertible central map F and the public key P is referred to as a morphism of 
polynomials. 

The private key consists of the three maps T , F and U and therefore allows 
to invert the public key. To generate a signature for a document (hash value) 
h ∈ Fm, one computes recursively x = T −1(h) ∈ Fm , y = F−1(x) ∈ Fn and 
z = U−1(y) ∈ Fn. To check the authenticity of a signature z ∈ Fn, one simply 
computes h0 = P(z) ∈ Fm. If the result is equal to h, the signature is accepted, 
otherwise rejected. This process is illustrated in Figure 1. 

2.2 HFE Variants 

The HFE encryption scheme was proposed by J. Patarin in [6]. The scheme 
belongs to the BigField family of multivariate schemes, which means that it uses 
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Fig. 1. Signature Generation and Verification for Multivariate Signature Schemes 

a degree n extension field E of F as well as an isomorphism φ : Fn → E. The 
central map is a univariate polynomial map over E of the form 

iq +qj ≤D q i≤DX i+qj X i 

F(X) = αij X
q + βiX

q + γ. 
0≤i,j i=0 

¯Due to the special structure of F , the map F = φ−1 ◦ F ◦ φ is a quadratic map 
over the vector space Fn. In order to hide the structure of F in the public key, 
¯ ¯F is composed with two affine maps T and U , i.e. P = T ◦ F ◦ U . 

After the basic scheme was broken by direct [7] and rank attacks [8], sev-
eral versions of HFE for digital signatures have been proposed. Basically, these 
schemes use two different techniques: the minus and the vinegar modification. 
For the HFEv- signature scheme [3], the central map F has the form 

q i+qj ≤D q i≤DX X 
+q )XqF(X, xV ) = αij X

q i j 

+ βi(xn+1, . . . , xn+v 
i 

+γ(xn+1, . . . , xn+v ), 
0≤i,j i=0 

where βi and γ are linear and quadratic maps in the vinegar variables xV = 
(xn+1, . . . , xn+v) respectively. Defining ψ : Fn+v → E × Fv by ψ = φ × idv, the 
public key has the form 

→ Fn−aP = T ◦ φ−1 ◦ F ◦ ψ ◦ U : Fn+v 

with two affine maps T : Fn → Fn−a and U : Fn+v → Fn+v , and is a multivariate 
quadratic map with coefficients and variables over F. 

Signature Generation: To generate a signature z for a document d, one uses 
a hash function H : {0, 1}? → Fn−a to compute a hash value h = H(d) ∈ Fn−a 

and performs the following four steps 

1. Compute a preimage x ∈ Fn of h under the affine map T and set X = 
φ(x) ∈ E. 

2. Choose random values for the vinegar variables xn+1, . . . , xn+v and substi-
tute them into the central map to obtain the parametrized map FV . 

3. Solve the univariate polynomial equation FV (Y ) = X over the extension 
field E by Berlekamp’s algorithm. 

4. Compute the signature z = U−1(φ−1(Y )||xn+1|| . . . ||xn+v) ∈ Fn+v . 
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Signature Verification: To check the authenticity of a signature z ∈ Fn+v, the 
verifier computes h = H(d) and h0 = P(z). If h0 = h holds, the signature is 
accepted, otherwise rejected. 

3 Previous Cryptanalysis 

3.1 Direct Algebraic Attack 

The direct algebraic attack is the most straightforward way to attack a mul-
tivariate cryptosystem such as HFEv-. In this attack, one considers the public 
equation P(z) = h as an instance of the MQ-Problem. In the case of HFEv-, this 
public system is slightly underdetermined. In order to make the solution space 
zero dimensional, one therefore fixes a + v variables in order to get a determined 
system before applying an algorithm like XL [9] or a Gröbner basis method such 
as F4 or F5 [10, 11]. In some cases one gets better results by guessing additional 
variables, even if this requires running the Gröbner basis algorithm several times 
(hybrid approach [4]). 

The complexity of a direct attack using the hybrid approach against a system 
of m quadratic equations in n variables can be estimated as � �2 � � 

n − k + dreg n − kkCompdirect = mink q · 3 · · ,
dreg 2 

where dreg is the so called degree of regularity of the multivariate system. Note 
that this formula gives only a rough estimate and lower bound of the complexity 
of a direct attack, since it assumes that the linear systems appearing during the 
attack are very sparse systems. It is not clear if this assumption holds and if the 
used Wiedemann algorithm can work with the assumed complexity. 

Experiments have shown that the public systems of HFE and its variants can 
be solved significantly faster than random systems [7, 12]. This phenomenon was 
studied by Ding et al. in a series of papers [13–15]. In [15] it was shown that the 
degree of regularity of solving an HFEv- system is upper bounded by (

(q−1)·(r+a+v−1) + 2 q even and r + a odd 2 (1)dreg, HFEv− ≤ (q−1)·(r+a+v) . 
+ 2 otherwise2 

3.2 MinRank 

The historically most effective attack on the HFE family of cryptosystems is 
the MinRank attack which exploits the algebraic consequence of a low degree 
bound D. This low degree bound leads to the fact that the central map has a 
low Q-rank. 

Definition 1 The Q-rank of a multivariate quadratic map F : Fn → Fn over the 
finite field F with q elements is the rank of the quadratic form Q on E[X1, . . . , Xn] 
defined by Q(X1, . . . , Xn) = φ ◦ F ◦ φ−1(X), under the identification X1 = 
X, X2 = Xq, . . . , Xn = Xq n−1 

. 
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Q-rank is invariant under one-sided isomorphisms of polynomials of the form 
G = I ◦ F ◦ U , where I is the identity transformation. Q-rank is not, however, 
invariant under isomorphisms of polynomials in general. The min-Q-Rank of a 
quadratic map F is the minimum Q-rank of any quadratic map in the isomor-
phism class of F . This quantity is invariant under isomorphisms of polynomials, 
and is the relevant quantity for cryptanalysis. For historical reasons, language is 
often abused and the term Q-rank is used in place of min-Q-rank. 

As an example, consider an odd characteristic instance of HFE. We may 
write the homogeneous quadratic part of F as ⎡ ⎤ 

α1,1 α1
0 
,2 · · · α1

0 
,d 0 · · · 0 

α0 · · · α0 0 · · · 01,2 α2,2 2,d 
. . . . .. . . . . . . . . . .. . . . . 

α0 α0 1,d 2,d · · · αd,d 0 · · · 0 
0 0 · · · 0 0 · · · 0 
. . . 

. . . 
. . . 

. . . 
. . . 
. . . 

. . . 
0 0 · · · 0 0 · · · 0 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⎤ 
X ih 

n−1 
XqX Xq · · · 

⎢⎢⎢⎣ X
q 

. . . 

⎥⎥⎥⎦ , 
Xq n−1 

1where α0 = αi,j and d = dlog (D)e. Clearly, this quadratic form over the ring i,j 2 q

E[X1, . . . , Xn] has rank d, and thus the HFE central map has Q-rank d. 
The first iteration of the MinRank attack in the BigField setting is the 

Kipnis-Shamir (KS) attack of [8]. Via polynomial interpolation, the public key 
can be expressed as a quadratic polynomial G over the degree n extension field 
E. By construction there is an F-linear map T −1 such that T −1 ◦ G has rank d, 
thus there is a rank d matrix that is an E-linear combination of the Frobenius 
powers of G. This turns recovery of the transformation T into the solution of a 
MinRank problem over E. 

A significant improvement to this method for HFE is the key recovery attack 
of Bettale et al. [16]. The first significant observation made was that an E-linear 
combination of the public polynomials has low rank as a quadratic form over 
E. By constructing a formal linear combination of the public polynomials with 
variable coefficients, one can collect the polynomials representing (d+1)×(d+1) 
minors of this linear combination, which must be zero by the Q-rank bound. The 
advantage this technique offers is that the coefficients of the polynomial are in F; 
thus, the Gröbner basis calculation can be performed over F, while the variety 
is computed over E. This minors modeling method is significantly more efficient 
than the KS-attack when the number of equations is similar to the number of 
variables. (In contrast, for schemes such as Zhuang-zi Hidden Field Equations 
(ZHFE), see [17], it seems that the KS modeling is more efficient, probably due 
to the large number of variables in the Gröbner basis calculation, see [18].) To 
make the ideal zero-dimensional, we fix one variable; thus ,the complexity of 

(dlogqthe KS-attack with minors modeling is asymptotically O(n (D)e)ω), where 
2 ≤ ω ≤ 3 is the linear algebra constant. 

The MinRank approach can also be effective in attacking HFE-. The key 
observation in [19] is that not only does the removal of an equation increase the 
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Q-rank by merely one, there is also a basis in which it increases the degree only 
by a factor of q. Thus HFE- schemes with large base fields are vulnerable to the 
minors modeling method of [16], even when multiple equations are removed. The 
complexity of the KS-attack with minors modeling for HFE- is asymptoticaly 

(dlogqO(n (D)e+a)ω), where a is the number of equations removed and 2 < ω ≤ 3 
is the linear algebra constant. 

4 Variants of MinRank with Projection 

As first explicitly noted in [15], the Q-rank of the central map is increased by 
v with the introduction of v vinegar variables and therefore the min-Q-rank of 
HFEv- is dlogq(D)e+a+v. We now discuss techniques for turning this observation 
into a key recovery attack. From this point on, let r denote dlogq (D)e, that is, 
the Q-rank of the HFE component of the central map. 

4.1 MinRank then Projection 

The simplest way to attempt an attack utilizing the low Q-rank of the central 
map of HFEv- is to directly apply a MinRank attack and then try to discover 
the vinegar subspace by considering the solution as a quadratic form. To this 
end, consider the surjective E-algebra representation Φ : E → A defined by 
Φ(X) = (X, Xq, . . . , Xq n−1 

). We may map directly from an n-dimensional vector 
space over F to A via right multiplication by the matrix ⎤⎡ 

Mn = 

⎢⎢⎢⎢⎢⎢⎣ 
1 1 · · · 1 

θq θq n−1 
θ · · · 
θ2 θ2q · · · θ2q n−1 

. . . 
. . . 

. . . 
. . . 

n−1 
θn−1 θ(n−1)q θ(n−1)q· · · 

⎥⎥⎥⎥⎥⎥⎦ , 

f
with the choice of a primitive element θ ∈ E (i.e. E = F(θ)). Right multiplication 
by Mn corresponds to the linear map Φ ◦ φ, where the choice of isomorphism φ 
is determined by the choice of primitive element θ. 

We may incorporate the vinegar variables into the picture by simply ap-
Mnpending them to A. Specifically, define the map : Fn+v → A × Fv by right 

multiplication by the matrix �� 
Mn 0n×v 

f

fMn 

where Iv is the identity matrix. We may then represent any HFEv- map as a 
single (n + v) × (n + v) matrix with coefficients in E. Note specifically that any 
function bilinear with respect to the vinegar variable xn and the HFE variables 
x0, . . . , xn−1 can be encoded in row and/or column n of the quadratic form 

Mn

= ,
0v×n Iv 

xQx> fM> x ,n 
>R= x



7 Improved Cryptanalysis of HFEV- via Projection 

where R ∈M(n+v)×(n+v)(E). 
Mn

HFEv-. We will say that F is the matrix representation of F over A × Fv. Let 
F∗i be the matrix representation of the ith Frobenius power of F over A × Fv. 
Then we have, for example the following shape for F∗0: 

f M> 
n 

f > = F(x) where F is the central map of Let F be defined by x F x

⎤⎡ ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

α0,0 · · · α0,d−1 0 · · · 0 β0,n · · · β0,n+v−1 
. . . . . .. . . . . . . . . . . . . . .. . . . . . 

α0,d−1 · · · αd−1,d−1 0 · · · 0 βd−1,n · · · βd−1,n+v−1 

0 · · · 0 0 · · · 0 0 · · · 0 
. . . . . .. . . . . . . . . . . . . . . . . . . . . 
0 · · · 0 0 · · · 0 0 · · · 0 
β0,n · · · βd−1,n 0 · · · 0 βn,n · · · βn,n+v−1 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

β0,n+v−1 · · · βd−1,n+v−1 0 · · · 0 βn,n+v−1 · · · βn+v−1,n+v−1 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 
. 

f

Here we see that rank(F∗0) = r + v. The structure of F∗1 is similar with the 

f

upper left HFE block consisting of αi,j shifted down and to the right and raised 
to the power of q, and the symmetric blocks of mixing monomials shifted down 
and to the right with a more complicated function applied to the βi,j coefficients 
to respect the Frobenius map. 

Now let U, T and Pi be the matrix representations of the affine isomorphisms 
U and T and the public quadratic forms Pi, respectively. Then we derive the 
relation 

Mn Mn)T−1Mn F ∗0 F ∗(n−1)fM> 
n U

> fM> 
n U

>).(P1, . . . , Pn = (U , . . . , UffMn

Since UMn 

F∗0fM> 
n U

> is an E-linear combination of the public quadratic forms. Thus U
is invertible, the rank of this linear combination is the rank of F∗0 , 

which is r + v. 
Following the analysis of [19, Theorem 2], we see that the effect of the minus 

modifier on the matrix representation of F over A × Fv is to add to it constant 
multiples of itself with a cyclic shift of the rows and columns down and to the 
right within the HFE block. Thus for HFEv-, F∗0 has the shape given in Figure 2. 
The rank of this quadratic form is r + a + v. 
The solution of the MinRank instance provides an equivalent transformation T 0 

to the output transformation T (up to the choice of extension to full rank) and bf F∗0Mn 

= T 0 ◦ φ−1 ◦ bF ◦ φ ◦U 0 for an equivalent private key (T 0 
a matrix L representing the low Q-rank quadratic form U0 U0>fM> 

n over bF , U 0). 
Now that the correct output transformation is recovered, it remains to recover 
A × Fv, where P ,

bf F∗0Mn 

First, note that the kernel of L as a linear map is orthogonal to the vinegar 
subspace, so we may simplify the analysis by projecting onto the orthogonal 
complement of a codimension one subspace of the kernel. Let Lb denote the com-
position of L with this projection. The strategy now is to compose codimension 

the vinegar subspace of the map L defined by L = U0 U0>fM> 
n . 
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Fig. 2. The shape of the central map of HFEv- composed with the minus projection 
over A × Fv . The shaded areas represent possibly nonzero entries. 

bone projection mappings π with the transformation L to filter out the vinegar 
variables. It suffices to choose projections whose kernels are orthogonal to ker(Lb). 

If there is a nontrivial intersection between the kernel of π and the vinegar 
subspace, the rank of the matrix representation of b LΠ>, will be reduced. L◦π, Πb
In contrast, if this intersection is empty, the rank of Πb should remain the LΠ> 

same. To see this, note that by an argument symmetric to that of [19, Lemma 
1] we may equivalently define bL ◦ π by 

bL ◦ π = U−1 ◦ [(φ ◦ π1 ◦ φ−1 ◦ S1) × π2] ◦ S2, 

where S1 : Fn → Fn is nonsingular, S2 : Fn+v → Fn × Fv is an isomorphism, 
n−r−aπ1 : E → E has degree at most q (since the intersection of the image of b → FvL ◦ π and the HFE subspace is at least (r + a)-dimensional) and π2 : Fv 

is linear. Since the degree bound of the central HFE quadratic form is qr+a, the 
highest monomial degree in the composition of π2 with this map is bounded by 

qn−1, thus the polynomials π1, π
q, . . . , πq r+a 

are linearly independent. 1 1 
The probability that the linear form defining ker(π) which is orthogonal to 

the kernel of Lb lies in the vinegar subspace is q−(r+a+1). Once such a vector is 
recovered, this step is repeated on the orthogonal complement of the discovered 
vectors until a basis for the vinegar subspace is found. Thus the complexity of 
this method when fixing one variable to make the ideal zero dimensional is !� �2� � 

n + r + v n − a r+a+1CompMP = O + (r + a + v + 1)3 q . 
r + a + v 2 

4.2 Projection then MinRank 

Another approach using MinRank is a “project-then-MinRank” approach. In 
this strategy, one randomly projects the plaintext space onto a codimension k 
subspace and then applies the MinRank attack. Since the projection π cannot 
increase the Q-rank of the central map, the Q-rank is at most r + a + v. 
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We may choose k = n − r − a − v, and expect that the rank of P ◦ π is still 
r + a + v, due to the fact that the HFE component is still of full rank, as noted 
in the previous section. If, however, there is a nontrivial intersection between 
the kernel of π and the vinegar subspace, the rank of this quadratic form will be 

k−n −(r+a+v)less than r + a + v. The probability this occurs is q = q . 
Generalizing, we may project further in an attempt to eliminate possibly 

more vinegar variables and reduce the rank further. The minors system of a 
MinRank attack at rank r is fully determined if the square of r less than the 
number of variables bounds the number of public equations; thus, if the image √ 
of π is of dimension at least the sum of n − a and r, the minors system is 
still fully determined. Therefore, consider eliminating c vinegar variables. This √ 
requires k to be at least n − a − r + c − n − a. The probability that there is a 
c-dimensional intersection between the kernel of π and the vinegar subspace is √ 

(c+1 c(k−n)−(c )−cr−ca−c n−a2 2then q ) ≥ q . 
Once at least one vinegar variable is found, the new basis can be utilized 

to filter out the remaining vinegar variables as in the previous method. The 
complexity of the this method with one variable fixed is � �2� �! √ 

n−a)−(c+1 n + r + v − c n − ac(r+a+CompPM = O q 2 ) . 
r + a + v − c 2 

5 The Distinguishing Based attack 

In this section we present our distinguishing based attack against the HFEv-
signature scheme. We restrict to the case of F = GF(2). The idea of the attack 
is closely related to the direct attacks with projection (also known as the hybrid 
approach). We define ( )

n+vX 
V = λiUi|λi ∈ {0, 1} , 

i=n+1 

where Ui denotes the i-th component of the affine transformation U : Fn+v → 
Fn+v . Therefore, V is the space spanned by the affine representations of the 
vinegar variables xn+1, . . . , xn+v . Our attack is based on the following two ob-
servations. 

– Consider the two HFEv- public keys P1 = HFEv−(n, D, a, v1) and P2 = 
HFEv−(n, D, a, v2). Before applying a Gröbner basis algorithm to the sys-
tems, we fix a+v1 variables in P1 and a+v2 variables in P2 to get determined 
systems. As shown in Table 1 and Figure 3, direct attacks against these sys-
tems behave differently. In particular, we can distinguish between determined 
instances of the two systems P1 and P2 by looking at the step degrees of 
the F4 algorithm. This remains possible even when adding (not too many) 
additional linear equations to the systems P1 and P2 (thus guessing some of 
the variables) before applying a Gröbner basis method (hybrid approach). 
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v HFEv-(26, 17, 1, v) HFEv-(33, 9, 3, v) 
0 2,3,4,3,4 2,3,4,4,4 
1 2,3,4,4,4 2,3,4,5,4 
2 2,3,4,5,4 2,3,4,5,5 
3 2,3,4,5,5 2,3,4,5,5,5,5,5,6 
4 2,3,4,5,5,5,5,5 2,3,4,5,6,6 
5 2,3,4,5,6 

random system 2,3,4,5,6 2,3,4,5,6,6 
Table 1. Step degrees of the F4 algorithm against determined HFEv- systems for 
different values of v 

– Let us consider the special case where v2 = v1 − 1 holds. By adding one 
linear equation ` ∈ V to P1, we remove the influence of one of the vinegar 
variables from the system P1. A direct attack against the so obtained system 
P1 
0 therefore behaves in exactly the same way as a direct attack against the 

system P2 (see Table 2). 

5.1 The Distinguisher 

Based on the two above observations, we can now construct a distinguisher as 
follows. We start with an HFEv- public key P = HFEv−(n, D, a, v). P consists 
of n − a quadratic equations in n + v variables over the field GF(2). After adding 

2the field equations {xi − xi : i = 1, . . . , n + v}, we append k randomly chosen 
linear equations ` 1, . . . , `k to the system. Therefore, our new system P 0 consists 
of 

– the n − a quadratic HFEv- equations from P 
2– n + v field equations xi − xi = 0 (i = 1, . . . , n + v) 

– the k linear equations ` 1, . . . , `k. 

Altogether, the system P 0 consists of 2n − a + v + k equations in n + v variables. 
After having constructed the system P 0 , we solve it via a Gröbner basis 

algorithm. Due to Observation 2, the behaviour of this algorithm should depend 
on the fact whether one of the linear equations ` i added to the system (or a 
linear combination of the ` i) is an element of the vinegar space V. In fact, we 
can observe a difference in the step degrees of the algorithm (see Example 1 
below). 

Formally written, we can use our technique to distinguish between the two 
cases ( )

kX 
λi ̀  i | λi ∈ {0, 1} ∩ V = ∅ and 

i=1 ( )
kX 
λi ̀  i | λi ∈ {0, 1} ∩ V 6= ∅. (2) 

i=1 
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However, in most cases that λi ̀  i | λi ∈ {0, 1} 6i=1 ∩ V = ∅, the intersection 

contains only a single equation `̃. 
Remark: We have to note here that the number k of linear equations added 

to the system P is upper bounded by a value k̄(n, D, a, v). When adding more 
than k̄ linear equations to the system, a distinction between the two cases of (2) 
is no longer possible. 

Example 1: We consider HFEv- systems with (n, D, a) = (33, 9, 3) and varying 
values of v ∈ {0, . . . , 4}. The resulting HFEv- public keys are systems of n − a = 
30 quadratic equations in n + v variables. After appending the field equations 

2{x − xi = 0} to the systems, we added randomly chosen linear equations to i 
reduce the effective number of variables in our systems. Figure 3 shows the 
degree of regularity of a direct attack using F4 against the (projected) systems. 
For comparison, the figure also contains data for a random system of the same 
size. 

Fig. 3. Direct attack against (projected) HFEv- systems with (n, D, a) = (33, 9, 3) and 
varying values of v 

As Figure 3 shows, there exists, for every parameter set (n, D, a, v) a number 
k̄ such that 

1) When adding less than k̄ linear equations to the system, the degree of regu-
larity of a direct attack against the projected system is the same as that of 
a direct attack against the unprojected system. 

¯2) When adding k ≥ k linear equations, the system behaves exactly like a 
random system of the same size. 

Let us now look at our distinguisher. For this, we skip the parameter set 
(n, D, a, v) = (33, 9, 3, 0) since, in this case, V = ∅ holds. However, as Table 2 
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shows, we can, for each of the values v ∈ {1, . . . , 4}, disitnguish between the two 
cases of (2). 

v k̄ n − k̄ 
step degrees of F4 

for L ∩ V = ∅ for L ∩ V = {˜̀}
4 3 27 1,2,3,4,5,6 1,2,3,4,5,5,5 
3 4 26 1,2,3,4,5,5,5 1,2,3,4,5,5 
2 4 26 1,2,3,4,5,5 1,2,3,4,5,4 
1 9 21 1,2,3,4,5 1,2,3,4,4,4 

Table 2. Distinguisher Experiments on HFEv-(33, 9, 3, v) systems for different values 
of v 

onPk
For abbreviation, we use in the table L := i=1 λi ̀  i | λi ∈ {0, 1} . Note 

that the evolution of the step degrees for HFEv-(33,9,3,4) is the same as for a 
random system of the same size. 

5.2 The Attack 

Based on the distinguisher presented in the previous section, we can construct an 
attack against HFEv- as follows. By performing the distinguishing experiment 
with a large number of systems P 0 (containing different linear equations), we can onPk
find a set of k linear equations ` 1, . . . , ̀  k such that i=1 λi ̀  i | λi ∈ {0, 1} ∩ 

˜V = {`̃1}. Using this, we can determine the exact form of ` 1 as follows. Note 
that there exist coefficients αi ∈ {0, 1} (i = 1, . . . k) such that 

kX 
˜̀ 1 = αi · ` i. 

i=1 

In order to determine the exact form of this linear combination, we remove one 
of the linear equations (say ` 1) from the system P 0 and add another randomly 
chosen linear equation. If we still can observe a difference in the behaviour of 
a direct attack compared to a random choice of linear equations, we know that 
the coefficient α1 must be 0. Otherwise, the coefficient α1 must be 1, and we 
have to add ` 1 back to the system. 

We repeat this step for i = 2, . . . , k to determine the values of all the coeffi-
cients αi (i = 1, . . . , k). This will give us the exact form of the linear equation 
˜̀ 1 ∈ V. We denote this technique as “remove-and-add” strategy. 

Having found `̃1, we add it to the original HFEv-(n, D, a, v) system. The 
resulting system will behave exactly like an HFEv-(n, D, a, v − 1) system, and 
we can again use our distinguisher and repeat the above procedure to find a 
second linear equation `̃2 ∈ V. Note that this will be much easier than finding 
˜̀ 1 (see next section). 
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After having found v linear independent equations `̃1, . . . ̀ ṽ ∈ V and adding 
them to the HFEv- system, the resulting system will behave exactly like an HFE-
(n,D,a) system (i.e. we have no vinegar variables any more). We can then use any 
attack against HFE- (e.g. the key recovery attack of Vates et al. [19] or a direct 
attack) to break the scheme. We analyze the complexity of our distinguisher and 
this attack in the next section. 

Let us briefly return to Example 1. When we start with the system P =HFEv-
(33,9,3,4), we can use our distinguisher to find a set {` 1, . . . , `k} of linear equa-o 
tions such that 

nPk 
λi ̀  i | λi ∈ {0, 1} ∩ V = {`̃1}. After having recovered i=1 

the exact form of `̃, we can append it to the system P, which will then behave 
exactly like an HFEv-(33,9,3,3) system. Let us denote this new system by P(1). 
We can then use the distinguisher on P(1) to obtain a second linear equation 
`̃2 ∈ V. Adding `̃2 to the system P(1) leads to a system P(2) behaving exactly 
like a HFEv-(33,9,3,2) system. By continuing this process, we finally obtain the 
system P(4) corresponding to an HFEv- (33,9,3,0) system. We can then break 
this scheme by using any attack on HFE-. 

Algorithm 1 Our distinguishing based attack 
Input: HFEv-(n, D, a, v) public key P 

˜Output: equivalent HFE-(n, D, a) public key P 
1: Append k̄ randomly chosen linear equations ` 1, . . . , `k̄ in the variables x1, . . . , xn+v 

(as well as the field equations xi 
2 − xi = 0) to the system P and solve it by F4. 

2: Repeat this step until the F4-step degrees differ from the standard case. 
This means that we have found a set of linear equations ` 1, . . . , `k such that onPk = {˜λi ̀  i | λi ∈ {0, 1} ∩ V ` 1}i=1 

3: Determine the exact form of `̃ by the above described “remove-and-add” strategy. 
4: Append the linear equation `̃ to the system P. The resulting system P 0 will behave 

exactly like an HFEv-(n,D,a,v-1) public key. 
5: Repeat the above steps until having found v linear independent equations 

˜ ˜` 1, . . . , ̀  k ∈ V. 
˜ ˜ ˜6: return P = (P, ` 1, . . . , ̀  v ) 

6 Complexity Analysis 

In the first step of our attack, we have to find one linear equation `̃ ∈ V by using 
our distinguisher and a following application of the “remove-and-add” strategy 
described in the previous section. Therefore, the complexity of this first step of 
our attack is determined by three factors: 

1. The number of times we have to run the distinguisher in order to find a set o 
of linear equations ` 1, . . . , `k such that 

nPk 
λi ̀  i | λi ∈ {0, 1} ∩V = {`̃} ,i=1 

2. The cost of one run of the distinguisher and 
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3. The cost of recovering the exact form of `̃. 

The first number is determined by 

– The probability that a randomly chosen linear equation in n + v variables is 
contained in the space V spanned by the linear representation of the vine-

¯gar variables Un+1, . . . , Un+v A randomly chosen linear equation ` in n + v 
variables can be seen as a linear combination of the components of U , i.e. 

n+vX 
¯̀ = λi · Ui. (3) 

i=1 

The reason for this is that U is an invertible map from Fn+v to itself, which 
means that the components of U form a basis of this space. There are 2n+v 

choices for the parameters λi (i = 1, . . . , n + v). On the other hand, every 
element `̃ of the space V spanned by the linear transformations of the vinegar 
variables v1, . . . , vv can be written in the form 

n+vX 
˜̀ = λi · Ui. 

i=n+1 

The probability that a randomly chosen linear equation `̄ lies in V is therefore 
given by 

prob(`̄ ∈ V) = 2−n . (4) 

The reason for this is that all the coefficients λi (i = 1, . . . , n) in the repre-
sentation (3) of `̄ must be zero. 

– The number of linear equations (and linear combinations thereof) added to 
the public key. When adding k linear equations ` 1, . . . , `k to the public key, 
we do not have to consider only the k equations ` 1, . . . , ̀  k itself, but also all 
linear combinations of the form 

kX 
` = λi · ` i. 

i=1 

The total number of linear equations we have to consider is therefore not k, 
but 2k . 

Therefore, when adding k linear equations ` 1, . . . , `k to the public key, the prob-
ability of finding one linear equation `̃ ∈ V, is given by 

prob = 1 − (1 − 2−n)2
k 

≈ 2k−n . 

In order to find one linear equation `̃ ∈ V, we therefore have to run our distin-
guisher about 2n−k times. 

A single run of our distinguisher corresponds to one run of the F4 algorithm. 
The cost of this can be estimated as � 0 �2 � 0� n n

CompF4 = 3 · · ,
dreg 2 
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0where n is the number of variables in the quadratic system and dreg is the so 
called degree of regularity. 

Note that this formula assumes that the linear systems appearing during the 
attack are solved using a sparse Wiedemann solver. Furthermore we use the fact 
that the system is defined over the field GF(2), which reduces the number of 
terms in the high degree polynomials. 

With regard to the number n0 of variables we find that the linear equations 
added to the public key are “absorbed” at a very early step of the F4 algorithm, 
i.e. they are used to reduce the number of variables in the system. This fact 
is illustrated in Table 3. In the table, we consider two random systems, both 
containing 25 quadratic equations. However, while the equations of system A are 
polynomials in 25 variables, the polynomials of system B contain 35 variables. 
On the other hand, the system B additionally contains 10 linear equations. 

25 equations, 25 variables 25 quadr. + 10 lin. equations, 35 variables 
step degree matrix size time (s) degree matrix size time (s) 

1 10 × 36 0.0 
1 20 × 36 0.0 

1 2 25 × 326 0.0 2 330 × 631 0.0 
2 3 652 × 2626 0.02 3 650 × 2626 0.02 
3 4 7894 × 14 498 1.27 4 7864 × 15 568 1.34 
4 5 52 488 × 52 956 79.86 5 52 197 × 52 665 80.26 
5 6 248 705 × 245 506 179.34 6 248 273 × 108 524 182.24 

Table 3. Experiments with random systems 

As the table shows, both systems behave very similarly. Starting at step 
2 (degree 3), there is no significant difference between the matrix sizes or the 
running times of the single steps between the two systems. 

We can therefore conclude that the quadratic systems we consider in our 
distinguishing based attack (n − a quadratic equations + k linear equations in 
n + v variables) behave just like systems of n− a quadratic equations in n+ v − k 
variables. 

The cost of recovering the exact form of `̃ is negligible in comparison to nPk 
o 

finding linear equations ` 1, . . . , `k such that λi ̀  i | λi ∈ {0, 1} ∩ V = i=1 

{`̃}. Remember that `̃ can be written as a linear combination of ` 1, . . . , `k, i.e. Pk˜̀ = i=1 λi · ` i. 
As described in the previous section, we remove for this one linear equation 

` i from the system P 0. By adding a randomly chosen linear equation, we obtain 
a system P 00 of the same dimensions. We apply the F4 algorithm against the two 
systems P 0 and P 00. If we observe a difference in the behavior of the algorithm, 
we know that the coefficient λi in the above linear combination is 1. Otherwise 
we have λi = 0. By running this test for all i ∈ {1, . . . , k}, we can determine 
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all the coefficients λi and therefore recover `̃. In order to recover `̃, we therefore 
need 2 ·k runs of the F4 algorithm, which is far less than the 2n−k F4-runs above. 
Therefore, we do not have to consider this step in our complexity analysis. 

Altogether, we can estimate the complexity of this first step of our attack by � �2 � � 
n + v − k n + v − k 

CompDist; classical = 2n−k · 3 · · . (5)
dreg 2 

In the presence of quantum computers, we can speed up the searching step of 
this attack using Grover’s algorithm. Thus we get � �2 � � 

n + v − k n + v − k 
CompDist; quantum = 2(n−k)/2 · 3 · · . 

dreg 2 

Note that this assumption of the complexity is very optimistic, since it assumes a 
perfect “square-root” speed up by Grover’s algorithm. Since quantum algorithms 
must be reversible, it is not clear if this is possible. 
As equation (5) shows, the complexity decreases when we increase the number 
k of linear equations added to the public key. However, as already mentioned in 
the previous section, our distinguisher fails when k is too large. We denote the 
maximal value of k for which our distinguisher works by k̄(n, D, a, v). 

In order to remove all the vinegar variables from the system P, we have to 
repeat the above process v times. However, with decreasing v we find (see Table 
2) 

¯1) the number k of linear equations that we can add to the public system 
increases, reducing the number of F4-runs. 

2) the degree of regularity of the systems generated by our distinguisher de-
creases, reducing the complexity of a single F4-run. 

Therefore, the following steps of our attack will be much faster than the first 
step. This means, that we can estimate the complexity of the whole attack as in 
formula (5). 

However, in order to estimate the complexity of our attack against an HFEv-
(n, D, a, v) scheme in practice, we still have to answer the following two questions. 

– What is the maximal number k̄ of linear equations we can add to the public 
key such that our distinguisher works? 

– What is the degree of regularity of the systems generated by our distin-
guisher? 

In order to answer these questions, we once more consider Example 1 (see pre-
vious section). 

First, let us consider the second question. As a comparison of Table 2 and 
Figure 3 shows, the degree of regularity of solving the systems generated by our 
distinguisher corresponds exactly to the degree of regularity of an unprojected 
HFEv- system with parameters (n, D, a, v). As stated in [20], we can estimate 
this value as � � 

r + a + v + 7 
dreg = , (6)

3 
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where r = blogq(D − 1)c + 1. 
To answer the first question, let us take a closer look at the behavior of the 

hybrid approach against random systems (see Figure 3). We start with a random 
system of 30 quadratic equations in 30 variables over GF(2). After appending 

2the field equations x − xi = 0 (i = 1, . . . , 30), we add k ∈ {0, . . . , 20} lineari 
equations to the system. Table 4 shows for which values of k we reach given 
values of regularity. 

dreg #k of added linear equations 
3 for k ≥ 16 
4 for 10 ≤ k ≤ 15 
5 for 4 ≤ k ≤ 9 
6 for k ≤ 3 

Table 4. Degree of regularity of projected random systems with 30 equations 

Let us define k̂(d) to be the maximal number of linear equations we can 
add to the random system, such that the degree of regularity of a direct attack 
against the system is greater or equal to d, i.e k̂(6) = 3, k̂(5) = 9 and k̂(4) = 15. 

By comparing these numbers with the values of k̄ listed in Table 2, we find 

k̂(d?) ≤ k̄ ≤ k̂(d?) + 1, 

where d? is the degree of regularity of a direct attack against an HFEv-(n, D, a, v) 
scheme (see equation (6)). 

In order to estimate the complexity of our attack against an HFEv-(n, D, a, v) 
scheme, we therefore proceed as follows. 

1. We compute the degree of regularity of the unprojected HFEv-(n, D, a, v) 
system (see equation (6)). Denote the result by d? . 

2. We estimate the maximal number k̄ of linear equations we can add to the 
public HFEv- system by k̂(d?). This value can be obtained as follows. 
The degree of regularity of a random system of m = n−a quadratic equations 
in n0 variables over GF(2) can be estimated as the smallest index d for which 
the coefficient of Xd in � �n � �m 0 

1 1 − X2 1 − X2 

· · 
1 − X 1 − X 1 − X4 

is non-positive [21]. 
We can use this equation to determine the values of k̂(d?). 

By substituting the so obtained values of k̄ and d? into formula (5), we therefore 
get a close estimation of the complexity of our distinguishing based attack against 
an HFEv-(n, D, a, v) system. 
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Remark: The above procedure allows us to get an estimation of the complex-
ity of our distinguishing based attack against a given HFEv- scheme. However, 
it seems to be a very hard task to find a closed formula for this complexity. 

Example 2: Consider an HFEv- system over GF(2) with (n, D, a, v) = (91, 5, 3, 2). 
We obtain r = blog2(D − 1)c + 1 = 3. The degree of regularity of a direct attack 
against the HFEv- system (with field equations) is given by � � 

3 + 3 + 2 + 7 
dreg = = 5. 

3 

Therefore, we get � �2 � � 
88 88 ≈ 263.9Compdirect = 3 · · . 
5 2 

After adding k = 68 randomly chosen linear equations to the system, the step 
degrees of the F 4 algorithm look like 1; 1, 2, 3, 4. When one of the linear equations 
was chosen from the vinegar space V, we obtain 1; 1, 2, 3, 3. 

Therefore, we can estimate the complexity of our distinguisher by � �2 � � 
25 25 ≈ 260.1CompDistinguisher = 223 · · ,
4 2 

which is nearly 16 times faster than a direct attack. 
The “MinRank-then-project” approach has a complexity estimated by � �2� � 

96 88 ≈ 287.4CompMP = 3 · ,
8 2 

while the complexity of the “project-then-MinRank” approach has complexity � �2� � 
95 88 ≈ 292.6CompPM = 214 · 3 · . 
7 2 

Therefore, for the above parameter set, the distinguishing based attack is the 
most efficient classical attack against HFEv-. 

With regard to the memory consumption, we get � �2
88 ≈ 250.4Memorydirect = ,
5 � �2

96 ≈ 273.9MemoryMP = ,
8 � �2
95 ≈ 266.7MemoryPM = ,
7 
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25 ≈ 227.3 = .MemoryDistinguisher 4 

As these data show, the distinguishing based attack requires much less memory 
than the direct and the MinRank attack. Since attacks against large instances 
of multivariate schemes often fail due to memory restrictions, the small memory 
consumption is a huge benefit of this attack. 
Remark: The comparably low complexity of our attack in Example 2 is 

caused by the small number of vinegar variables in the system. Due to this, the 
distinguisher works also for relatively small numbers of variables, which enables 
us to add a large number of linear equations to the system. This again reduces 
the number of distinguisher runs and therefore the complexity of the attack. 
(In the case of the example, we found that the distinguisher works for only 25 
variables in the system, due to which we had to run our distinguisher only 223 

times.) 
When the number v of vinegar variables increases, we can not distinguish 

between the two cases at 25 variables any more. We have to reduce the number of 
linear equations added to the system and therefore have to run the distinguisher 
much more often (and for larger systems). Therefore, for larger values of v, the 
complexity of our attack increases. 

For the parameter sets usually used in HFEv- like schemes (and suggested for 
the National Institute of Standards and Technology (NIST) call for proposals), 
the direct attack is usually more efficient than our attack. However, in terms of 
memory consumption, our attack is still much better. 

7 Possible Future Work 

In this section we shortly describe a strategy to reduce the complexity of our 
attack. However, since we have neither enough space nor time to present our 
idea completely, we leave a detailed analysis as future work. 

In the distinguishing step of our attack, we solve a large number of multivari-
ate systems using a direct attack. These systems are obtained by adding k linear 
equations to a multivariate quadratic system P of m equations in n + v variables 
(or equivalently projecting the system to a n + v − k dimensional subspace). In 
Section 5, these projections were chosen at random. 

The main idea to reduce the complexity of this step is now to select the pro-
jection in a slightly nonrandom fashion. In particular, we consider a projection 
in two steps.We apply a projection π̃ of corank k + 1 to the system P and derive 
from this a set of corank k projections {πi}. In this case, we can treat the image 
of π̃ in the plaintext space as being generated by the variables x1, . . . , xn+v−k−1, 
while the image of each of the projections πi is generated by the same variables 
plus one additional variable xn+v−k, which defines a 1-dimensional subspace of 
the kernel of π̃, which will vary depending on the choice of πi. 

During the computation of a Gröbner basis of P(πi) = (f1(πi), . . . , fm(πi)),P 
the F4 algorithm looks for polynomials pj of degree d−2 such that pj · fj (πi) = 
q, where q is a polynomial of degree at most d − 1. 

http:steps.We
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Our strategy will be to first solve for all pj in the variables x1, . . . , xn+v−k−1, 
such that X 

pj fj (πi) = q (mod xn+v−k). P 
As the above equation is equivalent to pj fi(π̃) = q, this computation can be 
reused for multiple different choices of πi. By doing so, we therefore can reduce 
the effort of computing the Gröbner basis needed during the application of our 
distinguisher. 

However, in order to find the exact amount of saving, much more work is 
required. We therefore leave an exact analysis of the above mentioned idea as 
future work. 

Another topic for future work is a precise complexity analysis of our attack. 
The complexity analysis presented in Section 6 is based much on heuristics and 
experiments. In particular, formula (5) contains the parameters k̄ and d? 

reg, which 
(so far) could only be determined experimentally. It therefore would be desireable 
to develop a formula which computes the complexity of our attack for given 
HFEv- parameters n, D, a and v. 
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